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ROUGH LARGE DEVIATION ESTIMATES FOR SIMULATED

ANNEALING: APPLICATION TO
EXPONENTIAL SCHEDULES

By OLIVIER CATONI

Ecole Normale Supérieure, Paris

Simulated annealing algorithms are time inhomogeneous controlled
Markov chains used to search for the minima of energy functions defined
on finite state spaces. The control parameters, the so-called cooling sched-
ule, control the probability that the energy should increase during one step
of the algorithm.

Most of the studies on simulated annealing have dealt with limit
theorems, such as characterizing convergence conditions on the cooling
schedule, or giving an equivalent of the law of the process for one fixed
cooling schedule.

In this paper we derive finite time estimates. These estimates are
uniform in the cooling schedule and in the energy function.

With new technical tools, we gain a new insight into the algorithm. We
give a sharp upper bound for the probability that the energy is close to its
minimum value. Hence we characterize the optimal convergence rate. This
involves a new constant, the “difficulty” of the energy landscape.

We calculate two cooling schedules for which our bound is almost
reached. In one case it is reached up to a multiplicative constant for one
energy function. In the other case it is reached in the sense of logarithmic
equivalence uniformly in the energy function. These two schedules are both
triangular: There is one different schedule for each finite simulation time.
For each fixed finite time the second schedule has the currently used but
previously mathematically unjustified exponential form.

Finally, the title is ‘““Rough large deviation estimates” because we have
computed sharper ones (i.e., with sharp multiplicative constants) in two
other papers.
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1110 0. CATONI

Introduction. This is a finite time study of simulated annealing algo-
rithms. It is based on large deviation estimates which are uniform in the
cooling schedule and the energy function.

Simulated annealing algorithms have their origin in statistical mechanics.
They simulate a system in contact with a heat bath of decreasing temperature.
The system is described by the canonical ensemble (Z~ ! exp(— U, /T)); c g.

The simulation is done by iterative random perturbations which leave the
canonical distribution invariant. Temperature T is a decreasing function of
time n € N. Hence from the mathematical point of view we have a time
inhomogeneous controlled Markov chain. The control parameters are the
temperatures (T,), .y and represent the action of the heat bath.

It is a computer simulation, hence the state space E is finite.

This method has been considered in computer science for its own sake as a
global optimization technique [22, 12]. The reason is that the canonical dis-
tribution concentrates on the states of global minimum energy as temperature
decreases to 0.

In fact convergence is a delicate issue as soon as the energy function U is
not convex, since the system may get quenched in a state which is only a local
minimum of the energy. This is what happens if the decrease of the tempera-
ture is too fast.

The fact of escaping from a local minimum of the system is a large time
behaviour: At constant temperature, it will on the average take place after a
time which is an exponential function of the temperature. Estimating the law
of such events is part of large deviations theory.

The reference work on the subject is by Freidlin and Wentzell [11], who
invented the method. They have studied the time homogeneous case for
stochastic differential equations dX, = b(X,)dt + ¢ dw,. They introduce a
Markov chain on the attractors of the unperturbed system which covers the
case of “simulated annealing at constant temperature.”

1. The state of the art. Convergence of annealing algorithms has been
an active subject of research during the past few years. The different ap-
proaches to the subject can be roughly catalogued in the following way:

Most authors are working with the assumption that temperature is slowly
decreasing [6, 15, 16, 18, 24]. This is a legitimate assumption when one is
thinking of simulated annealing from the point of view of statistical mechan-
ics, because the canonical ensemble describes the system in equilibrium. Thus
the simulation has a clear physical meaning only when temperature decreases
slowly enough for the system to be always almost at equilibrium. On the
contrary, from the point of view of optimization, there is no reason for
restricting temperature to decrease slowly if it is possible to do better by going
faster. The aim is no longer to be almost at equilibrium, but to concentrate
around the minimum as efficiently as possible.

1. Some authors are even doing the technical job at almost constant tempera-
ture [18, 24]. They assume that for each temperature T' they have some
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process (X7T), .y which satisfies for some positive constants C and D,
independent of the temperature,

€)) Ce VeI/T < P(XT =jIXT | =i) <De”V&:N/T peN.
(Tsitsiklis), or that for any positive &,
(2) e UG, N+e)/T - p(XZ‘ =j|XZ‘_1 = i) < e WGH=a)/T neN,

for T small enough (Hwang and Sheu).

Then Hwang and Sheu study the case T, = ¢/In n using estimates on the
constant case on appropriate time intervals. They show that for ¢ > d, d being
the famous “critical depth’ of the energy landscape, the density of the law of
X, with regard to the canonical law at temperature T, tends to a positive
limit. By a clever analysis of intervals [m,n] for which exp(-1/T,) >
Lexp(—1/T,,), Tsitsiklis shows that a necessary and sufficient condition of
convergence is © e~ ?/T» = +o, This was first proved by Hajek.

2. Holley, Kusuoka and Stroock study the first nonzero eigenvalue of the
Dirichlet form associated with the infinitesimal generator of the continuous
time process. They use it to estimate the derivative of the density of the law of
X, towards the canonical distribution at temperature T,. Their results are
bounds on the L, norm of this density for cooling schedules T, = ¢/In ¢ with
c>d.

3. Chiang and Chow use the forward Kolmogorov equation to incrementally
establish estimates of P(X, =i)/P(X, =j) for couples (i, j) in the same
component of coarser and coarser subdivisions of the state space into ‘‘cycles.”
They make assumptions on the derivative of the cooling schedule that essen-
tially lead to T, = ¢/In n. They prove the same result as Hwang and Sheu.

Finally, Hajek tackles directly the problem of exit from a domain in the
inhomogeneous case. Though he does not seem to know about Wentzell and
Freidlin, he considers the law of the exit time and point from cycles, as studied
by Wentzell and Freidlin in the homogeneous case. Cycles have the property
(cf. [11D that the law of the exit time concentrates around its mean in the
sense that for any positive &,

(3) %iE})P(E(T)I_E <t<E(r)'") =1

Unfortunately Héjek’s estimates are not sharp. He proves that if 7 is the
exit time from a cycle, then

(4) P(r>r) > exp(—r(e—d/To + fore—d/Ts ds)),

but, whereas some reversed inequality of the same type is expected, he can
only prove that

(5) E([O’exp(—d/Ts)ds) <+
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when
(6) [ exp(~d/T,) ds = +ee.
0

There is a great gap between the two estimates, and this did not allow Hajek
to go further than his necessary and sufficient condition for convergence (the
one which was proved again by Tsitsiklis).

2. A finite time point of view on simulated annealing. Simulation
means that not only the state space but also computer time is finite. The
question then arises: What can we do best with some finite large computer
time? It is different from asking what we can do best asymptotically. Indeed, in
the first case, we can change the temperature values each time we are doing a
new experiment with some new allowed computer time.

Another approach from the classical point of view is to ask: What can we do
if we have no precise information about the energy function? For instance, one
knows that the choice of a cooling schedule of the form T, = ¢/In n should
depend on the value of some critical depth d of the energy landscape. Hence if
we do not know d, which is in many situations very likely, but maybe only
some bounds on d, we are in trouble.

To address these questions, we need estimates which are uniform in the
cooling schedule and the energy function. What will remain fixed are the state
space and the communications between states.

Our estimates will be of the type used by Wentzell and Freidlin; they will be
on the law of the couple (exit time, exit point) from strict subdomains of the
state space.

The knowledge of such distributions for any subdomains gives very precise
information on the behaviour of the system.

Let A be a subdomain of the state space E. We can estimate the probability
of being in A at time n by estimating successively the probability of having
stayed in A from the beginning of time, the probability of having jumped once
to £ — A and back, jumped twice, and so on.

Our measure of convergence will be

(7) M(n) = supP(U(X,) = alX, = i),
i€E

the probability that the energy at time n is superior to « in the worst case.
Time n is the time when we stop the computer simulation. We are studying
the case of a deterministic stopping rule; we choose n in advance. When the
convergence measure M(n) is large, convergence is poor. Convergence here
means that U(X,) < a—the energy at time n is inferior to some level « close
to the minimum value of the energy.
We give a lower bound for M(n): The quantity
(8) r 1nfT M(n),

1reeesdpy

cannot approach 0 faster than some power of 1/n. Surprisingly, this power
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does not involve the critical depth, which is linked to the second eigenvalue of
the transition matrix, but a new constant, which we baptized the difficulty of
the energy landscape.

In order to show that our power of 1/n is sharp, we build cooling schedules
for which it is reached. As could be expected, our cooling schedules will depend
on the horizon n.

This could be expected because for one given schedule T, defined for all
times %, the convergence measure M(n) can be suspected (Holley and Stroock
[16] to depend asymptotically only on the second eigenvalue of the transition
matrix, that is, only on the critical depth of the energy landscape. But our
bound on M(n) depends on the difficulty of the energy landscape, which can
take arbitrary values for one fixed value of the critical depth. Hence, in
general, M(n) cannot follow the same power of 1/n as our bound when the
cooling schedule is independent of the simulation time n. (The materials for a
rigorous proof are in [4].)

Thus our cooling schedules will have two parameters: the simulation time n
and the current time k. The schedules (T}), _, ., will be defined on a triangle
of the parameter space, hence the names triangular cooling schedules and
triangular algorithms. Rather than working directly with closed formulas, we
will derive an upper bound for the convergence measure M(n), calculated with
some supplementary assumptions on the triangular cooling schedule
(Tkn) l<k<n

These assumptions are a set of inequalities on the finite differences 1/7T,* —
1/T)". . There is one inequality for each state i in the state space E. The
inequalities depend on the level a chosen to define convergence.

Once again our assumptions are oriented towards a finite time study of the
process. We want to prove that M(n) < ¢ Card(E), and we will assume the
finite difference inequality linked with any given state i € E of energy U, > a
to hold only as long as P(X, =i) > &.

This can be contrasted with the usual approach (Chiang and Chow [6])
where one assumes one finite difference inequality to hold for all times.

When we decrease &, the time during which each inequality must hold
increases, but in all cases, when k grows, the number of inequalities decreases
and T is allowed to decrease faster and faster. We choose n such that
P(X,=i)<e¢ for all i € E of energy U, > a. Hence at the end, when %
approaches n, T, is allowed to decrease arbitrarily fast and even to be set to 0.
These kinds of schedule could not be handled in the usual asymptotic frame-
work.

We give two closed formulas for 7. The first one depends on the energy U,
through a sequence of typical depths and energy values. For this choice of the
cooling schedule, the measure of convergence satisfies

1
(9) M(n) < 5 X constant,

with sharp constant p (for a small enough).
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The second one does not depend on the energy U. For each n, T is
exponential in k. For this choice of the temperatures we have

10 y In M(n)
—_— <
(10) n—ln-:oo Inn —

and the convergence is uniform on the energy U when we assume some
bounds on some characteristics of U.

Our result shows how the rate of exponential decrease of the temperature
has to be tuned to the time of simulation. In practice, however, it is possible to
do the contrary: Choose some rate and let the algorithm run until no moves
are observed. Our result shows that if this is done, the link between the
convergence measure M (stopping time) and the typical value of the stopping
time will be optimal in the sense of logarithmic equivalents.

This is the first mathematical justification of the use of exponential sched-
ules. Exponential schedules arise in a natural way when one tries to satisfy our
set of finite difference inequalities uniformly in the energy U. We have not
chosen to study them because they were widely used. It simply turned out that
finite time oriented theoretical calculations rejoined common practice.

The paper will now follow the plan we have just sketched: description of the
model, large deviations estimates, upper bound on the convergence rate [i.e.,
lower bound on M(n)], lower bound on the convergence rate for a restricted
family of schedules and study of two closed formulas for those schedules.

3. Description of the model. The state space E will be a finite set, the
energy U will be any function U: E — R, such that min;_z U, = 0 (this
normalization does not restrict the generality). The communication kernel gq:
E X E - [0, 1] will be a symmetric irreducible Markov kernel on E X E:

Yq(i,j)=1, i€E,
J

(11) . . . .
q(i,j) =q(Jj,t), supq"(i,j)>0, i,jE€E.
neN
Given an energy landscape (E,q,U) and a ‘“temperature” T € R, we
define the transition kernel at temperature T by

pr(i,j) =e VW Tq(i,j), i,jEE,i#*j
(12) pr(i,i)=1- Y e @ W/Tq(, j),
JEE, j+i

where x*= sup{x, 0}.

A simulated annealing algorithm on the energy landscape (E, U, q) will be
given by (E, q,U, T, -£;, X), where (T,), <+ is a nonincreasing sequence in
R,, £, is a probability distribution on E, (X,), <y is a Markov chain on E
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with initial distribution .#;, and transition kernel
(13) P(Xn =J|Xn—1=l)=an(l’J)

On the state space E we will consider the partitions induced by the
communications relations %, at level A € R:

(14) (i,j) € B, = suzé(qu"(i,j) > 0,

where

. i,7), fU VU <A,
(15) a.irj) = {"( 7 b

0, otherwise.
We use the convention that q? = Id, so that (i,i) € #,, for any i € E.

The set €(E, q, U) of cycles of (E, g, U) will be the set of the components of
E for the relations %#,, A € R:

(16) ¢(E,q,U) = U E/=,.

AER

The boundary B(C) of C will be

(17) B(C)={je€eE-C3ieC,q(,j)>0}.
The energy of C will be
(18) U(C) = minU,,
ieC
its depth
(19) H(C) = min max(U; - U;)",
JjE€B(C) ieC

its principal boundary

(20) B(C) ={i € B(C)IU, < U(C) + H(C)},
and its bottom
(21) F(C) = {i e C|U, = U(C)}.

The inclusion relation on €(E, q,U) defines a tree, the leaves being the
points of E and the root being E itself. Two cycles which cannot be compared
have empty intersection.

Hence, for any subset A of E, the maximal elements of #(A) N €¢(E,q,U)
form a partition .#(A) of A, which will be called the maximal partition of A.

The maximal partition of a cycle C is {C}. In this case it is also interesting
to consider the ‘“‘natural partition” .#(C) of C formed by the maximal
elements of (#(C) — {C}) N €(E, q,U). It is easily seen that, for any G,G’ €
A4(C), HG) + UG) = H(G) + UG) = AMC).

The difficulty of a cycle C € ¢€(E, q,U) is

H(C)

(22) ) = Tey-
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The difficulty of an energy landscape (E, ¢, U) at level a > 0 is
(23) D,(E,q,U) = max{8(C)IC € ¢(E,q,U),U(C) = a}.

REMARK. For a small enough,
(24) D, = max{8(C)IC € .#(E — F(E))}.

The depth of any subset A will be
(25) H(A) = max{H(C)IC € #(A)}.

Another useful extension of the notion of depth is the following. Let
H,,...,H, be the decreasing sequence of the depths of the cycles of #(E —
F(E)). Let us put by convention H(E) = H, = +~ and

(26) F, = U F(C).

Ce¥(E,q,U)H(C)=H,
We can see that F, = F(E) and that E is the increasing sum of the sets F,.
We can see also that if feF, —F,_, and if f€ G;€ .#4(E - F,_,), then
H(G;) = H,. We will put H; = H,. Hence H; is defined for any f € E.

We will often allow ourselves to choose one finite cooling schedule
(TN), ., < n for each value of the horizon N € N*. The corresponding collec-
tion of finite annealing algorithms (E, q, U,(T.)N), _,, < n» 20, (X1 < < &) Will
be called a triangular annealing algorithm. We will also say that (T.N), _, . is
a triangular cooling schedule. [The finite Markov chains (XY),_,_y are
realized on distinct probability spaces; no stochastic relation is assumed be-
tween them.]

For any subset A of E, the exit time from A will be

(27) (A, m) = inf{n > m|X, & A}.

With this definition we have always 7(A, m) > m + 1.

In our study of the Markov chain X we will consider the following families
of tensors with indices in state space E and in time space Z. For any A, B C E
and any i, j € E, m,n € Z, we define

. P(X,=j, X, ¢B,7(A,m) >nlX, =1i),
(28) M(A,B)|,= m<n,icE,jeB,
0, otherwise.
[The cooling schedule T, and therefore (X,,), are extendedton € Zby T, = T,
for n < 1.] In the same way we define
(29) L(A, B)/"" — {P(Xn =j,M(A,m)>nlX,=1i), i€ E,:; €B,m <n,
’ 0, otherwise.

For two tensors V2R jcp mnez a0d (WD), icp o o, we will form the
usual inner tensor product
jn _ h, kY7
(30) [Win= X VWL
heE, keZ
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4. Large deviation estimates. Our approach is inspired by Wentzell
and Freidlin. We study the law of exit point and time from a domain. The
technical advantage of the method is localization—this law is independent of
what is outside the domain.

The case of a domain restricted to one point is trivial. Some domains behave
almost like points—these are the cycles of E. Viewed from outside, a cycle
behaves like a point at low temperature; the exit point and time calculated
with the assumption that the starting point is within the cycle does not depend
on this starting point. The typical behavior of the system is to visit each state
in the cycle a large number of times before leaving it.

Before leaving a cycle, the system spends nonetheless the major part of its
time in the states of lowest energy. Hence a partial equilibrium is reached.
Our method is to single out one point f of lowest energy in the cycle C. We
study the behavior of the system after its last visit to this point f. Hence we
restrict the domain to C — { f}. We will consider that this point f is in contact
with some “particles bath’’: At each time n some new particle X" appears in
state f which has a further destiny X;'. We suppose that this particle follows
the simulated annealing dynamics within C — {f} and is absorbed outside. We
estimate the measure

(31) B[ T ox
n'slk

on C — {f}. It turns out that this measure is finite, because there is absorption
at least in f.

Then we replace our spring of particles at state f by an estimate of the
probability of hitting state f at each time n. This gives an estimate of
the probability of leaving a cycle which can be calculated from estimates on the
strict subdomains of the cycle under study. ‘

It leads to an induction argument on the size of the cycle.

In the course of this induction, we have to generalize our estimates to any
kind of subdomain (we have to cover the case of C — { f} which is not a cycle).
The survival probability in a given domain is of the same order or less than the
survival probability in the deepest subcycle of the domain.

The probabilities of survival are expressed by comparison with survival
kernels Q). satisfying

(32) f Q:=[1-(1+b) ﬁ (1-ae ®/T"| .
k=m k=m+1

These kernels can be thought of as inhomogeneous exponential laws.

Using loose bounds on the flow of communications through the boundary of
domains, we derive estimates which are uniform in the energy function and
temperatures.

Composition lemmas for some Markov kernels on the integers. The study
of the Markov chains (X,,), .y leads in a natural way to the consideration of
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some kernels on the integers depending on the cooling schedule T which is
considered.

For any constants H > 0, @ > 0 and b > 0, 2"(H, a, b) will be the family
of kernels Q: Z X Z — [0, 1] such that @ = 0if m > n (we will say that @ is
an increasing kernel on the integers), and for any m < n € Z,

n—1
(33) 1-(1+8) JI (1-ae /T < ZQ’“
l=m+1
which implies that
n—1
(34) 2 QF < (1 +b) 1‘[ (1 —ae H/Ty),

(We make the convention that a product is null if it contains negative factors.)
It implies also that @ is a Markov transition kernel when L, >1€ “H/Th = 4 oo,

In the same way, by @ € 9'(H,a,b) we mean that @ is an increasing
kernel on the integers such that .

n—1 n
35) 1-(1+b) JI (1-ae®™y< ¥ Qr<1, m<n,
l=m+1 k=m+1
which implies that
n—1
(36) E Qe <(1+b) [T (1-ae™™T.
k=— l=m+1

For these definitions of classes, we have the following composition lemmas,
which are satisfied for any cooling schedule.

Lemma 4.1. If Q, R € 97(H,a,b) [resp., € 9'(H,a,b)), then for any
A € [0, 1] the kernel AQ + (1 — MR is of class 27(H, a, b) [resp., D'(H, a, b)].

The proof is easy.

Lemma 4.2. If Q, R € 97(H,a,b) [resp., € 2%H, a, b)), then the com-
posed kernel QR is of class 97(H, d', b') [resp., 2'(H, a, b')] for some positive
constants a' and b'.

ProoF. We can assume, lowering its value if necessary, that a < 3. We will
give the proof for right classes. By integration by parts we have

— n—1 +
kz (@R)}, > 2 Qi1-(1+5) TT (1-ae/m)
(37) L

ne2
> Y Sk +b)ae ™/ Ter TT (1 — ae H/T),
kE=m I=k+2
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with
k k
(38) Z Z 1- (1 + b) l_I (]_ — ae_H/Tl)
l=m l=m+1
Hence
Z {QR}; > (1 +b) 2 ae‘H/Tk 1-[ - ae~H/Tiy
k=m+1
n—2 k
k=m l=m+1
n—1
x T1T (1 —ae #/T,
I=k+2

The second term of the right member is larger than

(1+b)

40
(40) e

(1 - ae‘H/Tl)( nil ae‘H/Tl).

l=m+1

Because for any collection of positive numbers x;, we have

(41) Yx <11 +x),

it is also larger than

2(1 + b)% -1
——(]-_—a) ]_—[ (1 — ae'H/TI)(l + %e‘H/TI)
(42) Il=m+1

2(1 + )% »-1

l1-a l=m+1(

As for the first term in the right member of equation (39), it is equal to

(43) (1+ b)(l - nl:Il (1- ae—H/Tz));
l=m+1
hence
= 5 2(1 + b)%| n-t &
I LN (ST A

The main theorems. The aim of this subsection is to prove the two
following theorems.
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THEOREM 4.3. For any state space (E, q) there are positive constants K, K’,
a, b, c and d such that for any energy function U the following induction
hypothesis #, is true for any n € N:

#,(1) For any C € ¢(E) s.t. |Cl <n, for any i €C, for any AcC
such that i € A, for any j € B(C), there is @ € 2'(H(C — A), a, b) [resp.,
Qe 9"(H(C - A), a, b)] such that

(45) M(C - A,E - C)}}, < Ke” WU/ Tnugr,

and moreover we have

(46) P(r(C,m)>nlX,,=i)=c [] (1-de H©O/T),
l=m+1
#;(2) For any C € €¢(E) such that |C| < n, for any i € C, any j € B(C),
there exists Q € 27(H(C), a, b) such that

(47) M(C,E — C)}'% > K'em U UO—HCY /Tagn
As a corollary, for any A C E such that |A| < n, foranyi €A, .

(48) P(r(A,m)>nlX,, =i)<(1+b) ] (1 - ae HA/T),
l=m+1
H#,(3) For any cycle C € €(E) such that |C| < n, for any A c C, for any
i €C,andj<€ B(C), thereis @ € 9'(H(C — A),a,b) [resp., @ € 9"(H(C —
A), a, b)] such that

(49) M(C - A,E - C)!} < Ke™ U HO-UCY" /Tnungn

H#,(4) For any A C E such that |A| < n, for any C € .#(A), foranyi € A
there exists @ € 9'(H(A),a,b) [resp., @ € 2"(H(A), a, b)] such that

(50) M(A,C)/r <KQP.

THEOREM 4.4. For any state space with communications (E, q) there are
positive constants a, b, K such that for any energy function U for any k, such
that 0 <k <r, forany i € F, we have

(51) L(E - F,,E - F,)}'7 < Ke~ W U0"/Tnu@r
with @ € 9'(H, . ,,a,b).

The meaning of this last theorem is the following. We localize our study to
E — F,, replacing the states of F, by absorbing states. Thus we eliminate the
deepest states, those states which keep a long memory of the past. In E — F},
the deepest cycles are of depth H, , ;; hence the memory of the past vanishes
at speed I17_,, . (1 — ae ™ Hr+1/T1),

Now consider that some point ¢ € F,, is in contact with some particles bath,
generating at each time m a new process (X)), ,, with absorption on F,
(only particles jumping in E — F, at time m + 1 survive, and they die when
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they return to F,). What the theorem says is

n—1
(52) ¥ E(UX[ =)V 9"/ Ta< kK T] (1-aetn/Tr),

l<m s=m+1

It is best understood at constant temperature. It means then that the mean
number of particles at site j is of order less than or equal to e~ ~Ud"/T gnd
that the contribution of “old” particles decreases exponentially fast with their
age. The exponential rate is given by H, , ;.

The right member of the inequality decreases with H,, ;. Hence when k
grows, the estimate is sharper and sharper, but at the same time it is localized
to a smaller and smaller set of states.

In fact the estimate is sharp for j € F,, ,, because the survival time of a
particle starting from j and absorbed on F, is then exactly of order IT,(1 —
ae Hr+1/Ti) For points j € E — F, , this may not be the case.

Proor or THEOREM 4.3. It is not hard to see that &#, is true. Let us carry
on the induction step of the proof. Let us assume that &, _, is true.

Point #(1). Let {C,,...,C,} be the natural partition of C. We can

assume that ; € C,. We have

M(C-A,E-C) =M(C,—A,E-C)!
(53) + Z {M(Cy—A,C— (CyUA)M(C - A,C, - A)
k=0

XM(C, — A, E - C)}.
For any &, C, — A is a union of cycles of .#(C — A):
(54) C,—A= UG,

and we have
(55) M(C-A,C,—A) <Y M(C—A,G, ,).
We can apply &#,_,(4) to C — A; hence we find a Q € 2'(H(C — A), a, b)
[resp., @ € 97(H(C — A), a, b)] such that
(56) M(C-A,C, - A) < KQ.

From &, (1) we see that there exists @ € 9/(H(C, — A), a, b) [resp.,
€ 9"(H(C, — A), a, b)] such that

(57) M(Cy—A,C - (Cy U A))zE,: < e~ (HCO+UCo)~UTpsin

and from %, _((3) we see that for any h € C, — A there is Q € 9'(H(C, —
A), a, b) [resp., € 97"(H(C, — A), a, b)] such that

(58) M(C, — A, E — C,)) < KQ" e Ui HCO=UCH)/ Ty,
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By composition of these three estimates we get that there exist positive
constants K, a, b such that

(59) M(C—-A,E - C){,'; < Ke~Wi=UdTni@n

with @ € 2/(H(C — A), a, b) [resp., € 2"(H(C — A), a, b)].
We will now establish that there are positive constants ¢ and d such that
for any i € C,

n
(60) P(r(C,m)>nlX,=i)>c [] (1 —de HO/Ty),
l=m+1

with the convention that the product is equal to 0 if some of its factors are
negative.

Let us remark that in this formula we cannot assume that d < 1; hence it
may be meaningful only for small enough values of the temperature. To prove
it we write, f being some point of F(C),

1-P(+(C,m) > nlX,, = i)

< f M - {f},E - C)FL

l=m+1

61 n—1 n
k=m+1l=k+1

n
<1-y+K Y e HO/T
k=m+1

this last line being a consequence of ##,(1) and of #, _,(2) applied to the cycles
of .#(C — {f}), which proves that the probability to get out of C — {f} in {f}
admits a positive lower bound of the form y, and therefore proves that the
probability to get out of C without visiting {f} is bounded from above by
1—y. (We can assume here that e 77Tk = t+w putting T, =T, for
k>n.)

Let us define

(62) R(H,c,m) =inf{n>m| Y e_H/TIZC}.

l=m+1

Assume that e #(©/Tn <y /(4K), let u, = m and
Y
(63) un+1=R(H(C)’ R’un)
We have for k € N

(64) P(1(C,up) > uy, X, =i) >

[
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Moreover, for any family (x;) of positive numbers,

(65) l—[(l —_ xl) S e—):xl;
hence, putting

4K 2\ 4K

Y Y Y
we have

Up+1
(67) P(7(C,uy) > UplX,, = iy> TI (1-K,e HO/m),
l=u,+1

Hence for any n > m,

;y n
> —

2 -m+1
The case e #©/Tm+1 > y/(4K) is trivial, with the convention that the

product is equal to 0 when one of its factors is negative (which is then the
case). This ends the proof of inequality (60).

(68) P(7(C,m) > nlX,, = i) (1 = Kye HO/T),

Point #,(2). Let i and j be fixed. Let C; € .#(C) be such that i € C; and
let C; € #(C) be such that j € B(C)). Let A(C) = U(C;) + H(C)). There is a
sequence C,,...,C, of cycles of .#(C) such that C,=C;, C,=C; and
B(C,_p)NC,+ T, for k=1,...,r. From #,_,(2) and the composition lem-
mas we deduce that there are K,,a,b,Q € 27(A(C) — U(C), a, b) such that

(69) M(C,E - C)}'n > Kie U HE-UCH/ Tugn .

hence

n
5 e(UJ_U(C)—H(C’))/TIM(C, E - C){,’rln

l=m+1

(70) > K e~ UO+HEC)-XCW/T,

n
X{1—-(1+b) [T (11— ae " WO-UCHT|

l=m+1

For any fixed m let us put u, = m and

(71) Uprr = R(A(C) — U(C), Ky, uy),
with K, = a™! In(2(1 + b)). We have, putting K, = K, /2,
Up+
il eUmVO-HOV/Tip(C, E - C)L,
(72) I=up+1 ’

> Ko~ (UO+HE)-AC)/T

Up+1,
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The case |C| = 1 is straightforward; hence we may assume that |C| > 2. In
case |C| > 2, there is some constant y < 1, namely,

(73) x =1—1inf{q(i, ))I(i,j) € E*,i #j,q(i,j) > 0},
such that for any i € C and any m,
(74) P(r(C,m)>m+1X,,=i)>1-yx

Hence we have from #,(1)

(15)  P(+(C,m)>nlX, =i)>c I (1 - (de HO/Tiy A x).

l=m+1

For any j € B(C) we have (using the Markov property)

Up
Z e(Uj_H(c)—U(C))/TIM(C, E - C){:rln
l=m+1
(76) k IS
> Y Kge WOHHCI-ACW/ Ty ¢ ] (1 - (de” e A )
& l=m+1

For any n > m, let k& be such that u, <n <u, ;. We have

n

Z e(Uj—H(C)‘U(C))/TlM(C: E - C){,’rln

l=m+1
f K, ufl H(C)/T ls—ll H(C)/T
77 > - te 1— (de HOV/Ty Ay
( ) s=1K2+1l=us+1 i= m+1( ( ) )
K, ¢ “
> 1 — (de HOV/ Ty A
g+id, Ll 0 ) A X8
with
n—1
(18) Q" — ((de™H©/Tn)y A X) l—[ (1 — (de HO/TYy A x), n>uy,
0, otherwise.

To end the proof it is enough to remark that

In(1 - “1
l—[ (1 - (de HO/T) A ) = exp(ud y e—H(C)/Tz)
l=m+1 X l=m+1

(79)
> exp(}n(lx—_X)d(Kz +1)
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and that @ € 2"(H(C), a3, bs) with a; =d A y and

In(1 - x)

by = exp(——x—d(Kz +1)| - 1.

This ends the proof of the second point.

Let us now come to its corollary. Let A c E be such that |A| < n.

From #,(2) we deduce that there are positive constants a,, K; < 1 and b,
such that

P(r(A,m) > nlX,, = i)

80 n
(80) <1- Kl(l -(1+b) IT (- ale—’“A)/Tt)).
l=m+1

Indeed for any i € A, there is a finite sequence C,,...,C, € .#(A) such that
ieCy B(C,_)NnC,+3,k=1,...,r and C. N (E — A) + @, and we can
apply #,(2) and the compositions lemmas to [M(C,, C)M(C,C,) -
M(C,, E - A)E.

Let us put uy, = m and

In(2(1 + &
(81) - =R(H(A),¥,un).
1
We have
. Kl Upi1
(82) P(r(A,u,)>u, X, =i)<1- 3 < (1 — ae ™ HA/ Ty
l=u,+1
with
K, In(2(1 + b,)) | "

- 2+ ——2) .

(83) a=- ( o

Now let n > m be fixed. There is & € N such that u, <n < u,_.,. We have
P(r(A,m) >nlX,, =i) <P(r(A,m) > u,lX, =1i)

Up
< 1 — ge—HAY/T,
(84) A1« )

<(1+b) TI (1-ae ATy,

l=m+1
with b = (1 — K,/2)"! — 1. This ends the proof of the corollary.
PoiNT #,(3). Let f < F(C). We have
M(C~A,E-C)l=M(C-(AU(f),E-C)],
n—1
(85) + Y P(X,=f,7(C—-A,m)>EklIX, =1i)

k=m+1

XM(C~ (AU ({f}),E~-C)}i.
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Moreover, letting (C,) be the maximal partition of C — (A U {f}),
M(C-(AU(f})),E-C)
(86) =Y {M(C-(AU(f}).C,)M(C, - A,E - C)).

According to #,_,(4),
(87) M(C~ (AU(f}),C,)im < KQp,
with @ € 2'(H(C - A),a, b) [resp., € 9"(H(C - A), a, b)], and according to
#,_(3),
(88)  M(C, - A E-C)i, < K™ HCmUC  Tungy,
with @ € 2'(H(C, — A), a, b) [resp., € 9"(H(C, — A), a, b)]. Hence
(89) M(C—-(AU{f}),E—-C)]" < Ke U HO-UCH"/Tnri@n
with @ € 9/(H(C — A), a, b) [resp., € 2"(H(C — A), a, b)].

Moreover, from #,(1),
(90)  M(C—(AU(f}),E - C)}% < K-G0 /Toniggn
with @ € 2'(H(C — (AU {f}),a,b) [resp., € D"(H(C — (A U {f)),a, b)],
and from point J#,(2) we have

P(X, =f,7(C - A,m) > kIX,, = i)

(91) k
<(1+b) I (1- ae'H(C_A)/Tl),
Il=m+1
hence
n—1
Yy P(Xk =f,7(C—-A,m) > klX,, = i)
(92) kE=m+1

XM(C - (AU (f})),KE-C)}i
< Ke~W=U©-HCY" /Tnugn
with @ € 2'(H(C - A), a, b) [resp., € D"(H(C — A), a, b)].
Point #,(4). Consider some cycle G € .#(A) such that H(G) = H(A),
and some g € F(G). We have
M(A,C) 7 = M(A - (g},C)
(93) + Y P(r(A,m)>k, X, =glX,, =i)

k=m+1
XM(A - {g),C)s.
Moreover,
M(A-{g},C)gm={M(G-(g),E—-G)M(A - {g},C)}Fr
+M(G - {g),C)pm.
Applying #,(1) to G and #,_,(4) to A — {g}, we get that
(95) M(A - (g),C)gm < Ke HA/Tnugn

(94)
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with @ € 9(H(A), a, b) [resp., € 9"(H(A), a, b)]. We conclude by combin-
ing this equation with equation (93) and hypothesis 5%, _,(4) applied to A — {g}
again.

Thus we have established that &%, is satisfied for any n < |E|. O

Proor oF THEOREM 4.4. For any 0 < k& < r we have

(96) L(E_Fk:E_Fk)=l§+1L(E_Fk’Fl_FI-—1)'
Conditioning by the last visit to F, ,; — F, when this set has been visited gives
L(E-F,,F, - F,_,)

=L(E-F,F,,, —F,)L(E-F,,,F,-F_,)

tL(E - Fp, Fi - Fiy)

=(L(E-F,,F,s, - F,) +I)L(E - F,,,, F, - F,_y),
where I/} = 5/57,, 6 being Kronecker’s symbol. Hence

L(E - F,,F,—F,_,)

(97)

(98) -1
= l;[ 1(L(E -F_,,F,-F_;)+ I)L(E —F_,,F,—F_,).
s=k+
Thus

(99) L(E-F, E-F,= f[ (L(E-F,_,,F,—F, ;) +I)-1

s=k+1
Hence it is enough to prove Theorem 4.4 with the kernel L(E — F,, E — F})
replaced by the kernel L(E — F,, F,, ., — F}).
For any f € F,, any g € F,,, — F,, let G, be the cycle of .#(E — F,) which
contains g. We have

L(E - F, Fooy — F)fm

(100) SL(E_Fk’Fk+1_Fk)?f"nn

< ¥ ¥ M(E-F,G)" P(+(,G,)>nlX, =j).

g)f,m
JEGyl=m+1
Let C be the largest cycle containing f and not g. We have
E,n
M(E - F,, Gg)f’m

(101) < [M(C-F, E-C)M(E - F,,G,)] 7 n
< Ke~HE©+UO-Up/Tna@n
with @ € 97(H,, 1, a, b).
If U, < Uy, then g & Gg; hence H(C) + U(C) — Uy > H(G;) > H, 2 Hy ;.

If U, > U; we have nonetheless H(C) + UCC) = H(Gg) + U,.
Hence in any case

(102) M(E - F,, Gg)f,’::l < Ke™ Hes1+Wg=UpD/Triar
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with @ € 9"(H,, ,,a,b). Hence
L(E - F,,Fy.1 - F)51

(103) n . "
< Z e (Hr+1+WUg—Up) )/T1+1le(1 + b) ]._.[ (]_ — ae_Hk+1/Ts)’

m=1 s=m+1

with @ € 97(H,,, a, b). Let us use the convention that
n

l—[ (1 — aer+1/Ts) =1

s=m+1
when m > n. The function
n
m — ]._.[ (1 — ae_Hk+1/Ts)
A s=m+1
being nondecreasing in m (for fixed n), we have for [ fixed:

n n
Y Q" Il A -ae /Ty
m=l

s=m+1

+ o0 n
< E le l_I (1 - ae_Hk+1/Ts)
m=I s=m+1
+ o + o n
< Z ( E Ql E Q?) 1—[ (1 — ae_Hk+1/Ts)
m=l1 s=m+1 s=m+1
+ o0 n n
< E Z Ql( n a- ae_H"“/T’) — n a- ae_Hkﬂ/Ts))
m=Il+1s=m s=m+1 s=m

=+ oo

+)QF H (1 — ge Hani/To)

s=I s=l+1

m—1 n
< E (1 + b) n (1 — ae_HIH-l/T )ae_Hk+l/T l_I (1 — aer+l/Ts)
(104) m=Il+1 s=l+1 s=m+1
n
+ ]._.[ a- ae_HIH—l/Ts)
s=l+1
n n

< (1 + b) ( Z ae_Hk+l/Ts) n (1 — ae_Hk+1/Ts)

1-a s=m+1 s=l+1

n
+ l_[ (1 —_ ae_Hk+l/Ts)

s=l+1

n
M l_I (1 + ge_Hkn/TS)(]_ — ae_Hk+l/Ts)
l1-a 541 2

n
+ J1 (- ae His1/Tsy

IA

s=l+1
n n
< — 2(1 + b) l_I ( _Hk+1/T) + ]._.[ (1 — ae_Hk-i-l/Ts).
l1-a 241 s=I+1
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Hence there are positive constants ¢’ and K such that
L(E - F,, Foi1— Fk)i:?

(105) . .
< Ke—(Ug_Uf) /Tl+1a'e_Hk+1/Tl+1 l_[ (1 — a’e_Hk+1/Ts) . O
s=1l+2

5. An upper bound for the convergence rate. We give here a proof of
an upper bound for the convergence rate based on Theorem 4.3. We had given
a proof of a similar bound in our thesis [5], but it was longer and relied on
sharp large deviation estimates which are themselves harder to prove than
rough ones.

TueoreM 5.1. For any annealing algorithm (E,q,U, T, £y, X) we have
(106) P(X,=i) = inf £,(j))e"U/™, i <E.
JEE

Proor. The proof is by induction on n. Assume that the theorem is proved
for n — 1. We have for any i € E,

P(X,=i)= Y P(X,.1=f)pr(f:0)
feE

(inf £4())) T e U/ Trpr(£,i)
JEE feE

2

(107) feE

> (inf/o(j)) Y e U/ Tepy (f,i)
JEE feE

> e Ui/Trinf Z£(j). |
JjEE
TuEOREM 5.2. For any state space (E, q), there are positive constants a, b

such that for any energy function U, for any positive energy level a and for
any cooling schedule T we have

(108) supP(U(X,) > alX, = i) = b(an) 2@, n>o0.
i€eE
Proor. Let C € ¢(E, U) be such that 8§(C) = D (U) and U(C) > a. Let
1
109 Z(j)=—, JjEE.
We will show that
b(an) 2 < P(U(X,) 2 @) = — L P(U(X,) = alX, = i)

(110) E| e

<supP(U(X,) = alX, = i).
i€E
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We have
P(X,=C)= Z P(X,=1i)P(7(C,0) > nlX, = i)
(111) ieC

+ X X L P(X,=j)a(j,i)P(r(C,k) > nlX, =1i).
k<nieC jeB(C)

Here we will deal separately with the case |C| = 1.
If |C| = 1 we deduce from equation (111) that there exist positive constants
¢, d and K, with d < 1, such that

P(X,€C)2c[](1—de HOYT)
b=
(112) '

n n
+ Z Ke~(HOFUCY/ T} n (]_ — de_H(C)/T’).
k=1 I=k+1

If |C| = 2, then putting A = 1 — inf{q(Z, )li #j, q(i, j) > 0} we have for
any i € C,
(113) P(r(C,m)>m + 11X, =i)>1-A;
hence from (1) there are positive constants ¢ and d such that
(114) P(r(C,m)>nlX, =i)2c ]I (1 - (de”#©/T) A ).
l=m+1

Thus in this case

P(X,eC)zc f[ (1 — (de~H©/Ti) A ))
(115) =t

n n
+ Y Ke HO+UOV/Te T (1 — (de HO/ Ty A ,\)
k=1 I=k+1

(but of course we cannot assume here that d < 1).
We will end the proof by computing a lower bound for the minimum of the
right-hand side of equation (112) or (115) over all possible sequences T, ..., T,.
We will make the computations for equation (115) and leave the very similar
case of equation (112) to the reader. Let us consider the sequence R,,..., R,
with R, < ¢ and

(116) R,=R,_ (1 — (de HC/Tn) A \) + Ke” HO+VCN/Tn,
We have from equation (115),
(117) P(X,eC)=R,.
It is a simple computation to see that if
H(C)/UC)

d uc)\ !
(118) (?(14' m) Rn—l) <

)

>
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then
(119) minR,=R,_, - d d SR(“‘”
. r Pt 148\ K@ +sTY)) Tt
[and if
" d . u(c) _lR H(C)/U(C) A

— ——— > —
(120) K H(C) n-l —d’
then

A\ @+87D
(121) n;ian=Rn_1(1—/\) +K(3) ].
In light of this, let us put
K(a\"
(122) R0=cAE(E) .
Then we deduce from equation (119) that
(123) min R, =8,
T,...,T,
satisfies
SO = Ro,

(124) d d ?

_ = (1+8)

Sn = Sna 1+8|K(1+67Y Snt

Hence S, < S, _, and
S,°=8,2,<-8(S,-8,.,)S,*>

(125) d d é Sn—l 1+8
<17% K(1+5—1)) ( S, ) ’
but
Sict _(,_ 4 (_dSy )
S, 1+6{K(1+671)
(126) ds, sy !
< (1 - d(T{—) )
<(1-A2)7%4
hence
d 1+6
(127) S;'S —S,:(_sl SK_S(m) ,

1131
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thus
1+6
S,% <85 + nK—S(%) '
(128) d 13
Sn(SaS+K‘5(m) ), n>1.
Moreover,
d\°d d d\®
(129) Sgasc"sv(E) xs(;vl)(c‘lvg) ,
SO

(130) S;'SSn(

% v 1)(0_1 v %)8 1 f/\ (K(ld— ) )8)

Thus, putting

(131)
d
a=2(xv Y vl),
we have
(132) S,° <b %n,
or
b
(133) n = '(—;’—L')—a':f, n>1. a

6. A lower bound for the convergence rate. In this section we will
prove a technical proposition, from which we will derive the theorems of the
two following sections. This proposition has already been discussed in Section
2. Let us give some more explanations.

The aim is to get an upper bound for the convergence measure when
convergence is measured at level a. For this purpose, we fix some positive &
and try to find conditions on the cooling schedule for which

(134) supP(X, =flX,=i) <K(eVve U/Tn), n>0,
ieE
for any state f of energy U, > a.

We use successively Theorem 4.4 for F, Fy, ..., F,_,. We start with a trivial
estimate on F:

(135) P(X,=flX,=i)<1, feF,.
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Theorem 4.4 allows us to transform it into an estimate on E — F,. We get
that

n
supP(X, =flXo=i)<(1+8)[](1 - ae #/T)
( 13 6) ieE ’ll =1
+K Y e U/Tna@n,
m=—wo

with @ € 9'(H,, a, b). We have extended the summation to negative m’s and
the definition of T, to n € Z by putting T,, = T, for n < 0.

The reason for this extension is that, as m — e Ur/Tn+1 is decreasing,
integration by parts shows that @) can be replaced by

n—1

(137) (1 + b)ae_Hl/TmH n (1 _ ae_Hl/Tl),
l=m+2
hence by
1+5b n
(138) _(________)_ae—H1/Tm+1 ]._.[ (1 _ ae_Hl/Tl).

l1-a l=m+2

Now we want to find some condition on the cooling schedule (T,,),, . for
which

n

n
(139) E eUrW/ Tn=1/TmiDge~H1/Tm+1 n (l—aeHl/Tl)

m=—o l=m+2

stays bounded.
One way to achieve this is to arrange that

(140) U/ Ta=1/Tni)) < ﬁ (1 + %e—Hl/T,).
l=m+2
This leads us to ask for
1 1 a
141 Ul — — — | < —e H/T:,
(14D f( T,y Tz) 4

We have seen that Theorem 4.4 applied to F, is sharp only for f € F;.
Hence we will apply it only for f € F;. Accordingly we impose the preceding
finite difference inequality only for f € F,. For f € F, it is sharper to use the
estimates we already have for f€ F; and Theorem 4.4 applied to F,. We

proceed in the same way with Fy, F5,..., F,__,.
We thus get that
(142) supP(X, =flX,=1i) < Ke  Ur/T»
ieE
as soon as
1 1 a
143 Ul — - = | < = H/7y, feE.
(149 f( Tre, T,) 2

Let us recall that H, = H,, for f € F, — F,_, by definition.



1134 0. CATONI

Now we can make the remark that we get more than we want. This will
allow us to weaken our assumptions in the perspective of convergence at level
a and of a finite time study.

First let us remark that we really need our finite difference inequalities only
as long as e #r/Tr > ¢, for states f of energy U > a. For states f of energy
U; < a we want it to hold only as long as e */7» > ¢. We can handily express
this by thresholding the finite difference at level

In(e~1)

(144) AT

A last remark is that we can weaken our finite difference inequalities even
more by thresholding the energy U at some level n > a. This thresholding of
the energy function will allow us to find cooling schedules which satisfy our
weakened finite difference inequalities uniformly in the energy U.

All these remarks introduce the following precise formulation.

ProposITION 6.1. For any state space (E, q), there are positive constants B
and K such that for any constants 1 >0, 0 <e <1, a >0, any energy
function U and any cooling schedule T such that for any f € E,

U 1 In(e™1) 1 In(e™ 1)
(fAn)T_mA(UfVa)/\n T, (Usva)anq

m

(145)

< Be H/Tm-1, m>0,

we have for any f € E,

supP(X, = f1X, = i)
(146) i€E
< Ken/To(e—(Uf/\n)/Tn vV G(Uf‘/\"")/«Uf\/a)/\”l)), n>0.

Consequently in this case

(147) supP(U(X,) = alX,=1) < Ke"/To(e= @ n/Tn v ¢).
ieE

Proor. Let (E,q) be fixed. Let B = a/4, where a is the constant of
Theorem 4.4. We will assume without loss of generality that a < 1. Let
e,m,a,U, T be as in Proposition 6.1.

We are going to prove by induction on % the following assertion.

%,: There is a positive constant K such that for any f € F,,,

(148) SupL(E, E)lf,’on < Ke""/TO(e_(UfA"T)/Tn vV S(Uf/\"l)/((vaa)/\Tl))‘
i€k
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Assertion %, is trivial because L(E, E)}»§ < 1. Let us assume that we have
proved %, _,. We have forany i € E,and g€ F, — F,_,,

(149) L(E,F, - Fk—l)f,’: =L(E-F, ,F, - Fk—l)i’g
+{L(E: F, )L(E-F,_,,F, - Fk—l)}i’on;

hence
L(E,E){,
n
<(1+0) 11 - ae /T
s=1

n
+ Z Z Ke"l/To(e—(Uf/\‘n)/Tm vV S(Uf/\‘fl)/((Uval)/\n))e—(Ug—Uf)+/Tm

feEF, 1 m=—o

n
X(1+b)ae He/Tr TT (1 — ae He/Ts)

s=m+1

(150)

<(1+b5) ] - ae /T
s=1

n
+ Z K(1+ b)Card(Fk_l)en/To(e—(UgAn)/Tm v S(UgAn)/((UgVa)An))

m=—o
n
X ae He /T TT (1 - ae He/Ts),
s=m+1

The first inequality in (150) is a consequence of Theorem 4.4. It can be
justified by integrating by parts and remarking that

( 151) m~ (e ~WUr A/ T s Ur AM/(Up V) A n)) e Weg=Up)/Tn,
is nonincreasing. As for the second inequality,
(152) e WUrAm/ Tno=Ug=Up* /T < e_(Ug/\n)/Tm’
and if & > e~ WrVAM/Tn then if U, < Uy,
(153) eUr A/ (WUpV ) Am)g=WUg=Up)™ /T < gUg Am)/(UgV ) Am)
and if U, > Uy,
eUr A/ WUV ) Amg=WUg=Up)/ T < Up Am)/(UpV @) A ) (Ug=Up)/(Up V ) A m)
(154) < eWe A/ WV ey nm) o oUg Am)/(Ug V) Am),
hence, in any case,
(e_(Uf AN/ Tm g gUp A/ (UpVa)a ‘fl))e—(Ug—Uf)+/Tm

(155)
< (e—(Ug/\n)/Tm Vi E(Ug/\n)/((UgVa)/\n))'
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Let us find an upper bound for the ratio
e~ Ug A/ T \y Ug Am)/(UgVe)Am)

(156) P = =W A/ Ty ) WU A/ gV aynm *
We have
n
(157) p= 1I1 r.,
s=m+1
where
e Werm/Too1 sy ¢Ug An)/(UgV ) Am)
(158) s = e~ T A/ To s gUg A/ (UgVa)nm *
We have
In(e™1) 1 In(e™ 1)
U, A A
ro = exp| (Ug A m)| "V an T, U Ve An
(159)

< exp( Be_Hg/Ts—l)
<1+ ge_Hk/TS"l.
- 2

Hence
n—1 a a n a

(160) p< I1 (1 + —e—Hk/Ts) < (1 + —) Il (1 + —e—Hk/Ts).
s=m 2 2 s=m+1 2

In the same way,

1
e U A/ Ty vy Ug A/ (UgVayAm)

(161) < (e@enM/To p o= Wgnm/ Uy Va)/\'r,))(l L2 )ﬁ (1 N ——e_Hk/T)

s=1

n

< e"/TO(l + ﬁ) Il (1 + ge"?’k/Ts).
- 2 2

s=1
Coming back to equation (150) we have
supL(E, E)f': < (e—(Ug AM/Tn g ¢Ug Am)/(UgVa)A n))
i€k '

x{(1+b)(1+ )e"/TOI_[( ‘Hk/T)

+Card(F, I)Ke”/TOZ(l + )(1 +b)

" a n a
x Y e /T T (1 - Ee‘”k/Ts)}

m=—o s=m+1

(162)

< (2K Card(F,_,) + 1)(1 + )(1 + b)en/To
X (e~ We A/ Tn yy gWg A/ WV ) Amy

This proves %, from %,_, and hence, by induction on %, Proposition 6.1. O
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7. Almost optimal cooling schedules. We are going to show that in
Theorem 5.2, for any given energy U, the constant D,(U) is sharp for A small
enough.

More precisely, for any energy level A > 0 let us put

(163) b il
= sup - H
" tem-rm Ur VA

the constant D, will be sharp when D, = D,, which is the case for U fixed and
A > 0 small enough.

We will say that the triangular cooling schedule (T,N),_, y is almost
A-optimal if there is a constant K such that

K
NDH

N )
(164) %aE;:P(U(XN) > MX,=i) <

THEOREM 7.1. For any energy landscape (E, q) any energy function U and
any energy level A > 0, there exist a triangular cooling schedule TN and a
positive constant K such that

(165) supP(U(XY) > AX,=i) <KN~D',  N>o.
i€eE
Hence when D, = D,, T is almost A-optimall.

Let us introduce the technical proof of this theorem with some remarks.

We are going to use Proposition 6.1 for one fixed energy function U. Once U
is fixed we see that some of our finite difference inequalities are redundant.

For a given H,, the most constraining inequality is obtained for the largest
value of Uy, f € F,, — F,, . On the other hand, for one given state f € E — F,,
the steepest cooling schedule corresponding to the finite difference inequality
indexed by f is

(166) — =—1n

Hence for n large, the most constraining equations are obtained for the
largest value of H, which is H;.

Among the inequalities corresponding to states fe F, — F,, those with
minimum energy U, will have the longest life. Hence we will consider H, = H,
and U, = min; .y, _p, U;. We will apply Proposition 6.1 with threshold n = U,.
With this threshold the most constraining equation is

(1 1 .
—_— < B _Hl/Tn.
(167) Ul( T ) < Be

n
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The steepest solution to our leading finite difference inequality has the form

H,Bn .
. e'Hl/TO).

(168)

1

We find the usual rate T, ~ H,/In n linked with the first eigenvalue of the
transition kernel.

Let us remark that the introduction of the constant (1/H)In(H,B/U,) is
crucial in order to obtain the right speed of convergence. This fact has been
clarified by a more precise study in our thesis and in [4].

All this is good as long as e~ U1/ > ¢, that is, as long as time

U,
BH,

(169) my =

(8—(H1/l71) — eﬁl/TO)"‘

Afterwards our leading finite difference inequality disappears from the set of
constraints needed in Proposition 6.1. Hence another one is going to take the
leadership. .

To see which one, we have to consider all the surviving inequalities. These
are the inequalities indexed by the states f of energy U; < U,. Among them,
the most constraining ones for large times are obtained for states f such that

(170) H; = max{H,, U, < U,} = H,.
Thus all surviving equations are dominated by
(1 1 3
1 —_— _H2/Tn'
(171) Ul( T .. Tn) < Be

The steepest solution to this equation has the form

1 1 H,B .
172 — = —1In|——(n —m,) + e H/U|,
(172) g e m )

We will use this formula as long as there remains in the set of equations
some inequality with right member Be #2/T» that is, up to time

U, - .
173 = + = —(Hy/Up) _ —(Hy/Up ,
(173) my=m, [BHz (¢ € )]
where
(174) U, = min{U,, H, = H,}.

We carry on this process, introducing two sequences H » and l7k as long as
the set of equations in the hypothesis of Proposition 6.1 is nonempty, that is,
as long as U > A. The last value of H may be 0. This case has to be treated
separately, as will be clear in the following detailed proof.
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Proor oF THEOREM 7.1. Let (E, g, U) be fixed.
Let us define the sequence of depths (H,),_, ., and the sequence of
energy values (Uy,),_; ., by

H, = max{H(C)IC € #(E - F(E))},
U, = min{U(C)IC € .#(E - F(E)), H(C) = Hy},

(175) . .
H, = max{H(C)|C € #(E - F(E)),U(C) < U,_,},

~

Us

min{U(C)IC € #(E - F(E)), H(C) = H,},

where the definition carries on by induction as long as the involved sets are

nonempty.
Let
(176) r, = r A inf{k|U, < A}.
For any fixed ¢ €]0, 1[ we will build a finite schedule T, such that
(177) sugP(U(X}\}’:) > MX, = i) < Ke,
ie

and we will show that for some constant K’ we have N, < K'eD»,

Let us choose some positive constant T,.
Let B be as in Proposition 6.1. We define the sequence of times (m ), _,
by

My = | (e /0 /)
BH,
(178) -
k
+ Z Uk:l (8_(1-7,,/[7,,) — 8—(Hk/[-7k—1)) s m<r,,
s=2 Hk

where [x] = min{n € Z|n > x}.
If H, > 0 we define m, by

~

179 = P
( ) mrA m 1 BH

2

U _1 ~ -~ -~
L(e—(HQ/A) — E—(HrA/UrA-l)) .

If ﬁ” = 0, we put
In(Ae™ 1)
n-1t T
In(p™")

where the constants A and p are such that the transition kernel p, at

(180) m, =m



1140 O. CATONI

temperature T = 0 satisfies
(181) suppg (i, F,) < Ap™.
i€eE
(Let us recall that E — F,, is in this case the set of the local and global minima
of the energy landscape.)
Let us put N, = m,, and let us define (T,"), _,, _ . by

1 BH .
ﬁ—ln( -1n+eH1/T°), 0<n<m,,
1 1 1
(182) — = 1 (BH o
Tn E— ln( [j k (n - mk_l) + Eq(H"/U”“)),
k k-1
m, <n<m, k<r,

and

() in the case ﬁm > 0,

11 BH, o
(183) F = H~_ ln ﬁ - (n - m(r;\—l)) + g_(Hr)‘/U(r,\—l)) s
n A (-1
m(rA—l) <n < m”;
(ii) in the case I-TrA =0,
& In(e™")
= = n(e R
(184) Tm(r)\—l) U(rA -1
Tn=0, m(,.)‘_l)<n$mr‘
A

Let us assume for a while that I?,.A > 0. With our choice of cooling schedulé,
the hypotheses of Proposition 6.1 are satisfied for n = U; V A, and a = A;
hence we have

(185) SupP(U(XNE) > AX, = i) < Ke(l'th\)/To(e—/\/T}v‘:e Ve),
iecE
but we have chosen N, such that e =N/ The = ¢; hence
(186) supP(U(Xy,) = AlX, = i) < Ke@iV Y/ Tog,
ieE

If If,A = 0, we can apply Proposition 6.1 up to time m,, _,,. We get that

(187) gugP(U(Xmm_D) > Uy, _1)|Xo = i) < K@YV Tog,
e

hence

(188) supP(U(Xy,) = U, _1,X, = i) < Ke@v»/ Tog,

i€k
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Moreover,

(189) supP(A < U(Xy) < U, 41X, = i) <e.
icE

Indeed, as H, =0, for any f € E such that A < U, < U',A_l, we have H, = 0.
Hence

(190) supP(U(Xy,) 2 AMlX, = i) < e(K + 1)e@v 2/ To,
i€k

Finally we have, putting U'O =0,

U,_ -
r, sup kD ~Da, if H, >0,
(191 N <{ “hn BH A
T U,_ . In(Ae7! .
(r,—1) sup E=D 1 e=Da —L—_—ll ifH, =0
k=1,...,n—1\ BH, In(A7H) A

Hence (for U fixed) there is a positive constant K’ such that
K’

Dit”
€

(192) <

8. Logarithmically almost optimal exponential cooling schedules.
For a given energy landscape (E, ¢, U) and a given positive energy level A, we
will say that a triangular cooling schedule (T)V),_,_n is logarithmically
almost A-optimal if

(193)  lim (In N) 'In %%P(U(Xﬁ) > AX,=i)=-D;.

In this section we want to use Proposition 6.1 uniformly in the energy
function U.

We will look for cooling schedules (7)), _, . v such that n — T,V is convex.
In this case, for any state f, the finite difference inequality

. N 8 RO
A — — | < Be Hr/T
(194) Orrm\ g~ ) <Be

n

e WUrvaynmy/T, > g,
has to be checked only at time
(195) Nf= sup{n, e Wrvaynmy/Ty < 5}.

If the threshold 7 is large enough compared with the values of U, namely, if
n = H,/D,, then for any state f we have H, < D,((U; V a) A 7); hence

(196) e Hr/Trg > gHp/(Wpvernm 5 Do
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Moreover, (U A 1) < Ty In(¢ ~1); hence the finite difference equation indexed
by f in Proposition 6.1 can be strengthened into
1 1 ) Be D=

(197) TNf(m - T—Nf

<____._____..

T In(e7Y)’

with the supplementary hypothesis that n — 1/T, is convex.

Thus we see that it is possible to find one triangular cooling schedule for
which the hypotheses of Proposition 6.1 are satisfied uniformly for all energies
U satisfying H, < D,n. Any triangular schedule satisfying the finite difference
inequality

(198) T

n

Tn +1 Tn

and the convexity assumption will do.
The steepest one is given by

1

(199) T =Aexp(

n

<—

1 1 BgDe
( | oo

BePa
In(e )|’

These remarks introduce the following precise formulation (In, is the kth
iterate of the logarithm function).

THEOREM 8.1. For any energy landscape with communications (E, q) there
exists a positive constant B such that for any positive constants A, n, there is a
positive constant K such that for any positive constant & <, for any energy
function U satisfying (H(E — F(E)))/(D4(E, U, q)) < m, for any initial distri-
bution £, and for any triangular cooling schedule (T.N) such that

1/TnN = Aexp(né),

Ds

€
(200) f=By

1
N > E[mz(g-l) - In(84)],

the triangular annealing algorithm (E, U, q, T, X) satisfies

(201) P(U(XY) = 8) <Ke.
COROLLARY 8.2. If we take
.«:li's
¢=(BADL

and

(202) N- %[ln(g-l) ~ In(34)],
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or
1 -
(203) = E[1nz(g-1) +In(D;) - In(54)]
or
(204) £ = -]1\—,[111 N - In(5A)]
or
1 .
(205) £= N[lnz N + In(D;') - In(84)],

the hypotheses of Theorem 8.1 are fulfilled for N (or £ or £~1) large enough,
and 1/TN = Aexp(én) is logarithmically almost 6-optimal when D; = D.

ReMARK. In this context, it is not unreasonable to use an adaptive stopping
rule for the choice of N, since for fixed ¢ the annealing algorithm correspond-
ing to

(206) = Aexp(n¢)

T,

n

is not ergodic and U(X,,) is almost surely constant for n large [the stopping
rule can be that U(X,,) has been constant for & moves].

REMARK ON THE CHOICE OF A. The proof shows that it is wise to take A
such that A(H(E — F(E)))/D4(E, U, q)) is not too big, say
Dy(E,U,q)

(207) - HE-FE)

Proor oF THEOREM 8.1. We have for any f € E,

In(e™1) 1 In(¢™")
GANT N Wveyan T, Wve)an
" In(e~Y)
(208) =UAmE T NGV sy Am

< ¢In(e™!) < Be
In(e™ 1Y) 1
(Usv 8) Am A T

m-—1

ngf/«UfV's)’\")sexp(—Hf( )

Hence inequality (145) is satisfied with « =& when 1/T,
(In(e~1)/((U; v 8) A ), hence for any m, because it is otherwise tr1v1al Thus
we deduce from Proposition 6.1 that for some constant K,

(209) supP(U(X,) = 8|X, = i) < Ke*"(e7?/Tn Vv ¢);
i€E



1144 0. CATONI

hence for N > ¢ '(In,(¢ 1) — In(6A)) we have

(210) supP(U(Xy) = 8|X, = i) < KeA.
i€E
The proof of the corollary involves only elementary verifications, stemming
from the inequality

(211) In(¢7) > In(B~Y) + DyIn(e™") + Ing(s71). O

Conclusion. This study had two aims: to perform the large deviations
program directly in the time inhomogeneous case; and to apply it to get finite
time results.

It is good news that the large deviations program can be performed with
uniform estimates as well in the cooling schedule as in the energy function.
Without uniform constants, we would not have been able to derive the optimal
convergence rate and almost optimal schedules.

The finite time point of view is a natural description of practical computer
experiments, because in practice the simulation time is always finite. Hence it
is not artificial to assume that one repeats the same experiment with different
simulation times and is allowed to change the whole cooling schedule at each
time. What can be regarded as only a slight increase of freedom in the control
of the process—allowing triangular cooling schedules—interestingly enough
brings results qualitatively different from the asymptotic ones.

This new point of view has shed light on a previously unnoticed fundamen-
tal constant: the difficulty of the energy landscape, which governs the optimal
finite time convergence rate.

Unexpectedly, this constant is not linked with the critical depth of the
energy landscape. More generally in the finite time setting, when the system
approaches the end of simulation time, the important eigenvalue of the
transition matrix is no more the second one. This is one of the mathematical
translations of the fact that simulated annealing is performing a hierarchial
search. At the beginning, the important eigenvalue is linked with the deepest
nonglobal maxima. Then the leadership is taken by states of decreasing
depths.

In other terms, the probability of being in the deepest local minima is
decreased at high temperature. When temperature becomes lower this proba-
bility becomes almost constant and the effect of carrying on the simulation is
to decrease the probability of being in shallower local minima.

This hierarchical behaviour has a practical consequence: In order to achieve
the optimal convergence rate, it is necessary to tune the whole cooling sched-
ule to the simulation time, even in the limit of large simulation times. For
instance, if you double the simulation time, it will be more efficient to increase
both the time spent at high temperatures and the time spent at low tempera-
tures than it would be to increase only the time spent at low temperatures.

This is clearly reflected in the construction of a piecewise logarithmic
cooling schedule (Theorem 7.1). The number of logarithmic patches depends
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on the energy function but not on the simulation time. What depends on the
simulation time is the length of the interval on which each formula is used.

Another practical result is that it is possible to have a cooling schedule
which is uniformly efficient for a whole range of energy functions. This
schedule is of exponential form. Hence the finite point of view brings the first
justification for exponential schedules. But it brings even more—it establishes
that exponential schedules should be triangular and gives the nature of the
dependence of the constant to be put in the exponential on the simulation
time.

Finally, it is hoped that this paper brings a methodology which could be
used to answer other questions about simulated annealing. The large devia-
tions results constitute a localization method. A systematic calculus is estab-
lished. It tells how to compute an estimate of the probability of any large time
behaviour which can be described as a succession of jumps from one cycle to
another one, or more generally from one subdomain of the state space to
another. It covers the study of simulated annealing with absorption (cf. [8])
and of simulated annealing with absorption coupled with a “particles bath.”

Proposition 6.1 gives the efficiency of a cooling schedule in terms of a set of
finite-time—finite-difference inequalities. We have exploited it in two extreme
situations: when everything is known about the energy function and when
nothing is known. In practical intermediate situations, it is possible to use it to
derive cooling schedules adapted to the available information.

Let us point out eventually that we have followed another avenue in other
papers ([3]-[5]); instead of aiming at uniformity in the energy function, we got
asymptotically sharp multiplicative constants for one fixed energy function.
Proving ‘“‘sharp large deviation estimates’ is technically much harder, but
gives a precise theoretical understanding of what is going on at low tempera-
tures.
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