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SDEs WITH OBLIQUE REFLECTION ON
NONSMOOTH DOMAINS

By PauL Dupuis! anp Hitosai IsHin

University of Massachusetts and Chuo University

In this paper we consider stochastic differential equations with reflect-
ing boundary conditions for domains that might have corners and for which
the allowed directions of reflection at a point on the boundary of the
domain are possibly oblique. The main results are strong existence and
uniqueness for solutions of such equations. A key ingredient is a family of
relatively regular functions appropriate to the given domain and directions
of reflection. Two cases are treated in the paper. In the first case the
direction of reflection is single valued and varies smoothly, and the main
new feature is that the boundary of the domain may be nonsmooth. In the
second case the domain is taken to be the intersection of a finite number of
domains with relatively smooth boundary, and at the resulting corner
points more than one oblique direction is allowed.

1. Introduction. The primary goal of this paper is to solve stochastic
differential equations (SDEs) with reflecting boundary conditions for domains
that might have corners and for which the allowed directions of reflection at a
point on the boundary of the domain are possibly oblique. Such equations are
of increasing importance in stochastic systems theory. Our approach, which is
inspired by (and borrows many of the ideas of) the approach used by Lions and
Sznitman in [8], is a direct approach based on the Skorokhod problem (SP). In
previous work [4] we have discussed at length the regularity properties of the
solution mapping to the SP (to be defined below) as a function of the problem
data in a more restrictive setting than the one we will use in the present paper.
In the present work, the weakened assumptions on the domain of interest and
on the directions of reflection at points on the boundary of the domain yield
much weaker regularity properties of the solution mapping to the SP than in
[4]. However, in the spirit of [8], we observe that these weaker properties are
still sufficient if one is only interested in solving the corresponding stochastic
differential equation with reflection (SDER).

The key ingredient we use to extend the results of [8] is a family of relatively
regular functions appropriate to the given domain and directions of reflection.
The properties and the use of these functions will be described and illustrated
in the sections which follow. The existence of these functions was proved in [5]
and [3], where the functions were used to prove existence and uniqueness of
viscosity solutions (see [2]) to degenerate, fully nonlinear elliptic PDEs, with
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SDEs WITH OBLIQUE REFLECTION 555

the same domain and derivative boundary conditions in the same directions as
the directions of reflection used here. Indeed, a secondary goal of this paper is
to indicate the close connection between the constructions needed in the
viscosity solution approach to problems on such domains and those needed in
the SP approach to constructing solutions to SDER for such domains. We treat
two cases in this paper, which correspond to the two types of problems treated
in [5] and [3]. In the first case the direction of reflection is single valued and
varies smoothly, and the main new feature is that the boundary of the domain
may be nonsmooth. In the second case the domain is taken to be the intersec-
tion of a finite number of domains with relatively smooth boundary and at the
resulting corner points more than one oblique direction is allowed.

2. Definitions and notation. Throughout this paper we will use the
following definitions and assumptions. The domain of interest will be called G
and we will assume that G is a bounded open subset of RY. Let S(a,bd) =
{x € RY: |x — a| = b} and B(a,b) = {x € RM: |x — a| < b}. To each point x €
G, we will associate a set r(x) c S(0, 1) called the directions of reflection. The
set of continuous functions mapping [0, T'] into RY will be denoted by C[0, T'].
For a function of bounded variation n mapping [0,T] to RY, we let |n[(¢)
denote the total variation over the interval [0, £].

DEerFINITION 2.1 (Skorokhod problem). Let ¢ € C[0,T] with ¢(0) € G be
given. Then (¢, n) € C[0, T solves the SP for ¢ (with respect to G and r) if:
@D o =4 +m, $0)=y0); (i) ¢@) € G for ¢t €[0,T]; GiD) InI(T) < o; (iv)
1@ = Ji0, 111606y co6) B |(s); (v) there exists measurable y: [0, T] - RY such
that y(s) € r(¢(s)) (dinl a.s.) and n(t) = [, ;v(s) dinl(s).

Hence ¢ never leaves G and 7 changes only when ¢ € 4G, in which case
the change points in one of the directions r(¢).

Our present interest in the SP is in its use in defining solutions to SDER for
the given domain and directions of reflection. A precise definition is as follows.
Let (Q, &, P) be a complete probability space and let {#, ¢ > 0} be a filtration
satisfying the usual conditions, that is, %, is right-continuous and %, con-
tains all sets of P measure zero. Let o;,(x) and b,(x), (i, j) €{1,..., N} X
{1,...,r}, be continuous functions on RY and suppose that {w(¢), ¢ > 0} is an
r-dimensional %,-Brownian motion.

DeriNITION 2.2 (SDER). A continuous %-adapted process X(¢) is a solu-
tion to the SDER for the domain G, directions of reflection r(-), initial
condition x € G and Brownian motion {w(z),¢ > 0}, if X(¢) € G for all t > 0
(a.s.) and .

X(¢) =x + fotb(X(s_)) ds + j:a(X(s)) dw(s) + Z(t),
whére ‘

1ZI(t) = '[(0 t]I(X(s)eaG)dIZI(S) < o,
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and where there exists measurable y(s) € r(X(s)) such that

Z(t) = [(0 t]y(s)d|Z|(s)

>

(a.s.).
In other words, (X(-), Z(-)) should solve (on an a.s. pathwise basis) the SP

for y(-) = x + [B(X(s)ds + [o(X(s)) dw(s).

ReEMARK 2.3. Other possibilities (e.g., time dependence of the coefficients or
control dependence of the drift that is not of the feedback form) are also of
interest and may be solved using the methods described below.

As stated in the Introduction, the purpose of this paper is to construct
SDER for domains with corners and oblique directions of reflection. A key
ingredient in the proofs will be families of test functions originally developed
to prove existence and uniqueness results for PDEs on domains with corners
and oblique derivative boundary conditions. The main steps in the proof are
the following:

1. Prove the existence of solutions to the SP when ¢ is smooth. This is
accomplished in Lemma 4.5 using a penalty function method similar to one
used in [8].

2. Obtain equicontinuity results for collections of solutions to the SP. This
step makes important use of the test functions and is carried out in Lemma
4.7.

3. Using the equicontinuity result, we extend the existence result to cover all
continuous paths with initial point in G in Theorem 4.8.

4. Steps (1)—(3) allow us to define the “‘reflected” version of a general class of
semimartingales. Using the test functions again we obtain estimates on this
mapping that are sufficient to prove the existence and uniqueness of a fixed
point of a related mapping, which will actually be the solution to the SDER.
The needed estimate is proved in Theorem 5.1.

The symbol C will be used for a constant satisfying 0 < C < «, whose value
may change with each equation.

3. Assumptions and properties of the test functions. We will con-
sider two cases of nonsmooth domains and oblique directions of reflection. The
cases correspond to the assumptions required for the study of degenerate
elliptic PDE in [3] and [5].

Case 1. @G is an open bounded set. The set of directions of reflection is
actually a singleton: r(x) = {y(x)}, where

(3.1) y € C¥(RN,RY).
There is b € (0, 1) such that
(3.2) U B(x —ty(x),tb) cG° forx €4G.

0<t<bd
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CasE 2. @ is an open bounded set with representation
G= NG,
el
where I is a finite index set and each G, is an open bounded set. Let I(x) =
{i: x & G;} and assume that I(-) is upper semicontinuous in the sense that for
each x € 3G, there is an open neighborhood V of x such that y € V= I(y) C
I(x). Then we assume:

(3.3) For each i € I the boundary 4G, is of class C*.
We assume that there are vector fields
(3.4) ¥ € COL(RY, RN)

such that if n/(x) denotes the inward normal to dG; at x € 4G, then
(y(x),n,(x)) > 0, and that for each x € dG the convex hull of {y,(x): i € I(x)}
does not contain the origin. We then define the directions of reflection by

(3.5) r(x) = { Y oay(x):a; =20, X ay(x)|= 1}-

iel(x) iel(x)
Thus the set {ay: @ = 0, vy € r(x)} is a closed convex cone and furthermore
there is a hyperplane through the origin that intersects this cone only at the
origin. We also assume that at each point x € dG there is y € r(x) pointing
into G. More precisely, we assume for each x € G the existence of a; > 0,
i € I(x), such that

(3.6) < N aiyi(x),nj(x)> >0 forjel(x).
iel(x)

Our key assumption is the following. For each x € dG there is an open

neighborhood W of x and a family {B(y): y € W} of compact convex subsets of

RY with 0 € B(y) for all y € W, such that the family is of class C** (defined

immediately after the remark below) and such that for all y € W N dG and

p € 94B(y),

>0, if{p,n(y)=-1,
(3.7) <%'(y)’”>{ <0, if{p,n(y) <1,

whenever n is an inward normal to B(y) at p.

REMARK 3.1. The condition (3.7) occurs naturally in the study of the SP
and we refer the reader to [4] for other examples of its use. A sufficient (but
not necessary) condition for (8.6) and (3.7) that is simpler to verify in practice
is as follows. For each x € 3G we require the existence of scalars b; > 0,
i € I(x), such that '

(3.8) bi(vi(x),ni(x)) > L bl {x(x),nix))].

jel@NG)

It is obvious that (3.6) holds. For the proof that (3.7) holds, we refer the reader
to [5], Section 5. This reference also proves the equivalence of (3.8) to
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the following algebraic characterization. Assume without loss of generality
that I(x) ={1,...,m} and that (y;(x),n;(x)) =1 for i € I(x). Set v,; =
<y (x), nj(x))] — §,;, where §,; is 1if i =j and 0 if i # j. Then (3.8) holds if
and only if (V) <1, where V = (v;;) and where o(V') denotes the spectral
radius of V. Harrison and Reiman [6] were the first to recognize the usefulness
of conditions of this type in connection with problems involving reflected
processes and domains with corners.

DeFINITIONS. Let S denote the set of all symmetric M X M matrices.
For a real valued function f defined on U ¢ R¥ and x € U, the superdiffer-
entials of first order at x are defined to be

D*f(x) ={p € R™: f(x + h) < f(x) + {(p,h) + o(lh])
for x + h € U and as h — 0}.
The superdifferentials of second order at x are defined to be
D>*f(x) = {(p, A) € R™ x SM: f(x + h) < f(x)
+{p,h) + (AR, h) + o(|h|*) for x + h € U and as k — 0}.

We will abuse notation and let I denote the identity matrix as well as the
index set for Case 2. The intended usage will be clear from the context. We
define C%*(U) to be those real valued functions in C%(U) having the
property that for each compact subset K of U, there is a constant C < « such
that if x € K, then (p, CI) € D* *f(x) for some p € R™. Thus C% *(U) is the
set of real, locally semiconcave functions on U. For any set B, let d(x, B) =
inf{lx — y|: y € B}. A family of nonempty convex sets { B(x): x € U} is said to
be of class C% * if the function

(x,5) = d(y, B(x))

isin C% *(U x RM).
Under the assumptions listed at the beginning of this section, it is proved
that families of functions having certain convenient properties exist.

TueEoREM 3.2. (Case 1.) Given 0 € (0, 1), there exists a C % function g(x,r)
on G X RY and a constant C < » such that

(8.9) g(x,0) =1,

(3.10) g(x,r) > 7|2,

(3.11) (D.g(x,r),y(x)) 20 if (r,y(x)) = —6lrl,
|D,g(x,r)| V| Dig(x,r)| < CIrl?,
(3.12) |D,g(x,r)| V||D,D,g(x,r)| < Clrl,

|D2g(x,r)| < C.
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Given 0 € (0,1), there exists a family of C? functions {f.(x,y): ¢ > 0} defined
on G X G such that if p = D, f,(x,y) and q = D, f,(x,y), then

2
(3.13) f(xy) > 220

€

lx — yI?
g b

(3.14) f(x,y) < C(e +

lx — yI?

(315) <7(x)’p> =< C lf<y _x77(x)> = —0|y _xl,

x — yI?
2 i (x—y () = —6lx — 5,

(3.16) (v(»),9 <C

lx — yI?

(3.17) b +ql<C ,
E

lx — ¥l

(3.18) Il vigl<C >
Cirr -1y, Cx—oP1 o
2 —_

(3.19) D*f(x,y) < g(_I 7 )+ " (O I)’

where C < ® is a constant that is independent of € > 0. There is a C* function
h(x) on G such that h(x) > 0 and

- (8.20) (y,Dh(x)) =1 forallx €9Gand y € r(x).

(Case 2.) There exists an open set W containing G and a C>* function
g(x,r) on W X RN which for each fixed x is C' as a mapping r — g(x, r).
Furthermore, there are constants C < © and 6 > 0 such that

(3.21) g(x,0) =0,

(3.22) g(x,r) = Irl?,

(3.23) (Dg(x,7r),7:(x)) 20 if (r,n,(x)) = —6lrl,
(3.24) bl <CIrl?, gl <Clrl if (p,q) € D*g(x,r),
and for any x € G, r € RY, there is (p, q) € D*g(x, rj such that
(3.25) ((p,q),C’(lr(I:I ‘;)) € D**g(x,r).

There exists an open set W containing G and a family of C*™ functions
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{f.(x,y): € > 0} defined on W X W such that if (p,q) € D*f.(x,y), then

lx — yI?
(3.26) f,9) = —,
e — yI?
(3.27) fu(x,9) < C———,
e —y>
(8.28) (y;(x),p) <C if (y —x,n;(x)) = —0ly —«l,
e —y®
(329) <7L(x)’q>sc lf<x_y7ni(y)>2 —9|x—y|,
_ 2
(8.30) Ip +ql < Clx 8y| ;
(3.31) ol v Il < C& ;y',

Vx,y €W, 3(p,q) € D*f(x,y) such that

Cir -1y, Cx—sP1 o -
(332) ((p’q)’;(—I I )+ e (O I) € D* fa(x’y),
where C < » is a positive constant that is independent of ¢ > 0. There is a C2

function h(x) on G such that h(x) > 0 and
(3.33) (y,Dh(x)) =1 forallx €dGand y € r(x).

REMARK 3.3. The existence of such functions is proved in [3] and [5].
Although the functions for Case 2 have less regularity than those of Case 1,
they are still sufficient for our purposes. The functions % appearing in (3.20)
and (3.33) can be obtained in the form A = ¢,k + c,, where ¢, and c, are
constants and the functions % for the two cases are constructed in [3], Proof of
Corollary 2.3, and [5], Lemma 3.2. In [3], proof of Theorem 4.1, and [5], Lemma
4.4, functions g satisfying (3.9)-(3.12) and (3.21)-(3.25) are shown to exist.
Families {f., ¢ > 0} satisfying (3.13), (3.15)-(3.19) and (3.26), (3.28)-(3.32) are
constructed in [3], Theorem 4.1, and [5], Theorem 4.1. It should be remarked
that the directions y(x) and vy,(x) are assumed to point out of G in [3] and [5],
rather than into G as in the present paper and that outward rather than
inward normals are used. We note the following consequence of the assump-
tions made on dG in the two cases. For a suitable choice of 6 € (0,1)
(6> > 1 — b% in Case 1, arbitrary in Case 2), theré exists 6 > 0 such that
x €3G,y € G and |x — y| < 6 imply {y — x, y(x)) > —0ly — x| in Case 1 and
(y,—x,n (x)) > —6ly — x| for i € I(x) in Case 2. The functions f, are actu-
ally obtained from the functions g by defining

=

fi(x,9) = o8,
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Therefore (3.14) and (3.27) follow from (3.12), (3.24) and

fo(x,y) = 8[01[%g(x’3%—_y) ds + eg(x,0)

Se/: D,g(x,s

2
lx — yl
E

x -y
€

ds + eg(x,0)

X —-y)
€

<C +eg(x,0).
For information on related functions as well as the original motivation,
existence proofs and uses of these functions we refer the reader to [5] and [3].

4. Existence of solutions to the SP. In this section we will prove the
existence of solutions to the SP under Cases 1 and 2 described in Section 2. We
will first prove a few preliminary lemmas: Lemmas 4.1 and 4.3 for Case 1 and
Lemma 4.4 for Case 2. We then prove existence of a solution when ¢ is smooth
(Lemma 4.5), obtain equicontinuity estimates (Lemma 4.7) and extend to all
continuous ¢ (Theorem 4.8).

For x € RY define

d(z) =d(x,G), v(x)=d(x)°.

LemMmA 4.1. Under the assumptions of Case 1, there is a constant v > 0
and a neighborhood U of 3G such that

(4.1) (y(x),Dd(x)) < —v a.e.inU\G.

ReEMARK 4.2. Note that the Lipschitz continuity of d(x) implies the a.e.
differentiability of d(x).

Proor. We first note that the assumptions given for Case 1 imply that the
boundary of G is relatively well behaved. Using a simple contradiction argu-
ment, it follows from (3.1) and (3.2) that there is b > 0 such that for all
x € 4G,

U B(x + ty(x),bt) cG.

0<t<bd
Therefore by (3.1) if we fix z € dG we can choose b > 0 so that
(4.2) Vxe€B(z,b),Vy < B(z4b) NJG, U B(y + ty(x),bt) cG.

0<t<bd

Fix x € B(z,b)\G. Let 0 <t < b and set y = x — ty(x). Choose w € 4G so
that d(y) = |y — wl. Note that d(y) < |z — y| < |z — x| + tly(x)| < 2b and so
lw —z| < |lw —y| + |y — z| < 4b. Therefore, by (4.2),

B(w + ty(x),bt) c G.
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This last inclusion implies
d(x) < |x —ul foru e B(w + ty(x),bt),

and since x — ty(x) = y,
2

d(x)2 <lx—w —ty(x) — btm
y-w ?
_b“w_”w—w
= ly — wl® - 2btly — wl + (b)*
= (d(y) - b1)*.

It follows that for ¢ sufficiently small,
d(x) <d(y) — bt.

Assume now that d is differentiable at x and set p = Dd(x). Then for
y =x — ty(x),

d(y) =d(x) +{p,y — x> +o(ly — xI)
<d(y) — bt —t(p,y(x)) + o(t).
Sending ¢ | 0 we obtain {p, y(x)) < —b. O

Let p; satisfy
ps=0, suppp; CB(0,8), [ pydx=1, p,€C".
RN
Define
Us = U*pss ds =d*p;,

where * denotes convolution.

LEmMmA 4.3. Under the assumptions of Case 1, for sufficiently small 6 > 0
there is a constant v > 0 and a neighborhood U of 3G such that

(4.3) (y(x), Dug(x)) < —vds(x) inUNG.

Proor. By Lemma 4.1, there exists a neighborhood U of 4G and a
constant » > 0 such that

(y(x), Du(x)) = 2{y(x), Dd(x)) d(x) < —2vd(x) a.e.in U\G.
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Therefore, whenever B(x, ) c U,

(7). Do) = (3(2), [ Dout =)o) o)
R
= (%), [ ou(x =9 Do) )
= [ Ky ), Do) +(v(x) = 9(3), Do) oax = v) dy

< [ [=2vd(y) + 2L8d()]pa(x — ) dy

= 2[—v + L8] dy(x),

where L is the Lipschitz constant of y over the compact set U. O

LeEMMA 4.4. Consider the situation of Case 2. Let b > 0 be chosen so that . .
d(x,G,)? is a C! function for d(x,G;) <b and for i € I. Then there exist
c €(0,b), v > 0 and smooth (C') functions a,(x), i € I, satisfying a(x) > 0
foriel,a x)=0 fori & I(x)and

< Y a(x)y(x), Dxd(x,Gj)> < —-v/2 forjel(x)
iel
and for all x satisfying ¥, < ;d(x,G,) < b.

Proor. This follows under the pointwise assumption given by (3.6), the
compactness of dG and the upper semicontinuity of I(x) by a partition of
unity argument. O

LEMMA 4.5. Let ¢ € CY0,T] satisfy y(0) € G. Then under the assump-
tions of either Case 1 or Case 2 of Section 2, there exists (¢,n) € (HY0, T))?
such that (¢p, 1) solves the SP.

REMARK 4.6. Given that n € HY(0, T'), we may write

« dn
dinl(t) =|n(¢)|dt, where n = -

Proor. (Case 1.) Suppose that ¢ > 0. Consider the ODE,
. 1 . '
(4.4) ¢ :
$.(0) = ¢(0).

Choose a neighborhood U and a constant » > 0 as in Lemma 4.3. Choose a
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function &: R — R so that
EeC”, &(r)=r, O<r<e, &(r) = 2¢, r > 3c,

(4.5) de(r)
0< =
dr

where ¢ > 0 is a small constant such that v(x) = d%x) <4c=x < U UQG.
Define (recall that v, was defined immediately before Lemma 4.3)

V(t) = £&(vs(b.(2))) forO<t<T.
Then, noting that ¢,(¢8) & U U G = ¢'(vy(¢,(1))) = 0, we have

V = €(v5(¢.)){ Dvs(b,), bs)
1 .
= f’(v3<¢g>><Dv5<¢a>, —d(4.)v(9.) + ¢>

14

< ——€(v5(4))d(8.)d5(b,) + € (vs(.))l| Dus( ) |-

€

g(ry<1l, reR,

Integrating this, we obtain

E(va(4(0)) +  [£(0s()d(B)ds(8,) ds = ['¢ (v3($) )il Duy(6,)| ds

for all 0 < ¢ < T. Sending & | 0, we get

E(o(40) + , [[¢(2(2)0(,) ds

t , o ’
<2 fo ¢ (v($,))dld(o,) ds
; . 2 1/2
<o [etoppiras) " ([euba)s as)
The boundedness of ([i&'(v(p Nly|® ds)/2, (4.5) and the inequality above
imply
17 .7 1/2
;[fo §'(v(¢£(s)))v(¢e(s))ds] < C(T),

where C(T') > 0 is independent of £ > 0. Thus we have

(46)  £(0(6.(0) + = ['¢(0(6.()e(.(5)) ds = C(T)e,
where C{(T) > 0 is independent of & > 0. From (4.6) and (4.5), we may

assime that £ > 0 has been chosen small enough to ensure

(4.7) sup v(ci)e(t)) <c.

0<t<T
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Equation (4.6) now tells us that
1 2 14 t 2
(48) ~d(8.(1)" + 5 [[d(8.())"ds < C(T)

whenever 0 < ¢ < T. Now define for 0 <t < T)

1
L) = Zd(6.(8),  m(®) = [1.(s)7(9.(5)) ds.
From (4.8), {n,} and {l,} are bounded in H*(0,T) and L%, T'), respectively.

Thus, we may assume that as ¢ | 0,
I, > 1 weaklyin L*(0,7T),
n, > n inC[0,T],
n, » 1 weaklyin L?(0,T),
where n € H¥0,T) and [ € L%0, T'). From (4.4) it follows that
.~ ¢ inC[0,T],
é, > ¢ weakly in L2(0,T'),

where ¢ € HY0, T). _
It follows from (4.4) that ¢(¢) = ¢(¢) + n(¢) and from (4.8) that ¢(¢) € G
for 0 <t < T. Since 71, = [,y(¢,), we also have 1 = [y(¢) and therefore

nl(#) = [[1i(s)|ds = [1(s) ds
and
n(t) = [7(()1(s) ds = [¥(8())l(5)|ds

whenever 0 <t < T. Let 7~ be the open subset of [0,T'] given by {0 <¢ < T
¢(t) € G}. Since for any fixed t € 7, we have [ (¢) = (1/¢)d(¢(¢)) = 0 when
¢ is sufficiently small, we find that {(¢) = 0 on 7. Thus

t t .
Inl(t) = j;I(qs(s)eaG)l(s) ds = j(;I(¢(s)eaG)|77(3)|dS-

Therefore (4, 1) solve the SP. 3
(Case 2.) Only minor changes are needed in the proof above. Define d(x) =

L, c1d(x, G;). Then (4.4) is replaced by
. 1. .
el |
$.(0) = ¢(0),

where the functions a () are from Lemma 4.4. Define ¢ as for Case 1, where
3¢ > 0 satisfies the conditions of ¢ in Lemma 4.4, i(x) = d?(x) and V(¢) =
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£(0((¢))). We now obtain (using Lemma 4.4)
Vs -2 ((6.))0(8,) + £ (5661 D8],

from which we obtain (4.8) as in the case above with d replacing d. If we now
define ‘

1 - ¢ \
li,e(t) = ;ai(¢s(t))d(¢e(t))’ ni,e(t) = j;li,s(s)%‘(%(s)) ds,
"h-(t) = Z ni,e(t)’

iel
then the proof follows the proof of Case 1 with only notational changes. Note
that the property a;(x) = 0 for i & I(x) guarantees that the limit of 7,(-)
satisfies part 5 of the definition of a solution to the SP. O

We next obtain estimates of the modulus of continuity of solutions to the
SP.For y € C[0,T]and 0 <s <¢ < T, let llylls,; = max, _, _ ly(r) — y(s)I.

LeEMMA 4.7. Let A be a compact subset of C[0,T]. Then (i) s = sup{|n|(T):
(y + m, ) solves the SP for € A} < =; (ii) the set {¢: (¢, ) solves the SP for
¢ € A} is precompact.

Proor. For a set S c RY, let N(S) denote {x: inf,  glx — y| < ¢}. Using
the compactness of dG and an open covering argument, one may show that
there exist ¢ > 0, a finite collection {S,,1 < i < L} of open subsets of G and
vectors {v;,1 < i < L} such that U;S; = G and such that if x € N(S;) N 4G,
then (y,v;) > ¢ for all y € r(x). We may assume that the diameter of each of
the sets N,(S,) is bounded above by § > 0, where & satisfies the conditions of
Remark 3.3.

Let ¢ € A be given and let i, be such that ¢(0) = ¢(0) € S, . Define T, to
be the smaller of T' and inf{t € [0, T']: ¢(¢) & NS, 0)} and define i; so that
(T, € S;. Continue in this way to define {T,,i,} whenever T, _, <T.
Since (y, u;) > ¢ for all y € r(x), x € N(S;) N 3G,

($(Ty) = &(Tr_1)sv; ) —(W(Ty) = ¥ (Tp_r),v;, )
= [ (v(s).m,,.,) dini(s)

> c(Inl(T,) — Iml(Tp_1)).

Since A is compact, the set {(¢); ¢ € [0, T], y € A} is bounded. Of course, it is
alsé true that the set {¢(2): ¢t €[0,T], (¢, — ) solve the SP, ¢ € A} is
bounded. Thus there is M < « such that

n(Tp) = Ml(Tp-y) <M.
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We will prove below that for any € A,

3/2 1/2
(4.9) il - < C(3MlZ” . + 2lIE", ), T <7<T,,

whenever T,,_; < T. Assuming this estimate, we now complete the proof of
the lemma. Using (4.9) and the compactness of A there is £ > 0 such that

Wiz, .1, e Vnllze, 7, +e <c/3,
which implies
¢llz, , 7, ,+e < 2c/3.

The definition of the sequence T,, then implies that T,, — T,,_; > &. Thus
part (i) follows with s < MT/e. Part (ii) also follows from the bound T, —
T, _. = ¢ and (4.9).

We now turn to the proof of (4.9). In order to simplify the notation we will
let ¢(T,,_;)=x and T,,_, = 0. Since it is only the increments of ¢ over
[T, _,,T,]that are important, we can simplify the notation further by letting
W(T,,_) =x, n(T,,_1) = 0 and [n|(T,,_,) = 0. Recall that ¢ <& and that &
satisfies the conditions of Remark 3.3.

(Case 1.) Let g be the function described in Theorem 3.2 for Case 1 and let
C be the corresponding positive constant. Define B_(¢) = eg(x, —n(¢)/e),
a(t) = nl(¢) and E(t) = e~2¢*®, Then since g(x,0) = 1,

BDE() = [d(B(w)E(w) +¢
- fOT[E(u) dB,(u) + B.(u) dE(u)] +¢

— [(E(u) dB,(u) - 2C[ B,(u) E(u)da(u) + ¢
0 0

=I,+1I, +e.

We then write

L= — [[E(u) D.g(x, ~n(x)/e), dn(w)
, 3

= —[E(v) ¥ do;(u),
0 j=1

where
doy(u) =(D,g(d(w), —[d(w) — x]/¢),y(w)) da(w),
d8y(u) =(D,g(x, —n(u)/c) — D,g(d(w), —n(u)/¢),dn(u)),
d8s(u) =(D,g($(u), —n(u)/e) — D,g(d(u), —[d(u) — x] /&), dn(u)).
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Using (3.11) for the d6; term and (3.12) for the rest, we obtain

P C C
1= [BG){lo(w) —lin()] + £ 1) - 21} da(u)
0 & £
T 1 2 1 1
scfoE(u){;ln(un + () —x||n<u>|+;w(u)—xl}da(u)
: 1 , 1 , 1
sszOE(u){;In(u)l + = liu) — x| +;|¢<u)—x|}da<u)

< ZCLTE(u)Be(u) da(u) + 2—:’:{II¢II%,, + II«erIo,f}fOTE(u) da(u),

where the last inequality is due to (3.10). Combining with I, we have
2C .
B(7) =[S (W1 + ke ) [0 dau) +

0

e2Ca(‘r)

e2Ca(r).

1 2
;{”'J/“o,f + ”'7[/”0,1'} + e

<

Using (3.10), for ¢ > 0,
| | 1 1| |2 € lB
n(r)l < 5(8+ ~In(7) ) <5 t3BL7)

eZCa(T)‘

! lgll5,- + Nl °
i A+ =
28{ (/’ 0,7 (/’ 0, } 9

&
<o+
2

~ Recall that a(7) < M is a bound that is independent of the path ¢ € A. If
lgllo. . = 0, there is nothing to prove. If this is not the case, (4.9) is proved by
substituting & = [lyll§/2.

(Case 2.) Since the function g for Case 2 does not have the same regularity
properties as the corresponding function for Case 1, an approximation argu-
ment is used. A similar approximation argument will be used in the next
section in the proof of Theorem 5.1 for Case 2.

Let € > 0, the path  and the solution (¢, 1) be fixed. Let R = (ll¢llo,, V
lImllo,.)/e. We will approximate g(x,r) on the open domain W X B(0, R + 1)°

by use of the sup-convolution: For g > 0,
1
gf(x,r) = sup{g(y, s) — ﬁ(lx -y +Ir— slz): yeW,seB(0,R+1)°}.

The functions g# are C*%G X B(0, R)) (for all g > 0 sufficiently small) and
gP(x,r) - g(x,r) in C(G X B(0, R)). Furthermore, if g > 0 is sufficiently
small, then for all (x,r) € G X B(0, R),

(4.10)  (p,q) = Dgf(x,r) = (p,q) €D7g(x + Bp,r + Bq).

Let C be the constant associated to g in Theorem 3.2. Then (4.10) and (3.24)
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imply
(4.11) bl < 4Clrl?, gl < 2Clr|

whenever 0 < 8 < 1/2C.

We now return to the proof of Case 1, defining B2(¢), EP(¢) and so on, as we
did B,(¢), E(¢) and so on, there, save that we substitute g° for g. In the
calculation of the upper bound for I, the only significant difference occurs in
the estimation of the d@f term. Let p = D gP(¢(u), —[¢(u) — x1/¢), q =
D, gP(p(u), —[¢(u) — x]/¢). We use

(q,7(u))da(u)
=(D,g(¢(u) + Bp, —[$(u) — x] /& + Bq), y(w)) da(w).

Let y(u) =X, a,(uw)y,(¢(n)) define the functions a,(u), i €I, and then
define 7(u) = ¥; o ;a;(w)y;(¢(u) + Bp). Then using (3.23) (see also Remark
3.3),

- ['E(u) D7 (#(), = [d(x) = x1/¢), 7(w)) da(u)

(4.12)

<~ [[E(uXD.g(e(x) + Bp,~[¢(x) ~x]/e + Ba),

v(u) — &(u)} da(u).
The continuity properties of the y; and this last display imply
lim sup {— fTE(u) df){’(u)] <0.
B—0 0

It follows that by using the same estimates as in Case 1 and then sending
B — 0, we obtain

1
B (1) < ;{”'l/”%,f + ||¢||o,f}ezca(7)-
We may therefore proceed exactly as in Case 1. O
We now come to the main result of this section.

THEOREM 4.8. Let ¢ € C[0, T'] satisfy y(0) € G. Then under the assump-
tions of either Case 1 or 2 of Section 2, there exists a solution ($, ) of the SP.

ProOF. The proof is very similar to that of Costantini ([1], Theorem 2.8).
An extension that can handle the case of paths with discontinuities appears in
[4]. Let ¢, € C'0,T] be such that sup, <o 7/¥,(¢) — ¢(@®)| — 0. According to
Lemma 4.5, a solution (¢,,7,) corresponding to ¢, exists for each n. By
Lemma 4.7, we may assume

(4.13) sup|n,|(T) <s <.
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By the Arzela-Ascoli theorem, we may assume there is n € C[0, T'] such that
SUp; c (o, 7|M,(t) — n(#)| — 0. According to (4.13) we must have [7[(T) < s. Let
¢ = ¢ + n. Clearly, parts 1, 2 and 3 of Definition 2.1 hold. For each n, define
the measure p, on [0, 7] X G X B(0,1) by

ma([0,£] X A) = f[o t]I«¢,,(s),vn(s»eA>d|ﬂn|(s)’

where A is Borel. Then
In,1(2) = pa([0,¢] X G X B(0,1))

forall0 <¢ < T and

() = [ Y iy

[0,¢]x G xB(0,1)

Since |1,/(T) < s < « for all n, we may assume a subsequence of u, (again
denoted by u,) tends weakly to some measure w. Then weak convergence and
continuity of »n imply

(4.14) n(e) = [ ydp.

[0,21xGxB(0,1)

Define A(¢) = u([0, t] X G X B(0, 1)). Define the sets

2, =[0,T] x G x B(0,1),

2,=[0,T] X {(x,7):x €0G, vy & r(x)},
33={(t,x):t€[0,T], |x — &(t)| > 8} x B(0,1).
For every n,
Pa(21) = 1n(25) =0
and for sufficiently large n,
wa(33) = 0.

Since the sets 3; U 2, and 33 are relatively open [due to our definition of

r(x)],
WS UE,) =u(8)) =0
for all 5 > 0. Thus
(4.15) p(3, US,) = u(35) =0,
where 3, = {(t,x): x # ¢(t)} X B(0, 1). Finally, since 4(0) = ¢(0), we may



SDEs WITH OBLIQUE REFLECTION 571

assume that ({0} X G X B(0, 1)) = 0. Then (4.14) and (4.15) and the discus-
sion above imply

n(t) =f ydu

{(s,0,7): $ €0G, d=d(s), vy er(¢p(s)}
= I vyp(s;dy)dA(s
(0.4 (¢(s)eaG)fr(¢(s)) (s;dy)dA(s),

where p(-; A) is a nonnegative A-measurable function for each Borel set A.
Thus dln| is absolutely continuous with respect to dA. This fact and (4.15)
imply part (iv) of Definition 2.1. Since the set {ay, 0 <a <1, y € r(x)} is
convex for each x € 4G, there is a measurable function c(s) such that

v(s) =c(s)[  yp(s;dy) €r(a(s)) if (s) €3G
r(¢(s)
almost surely with respect to dA. Clearly,
t) = d ,
() = [ v(s)dlnl(s)

which gives part (v) of Definition 2.1. O

5. Solutions of SDER. The reader is referred to the book of Karatzas
and Shreve [7] for questions regarding the terminology and notation used
below. Let (Q, &, P) be a complete probability space and let {%, ¢t > 0} be a
filtration satisfying the usual conditions. Let M = (M) be an r-dimensional
continuous Z,-martingale satisfying

(5.1) d{M;, M;)(t) < Cdt for some constant C < .

Let o-ij(x) and b,(x), (i, j) €{1,..., N} x{1,...,r}, be real-valued functions
on R¥ satisfying a Lipschitz continuity assumption:

(5.2) Io'ij(x) - O'ij(y)l VI]bi(x) — b(y)| < Klx -yl

for (i,j)e{1,...,N} x{1,...,r} and x,y € G. Let X and Y be continuous
F,-semimartingales and let 2 be a continuous #-adapted bounded variation
process. Assume that the triple (X, Y, &) satisfy (for £ > 0 and a.s.)

(5.3) Y(t) =x + ftb(X) ds + fta(X) dM + k(t),
0 0
X(t)eG, Y()eq,.

kl(t) = Iyvsean GlRI(S),  k(t) = s) dlkl(s),
O = [ Iroeiadkl(s), k(1) = [ v(s) dIkl(s)
where x is some fixed value in G and y(s) € R(Y(s)), d|k| a.s. Let (X', Y", k")
be another triple satisfying the same conditions save that x is replaced by

x' €@.



572 P. DUPUIS AND H. ISHII

THEOREM 5.1. There is a constant C < « such that for all 0 <t < T,

E( sup |Y(s) — Y’(s)|2) < C{Ix - x® + fOtE( sup | X(u) —X'(u)lz) ds}.

O<s<t O<u<s

Before proving this theorem we present several lemmas, some of which are
simply the statement of well-known results. We also note at this point that the
existence and uniqueness of solutions to SDER will follow easily from the
result above by a standard fixed point argument. We state this result as a
corollary.

COROLLARY 5.2. Assume the conditions of Case 1 or Case 2 and also that
(5.2) holds. Then a strong solution to the associated SDER exists and is
unique in the strong sense.

OUTLINE OF THE PROOF. Given the estimate of Theorem 5.1, the proof
follows the same outline as that given for [8], Theorem 4.3. For the sake of
completeness, we will indicate the main ideas. Assume that given a continuous
F,-adapted semimartingale X, there are processes Y and k satisfying (5.3)
with w replacing M, where Y is a continuous %;-adapted semimartingale and
k is a continuous #-adapted process of bounded variation. Then the classical
Picard iteration technique (e.g., [7], Section 5.2), together with the estimate
given in Theorem 5.1, completes the argument. Thus the existence of such Y
and k is all that remains. Obviously the processes may be defined on a
pathwise basis. The main problem is verifying the adaptedness property. Next
assume that it is possible to show the existence in distribution of a solution to
(5.3). Then this weak existence, together with the strong uniqueness implied
by Theorem 5.1, implies existence of Y and k& with the required properties (7],
Proof of Corollary 3.23). Thus existence in distribution is all that remains.

Let ¢ be a bounded variation path that starts inside G. Then a simpler
version of the argument used to derive Theorem 5.1 shows there is at most one
solution (¢, 1) to the SP for . Let

S(t) =x + fotb(X(s)) ds + fota(X(s)) dw(s),

and let {S,(-), n € N} be a sequence of continuous bounded variation %-
adapted semimartingales which converges uniformly to S(-). Let (Y, k,),
n € N, be defined pathwise as the solutions of the SP for S,, n € N. Then the
constructive nature of the existence proof of solutions to the SP, together with
the’ uniqueness of solutions to the SP for paths of bounded variation, implies
the processes (Y, k,), n € N, are %,-adapted. Thus, in order to prove exis-
tence in distribution of solutions to (5.3), all that is required is tightness of the
joint distribution of (Y,,, S,,, k,, |k ,|), n € N, on the appropriate product space.
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This tightness follows from the assumed convergence of S, to S and Lemma
4.7. O

We now begin the proof of Theorem 5.1.

LeMMa 5.3. For f € CXG X G), we have (fort > 0 and a.s.)
f(Y(¢),Y'(2))

= f(x. ) + [(Df(Y,Y"),0(X) dM)
+[0t( D,f(Y,Y'),o(X') dM) + fot<Dxf(Y, Y'), (X)) ds
+ [(D, F(¥, %), b(X")) ds + [ (D, F(¥,¥"), 7(Y)) dlk(s)

+j0t< D, f(Y,Y"),y(Y") dIk|(s) + fottrdE,
where
ds = {a(X)Tpff(Y, Y)o(X) +a(X)'D,D, f(Y,Y)o(X')
+o(X")'D,D, f(Y,Y)o(X) + o(X') D2f(Y, Y’)a(X’)} d{(M)(s),

and where T denotes transpose, tr denotes the trace and d{M )(s) =
(d<Mi, Mj>(s))15i,jsr'

Proor. This follows from It6’s formula. O
Let S™ denote the set of all real r X r symmetric matrices.

LemMa 5.4. Let A =(a;;) €S", B=(b;;) €8" be nonnegative definite.
Then
tr AB > 0.

Lemma 5.5. Let A =(a;;) € C(0,T],S") satisfy A(t) = 0 forall 0 <t <
T. Let B = (b, j) € C(0,T], S™) and assume each b, ;18 of bounded variation
on [0,T] fori,j=1,...,r and that

B(t) = B(s) forall0<s<t<T

(i.e., B is nondecreasing). Then

" tr A(t) dB(t) = 0.
0-

Proor. This follows from Lemma 5.4 and an easy approximation argu-
ment. O
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LemMa 5.6. (M )(¢) is nondecreasing (in the sense of nonnegative definite
matrices and a.s.).

ProOOF. See the proof of [7], Theorem 3.4.2. O

Let A > 0 be some constant to be chosen later and let f,(x,y) and A(x) be
the functions described in Theorem 3.2 for Case 1. We define v € C%(G X G)
by

v(x,y) = e_)‘[h(x)+h(y)]f€(x’y) .

Although v depends on ¢ and A, we will omit this dependence from the
notation. We will also separately define

u(x,y) = e MA@ +h()]

Note that we always have u(x,y) < 1.

LEMMA 5.7. There is K{(\) < ® such that for all x,y € G,
1 e —y*\(1 o
; e + - (0 I) .

D?v(x,y) < Kl()t)l (_II —II) +
ProoF. Let &,&, € RN and ¢ = (2) Then by (3.14), (3.17), (3.18) and
(3.19),
(D?v¢, &)

(uDf &, &) + 2(Df,, £)(Du, ¢) + (f,D*ué, ¢)

(e T

+2(D, f,, €1 + (D, f,, £)) Dul [¢]

IA

lx — yI?

€

2 (C + ClID?ul)lx — yI?
£

. c(g i D2l

C
—1¢, — & €1” + eClID2ull £
+2(<Dxfe+Dyf9’§1>+ <Dyfg,§2_§]_>)|Du||§|

C C + ClID%ul)lx — yI?
~E—|§1 — &7+ ( " ) €12 + £C|ID%ull 1€

IA

IA

e — yPIE?  Ix - yllE, - & 1€l
+ 20Dyl yI°1€ N yllE; — &l 1€

€

K. (A
< K )|fl—§2|2+

€

€1 + K y(A)elél®. ]

K(A)lx — yI*
€
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LEMMA 5.8. There is Ky(A) <  such that for all x, y, ¢ and v € G, the

quantity
&)\, (€)
(a(v)) b "”’”(o(v))

= (&) D2u(x,y)0(¢) + o(¢)"D,Dv(x,y)o(v)
+o(»)"D,Dy(x,y)0(£) + o(v) " D2v(x,y)o(v)
is bounded above by

Ky(A)

1
e+ ;(If — %+ |x —ylz)]I.

Proor. Using Lemma 5.7, we compute

o(&)) -, o(£)
(0’(1/)) D v(x’y)(a(v))

BN (o (1 —1)[0®
=7 (0’(1/)) (—I I )(0‘(1/))

x =3 ](o(&)\" (o (&)
T l(c(v)) o)

Ky (A
- ((8) — o) (0(8) o)

+ Ky(A)

lx — yI?

+ K(A)|e +

(0(&)"a(£) + a(v) a(v))

< Ky(})

1
g+;(|§—v|2+ Ix—ylz)]I. O

Proor or THEOREM 5.1. Define the stopping time
r=inf{s € [0,T]: |Y(s) — Y'(s)| > 6},

where 8 > 0 is from Remark 3.3. It is sufficient to prove the theorem with the
¢t appearing in the conclusion of the theorem replaced by ¢ A 7. To see this, let
B be the diameter of the smallest ball that contains G. Then (assuming
without loss that B/§ > 1) ’

E( sup |Y(s) — Y'(s)lg) < (E)zE( sup |Y(s) - Y’(s)lz).

O<s<t o 0<s<tAT

To simplify the notation, we write ¢ in place of ¢ A 7, with the understanding
that we may assume |Y(s) — Y'(s)| <6 for 0 <s < ¢.



576 P. DUPUIS AND H. ISHII

(Case 1.) Let v be the C? function on G X G defined immediately before
Lemma 5.7. In the proof, quantities that are finite but depend on A will be
denoted by C(A). C will denote a finite constant that does not depend on A.
Then we obtain [using Lemmas 5.3, 5.5, 5.6 and 5.8 for the first inequality,
(3.14), (3.15), (3.16), (3.20) and (5.1) for the second inequality and (3.17) and
(3.18) for the last inequality]

Eu(Y(2),Y'(2))

<v(x,x') + E[J( Du(Y,Y'), b(X))ds + Efot( Du(Y,Y'),b(X")) ds
+ Efot<va(Y, Y'),y(Y)) dIEl(s) + Ej:(Dyv(Y, Y'),y(Y")) dIk'|(s)

trId{M)

t X-X1? |Y-Y?
+Ef()C(x\)e+ —

=u(x,x) + Efot<u(Y, YD, f.(Y,Y') + f.(Y,Y)Du(Y,Y'),b( X)) ds
+Ef0t<u(Y, Y')D, f(Y,Y') + f(Y,Y)Du(Y,Y'),b(X")) ds
+ Efot<u(Y, Y)D, f.(Y,Y') + f.(Y,Y')Du(Y,Y'),y(Y)) dlkl(s)

+E[(u(Y,¥)D, (Y, ¥') +£.(¥,Y) Du(Y, ¥'), y(Y") dIk'(s)

X-X172 |Y-Y)
+

€

+C(/\)Ej:(s + S d(M)
-1

i

<u(x,x) + Efot<u(Y, Y') (D, f.(Y,Y') + D, f.(Y,Y")),b(X)) ds

t Efot< u(Y,Y')D,f,(Y,Y'),b(X’) = b(X))ds + C(A)s

2 ,|2

Y = Y| : | Y
+ C(/\)Ej(; -E—ds + CE];)u(Y, Y,)lekl(s)
+ CE/(:“(Y» Y’)l_T,ldlk'l(s)
~AE[£.(Y,Y)u(¥,Y'X Dh(Y), 7(Y)) dlkl(s)

= AB['£,(¥,Y")u(Y, YK DR(Y"), (Y")) dIk'(s)
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t IX-X1* |Y-Y*\ -
+ C(/\)Ef e+ +— ds
0

Y’I2 Y - Y'IX - X'|
<v(x,x) +C(A)s+C()\)Ef( ds

&
—-Y')?

HC-VE[u(, Y’)lg— dlkl(s)

—-Y)?

+(C — /\)E]:u(Y, Y’)IT dlk'|(s)

+C(VE['(e + X-x1,
( A € " s.
Letting A = C (and dropping the A notation from the constants) we get

ds.

X-xP -y
Ev(Y(t),Y'(£)) <v(x,x') + Ce + CE[( e )

Hence,

E( ¥(t) - v'(2)] ) < C{e + %(Ix —x®+ Efot[IX—X’I2 +1Y - Y] ds)}'

€
If we multiply this by ¢ and then send ¢ to zero we get
2 2 ¢ 2 2
ElY(#) -Y'(8) < C{Ix ~«I*+ [[EIX - X'* + ElY - Y'?] ds}.
0
From Doob’s inequality we obtain
E( sup |Y(¢) - Y'(¢)] ) < C{x - x| +f EX-XI*+EY-Y ]ds}

O<s<t

where the new constant C depends on the Lipschitz constant of the coeffi-
cients b and o. Finally, Gronwall’s inequality implies that given T < o, there
is C < o sothatfor0 <t < T,

E( 5w 1Y(s) - Y’(s)lz) < C{|x —wl [ tE(OngSIX(r) - X’(r)|2) ds}.

(Case 2.) As in the proof of Lemma 4.1, the weaker regularity properties of
the functions {f,, £ > 0} in Case 2 force the use of an approximation argu-
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ment. If the functions for Case 2 were of class C2, the proof of Lemmas 5.7
and 5.8 and Theorem 5.1 would be the same as those for Case 1 save that the
corresponding inequalities for Case 2 from Theorem 3.2 would be used [the
right-hand side of the inequalities appearing in these lemmas could actually
take a slightly simpler form since the extra ¢ term appearing in (3.14) is not
present in (3.27)]. We break the approximation argument down into two
stages.
If the f, were C11. Let p, satisfy

pa = O’ Supppa c B(O’ a)’ _[Npa dx = 1, Pa € Coo’
R

and define f* =f, *p,. Then each f* is C* and f* — f, in C'. The key
property of these approximations is

Cirr -1y, %31 o
2ra -
fo(x’y)sg(q 1)+ : (o 1)

for (x,y) € G X G and all a > 0 sufficiently small, which is implied by (3.32).
If we now define v* as v was with f replacing f,, Lemmas 5.7 and 5.8 follow
as before for the function v*. We therefore obtain the first inequality in the
proof of Theorem 5.1 for Case 1, save that v replaces v. Upon letting a — 0,
we obtain the inequality as written, and may now proceed as before.

For the f, as given. As in the proof of Lemma 4.7, we approximate the f. by
sup-convolution. For g > 0, let

1
fP(x,y) = sup {fs(r, s) — E—(Ix —r2+ly - 3|2)}.
(r,s)eWxW B

Then the f# are of class C*!, f# - f, in C(G X G) as B — 0 and for all 8
sufficiently small,

((p,q),A) € D>*fF(x,y)

= ((p,q),A) €eD*>*f,(x + Bp,y + Bq).

For fixed ¢ > 0, the Lipschitz property of f, implies that (p, ¢) is bounded
independently of x and y. We let C(¢) denote a quantity that satisfies
0 < C(g) < =, but whose value may change from line to line. Let f* = ffxp_.
The key property of the f#¢ [which follows from (5.4) and (3.32)] is

(5.4)

I —I)+ Clx—y|2(1 0)+C(e)|ﬁ|2(1 0).

, D?*PBe< 9
N € e\ -1 I £ 0 I £ 0 I

If we repeat the estimates of Lemmas 5.7 and 5.8, use Ité’s formula to
compute the analogue of the first inequality in the proof of Theorem 5.1 and
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then send a — 0, we obtain

EvP(Y(2),Y'(2))

< vf(x,y) + Ej:( DA(Y,Y"),b(X))ds + E [{ DpP(Y,Y"), b(X")) ds
0 .

+Ef0’( DP(Y,Y"),y(Y)) dlkl(s) + Ef()‘( DA(Y,Y'), y(Y")) dIk'I(s)

trId{M),

€

X — X2 _ v2 2
+El-tC(/\)(| X'| +|Y Y| +C(8,9)|B|)
(]

where v? is defined as v was but with f, replaced by f”.

We now examine the terms involving D,v? = uD, f# + ffD,u or Dv*. All
terms involving only f# (and not Df?) can be handled exactly as before since
we will ultimately send 8 — 0 before sending ¢ — 0 and since fE—>f in
C(G x G) as B — 0. We next observe that (5.4) and (3.30) imply

Efot<u(Y, Y')D, fA(Y,Y"), b(X)) ds
+Ef0t<u(Y, Y')D, fA(Y,Y"), b(X")) ds
< Efot<u(Y, Y')(D, fE(Y,Y") + D, fA(Y,Y")), b(X))ds
+ Efo’(u(Y, Y')D, fA(Y,Y"),b(X') — b(X)) ds

Y - Y1+ C(e)IB? (1Y —Y'| + C(e)IB)IX — X'|
+ ds.

t
sCEfO( - .

Therefore these terms will take the same form as in Case 1 when B — 0.
Lastly, there are the terms of the type

E[u(Y,Y")D, fA(Y,Y"), ¥(Y)) dItl(s),

E[{u(¥,¥)D, f5(Y,¥"), ¥(¥) dIF(s).

We consider only the first term, since the second is treated in the same way.
Let y(Y(s)) = L;c;a,(8)y;(Y(s)). Define #(Y(s)) =L, ;a,(s)y(Y(s) + Bp),
where p = D, fA(Y(s),Y'(s)) and q = D, fF(Y(s),Y'(s)) have a bound that
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depends on ¢ but not on B. Then by using (3.28) [and Remark 3.3], we obtain
Efot(u(Y, Y')D, fE(Y,Y"),y(Y)) dlIkl(s)
|Y_ "2
< CE[‘u(Y, Y’)——l—dlkl(s)
0 E
+ E[o’(u(Y, YD, fA(Y,Y"),y(Y) — #(Y)) dIkl(s).

The continuity properties of the y, imply the last term tends to 0 as g8 — 0.
Therefore, upon sending B — 0, we obtain

Eu(Y(2),Y'(2))

Y — Y'|? . Y - Y'|IX - X'|

€ €

<v(x,x') + C(,\)Efo‘( ds
+(C —/\)Efotu(Y, Y’)%dlkl(s)
¢ Yy - Y'I?
+(C - /\)Efou(Y, Y') ———dIk'I(s)
/|2

X-X
+C(VE [ ———ds,
0 €
and we may now proceed as in Case 1. O
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