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A NEW APPROACH TO THE MARTIN BOUNDARY VIA
DIFFUSIONS CONDITIONED TO HIT A COMPACT SET

By Ross G. PINskKy

Technion—Israel Institute of Technology

Let L generate a transient diffusion X(¢) on R and let D be an
exterior domain. Let A& be the smallest positive solution of LA = 0 in D
and h =1 on dD. Define X"(¢) to be the process X(t) conditioned to hit
aD. By Doob’s h-transform theory, X*(¢) is also a Markov diffusion and its
generator L” is defined by L"f= (1/h)L(hf). Letting 7, be the hitting
time of oD, define the harmonic measure for X”(¢) on 4D starting from
x € D by u(dy) = PX(X"rp) € dy) Let {x,); -, € D be a sequence satis-
fying lim, _, |x,| = © for which ,u,x" converges weakly Call two such
sequences {x,):_, and {x},};,_; equivalent if lim , _,., /‘l'x =lim, . #x We
call the set of equivalence classes thus generated the harmonic measure
boundary at infinity for L*. This boundary is independent of the particular
exterior domain D. We prove that the harmonic measure boundary at
infinity for L” coincides with the Martin boundary for L on R¢, the formal
adjoint of the operator L on R In the case that L generates a reversible
diffusion, the Martin boundaries of L and I coincide and hence the
harmonic measure boundary of L” coincides with the Martin boundary for
L on R¥. A similar probabilistic description of the Martin boundary for L
on R? can be given in the nonreversible case. These results are then used
to give explicit representations of the Martin boundaries of L and L for
several classes of diffusion processes.

1. Statement and discussion of results. A complete probabilistic de-
scription of the bounded harmonic functions for a diffusion generator
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can be given in terms of the diffusion process X(¢) generated by L. There exist
nonconstant bounded harmonic functions if and only if the invariant o-field
for X(¢) is nontrivial. An equivalent but more graphic description can be given
in terms of the directions through which X(¢) exits R¢. For any Borel set
B c R?, call the bounded harmonic function u z(x) = P,(X(¢) is eventually in
B) an “exit probability function.” Then the subspace of harmonic functions
that is obtained by taking pointwise limits of linear combinations of ““exit
probability functions” will contain every bounded harmonic function [9]. If L
does not admit any nonconstant bounded harmonic functions, then clearly this
subspace contains only the constants. Since there are simple examples for
which L admits nonconstant positive harmonic functions but not nonconstant

” Received October 1988; revised July 1991.
AMS 1991 subject classifications. Primary 60J60; secondary 60450, 31C35, 35J15.
Key words and phrases. Martin boundary, conditioned diffusions, h-transforms, positive
harmonic functions. )

453

j
\
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é, )z

8

o

The Annals of Probability. STOR IS

WWW.jstor. org



454 R. G. PINSKY

bounded harmonic functions, it follows that the above subspace does not
necessarily contain all the positive harmonic functions (see the end of this
section for more elaboration).

The positive harmonic functions may be represented in terms of the Martin
boundary for L. In this paper we will give a probabilistic characterization of
the Martin boundary for L and for its formal adjoint L as operators on R¢ in
terms of diffusions conditioned to hit a compact set. We also use this character-
ization to calculate explicitly the Martin boundaries for L and L for several
classes of operators. (The formal adjoint is defined by
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We begin by recalling the Martin boundary construction. For simplicity, we
shall assume that the coefficients of the operator L defined above satisfy the
following conditions: a,; € C***(R?), b, € C'**(R?) for some « >0 and
a(x) = {a;(x)}?,_, is positive definite for each x € R%. Let C,={u e
CXR?): Lu =0 and u > 0 in R% denote the cone of positive L-harmonic
functions on all of R¢. If L generates a recurrent diffusion, then it is not hard
to show via an application of It6’s formula that C; is one-dimensional; it will
contain only the positive constants. Thus from here on we shall assume that L
generates a transient diffusion or, equivalently, that L possesses a Green’s
function.

The Green’s function G(x,y) for L is L-harmonic in x for x #y and
lz-harmonic in y for y # x. The Green’s function G(x,y) for L is given by
G(x,y) = G(y, x). Define the Martin kernel for L by k(x,y) =
G(x,y)/G(x,,y), where x, is a fixed reference point. Then k(x,y) is L-
harmonic in x for x # y and by Schauder estimates ([12], Chapter 6) and
Harnack’s inequality ([12], Chapter 9) it follows that k(-,y) is relatively
compact as |y| — « in the topology of uniform convergence on compacts of all
derivatives up to order 2. A second application of Harnack’s inequality shows
that any limit function will also be strictly positive. Thus, for a sequence
{y,)n-1 such that lim, ,_ly,l = and lim, , k(x,y,) exists in the above
topology, we obtain a positive L-harmonic function k(x, £), where ¢ denotes
the sequence {y,)_;. Two sequences {y,)7_, and {y,},_, are called equivalent
if lim, _,, k(x,y,) = lim, _, k(x,y’,) for all x € R%. If equality holds for all x
in some open set U, then in fact equality holds for all x € R¢. Furthermore,
the equivalence classes are independent of the fixed reference point x,. The set
of all equivalence classes is called the Martin boundary and is designated by A.
Define a metric on R? U A by

k(x,2;) — k(x, 25)|
p(21,25) = ful + |k(x,2) — k(x,25)l

where U c R? is an arbitrary bounded open set. The set R¢ U A with the
topology induced by this metric is called the Martin compactification.
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A function u € Cp, is called minimal if the only functions v € C; which
satisfy v < u are in fact multiples of u. Define the minimal Martin boundary
by A; = {¢ € A: k(x, £) is minimal}. The Martin representation theorem states
that all minimal elements of C; are of the form k(x, £) with £ € A, and that
any function u € C; has a unique representation of the form u(x) =
Ja R Cx, ), (d€), where p,(d€) is a finite measure on A, [21, 17]. We shall call
A trivial or nontrivial according to whether it consists of one point or more
than one point. In particular, if A is trivial, then it follows from the Martin
representation that C; will be one-dimensional; it will contain only the
positive constants as was the case for recurrent generators. The same type of
construction may also be implemented for L using the Green’s function
G(x,y) = G(y, x) and the kernel k(x,y) = G(x, y)/G(x,, y).

An explicit calculation of the Martin boundary is usually very difficult and
has only been carried out in a few special cases. Anderson and Schoen [2]
proved that the Laplace—Beltrami operator on a manifold with curvature
bounded between two negative constants has the sphere S?~! as its Martin
boundary. (A = S¢~! means that sequences {y, ) _; satisfying lim, _,, ly,| = «
are Martin sequences if and only if lim, _, ., y,,/ly,| exists on S?1.) Ancona [1]
proved that for certain more general elliptic operators on the same type of
manifolds, the Martin boundary is either homeomorphic to the sphere S%~1
or one point. Cranston, Orey and Résler [7] considered two-dimensional
Ornstein—Uhlenbeck operators, L = A + Bx - V, for a constant matrix B,
and found that the Martin boundary is either homeomorphic to the sphere
S9-1 or one point. Murato [23] considered Schrédinger operators of the form
L = A + V(|x|) and proved that the Martin boundary is either the sphere S¢*
or one point. Any elliptic operator with constant coefficients may be reduced to
the form A + ¢, where ¢ is a constant, by suitable transformations which
preserve the Martin boundary. Thus, from Murato’s result, it follows that the
Martin boundary in the constant coefficient case is either the sphere S¢~* or
one point.

We now turn to our probabilistic characterization of the Martin boundary
via diffusions conditioned to hit a compact set. Let D c R¢ be a smooth
exterior domain (i.e., D¢ is compact). For ¢ € C(dD), denote by u, the
smallest positive solution of the exterior Dirichlet problem

Lu=0 in D,
(1.1) u=4¢ ondD.

Such a solution u, exists and is in fact the pointwise limit as n — o« of the
solutions Uy, to the Dirichlet problem Lu, , = 0 in Dn{xl <n}, u on =Y
ondD and u,, = 0on lx| = n. From this it follows that «,, has the stochastic
representation u,(x) = E,(¢(X(1p)); 7 < ), where 7, = inf(¢ > 0: X(¢) €
dD}. In the special case ¢ = 1, we will use the notation A(x) = u,(x) =
P (1 < ). ’

Let X”(¢) be the process X(¢) conditioned to hit dD. That is, X"(-) =
{X()lrp < ). Then following Doob’s A-transform theory [8], X ht), 0 <t <
7p, is also a Markov diffusion process and its generator is given by L"* = L +
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aVh/h - Vlie., L*f = (1/h)L(hf)]. For x € D, let u*(dy) = PX(X"(r},) € dy)
denote the harmonic (probability) measure on 4D for the process X"*(¢) (or the
operator L") starting from x € D. Note that {u”; x € D} is a tight family since
dD is compact Let {x,),_, € D be a sequence satisfying lim, _,, |x,| = « for
which u” (dy) converges weakly. Call two such sequences, {x,);_; and {x}}"_;,
equivalent if lim,, ., u? (dy) =lim , . u" (dy). We call the set of equivalence
classes thus generated the harmonic measure boundary at infinity for L". It
follows from Theorem 1 below that this definition is independent of D.

THEOREM 1. The Martin boundary of L coincides with the harmonic mea-
sure boundary at infinity for L".

Recall that L generates a reversible diffusion if there exists a o-finite
measure ¢(x)dx on R? such that ¢(x)p(¢, x,y) = ¢(y)p(t,y,x), where
p(t, x, y) denotes the transition probability density for L. Equivalently, L is
self-ad301nt on L%(R?, ¢(x) dx) with an appropriate domain of definition. Now,
since G(x,y) = [ep(t, x,y)dt and G(x,y) = [cp(t,y, x)dt, it follows that in
the reversible case, (x y) = [¢(y)/d(x)]G(x, y). Consequently, the Martin
kernels k(x;y) and k(x,y) differ only by a multiplicative function of x and
thus define identical Martin boundaries. We thus have the following corollary.

CoroLLARY 1. If L is self-adjoint with respect to some reference measure or,
equivalently, if L generates a reversible diffusion, then the Martin boundary of
L coincides with the harmonic measure boundary at infinity for L.

Consider rotationally symmetric operators of the form
L 1 92 . d 1 A

= — + — + ——— Aga-s,

2a(r) ar? (r) ar  2m*(r) s

where Aga-1 is the Laplace—Beltrami operator on S?~1. As an application of
Theorem 1, we will prove the following theorem.

THEOREM 2. Let
32

1 d
L= Ea(r)m + b(r)g; + Asd—l

2m?(r)

generate a transient diffusion process. Then the Martin boundary of L is either
one point or the sphere S~ according to whether the integral

® 1 r b ® . : b
fldrmexp(j;2z(s)ds)j; dtexp(—fl2;(s)ds)
is.infinite or finite. ’

After submitting this paper for publication, we discovered that actually,
after making the appropriate transformations, this theorem is essentially
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equivalent to Murato’s result mentioned above [23]. Murato used entirely
different nonprobabilistic methods.

We now turn to a companion theorem to Theorem 1, which characterizes
the Martin boundary for the operator L in the nonreversible case. Analogous
to (1.1), let %, denote the smallest positive solution to the exterior Dirichlet
problem .

~

Li=0 in D,

(1.2)
Z=1¢ ondD.

Such a solution exists and is the pomtw1se limit as n — « of #, ,, where &, ,
solves Lu,,,n—Om Dn{lxl <n}, &,,=¢ on dD and &, ,=0on |x| =n.
In the special case ¢ =1, we will write A(x) = @i,(x). We want to give a
probabilistic representation for #, as we did for u,. To this end, let ¢ =
¢ 1@; )z, — V- b denote the zeroth-order part of the operator L, let
L =1 ¢ and let X(¢) denote the diffusion process generated by L. Now
apply the Feynman-Kac formula to G(x,y) as a function of y € D for fixed
x € (D). Since G(x, y) is L-harmonic as a function of y € D, we obtain

G(x,y) = Ex(exp([o’”c()?(s)) ds)G(x, X(1p));mp <t A Tn)
(1.3)

+ EA‘x(exp(ftM"c(X'(s)) ds)G(x, X(tAT))smp2tAT,
0
Both terms on the right-hand side of (1.3) are positive and thus, letting { — «

and then n — « and using monotone convergence and the uniform positivity
of G(x,y) for y € D, we conclude that

(1.4) Ex(exp(fo’”c()f(s))ds);fp<oo) <

In light of (1.4) we can define

18 8 = Bfem ["o(X() ds J0( £ 75 < =),

for ¢ € C(0D). By the Feynman-Kac formula, i, satisfies (1.2). Furthermore,
if w is any positive solution to (1.2), then applying (1.3) to w instead of G
shows that §,, < w. Thus in fact §,(x) = %,(x) and the right-hand side of (1.5)
gives a probabilistic representation of &,,.

In particular,

(1.6) h(x)=E (eXp(f (X(s))ds),rD <oo)

[Note that £ may be recurrent in which case {r;, < =} is superfluous in (1.5)
and (1.6).]
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Analogous to the way we defined u”(dy), define at "(dy), the harmonic
(probability) measure on dD starting at x € D for L*, by

(1.7) @h(dy) = %)E (exp(f (X(s))ds),TD <o, X(1p) € dy].

Analogous to the way we defined the harmonic measure boundary at infinity
for L", define the harmonic measure boundary at infinity for L" as the
collection of equivalence classes determlned by those sequences {x,)"_, satisfy-
ing lim, . |x,| = « for which ,u,x (dy) converges weakly, calling two such
sequences equivalent if they give rise to the same limiting measure.

THEOREM 3. The Martin boundary of L coincides with the harmonic mea-
sure boundary at infinity for L*.

This characterization is not as appealing probabilistically as Theorem 1
because the harmonic measures i"(dy) are not exit measures of diffusions but
rather exit measures of diffusions with potentials. In particular, this means
that the calculation of i”%(dy) involves a functional integral depending on the
whole path of the diffusion and not just on its position at the exit time.
Nonetheless, we are able to use Theorem 3 to prove part (a) of Theorem 4
below.

If one is interested not in the complete characterization of the Martin
boundary, but just in whether or not there exist nonconstant positive har-
monic functions for L, that is, whether or not the Martin boundary is trivial
for L, then we suspect that its suffices to consider the more probabilistically
appealing Theorem 1. More precisely, we make the following conjecture.

CoNJECTURE. The Martin boundary for L is trivial if and only if the Martin
boundary for L is trivial, or, equivalently by Theorem 1, the Martin boundary
for L is trivial if and only if the harmonic measure boundary at infinity for L*
is trivial.

ReEMarRk. The harmonic measure boundary at infinity for L” plays an
important role in determining the asymptotic behavior of the solution of the
exterior Dirichlet problem for an elliptic operator perturbed by a small drift;
see [25] and [14]. In particular, the conjecture above has significant implica-
tions with respect to the main result in [25]. See Remark 2 following Theorem
1 in that paper.

As an application of Theorems 1 and 3, consider the class of operators
1 d 1 d

L=—-A+r?°—+r
2 ar r¢90
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on R? with —1 <8 <1and —» < %k < ». A simple calculation reveals that

L lA 50 —k 19 1—8),r—0-1
=gA-rT ot o (18T
Define

Fo—k

(log r — 6) mod 27, if B =6.

Then, for 0 < ¢ < 27, the trajectories U = ¢ form distinct spirals running out
to « counterclockwise which are, in fact, the trajectories of the deterministic
dynamical system

(1.9) {F(t) =772(1), 0(2) =77 *71(1)}

obtained by ignoring the diffusion part of the generator L. [Actually, if & > 3,
the spirals are degenerate in the sense that they only wrap around the origin
finitely many times as ¢ — «. That is, 6(¢) converges as ¢t — «.] Also define

(1.10) V(r,8) = U(r, —6).

Then, for 0 < ¢ < 21, the trajectories V = ¢ form distinct spirals running out
to « clockwise which are the trajectories of the dynamical system

(1.11) (F(t) =77%(t),0(¢) = —F* ()}

(Again, if & > §, the spirals are degenerate.)

Now, consider sequences {x,);_; satisfying lim, _,,|x,| = « and for which
lim, _,, U(x,) exists. Call two such sequences, {x,),_; and {x},_,, U-equiv-
_ alent if lim, ., U(x,) = lim, _,,, U(x,,). Define V-equivalence analogously. It
- follows that the collection of U-equivalence classes can be identified with the
spirals U = ¢, 0 < ¢ < 27 corresponding to the solutions of (1.9) and that the
collection of V-equivalence classes can be identified with the spirals V = c,

0 < ¢ < 2 corresponding to the solutions of (1.11).

THEOREM 4. Let

1 d 19
L=_-A+r?—+rF——
2 ar r d6
with formal adjoint
L=2a—,?2 121 gy
SRS T e T

(@ () If k> 6 — 21 — ), then the Martin boundary of L coincides with
thes U-equivalence classes of counterclockwise spirals corresponding to the
solutions of (1.9).

(i) If k <8 — $(1 — 8), then the Martin boundary of L consists of a
single point. ’
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() G) If k > 6 — +(1 — 8), then the Martin boundary of L coincides with
the V-equivalence classes of clockwise spirals corresponding to the solutions of
(1.11).

(i) If k <6 — 3(1 — 8), then the Martin boundary of L consists of a
single point.

ReMARK 1. Note that, with the exception of Ancona’s work, all the results
on the Martin boundary quoted above concern reversible diffusions or, equiva-
lently, self-adjoint operators. This result appears to be the first one in the
literature where the Martin boundaries for a non-self-adjoint elliptic operator
L and its formal adjoint L are calculated explicitly and are found to differ.

REMARK 2. Part (a) of Theorem 4 significantly extends a result in [24].
There it was shown that if £ > 6 — 3(1 — 8), then the Martin boundary is at
least as large as the U-equivalence classes and that if £ <8 — (1 — 8) (note
the gap), then the Martin boundary is one point.

In the first paragraph of this article, we noted that the subspace of har-
monic functions that is obtained via pointwise limits of “exit probability
functions” contains all of the bounded harmonic functions, but does not
necessarily contain all of the positive harmonic functions. To see why, recall
that the Doob—Hunt theory applied to diffusion processes [8, 13, 17, 27] states
that as ¢ = ¢~ (¢ is the lifetime of the process and is equal to « if the process
does not explode), X(¢) converges in the Martin topology to a point on the
minimal Martin boundary A;, and that in fact for any Borel set B C A,

P im X(1) € B) = [ h(x, )mi(de),

where u, is the unique (probability) measure appearing in the representation
for the harmonic function u = 1. Thus, in exiting R?, X(¢) can “‘distinguish”
between any two points in supp ., but cannot distinguish points in A — A;.
Consequently, a positive harmonic function u will belong to the subspace of
harmonic functions generated by the ‘“exit probability functions” if and only if
the measure p, in its Martin representation satisfies supp u, C supp u;.

To illustrate this phenomenon, consider the two generators L, = ;A and
L,= 1A +b-V, where b # 0 is a constant vector, and let X,(¢) and X,(¢)
denote the diffusions they generate. Then X;(¢) = B(¢), where B(?) is a
standard Brownian motion and X,(¢) = B(¢) + b¢. It is well known that there
are no positive harmonic functions for L, = 1A, that is, that the Martin
boundary for L, is one point. Thus lim, _,,, X,(¢) converges to the unique point
on the Martin boundary. On the other hand, for each v on the sphere
|b + v| = |b], the function u,(x)=e*" is a minimal nonconstant positive
harmonic function for L,. If v =0, we obtain u,=1; otherwise u, is
unbounded. It is known that for L, A = A; = S~ 1 (This is the constant
coefficients case which, as mentioned above, is covered by [23].) It turns out
that the point b/1b] € S¢~! corresponds to the minimal positive harmonic
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function u, = 1. And, by the ergodic theorem, lim, ,, X,(¢)/|X, ()| = b/[b]
a.s. Thus both X (¢) and X,(¢) ‘“see’ only one point on the Martin boundary.
In the former case, that point is the unique point on the Martin boundary; in
the latter case, that point is only one point out of a whole sphere of Martin
boundary points. ‘

It might be interesting to attempt to connect the theory developed in this
paper with the description of the Martin boundary in terms of the Ray—Knight
compactification and the entrance boundary of the time-reversed process [26,
18, 27].

Theorems 1 and 3 will be proved in Section 2 and Theorem 2 will be proved
in Section 3. In Section 4 we prove a result concerning one-dimensional
conditioned diffusions which is needed for the proof of Theorem 4 but which
also seems to be of some independent interest. The proof of Theorem 4 is given
in Section 5.

For the proof of Theorem 1, we will need the following technical result.

THEOREM 5. Let D € R? be a smooth exterior domain and let

32
P a Zb

i,j=1

generate a diffusion for which P(r, < ®) =1 for x € D. Assume that a,; €
CY%(R%), b, € C*(R?) and that a(x) is nonsingular for each x € R?. Also
assume that dD is a CY*-boundary. Then the harmonic measures on 4D,
{n,(dy)}, < p, and the corresponding collection of harmonic measures at infin-
ity for & relative to D are all mutually absolutely continuous with respect to
Lebesgue measure on 0D and possess strictly positive densities which are in
C*(4D).

REMARK. Actually for the proof of Theorem 1, we need only the existence
of a bounded density.

Proor. The existence of such a density in the case that D is bounded
follows from [22], page 79. The extension to the present situation is via a fairly
straightforward application of the strong Markov property; we leave this to the
reader. O

2. Proofs of Theorems 1 and 3.

PRrOOF OF THEOREM 1. For x € g.—))c, G(x, ¥) = G(y, x) is L-harmonic as a
function of y € D. Define for x € (D), ¢,(2) = G(x, 2)|,csp. By Itd’s formula,

G(x,y) = Ey(wx(X(TD)); 1p < t) + E(G(x, X(2)); 7p > £).

Letting ¢ — o, we obtain G(x,y) > E (U, (X(7p)); 7p < =). However, the
right-hand s1de of the above inequality is L-harmonic as a function of y € D
and equals ¢, on dD. Since by the definition-of the Green’s function, G(x,y)is
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the smallest positive L-harmonic function satisfying this, we conclude that
(2.1) G(x,y) = E,(¢,(X(7p)); p <®), forxe (D) andy e D.

Pick a reference point x, € (D)°. Let k(x,y) denote the Martin kernel for L.
Using (2.1) and the definition of the conditioned process X"(¢), we have

by = S G®9)/k0)
T G(20,9)  G(200) /R ()

_ B} (XM(7p)) _ Jip¥(2)Kh(d2)
Ejy(X"(p))  Jop¥e(2)H3(d2)’

for x € (D)° and y € D.

Now we recall that if lim, . k(x,y,) exists for x € (D)° and some se-
quence {y,)._; satisfying lim,, _, . ly,| = %, then in fact lim,, _,, k(x,y,) exists
for all x € R%. For, if not, then by the weak compactness, there would exist
two subsequences ¢, = {y,},_; and &, = {y,}7_, such that k(x, ¢&,) = k(x, &,)
for x € (D)° but k(x,¢,) # k(x, £,). But then the difference of these two
functions would be an L-harmonic function vanishing on (D)¢ but not identi-
cally 0. This is impossible. From this fact and (2.2), it follows immediately that
if {y,)7_, is a harmonic measure boundary point (calculated for the domain
D), then it is also a Martin boundary point.

We will show now that in fact the two boundaries coincide. This will then
also prove that the harmonic measure boundary at infinity is independent of
D. We must show that if {z,},_; is a Martin boundary point, then it is also a
harmonic measure boundary point. Assume to the contrary. Then there exist
two subsequences, {y,};_; and {y,),_;, of {2,)_,, corresponding to two dis-
tinct points on the harmonic measure boundary at infinity. That is, v,(dz) =
lim, . u” (dz) and vy(dz) = lim,, ., u’(dz) are distinct. Since {y,};_, and
{y.);_, are subsequences of {z,}7_;, they correspond to one and the same
Martin boundary point. Plugging {y,};_, and {y,},_, into (2.2) and recalling
that ¢.(2) = G(x, z), we obtain

faDG(x, z)vy(dz) _ faDG(x, z)vy(dz)
faDé(xo’ z)vy(dz) JopG (%9, 2)v,y(d2) ’
for x € (D)°. Define the Green potentials

(2.2)

(2.3)

u(x) = f G(x,2)v,(dz) and u,(x) = f G(x,2)vy(dz2),
aD oD
for x € R? and let y = u(x,)/uy(x,). We can rewrite (2.3) as

“(2.4) u(x) = yuy(x), forx e (E)C.

By Theorem 5, v/(dz) and v,(dz) possess bounded densities. From this, from
the fact that the singularity in G(x, 2) is of order 1/|x — z|° % if d > 3 and of
order loglx — z| if d = 2 and from the fact that dD is a (d — 1)-dimensional
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hypersurface, it follows that u,(x) and u,(x) are continuous on dD and thus
on all R%. Then, from (2.4), it follows that u,(x) = yu,(x) for x € dD. Define
y(x) = ul(x) = yuz(x) for x € 4D. Note that u,(x) and u,(x) are L-harmonic
in D. Let 0, denote the smallest positive L-harmonic function on D that
equals ¢ on dD. From (1.5),

0, = E(exp(f (X(s))ds) (X(7p)); 7p < |, forxeD.

We will show that u(x) = yuy(x) = , for x € D. From this and (2.4), it will
then follow that u,(x) = yu,(x) for all x € R%. But then by the uniqueness
part of the Riesz decomposition theorem for superharmonic functions [4], it
will follow that v, = YVa- Since v, and v, are probability measures, in fact
v = 1 and v; = v,. This is a contradiction.

It remains to show that that u, = yu, =9, for x € D. Let G, (x,y) denote
the Green’s function for the operator L in B = {le < n} with the Dirichlet
boundary condition on dB,. Define u, ,(x) = faDG (x,2)v(d2), i=1,2, if
D° c B, and let ¢; (x) = u;, (x)lsp. Then u; (x)is L-harmonic in B, — D¢
and u; , = 0 on 4B,,. Since G, (x, y)1G(x,y)as n — o, for all x € R% — {y}, it
follows that u; (x)T u,(x) as n - o, for all x € R¢ and i = 1,2. In particu-
lar, ¢ (x)1 1//(x) and €N tl/(x)/y as n — o, for x €3D. By the
Feynman-Kac formula,

o) = Bl exp ["e(£(5)) s o £70))i 70 <71,

for x € B, — D°. Letting n — « gives u,(x) = yuy(x) = 9,(x), for x € D and
i1=1,2 0

: Proor oF THEOREM 3. The proof of Theorem 3 is essentially the same as

that of Theorem 1—one just interchanges the roles of L and L. There is one
point, though, that requires comment. In the proof showing that the Green
potentials are continuous on dD, use Jwas made of the fact that v,(dz) =
lim, ., p) ¢ h(dz) and vy(dz) = lim, _, Ky " (dz) possess bounded densities. This
followed from Theorem 5. In the proof of Theorem 3, we thus need to know
that the weak limits of & ;‘ (dz) possess bounded densities. One can prove this
similarly to the proof of Theorem 5. O

3. Proof of Theorem 2. The harmonic measure boundary at infinity
which we defined in Section 1 for the generator L” can be defined in the exact
same manner for any diffusion generator &/ for which the corresponding
diffusion process satisfies P,(r, < ®) = 1. For the proof of Theorem 2, we
need the following theorem.

'IJHEOREM 6. Let
N4 1 i b i ——1 A
_ -_— —_— + _— + -
Za(r) ar? (r) ar. 2m¥(r) 57
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generate a diffusion in D = {|x| > 1} and assume that P(7, <») =1 for
x € D. Then the harmonic measure boundary at infinity for & is a single point
or the sphere S?~1 according to whether

fdrexp( f2 (s)ds)f aOm Z(t) p(fltzg(s)ds)
is infinite or finite.

For the proof of Theorem 6, we need to introduce the concept of ““‘explosion
inward from infinity.”” For a process satisfying P, (7, < ©) = 1 for all x € D,
consider the following two possibilities:

(l) lim|x|—>oo Px(TD < t) =0 for all £ > 0,
(ii) condition (i) fails.

Following Azencott [3], condition (i) is necessary and sufficient for the semi-
group corresponding to the process to leave invariant C,(R?), the class of
continuous functions vanishing at . Note that case (ii) means that there
exists a fixed time ¢, a number ¢ > 0 and arbitrarily large x’s such that the
process starting from x will hit the compact set D¢ before time ¢ with
probability at least ¢. In analogy with explosion, we will say that in case (ii) the
diffusion explodes inward from infinity. In the one-dimensional case, in the
language of Feller [10], explosion inward from infinity is equivalent to « being
an entrance boundary for the process.

A test exists for explosion inward from infinity (see Azencott [3], Proposition
4.3).

Test for explosion inward from infinity. A one-dimensional diffusion gener-
ated by

2

1 d d
(3.1) <= ga(r) o5 +b(r) o

on D = [1,) and satisfying P,(r, < ®) = 1 for r € D, explodes inward from
infinity if and only if

fwdrexp(—frzg(y) dy)fwdy !
1 1 a r a(y )
To prove Theorem 6, we will utilize the following skew product representa-

tion for a diffusion X(¢) = (r(¢), ¢(¢)) generated by a radially symmetric
generator &7 as in the statement of the theorem:

r(¢) =r(t;ry) =ry+ foto-(r(s;ro)) do(s) + j:b(r(s;ro)) ds,
b(£) = (t;10,b0) = 0(p(t570); bo),

where (‘) is a one-dimensional Brownian motion, 6(-;¢,) is a Brownian

exp(flyZZ(z) dz) < oo
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motion on S¢~! starting from ¢, and independent of w(-), o = a'/2 and

ds
) = )

Note that r(¢;r,) is generated by -2 as in (3.1). Let 7, = 7,(r;) = inf{t > 0:
r(¢; ry) = y} and let (Q, &, P) denote the probability space on which «(-) and
0(-; ¢,) are defined. The key to the proof of Theorem 6 is the following lemma.
[For ease of notation, we will write 7, for 7,(r,) in the sequel.]

LEMMA 1. Let D = [1, ) and assume that the process generated by - as in
(8.1) satisfies P(rp, < ©) =1 for x € D. Then P(lim, _,, p(7y;ry) <) =1or
0 according to whether

© r b o 1 t b
fldrexp(—fl2;(s) ds)fr dtmexp(flzg(s) ds)

is finite or infinite.

Proor. Since p(t;ry) is increasing in ¢, we have p(7y;ry) = inf{p(¢; ry):
r(t;ry) = 1} = inf{¢: r(o(t; ry); ry) = 1}, where o(¢; ) is the inverse of p(¢; ry).
Thus p(7,;ry) is the first hitting time of 1 by the process r(o(¢; ry); ry). The
generator of this process is

1 d? 5, @

2 —m?a > + m*b -
Applying the test for explosion inward from infinity, we see that r(a(¢; ry); ry)
explodes inward from infinity if and only if the integral appearing in the
statement of the lemma is finite.

On the other hand, from the above representation, which identifies p(7; ry)
with the first hitting time of 1 by r(o(¢; ry); ry), it follows that this process
does not explode inward from infinity if lim, _. p(7,;7,) = © a.s. and does
explode inward from infinity otherwise, that is, it P(im, ., p(7y;79) < ) > 0.
The lemma will be proved if we show that P(lim, . p(ry;79) <®)=0or 1.
We can represent p(7,;r,) by

[rol -1 dt

(3.2) p(7y510) = Z f mHm.

By the strong Markov property, the above summands are independent. Thus
lim, . p(74;7¢) is actually an infinite sum of independent random variables.
Since lim, _,. p(7y;79) < is a tail event, it follows from the Kolomogorov
zero—one law that P(hm, e p(‘TI, ro) <o) =0or1l[5]. O

PROOF oF THEOREM 6. Let x, = (ry, ¢,). Then
Bx( @Y) = Birg, 00(@Y) = P($(71570, bo) € dy) = P(6(p(71570); $o) € dy).
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Since 6(-; ¢,) is ergodic on S?~! and since 6(-; ¢,) and p(7,; ry) are indepen-
dent, it is clear that if lim, _, p(7;;79) = ® a.s., then lim, ., Brg 6o dy) will
be normalized Lebesgue measure on S¢~1, for all ¢, € S?~!. On the other
hand, if lim, ., p(7,;7) < ® a.s., then

im pr, g,(d) = [ P(6(2; o) € dy)v(at),
ro—®

where y(dt) is the distribution of lim, _,., p(7; ). Since 6(¢; ¢,) is ““centered”
at ¢,, that is, its density attains its unique maximum at ¢,, it follows that in
this case im, _ . p(,, 4,(dy) is distinct for each ¢, € S 4-1 Thus the theorem

follows from Lemma 1. O

Proor oF THEOREM 2. If we take D = {|x| > 1}, then A(x) = P(tp < ®)is
a function of r = |x| and thus L” is also radially symmetric. It then follows
immediately from Theorem 6 applied to L* and Corollary 1 applied to the
reversible generator L, that the Martin boundary of L must be either one
point or the sphere S¢~!. It remains to show that the integral condition in the
statement of the theorem determines which of these two possibilities occurs.

Write the diffusion process X(¢) generated by L in polar coordinates:
X(¢) = (r(¢), $(¢)). In a paper by March [20], it was shown that lim, , - ¢(#)
exists a.s. P, and is supported on all of S¢! if the integral appearing in the
statement of the theorem is finite, and that P (4(¢) € B eventually) = 0 for all
B c 897! such that B° has positive Lebesgue measure, if the integral is
infinite. (March’s technique was similar to that used to prove Theorem 6.
Whereas Theorem 6 relies on Azencott’s integral test for explosion inward
from infinity, March’s proof relies on Feller’s integral test for explosion [10].)
Now, if the integral appearing in the statement of the theorem is finite so that
lim, , - ¢(¢) exists a.s. P, and is supported on all of 89~ then for each
B c S%7! such that B and B¢ have positive Lebesgue measure, the function
u(x) = P,(lim,_, .- ¢(¢) € B) is a nonconstant bounded harmonic function.
Thus the Martin boundary is nontrivial and from the dichotomy noted at the
beginning of the proof, it follows that the Martin boundary is S¢~*.

On the other hand, if the integral in the statement of the theorem is infinite
so that P.(¢(¢) € B eventually) = 0 for all B such that B° has positive
Lebesgue measure, then clearly

(3.3) Px(tlil?_ #(t) exists) - 0.

But, as noted in the exposition at the end of Section 1, the Doob—Hunt theory

states that X(¢) converges as ¢ — {~ to a point on the minimal Martin
boundary. Thus, if the Martin boundary were S9!, (3.3) could not hold.
Hence we conclude by the dichotomy noted at the beginning of the proof that
the Martin boundary is one point. This proves Theorem 2. O
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4. An auxiliary result on one-dimensional conditioned diffusions.
Consider a one-dimensional diffusion on D = [1, ) generated by
1 d? d
L= Ea(x)w + b(x)(—Z;
and which, for convenience, is reflected at x = 1.

Assume that the diffusion is transient and let 7, = inf{t > 0: X(¢) = 1}.
Then h(x) = P(7, < =) satisfies Lh = 0in D, A(1) = 0 and lim, _,, h(x) = 0

In fact,
o 2b
f dy exp( —fy—(z) dz)
x 1 a
h(x) = — 55 .

f dy exp(—fy—(z) dz)

1 1 a
Note that the integrals appearing in the definition of A are finite by the

transience assumption ([11], Chapter 9). The h-transformed generator is now
given by

h_ 1 d?
L 3 d2+D(b)

where the new drift, which we denote by D(b), satisfies
x2b
exp(—f —(2) dz)
1 a
=b(x) —a(x)— 95 .
f dyexp(—f1 7(2) dz)

W(x)
h(x)

D(b)(x) = b(x) + a(x)

We have the following proposition.

ProposiTION 1. Let
2

1 d
L =_ - il
2a(x) 72 +b(x)dx on[1,®),

where

flwdyexp(—fly%b(z) dz| <

Assume that

(i) —(— o(b(x));
(if) ligigf(g)_l(x)exp( - f:%(y) dy.) =
by
(111) limsul;x(;)(x) < oo,

|G
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Let D(b) be as defined above. Then

(4.1) D(b)(x) = —b(x) + O(@) asx — o,

REMARK. Note that this result indicates that the drift of the conditioned
process is roughly equal to the negative of the drift of the original process.

Proor. Let ¢(x; f) = [ exp(— [?2 f(2) dz). Then

d(x;f) = _eXP(—flx.?f(z) dz)
and

a¢’(x;b/a)
d(x;b/a)

Using the extended mean value theorem and a bit of standard analysis, one
can show that

D(b)(x) =b +

. —¢'(x;b/a)
lim =
x—-e 2(b/a)(x)d(x;b/a)
Note that (4.2) is equivalent to lim, ., D(bXx)/b(x) = —1 which, by condi-

tion (i), is weaker than the proposition. Then, using (4.2) and again the
extended mean value theorem and a bit of analysis, one shows that

. b #'(x;6/a)
i R ATER )

This proves the proposition. O

(4.2)

5. Proof of Theorem 4. We will first prove part (b). Then, relying on the
proof of part (b), we can give the proof of part (a) relatively quickly.

PROOF OF PART (b). To prove that the Martin boundary of I is given by the
V-equivalence classes of clockwise spirals, we will show that the harmonic
measure boundary at infinity for the conditioned process L" is given by the
V-equivalence classes. Part (b) will then follow from Theorem 1. We choose
D = {|x| > 1}. We can write the generator of the process X(¢) in the form

L lA Ba kl(9
=sA+r % —+r """ —
2 ar 20
1 9% 1 9 d 1 42 9

-y 4 4 .
20r2 " 2rar | ar " 2r2 992 Py
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The function h(x) = P,(r, < ) depends on r alone and is given by
® s 1 o 1 2
f ds exp(—f 2(2'6 + —)dz) f ds—exp(— 31'5)
r 1 r S 1-6
h(r) = = 1

ol foe ) bl )

Let b(r) =r=°+ 1/r and let D(b) =b + K’ /h. Then

L D)) o g
2 or? 2r< 26 a0
By Proposition 1,
(5.1) D)) = =b(r) + O+ | = =+ 0[ 1.

We now make an abuse of notation. We will denote the polar coordinate
representation of X"(t), the process generated by L”, by (r(¢), 6(t)) instead of
by (r”(t),0"(t)). Since X(¢), the process generated by L, is not mentioned
again in this paper, this should cause no confusion. We will realize (r(¢), 6(¢))
by the following stochastic differential equations:

(@) r(t) =r(t;re) =1+ wy(t) + fOtD(b)(r(s;ro))ds,

(5.2)

tdwz
(b) 6(2) =6(¢;70,00) = 6o + fo r(s; (:)))

+ fr'k Y(s;1y) ds,

where w,(+) and w,(-) are independent Brownian motions on a space (), &, P).
[Of course, 6(t) as defined in (5.2) lives on R. It is convenient to consider 6(¢)
on R for the analysis which follows. The “true” 6(¢) is obtained by taking
6(¢) mod 27.]

Let 7, = 7/(ry) = inf{¢t > 0: r(¢;ry) = 1}. For ease of notation we will write
7, for 7,(ry) in the sequel. Then we have

M}:O,eo(dy) = P(0(71570,00) € dy)

(5.3) 7 dwy(s) ——
=P|6, + f ~(5570) f (s;ry)ds €dy].
Define
. POk
vy ={s-x TO7E

log r, if 6§ =k.
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Then from (1.10), V(r, 6) = (¢(r) + 8) mod 27. Consequently,

lim V(r,0(r)) =c€[0,2m)

exists if and only if 6(r) = ¢ — ¢(r) + &(r), where lim, _,, &(r) mod 27 = 0.
To prove (b)i), we must show that if £ > 8 — 3(1 —8) and if 6,(ry) =
¢ = ¢(ry) + &(ry), where e(ry) is as above, then lim, _,, /J’}'l'o’eo("o) exists and is
distinct for each c¢ € [0, 27). To prove (b)ii), we will show that if £ <6 —
3(1 = 8), then for each 6, € S, lim, . u? , = normalized Lebesgue mea-
sure.

By changing variables and using the fact that

(5.4) fwyy exp(—cy?)dy = O(x” "exp(—cx?)) asx — o,

one can check that the integral appearing in Lemma 1 in Section 3 is finite if
one substitutes r, 1 and —r° respectively for the m(r), a(r) and b(r)
appearing there. Using the fact that D(b)(r) = —r~° + O(1/r), one can show
that the integral is also finite if one substitutes r, 1 and D(bXr). We thus
conclude from Lemma 1 that

A Ty ds
hmf ———— <% as.
ro—o»J0 I (s;ro)

It then follows that

. ndwy(s) . .
(5.5) lim f ——— exists a.s. as a finite random variable.
ro—>JQ r(s; ro)

The key step in the proof consists of proving the following points: If 2 >
8 — 3(1 — 8), then

Ty ds A . .
(a) lim (Efo m - ll’("o)) exists and is finite; -

rg—®

(5.6)

(b) lim Var(fﬁ-L) < o.
0

ro—o rk*1(s;ry)

If k. <6 — $(1 — §), then

(56.7) lim Var(fﬁL) = oo,

ro—® o r*(s;rp)

We will now prove the theorem using (5.6) and (5.7) and then go back to
prove these statements.
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Proor oF PART (i). For 0 <c¢ < 2w, let 0o(ry) = ¢ — y(ry) + &(ry), where
lim, _ ., &(ry) = 0. We must show that /uro 6y(r,) POSSesses a weak limit as
ro — % and that this limit is different for each 0 < ¢ < 27. From (5.3), we have

1 dwy(S)

(715705 00(r0)) = + (o) + / r(s;ro)

Ty ds E Ty ds
(5.8) " fo r ¥ I(s;r) fo r**i(s;ro)

B ds
G v
=c+e(ry) + 1, + 11, +1III,

By (6.5), I, = lim, ., I, exists as a finite random variable. Using the tech-
nique in (3.2), IT, may be thought of as a sum of independent mean zero
random variables. But then (5.6)(b) is a sufficient condition for the a.s conver-
gence of II, ' as ry » . Thus II, = lim, _, II, exists as a finite random
variable. Flnally, by (5.6)(a), III, = lim, _, III, 1s finite. From these facts we
conclude that lim, _,, 8(7; 1, 8o(ro))l mod 27 ex1sts a.s.

It remains to show that the limiting distributions obtained above with
c=c; €[0,27), i = 1,2, are distinct if ¢; # ¢,. We argue as follows. Consider
the above analysis on D, = {|x| > n} instead of on D = {|x| > 1}. Then in (5.8)
we must replace 7; by 7,. We denote the new right-hand side of (5.8) by
¢ +e(ry) + I + IV + IIY. Now by Theorem 1, the harmonic measure
boundary at infinity is independent of the particular exterior domain D used
. in its calculation. Thus the measures above on dD,, corresponding to ¢; and c,
will either be distinct for all n or the same for all n. Hence it suffices to show
that the measures obtained above on 4D, corresponding to ¢; and c, are
distinct for sufficiently large n. The analysis above which proved the conver-
gence of I, and II, as ry — % also proves that

d
lim lim IV = lim lim II(”)—BO,

the 6-mass at 0. This, along with the fact that III(") is a constant, allows us to

conclude that the measures are distinct for c1 and c, as long as n is
sufficiently large.

Proor or parr (i)). We will show that lim, .. 6(7;rg, 6,) mod2m =
normalized Lebesgue measure uniformly over 6, € S?~1. Introducing the
notation

¢ d
(5.9) p(t;ry) = fo"jﬁr(%{)j,
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we can write
dwy(s)

+ ; .
r(S;ro) p(Tl rO)

T1
0(7y57r9,00) = 0 + f
0
In fact, it is enough to show that
d
(5.10)  lim p(7;; 7o) mod 27 = normalized Lebesgue measure, for j > 1.
ro—)oo

To see this, use the strong Markov property to write

/Tjdiz(_s)_ + P('Tj; ro))

o r(s;ry)

m dwy(s) ' ds
+(f r(s;ry) * /TJ rk“(s;ro))’

T

0(7’1;7‘0,00) = 00 +

where 1 <j <r,. The two expressions in parentheses are independent of
one another. Now, if X, and Y, are independent random variables for each n
and X, mod2m converges as n — » to the uniform distribution, then
(X, + Y,)mod 27 also converges to the uniform distribution as n — . Using
this fact, (5.10) and the fact [noted at the end of the proof of part (i)] that

lim lim [2428) ¢ 50,

joerg=eto T(s51)
it is easy to conclude that lim, _,., 6(r; ry, 6,) mod 27 = normalized Lebesgue
measure.

It remains to prove (5.10). We will prove (5.10) for j = 1; the same proof
holds for any j. Now although, in light of (5.7), it seems intuitively clear that
(5.10) should hold, a direct proof eludes us and appears difficult. We give the
following argument which is along the lines of an argument given by Cox and
Résler [6] when they were faced with a similar situation.

Let o(t;ry) be the inverse of p(¢; ry). Then, as in the proof of Lemma 1,
p(1y; 7o) may be identified with the first hitting time of r = 1 for the process
r(a(t; ry)). This process is generated by

1 d? d
LO = Erk“ &;2‘ + rk+lD(b)(r)$ .

We make the following parallel construction. Let (7(¢; r,), 6(¢; ry, 6,)) denote
the process on 3, = {lx| < ry} starting from (r, §,) which is generated by L
and is normally reflected at 62,0, and let 7, denote the corresponding hitting
time of 4D = {|x| = 1}. Define

ds

A : t
p(t, 7‘0) = j;) ’A.k+1(s,r0) ’

analogously to (5.9). Analogously to the nonreflected case, if we let &(¢; ry)
denote the inverse of p(¢;r,), then p(7;ry) may be identified with the first
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hitting time of r = 1 for the process #((¢; ry); ry) which is generated by L, as
above, and which is reflected at r = r,. We make use of a result for hitting
time distributions of reflected one-dimensional processes which start at the
point of reflection. This result was first proved by Kac and Krein [15] (see also
the recent paper [16]).

Kac anp KreIN [15]. The distribution of 4(r,;7,) is a convolution of
exponential distributions.

Now (5.7) states that lim,O_,wVar(p('rl; ry)) = . In fact, we also have
(5.11) lim Var(p(r,;ry)) = .
ro—

The proof of this is by the same method we will employ for the proof of (5.7).
[One replaces T'(r) which appears in (5.18) by T/°(r) which is obtained by
replacing the upper limit  with r, in the inside integral and one replaces
Ty(r), appearing in (5.21), by Tg°(r) which is obtained by replacing the upper
limit  with r; in the inside integral and by replacing Ty(2) by T/°(z). One
now shows that lim, ,, r(Ty(r) — (T/(r))?Y > 0, analogous to (5.23). We
ought to note that indeed we do not use (5.7) at all in our proof, but rather its
analog (5.11). However, since the proof of (5.7) is similar to that of (5.11), and
since it can be presented simultaneously with the proof of (5.6)(b), in the
interest of brevity we will prove (5.7) rather than (5.11).] One can check
explicitly that for distributions which are convolutions of exponential distribu-
tions, if the variance goes to o, then the distribution modulo 27 converges
weakly to the uniform distribution. Thus

(5.12) lim p(#;ry) mod 27 = normalized Lebesgue measure.
rog—®

In other words, we have proven the analog of (5.10) for the reflected process.
Since (5.2)b) holds with #(s;ry) and 6(s;r,,0,) in place of r(s;r,) and
0(s; 1y, 0,), and since (5.5) holds with # in place of r (by using the analog of
Lemma 1 for reflected processes), it follows from (5.12) and the argument
following (5.10) that

N d
( ) lim 6(7,;ry,0,) mod 27 = normalized Lebesgue measure
5.13 ro—>®

uniformly for 6, € S¢~1.

(The uniformity follows from symmetry considerations.)
We claim that for each 6, € S, there exists some distribution Ky 0{d0) on
the circle such that

d A A
(5.14) 0(71;70,00) = Llo(fl;ro,a)uro,oo(do).

The desired conclusion that lim, _,. 6(7; ry, 6,) mod 27 = normalized
Lebesgue measure now follows from (5.13) and (5.14). It remains to show
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(5.14). By recurrence and the strong Markov property, it follows that for any
0 <e<ry—1, and each 6, € S, there exist distributions Ko 6, :(d0) and
By 6, -(d0) on the circle such that

P(0(71;70,0,) € d6)

(5.15)

= SlP(()(Tl; ro —€,8) €dll|r, < Tro)p,,o’eo;g(ds)
and

P(é(ff'l;ro,ﬂo) S dB)

(5.16) .

= SlP(f)(q‘-l;rO ~&,5) €dOIf, <4, )i, 4..(ds).
But

P(6(#;r —&,8) €dblF, <7,

(5.17) (05357 ) 1<)

=P(0(75r9 —&,8) €dblry <, .)-

Furthermore, since by Theorem 5 the distributions P(6(r, _.;ry,0) € ds) and
P(G(T,O &3 70, 0) € ds) are mutually absolutely continuous with respect to
Lebesgue measure for each § € S9! it follows from the definitions of Foro,60,¢
and fi, , . that each of these is also mutually absolutely continuous with
respect to Lebesgue measure. Thus u, , . and ry 0, are mutually abso-
lutely continuous. This fact, together with (5.15), (5.16) and (5.17), gives

(5.14).
To complete the proof of part (b), it remains to prove (5.6) and (5.7). We will
use the notation

T E Ty dS d T E Ty dS 2
(r) = fo———rk+1(s;r) and Ty(r) = fo——rkﬂ(s;r)

We first prove (5.6)(a). By It6’s formula,

TIANTN dS

TN(r) _E/ e
solves
1 1
_(TIN( r)) + D(b)(r)(TN(r)) = T

with boundary conditions T}¥(1) = T¥(N) = 0. Now Tl(r) = lim . TN ().
Calculating TN(r) explicitly and takmg a limit, we arrive at

(5.18) Ty(r) =j1dsexp(—f121)(b)(z) dz)js dzﬁexp(jlzzp(b)(y) dy).

To prove (5.6)a), it suffices to show that lim, _,, r'*&(T'(r) — '(r)) = 0, for
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sufficiently small £ > 0. We have
ri*t(T(r) = ¥'(r)

(5.19) ) frmds sk% eXp(I:ZD(b)(y) dy) —romht eXP(f1r2D(b)(y) dy)

ri-exp( [ 2D(0)) )
1
From (5.1), it is clear that the right-hand side of (5.19) is the indeterminate
form 0/0. Applying I’'Hopital’s rule, we obtain, after some algebra,
Lim r**€|T'(r) — ' ()]
_2r8—k+e _ 2D(b)(r)r28—k+e _ (5 — k- 1),.23—k—1+g

= I
o 2D(0)(r)r° — (L +&)r 170

But —1 + 8 < 0 and by (5.1), lim, _,, D(b)(r)r’ = —1. Furthermore, since by
assumption & > & — 3(1 — 8), it follows that 26 — k2 — 1 + & < 0 for small &
Thus, to complete the proof, we must show that for small e,

(520) lim |_2r8-k+e _ 2D(b)(r)r28—k—e' =0.

We write
—2r8~kte — 2D(b)(r)r2 ke = 2r3_k”[—1 - raD(b)(r)].

From (5.1) again, —1 — r°D(b)r) = O(r®~1). Now (5.20) will follow if
b—-—k+e)+ (6 —-1)<0,thatis,if 26 — &k — 1 + & < 0. But, as noted above,
this last inequality holds for small e. This completes the proof of (5.6)(a).

We now consider (5.6)b) and (5.7). Let

TN _ E TINTN dS 2
2 (1) = fo rE sy |
Then T (r) solves

N 2T (r)
—(T (1) +DB)(r)(T5'(r)) + —r— =0,

with T(1) = TN¥(N) = 0, where T¥(r) is as in the proof of (5.6)(a) above (see
Mandl [19], page 108, Lemma 1, for the case £ + 1 = 0). Solving explicitly for
TN(r) and using the fact that Ty(r) = lim _,,, T3 (r), we arrive at

7,(r) = [ ds x|~ [2D(5) () v

(5.21) . are
xfs dz z,jﬂ exp([ 2D(b)(y)dy)
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Now

- d
Var(j; rk+1(—z;r0)) = Ty(ro) — T{(ro)-

To prove (5.6)(b) and (5.7), we will show that

(5.22)  lim o (Ty(r) - (T(r)?f =0, ifk>8-1(1-5),

for sufficiently small ¢ > 0 and

(5.23) lim r(Ty(r) - (Ty(r))?) >0 ifk<8—%(1-5).
Let ¢ > 0. We have, after some algebra,

Tim 7 1+(Ty(r) = (To(r)’)

lim 1 4(Ty(r) = 27(P)Ti(r)

fwdz %Tklg exp(f:2D(b)(y) dy)
lim | —

roe r-l-e exp(ferD(b)(y) dy)

(5.24)

2(f1rdz exp(—f1z2D(b)(y) dy)f:ds % exp(f:ZD(b)(y) dy)) |
xf:odz % exp(jlzzp(b)(y) dy)

exp( [ 2D(e)() dy)

We leave it to the reader to make the appropriate estimates using (5.1) and
(5.4), similar to ones we have already made, to show that the rightmost
expression in (5.24) is the indeterminate form 0/0. Applying I’'Hopital’s rule to
this, we obtain, after cancellations,

lim r1+(Ty(r) — (T(r))’)

(5.25) o —2([:°dz?21—1—exp(f:2D(b)(y) dy))2

T (2r=17D(b)(r) — (1 +.g)r—2_e)exp(f1r4D(b)(y) dy) ‘
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It suffices to consider the asymptotics of the square root of the right-hand side
of (5.25). In fact, since by (5.1) the term r~'7¢D(b)r) is on the order of
r~17¢7% which dominates r=27¢ (recall that & < 1), it follows that we need

only consider the asymptotics of

f:odz zk—1+1 exp(f:2D(b)(y) dy)

(5.26) - '
ro1/2=¢/2( —D(b)(r)) " exp(f1 2D(b)(y) dy)

Note that Proposition 1 in Section 4 can be formulated as follows:

h(x —2b(x 1
() _ 22, o1)

h(x) a(x)

x
where h(x) is as given in the paragraph preceding the statement of the
proposition. Also note that

z—klff exp(f:2D(b)(y) dy) = exp(j;z2(D(b)(y) — k—2+71) dy).

Substituting (—D(bXr) + (k + 1)/2r) and 1 respectively for the b and
the a of Proposition 1, one can check that the conditions of that proposi-
tion are met for these expressions. Thus, by (5.27) with & and a replaced by
(=D()r) + (k + 1)/2r) and 1 respectively, and by (5.1), we have

(5.27)

—ex o{ [ 2D(6) () |

) - 2(—D(b)(r) + k2_rl) + 0(%)

1
B
Applying this and (5.1) to the expression (5.26), we have

j;mdz ?1—1 exp(flzzp(b)(y) dy)

o 1/2-e/2( _1)(b)(r))1/2 exp(flr2D(b)(y) dy)

frwdz z—kl;—l exp(f:2D(b)(y) dy

=2r%4+0

(5.28) = (r_l/z_w(‘D(b)("))w)_l(rk+1(2f_5 ’ O(%)))_l

rvnfreof )| ool of2))

§r36/2—1/2—k+e/2 + lower-order terms.
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Now, if £ > 8 — 3(1 — 8), then 36/2 — 1/2 — k + £/2 < 0 for sufficiently
small ¢ > 0 and, consequently, the left-hand side of (5.28) goes to 0 as r — o,
This gives (5.22) and proves (5.6)(b). On the other hand, if £ <& — (1 — 9),
then with ¢ = 0, we have 36/2 — 1/2 — k + ¢/2 > 0 and, consequently, the
left-hand side of (5.28) with £ = 0 is bounded away from 0 as r — «. This
gives (5.23) and proves (5.7). This completes the proof of part (b).

ProoF OF PART (a). Recall the notation introduced prior to the statement of
Theorem 3: ¢ is the zeroth-order part of L and L. = L — ¢. Since

L= %A —-r? % —rk %% - (1-8)r 172,
we have ¢(r) = —(1 — 8)r~ 1% and
L= iA—r“si —r‘kii
2 or rag’

which generates a recurrent diffusion, X(¢) = (#(¢), 6(¢)). By Theorem 3, the
Martin boundary of L coincides with the harmonic measure boundary at
infinity of L”. From (1.7) and the fact that P(r,, < ) = 1, it follows that this
boundary is determined by the sequences {x,};_, satisfying lim,  |x,| =
for which

lim ,(i )ExnexP(_j:D(l - 8)A17%(s) ds),p(X(TD))

n—o

exists for all ¢ € C(dD), where A(x) is as in (1.6) with c¢(r) = —(1 — 3)r‘~1'3.
It follows from (5.32) below and the strong Markov property that limx -« h(x)
exists. Thus, in fact, the harmonic measure boundary at infinity of L” is
determined by the sequences {x,}; _, satisfying lim, _, lx,| = «, for which

lim EAxn exp(—fTD(l - 8)”:_1_6(8) dS)lp(XA(TD))
n—oo 0
exists for all 4 € C(dD).

Now, consider for a moment the boundary determined by the sequences
{x,):_, satisfying lim, _ |x,| = o for which

(5.30) lim E, ¢(X(7p)) exists for all ¢ € C(4D).

n

(5.29)

This boundary is exactly the counterclockwise spirals generated by U as in
(1.8)if £ > 8 — 3(1 — &) and is a single point if 2 < 6 — (1 — 8). Indeed, the
proof of this is almost exactly like the proof above of part (b), only slightly
easier. To see this, recall that in part (b) we proved that if & > & — (1 — §),
then the clockwise spirals generated by V as in (1.10) form the harmonic
measure boundary at infinity for L”, that is, the boundary determined by the
sequences {x,),_, satisfying lim, _, .|x,| = « for which

(5.31) lim E*y(X" (7)) exists for all ¢y € C(4D).



A NEW APPROACH TO THE MARTIN BOUNDARY 479

We also proved that if £ <& — (1 — 9), then this boundary is a single point.
But compare (5.30) to (5.31). The process X(¢) is generated by

N 1 d 190
L=—-A-r?— —rt——|
2 ar r do
and the process X”(¢) is generated by
1 d 194
L"= —A+D(b)— +rt——.
2 or r a0

Recall that D(bXr) = —r~% + O(1/r). Now, if D(b)(r) were exactly equal to
—r~%, the proof of part (b) would still have gone through—in fact a bit more
easily. Thus the harmonic measure boundary at infinity for

1 0 190
—A—-r?— 4 —
.2 ar r a6

is the same as that of L”*. Clearly then, the same proof shows that the
harmonic measure boundary for L is either the collection of counterclockwise
spirals or one point according to whether £ > & — 2(1 — §)or k£ < & — (1 — ).

To complete the proof of part (a), it remains to show that the boundaries
determined by (5.29) and (5.30) coincide. To prove this, let 7, = inf{t > 0:
#(t) = n}. Then, letting x = (r, 0), we will show that

(5.32) lim lim sup Isryo(fmr"'l"s(s) ds>e|=0.
0

n—owroow
oeS?t

Note that the probability appearing in (5.32) is actually independent of ; the
supremum over 6 is thus trivial.

We prove (5.32) as follows. The process 7(¢) is Markov and can be repre-
sented as follows. Let (Q, %, P) be a probability space and «(¢) a Brownian
motion on (). Define

F(t;ry) =19 + w(t) + j;) m - F a(s;ro)) ds.

Apply Lemma 1 in Section 3 to p(7,;7r,) = [{1#717%(s; ry) ds. In the notation
of that lemma, a(r)=1, b(r) =1/2r —r~° and m?(r) = r'*°. Changing
variables and using (5.4) and the fact that § > —1 show that the integral in
Lemma 1 is finite. Thus Lemma 1 gives

=1.

(5.33) P( lim fflf-i-ﬂ(s;ro) ds <

r0—>00 0

Now (5.32) follows immediately from (5.33).
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We write (5.29) in the form

’}1_120}5'% exp(—j:D(l —8)F717(s) ds)(b(X(TD))
(5.34) = '}ilr:oéxnéxn(exr,(_/om(l —8)F 179(s) ds)(ﬁ(X(TD)A)m(TD))

= ’}il,:of:ﬂp(e)ﬁxn(exp(—/o”’(1 —8)A17%(s) ds)lé(TD) = a)ﬁx,,(de).

Now, by Theorem 5, the measures {i,(d6), x € D, and the limiting measures
lim, [, are all mutually absolutely continuous with respect to Lebesgue
measure on dD = S!. Thus, from (5.32), it follows that for almost every

pe St

lim E’x(exp(—/m(l —8)F17%(s) ds)lé('rp) = 0)
|x|— o0 0

exists (and is in fact independent of 6). This fact and the representation for
(5.29) given on the right-hand side of (5.34) show that the boundaries of (5.29)
and (5.30) coincide. O
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