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FIXATION RESULTS FOR THRESHOLD VOTER SYSTEMS

By RicHARD DURRETT! AND JEFFREY E. STEIF?

Cornell University

We consider threshold voter systems in which the threshold r > n/2,
where n is the number of neighbors, and we present results in support of
the following picture of what happens starting from product measure with
density 1/2. The system fixates, that is, each site flips only finitely many
times. There is a critical value, 6,, so that if 7 = 6n with 6 > 6, and n is
large then most sites never flip, while for 6 € (1/2,6,) and n large, the
limiting state consists mostly of large regions of points of the same type. In
d=1,06,~0.6469076 while in d > 1, 6, = 3/4.

1. Introduction. In this paper we will consider two closely related mod-
els in which the state at time ¢ is £,: Z¢ — {0, 1} and we think of ¢,(x) as giving
the opinion of the voter at x at time ¢. One system has continuous time and
the other discrete time. In continuous time process, called the threshold voter
model, there is an independent rate one Poisson process {T)Y, n > 1} for each
lattice point x € Z¢. At time T, the voter at x examines the points in her
neighborhood {y: y —x € #7}. If at least 7 neighbors have the opposite
opinion, then the opinion at x changes, otherwise it stays the same. We say
that the system fixates if lim, ,, £(x) exists for all x, that is, each voter
changes her opinion only finitely many times.

THEOREM 1. If 0 € # and 7> (|.#| — 1)/2, then starting from any ini-
tial configuration, the system fixates almost surely.

When the threshold is small the system does not fixate but has a nontrivial
stationary distribution, that is, one that assigns no mass to the absorbing
states in which no flips are possible. Here and in what follows |y, =
(y,lP + -+ +ly PP for p € [1,) and |lyll. = sup;ly,|. Durrett [4] has shown:

THEOREM 2. Suppose 4= {y: llyll, <r} and 7= 0|4 with 0 <1/4. If r
is large, then there is a nontrivial stationary distribution ., which ap-
proaches product measure with density 1/2 as r — .

We believe that Theorems 1 and 2 are asymptotically sharp and that in
other cases the system clusters, that is, as ¢t — o, £, converges weakly to
(8o + 8,)/2, where §; is the pointmass on the configuration £(x) = i.
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CoNgECTURE 1. If A= {y: llyll, <r} and 7= 6|4 with 60 € (1/4,1/2),
then for large r the system clusters starting from product measure with density
1/2.

Andjel, Mountford and Liggett [1] have recently proved a related result.

THEOREM 3. Ifd =1, #'={y: |yl <r}, and 7 = r then starting from any
initial configuration the system clusters.

To explain the difference between Theorem 2 and Conjecture 1, suppose
6 < 1/2 and that we start from product measure with density 1/2. If |.#] is
large, then there will be large regions in which each site is excited, that is, has
more than 6|.#"| neighbors of each type. Now excited sites flip at rate 1 and the
stationary distribution for independent rate 1 flips is product measure with
density 1/2, so this is a self-perpetuating situation. To find out if this
situation is stable, we consider what happens if a large ball of 1’s appears in
the excited region. If the ball is very large, its sides are almost flat and points
on the boundary see 1’s at 3/4 — ¢ of their neighbors and 0’s at 1/4 + ¢ of
their neighbors. If 6 < 1/4, the ball shrinks and product measure with density
1/2 is stable. If 6 > 1 /4, then blobs grow and clustering occurs.

The arguments in the last paragraph generalize easily to show that if
0 < 1/4, a large excited region will expand, and a comparison with oriented
percolation proves Theorem 2. We have not, however, succeeded in turning the
ideas above into a proof for 8 € (1/4,1/2). The main trouble is that one must
understand what happens when two blobs collide. If d = 1, 4= {y: |yl <r},
and 7 = r, this is easy since the boundary between an interval of 1’s and an
interval of 0’s moves like a simple random walk as long as both intervals have
length at least r + 1.

The heuristic in the last paragraph can be applied to 6 > 1/2. Suppose we
start from product measure with density 1/2. Most sites cannot flip but if we
look far enough we will find a large ball of 1’s. If the ball is very large its sides
are almost flat and points on the boundary see 1’s at 3/4 of their neighbors
and 0’s at 1/4 of their neighbors. If 8 < 3/4, then the ball will grow but if
0 > 3/4 it cannot. This calculation leads to

CoNJECTURE 2. Supposed > 1, #'={y: llyll, <r}, 7 = 0|4 Twith 6 > 1/2.
Start with product measure with density 1/2, and let ¢, = lim §,. As r — o,
b= V1 if 0>3/4, &, = (8, +8)/21f 6 <3/4.

We have excluded d = 1 because our main result (Theorem 6) suggests that
the conclusion is false there. To state that result we turn to discrete time.

The threshold voter automaton is a deterministic discrete time process in
which at each time n, the voter at x examines the opinions of her neighbors
x + .+ and changes her opinion if and only if at least = neighbors have the
opposite opinion. Fisch and Gravner [5] have results concerning the asymptotic
behavior of this model in one dimension. ‘To state their result we need two
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definitions. We say that the system is locally periodic if
lim £,,(x) = £(x)  lim &y,.11(%) = £,(x)

and ¢, # £,. We say that the system is uniformly locally periodic if in addition
& =1-¢&,.

THEOREM 4. Suppose d = 1 and A4 "= {y: |yl < r}. The system:

() is uniformly locally periodic if and only if v < r/2;
(ii) is locally periodic if T < r;
(iii) fixatesif r=r + lor v > 5r/4.

It is natural to conjecture that (ii) and (iii) should be:

(i) is locally periodic if and only if 7 < r;
(iii’) fixates if and only if 7 > r + 1;

and that (i), (ii’) and (iii’) hold in d > 1if .#'= {y: llyll, < R} and r is replaced
by (I.#1-1)/2.

Our main result gives qualitative properties of the “limiting state” in
d = 1. We put the phrase limiting state in quotes since the limit is not known
to exist if r + 1 < 7 < 5r/4. We begin with a simple result that holds in all d.

THEOREM 5. Let B, be the event that the voters at all sites x with |x|ly < &
never change. Suppose 4= {y: llyl, <r} and 7= 0|4 with 6 > 3/4. If we
start from product measure with density 1/2 then for all k, P(B,) > 1 as
r— o,

To formulate our result in d = 1, let
c(a) =log2 +aloga + (1 —a)log(l —a).

The reason for our interest in this quantity is that if S, is the sum of »
independent random variables that are 0 and 1 with equal probability, then for
a>1/2

1
(1.1) lim - log P(S, = na) = —c(a),

— 0

(1.2) P(S, >na) <e " forall n.

See, for example, Section 9 of Chapter 1 of [3]. The reader will encounter many
constants C and y whose values are unimportant and will change from line to
line, but we reserve lower case c¢ for this special constant.

" THEOREM 6. Let A » be the event that all the voters at all sites x with |x| < k
fixate in the same state. Suppose d = 1, #'= {y: |ly| < r}, r = 0|4, and start
from product measure with density 1/2. Let 6, be the unique solution in
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(1/2,3/4) of the equation 2¢(6) = c(26 — 1).

(i) If 6 > 6,, then for all k, P(B,) - lasr — .
Gi) If 0 €(1/2,6,), then for all k, P(A,) > 1lasr — x.

Theorem 6 is the main result of the paper. The reason for interest in this
result is that it is a prototype for conclusions that one would like to prove for
related systems with « > 3 states. See [6]. Theorem 6 can be explained on the
basis of heuristic arguments introduced above. Suppose 6 < 3/4. Call an
interval of 1’s of length > r a blob, and call an interval of length r + 1 in
which there are less than (2r + 1)6 — r 1’s, a blockade. It is easy to check that
a blockade will stop a blob. To prove (i) it suffices to observe that in order for a
blob to form we need a point to be unsatisfied, that is, have at least 6(2r + 1)
1’s in its neighborhood. If 2¢(8) > ¢(26 — 1), then as r — « blockades are
much more numerous than unsatisfied points and P(B,) — 1.

To prove the converse in (ii), we have to show that if 2¢(9) < ¢(20 — 1) then:
(a) for large r blobs are more numerous than blockades; and (b) that blobs
grow until they run into each other. To prove (a) we show that if ¢ > 0 and
there are at least (8 + ¢)(2r + 1) 1’s in the neighborhood of a point, then a
blob will form with high probability. To prove (b) we show that if a collection
of unsatisfied sites does not grow into a blob then the number of sites that flip
is smaller than or with high probability, so a blockade does not form.

In d > 1 blob formation is more complicated. However, we think that the
answer is simpler.

CoNJECTURE 3. Suppose d > 1, #={y: |lyl, <r}, and we start from
product measure with density 1/2. If 6 € (1/2,3/4), then forall k, P(A,) — 1

asr — o,

Fic. 1.
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Fic. 2.

(Note that 6 > 3 /4 is covered by Theorem 5.) The idea behind Conjecture 3
is that in d > 1 blobs do not have to go through the very rare “blockades’ but
can go around them and can grow until they run into another blob.

Conjecture 3 (and Theorem 5) are the discrete time analogue of Conjecture
2. Theorem 5 and part (i) of Theorem 6 generalize in a straightforward way to
continuous time. We are convinced that part (ii) of Theorem 6 holds but we do

Fia. 3.
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F1c. 4.

TiG. 5.
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not know how to carry out the last part of the argument (i.e., the “Proof of
(b)” in Section 6) in continuous time. The rest of the paper is devoted to
proofs. Theorem 1 is proved in Section 2, Theorem 5 in Section 3, part (i) of
Theorem 6 in Section 4, and part (ii) of Theorem 6 in Section 5.

Before plunging into the proofs we invite the reader to examine the simula-
tion results presented in Figures 1-5. The first two show the threshold voter
automaton in one dimension with .#'= {x: |x| < 40} run on {1,2,..., 19200}
with periodic boundary conditions, for example, 1,...,40 are neighbors of
19200. The sites are arranged in 120 rows of 160 sites and are colored gray or
black according to the value of lim, _,, &,(x). Figure 1 shows the system with
threshold 52 (52/81 = 0.6419). Notice that as suggested by part (i) of Theo-
rem 6 most of the space consists of solid blobs. A gray blockade can be seen in
the middle of the picture. Figure 2 shows threshold 55 (55/81 = 0.679). There
are six rather large blobs but most of the space consists of sites that have not
flipped.

Figures 3-5 are pictures of the t.v.a. in d = 2 with /= {x: [[xll. < 2}.
Figure 3 shows threshold 19 (19,/25 = 0.76) and Figure 4 shows threshold 17
(17/25 = 0.68). The contrast in the behavior is consistent with the conjecture
that 6, = 3/4. Finally Figure 5 shows a simulation of the “maJorlty vote”’
case, threshold 13.

2. Proof of Theorem 1. Our proof is based on an idea of Grannan and
Swindle [7]. Let S, y(t) be 1 if n(x) # n,(y), and 0 otherwise, and define the
energy at time ¢ to be

@ot - Z e“”“y"zéx’y(t).

x,y:y—xeN
Since &, < », we can prove Theorem 1 by showing
if 7> (|.#|— 1)/2 and ¢ is small then a flip at x decreases
the energy by at least y(x) > 0.
To prove (2.1) we note that if @ =|{y €x + 4 n(y) # n(x)}| and N =
sup{|lx|lz: x € .#7}, then the drop in energy due to the flip at x at time ¢ is at
least

(2.2) e 2xle[ ¢ =Ny — N (|4 — 1 — a)],

since even in the worst case all the points in {y € x + 4% 1,(y) # n,(x)} have
lx + yllz < 2llxllz + N. In order for a flip to occur we must have a > 7 >
(#1-1)/2 and hence |.#|— 1 — a < a. Since the last two numbers are
integers smaller than |.#], (2.1) follows from (2.2). O

(2.1)

3. Proof of Theorem 5. Let B,(y,s) = {x: lx = yllz < s}. Our first step
is a special case of Lemma 2.1 in [4].

LEmMA 3.1. Suppose b < 1/2. There are constants p, and R,, so that if
p = p, and r > R, then each site x in 32(0 pr) has [(x + #) N By0, pr)| >
blA.
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Proor. In one dimension we can take p, = R, = 1. Turning to dimensions
d > 1, let g be the volume of B,(0, 1). To prove the result it is convenient to
scale space by 1/r and translate so that x/r sits at the origin. Any d — 1
dimensional hyperplane through the origin divides B,(0,1) into two pieces
with volume ¢q/2. Let b < b, < b; < 1/2. An application of continuity shows
that if p > p, and 0 € By(y, p), then the volume of By(y,p) N B,(0,1) is at
least qb;.

The second and final step is to argue that if r is large, then the lattice
behaves like the ‘“continuum limit” considered above. Pick & > 0 so that if
0 € By(y, p), then the volume of By(y,p — &) N B,(0,1 — ¢) is always larger
than ¢b,. Then pick R, so that 1/R, < ¢ and if r > R, then

IB,(0, )l /qre < by/b.

Let 2'=(2%/r)n B,(0,1) N By(y, p). The first part of the choice of R,
implies that if » > R, then

By(y,p —€) NB,(0,1-¢)c |J x+

-1 1 ]d
xel

" or

so r 42| = qb, > r“deBp(O, r)|, by the second part of the choice of R, and
the proof of Lemma 3.1 is complete. O

ProoF oF THEOREM 5. Pick b, ¢ so that 2(1 — 0) < 2¢ <b < 1/2 and let
S, be the sum of n independent random variables that take values 0 and 1
with equal probability. It follows from the large deviations result quoted in the
introduction that as n — o,

(1/n)log P(S,, <cn) » —y <0.

Combining the last observation with Lemma 3.1 we see that if p > p,, then
the probability all the sites in B,(0, pr) have at least c|.#’| neighbors in
B,(0, pr) of each type approaches 1 as r — . When this occurs no site in
B,(0, pr) can ever flip [since ¢ > (1 — 6)] and the proof is complete. O

4. Proof of Theorem 6, part (i). In view of Theorem 5 we can assume
without loss of generality that 6, < § < 3/4. We begin with some definitions.
We say z € Z is unsatisfied for n if

z+r

Y Lugyeney = (27 + 16

y=z—r

So z is unsatisfied if it switches its value at the next step. Wesay z € Z is a
I-blockade for n if X371, . 1, <(@r+ 1)8 — r (and a 0-blockade for n if
L2l y-0 < @r+ 18 — 7). The point of a 1-blockade can be seen in the
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following easily verified fact:

Let z € Z be a 1-blockade for 1. Then every 0 in [z, z + r]
remains 0 for all time independent of what happens outside.
Conversely, if z is not a blockade and all sites in
[z—r,z— 1] are 1, then z will flip to 1.

(4.1)

An analogous statement holds for 0-blockades: just interchange the 0’s and 1s.
It follows from the large deviations result quoted in the introduction that

(4.2) lim (1/r)log P(z is unsatisfied at time 0) = —2¢(9),
(4.3) lim (1/r)log P(z is a 1-blockade at time 0) = —¢(26 — 1)

if 6 < 3/4. Equation (4.3) fails when 6 > 3/4, for then (20 — 1) > 1/2. 0, is
defined by 2¢(8,) = ¢(26, — 1). Since c(6) is a strictly increasing function of 6
on [1/2,1], it follows that if 6 > 6, there is a § > 0 so that ¢(260 — 1) + § <
2¢(6). Let k& > 1. To prove the theorem we will define a good event G, so that:

(a) lim, ,, P(G,) = 1.
(b) When G, occurs, lattice points —Z, ..., k£ never change their value.

Let L, be the smallest even integer > exp(r{c(260 — 1) + 8}) and let G, =
N#_,G!, where

G? = {each y € [-L,, L,] is satisfied},

G} = {there exists y, € [—L,, —L,/2] with y, a 1-blockade},
G? = {there exists y, € [-L,/2, —k] with y, a 0-blockade},
G3 = {there exists y; € [&, L,/2] with y, a 0-blockade},

G} = {there exists y, € [L,/2, L,] with y, a 1-blockade}.

To estimate P(G,) we begin by observing that since ¢(26 — 1) + § < 2¢(0),
(4.2) implies P(G?) » 1 as r — . Turning our attention now to G/, let
z;,=-L,+G—-1r+Dfori=1,...,[L,/2(r + 1)]. Using an obvious inde-
pendence we have that

(L,/2(r+ D]
P(GH)=z1-P N {7 is not a 1-blockade}

i=1
>1— (1 - Cexp(—r{c(20 — 1) + 8/2})"*" P 51

as r — . The last argument applies to G/, i = 2, 3,4 and we have shown (a).
To show (b), we note that (4.1) implies that each 0 in [y, y; + 7] U [y, 54 + r]
will never flip. Since each y € [-L,, L,] is satisfied it follows that no 0 in
[y, ¥4 + r] will ever flip. Similarly, no 1 in [y,, y; + r] will ever flip and the
proof is complete. O .
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5. Proof of Theorem 6, part (ii). Our first goal is to show that the large
deviations rate for blobs is the same as for an unsatisfied point at time 0. To
prepare for this we begin with:

Lemma 5.1. Let X,,..., X, be independent and take the values 0 and 1
with equal probability and let S,, =X, + - +X,,. Suppose 6 >1/2, o €
(0,1 — ). There is a constant y > 0 so that for all a < 1,

P(S,, <6an|S, > (0 + o)n) < Ce™7",

an —

REMARK. The intuition underlying this result is that conditional on S, >
(0 +o)n, X,,..., X, behave like independent random variables that are 1
with probability 6 + o.

Proor. The conclusion is trivial for a < o/2. If we condition on S, = m,
then the distribution of (X, ..., X,,) is the same as that of an draws without
replacement from an urn with m 1’s and n — m 0’s. Such a drawing clearly
produces more 1’s than drawing with replacement from an urn with m — an
1’s and n — m 0’s, but in this case the draws are i.i.d. and the conclusion
follows from-the obvious generalization of (1.2). To prove the result for
a > o/2 we begin with three observations. If § > 0, then (1.1) implies

(5.1) P(S, >n(6 +0)) > Ce @+t
Equation (1.2) implies that if 2 > m /2, then
(5.2) P(S,,=k) <P(S,, = k) <e ck/mm
so by symmetry we have for all & that
(5.3) P(S,, = k) < e ctk/mm
To bound the conditional probability now we observe that
P(S,, <6an,S,>n(6 +0))
< ¥ P(Sy =k S, — S, =n(0+0) — k)
E<6an

0+a—aa)
l1—-a ’

<n sup exp(—anc(a) -(1- a)nc(
O<ax<¥

Dividing by P(S,, > n(8 + o)) and using (5.1) gives
P(S,, <6anlS, >n(8 + o)) < Cne =,

where .
inf 1 0 +o0—aa 0
= +(1- — | —c(0+
e=  nf ac(a) ( a)c( 1 —a ) c(60+o);,
o/2<ax1

which is strictly positive by the strict convex1ty of ¢(6). Picking 6 < ¢/2, the
desired result follows. O
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Let S, , be the number of 1’s in [a, b] in the initial configuration, let
H,={S_,,>(2r+1)(6 +0)}

and
E = {all sites in [ —r, r] are 1 at time 2r}.

LEMMA 5.2. Let 6 € (1/2,3/4) be fixed. For all o > 0, there are constants
0 <v,C < « so that

P(EH,)>1-Ce™™ forallr.

ReMaARK. For the rest of this section y and C will denote positive finite
constants whose values are unimportant and will in general change from line
to line.

ProoF. We begin by proving that we do not have to worry about sites
flipping from 1 to 0. We call a point z bad if 2r + 1) = S,_, .., > @r + 1),
that is, if the number of 0’s is > (2r + 1)6. This corresponds to the possibility
of a 1 switching to a 0. Let

G, = {no z € [—3r?,3r?] is bad at time 0}.

Since H, is an increasing event and G{ is a decreasing event, Harris’
inequality implies
P(G{|H,) < P(G) < (6r* + 1)P(S_,, = 0(2r + 1)) < Ce™™"

since 8 > 1/2. G, guarantees that no 1 in [—3r2, 3r?] at time 0 will flip to 0 at
time 1. Hence no 1 in [—3r2 + r, 3r2 — r] at time 1 will flip to 0 at time 2, and
continuing inductively we see that no 1 in [—2r, 2r] will flip to 0 before time r.

If H, occurs, then at time 0 we have S,_,,,,>(@2r + 1)8 for all x €
[—o@r + 1),0(2r + 1)] so at time 1 all x € [—o(2r + 1), 0(2r + 1)] will be 1.
To show that the interval of 1’s will continue to grow we divide space into
blocks and use induction. Suppose without loss of generality that o < (3/4 — 6)
and 1/0 is an integer. Pick M so that 1/M < (3/4 — 0), let a = 0/M, and
call Gar,(i + 1)ar) the ith block. Let T; be the number of 1’s in the ith block
at time 0. Let N = 1/a and

G, = (T, > 6ra for —N < i <N},
Gy={T;>(3 —o)raforie[-2N,-N) U [N,2N)}.
Lemma 5.1 implies
P(G,H,) =1 - 2NCe™™".
Since G is independent of H,, (1.1) implies ‘
P(G4lH,) > 1 - 2NCe™™".

We will now check that when G = N%_,G; occurs, all sites in [—r, r] will be
1 at time r. As we observed above, blocks —2M,...,2M — 1 are filled with 1’s
at time 1. Let 2M < k < N. We will show by induction that block % is filled

g
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with 1’s at time £ — 2M + 2. Supposing this is true for j < k&, we have (on G)
the following lower bounds on the number of 1’s at time 2 — 2M + 1:

block number bound
E—-N+1,...,-1 far

0,...,k—1 ar

k,...,N—l Gar
N,..,. N+k-1 i —oar.

So if x € [kar,(k + Dar], and we let T, _, .., denote the number of 1’s in
[x —r,x+ r]attin/ne k—2M + 1, we have

T > (2N - 1)8ar + k(1 + (3 — o) —20)ar.

x—r,x+r =
Now N=1/a, a =0/M, k> 2M, and we have assumed o < (3/4 — 0),
1/M < (3/4 — 6) so
Tyy oer = 7(20 — 60/M + (3/4 — 6)20) > (20 + (3/4 — 6)a)r.

The last inequality shows that x will flip and completes the proof of Lemma
5.2. O

Lemma 5.2 will allow us to conclude that, when 6 < 6, and r is large, blobs
are more numerous that blockades. To show that blobs will grow until they
run into each other, we need to show that unsatisfied sites which do not turn
into blobs do not produce blockades. Let

D, = {no point in [ —2r, —0.01r) U (0.01r, 2r] changes by time r}
D, = {S, cir < (1.97 — 20)(r + 1) forall x € [-r,0.01r]}
D, = {no x € [—4r2,4r?] is bad}

and D = N3_,D,. To see the reason for interest in D observe that (a) from
the proof of Lemma 5.2, D, guarantees that no 1 in [—2r, 2r] will flip to 0 by
time 2r, and (b) on D, N D, each interval [x, x + r] with x € [-r,0.01r] has
fewer than (1.99 — 20)(r + 1) 1’s at time r. (b) says that there is no 0-bloc-
kade, and (a) says that there is no 1-blockade (unless there was one at time 0).

LEMMA 5.83. Let 0 € (0.50,0.65) be fixed. There are constants 0 < A,C <
so that

P(EUDIHy) =1 - Ce™™.

ReMARK. If E U D occurs then we say that the unsatisfied site at 0 is well
behaved.

ProOF. From the proof of Lemma 5.2 we see that
P(D3|Ho) > 1 - Ce_‘yr
and on D; no 1 in [—2r,2r] flips to 0 by time 2r. To bound P(D,|H,) we



244 R. DURRETT AND J. E. STEIF

begin by observing that if § > 0, (1.1) implies

(5.4) P(Hy|Hy) < Ce™""
and if 6 < 0.005, using the reasoning from the proof of Lemma 5.1 gives
(5.5) P(S, .y, = (r+1)(0 + 0.01)[H; N Hy) < Ce™".

Since we have assumed 6 < 0.65, we have 6 + 0.01 < 1.97 — 20 and combin-
ing (5.4) and (5.5) gives
P(DylHy) > 1~ Ce™".

Suppose now that D§ occurs, let T' < r be the first time such a change
occurs, let ¥ be a location [—2r,2r] — [—0.01r,0.017] that flips, and suppose
without loss of generality that y > 0. Let ¢ denote the number of points in
[-0.01r,0.017] that have flipped by time T — 1. Since T is the first time we
must have

S

y—r,y+r
We will now use the last equation to argue that ¢ > er for some ¢ > 0. Since
y=0.01r and S,,, ,,, is independent of H,,
(5.6) P(S,41,r4y = (5 +8)ylHy) < Ce™".
To bound S, ,, we have to consider two cases. First the trivial case: If
ye (2 - 28)r 2r] then

S, ,,<(2r+1)—y<2ér,

y—r,r

+ ¢ > (2r + 1)6.

sowhen S,,, ., < (G + &y < (5 +8)2r + 1) we have

(5.7) Sy yer < (2r + 1)(5 + 28).

When y € [0.017,(2 — 28)r], 2r + 1) —y > 28r so arguing as above gives
(5.8) P(S,_,., > (6 +28)(2r + 1 — y)|H N Hy) < Ce™".

y-

Now if we pick 6 < (6 — 1/2)/1000 then
(3+8)y+(0+28)2r+1—y)=(2r+1)0+ (53— 0—08)y+2(2r+1)3
< (2r + 1)6 — (6 — 3)(0.01 — 0.006)r,

since y > 0.01r and (2r + 1) < 3r. Letting o = 0.001(8 — 1/2) we see that in
either case ¢ > o(2r + 1), that is, at time T — 1 there are (6 + o)2r + 1) 1’s
in [—r,r]. The last observation implies that at time T all the sites in
[—o@r + 1), 0(2r + 1)] will be 1 and arguing as in the proof of Lemma 5.2 we
see that with probability at least 1 — Ce™"" all sites in [—r, r] will be 1 at time
T+r<2r. '

Proor orF THEOREM 6, PART (ii). Let F, be the event that x and x + 1
fixate in the same state. Translation invariance implies P(F,) is independent
of x so it suffices to show that P(F,) = 1 as r — ». Let A be the constant in
Lemma 5.3 and pick o, 8 small enough so that 2¢(6 + o) + 36 is smaller than
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c(260 — 1), 2¢(9) + A and 4c¢(0). The first choice is possible since 6 < 6,, the
other two since ¢ is continuous and strictly increasing on [1/2,1]. Let L, =
exp({2¢(0 + o) + 26}r). These choices are designed so that the following events
have high probability:

G, = {ablob formsin [0, L, ]},
G, = {there are no blockades in [0, L, ]},
G5 = {all points in [0, L, ] that are unsatisfied are well behaved},
G, = {there are not two unsatisfied sites in [0, L, ]
with2r + 1 < |x —y| < 2r3 + 4r}.
We define events G,, G,, G4 and G4 by replacing [0, L,1by [—L,, 0] and define
Gy = {all x € [—r*, r*] are satisfied}.
Let G = N?_,G,. We will show that:
(@) P(G) > 1as r - «; and
(b) if G occurs, then (1/2r3)2;3="_1r31Fx >1-3/r.
Proor oF (a). It suffices to show that P(G;) » 1for i =1,3,5,7,9.
(G,) Note that the events
Sai—iyr,@i+nr = (0 +0o)(2r+1), 1<i<L,/3r

are independent and have probability > exp(—{2c(6 + o) + 8}r) for large r,
so the choice of L, implies that with high probability the desired inequality
will hold for at least one value of i, and the desired conclusion follows from
Lemma 5.2.
(G3) The expected number of blockades in [0, L, ] is smaller than
L,exp(—c(20 —1)r) >0 asr— «.

(Gy) The expected number of unsatisfied sites in [0, L,] that are not well

behaved is smaller than
L, exp(—2c(0)r)Cexp(—Ar) >0 asr — o,

(G;) When |x — y| > (2r + 1) the events that x and y are unsatisfied are
independent so the expected number of unsatisfied pairs satisfying the indi-
cated inequalities is at most

(2r3 + 4r)L,exp(—4c¢(6)r) >0 asr — o,
(Gy) The expected number of unsatisfied sites in [—r*, r*] is at most

(2r* + 1)exp(—2¢(6)r) = 0 asr — .

Proor oF (b). Let y; > 0 be the first unsatisfied lattice point at time 0 and
for & > 2 let y, be the first unsatisfied lattice point in [0, L,] after y,_; + r®.
If there is no such point, let y, = . G, guarantees us that all unsatisfied
points at time 0 in [0, L,] are contained in U [y, — 2r,y; + 2r] and that up
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until time r?, the evolutions in different [y; — 2r,y; + 2r]’s will not affect
each other. Let j be the smallest i such that [y, — r,y;, + r]is a blob at time
2r. G, guarantees us that there is such a j. Since G5 occurs, there are no
0-blockades or 1-blockades at time 0 in [0, L,]. Consider some i < j. Since the
interval i is well behaved by G5 and j is the index of the first blob, it follows
that no blockades are produced by the time evolution. We therefore have a blob
at y; and no blockades between itself and the origin which will prevent it from
moving to the left. We also, of course, have the analogous situation on the left
side of the origin with a blob moving to the right and no blockades in its way.

If these blobs to the left and right are the same type, then it is clear that F,
will occur for all x € [—r32, r2]. If the blobs are of opposite type, then without
loss of generality, assume that [y; — r, y; + r] is a 1-blob at time 2r and the
blob to the left of the origin is a 0-blob. Define a decreasing sequence of lattice
points {z,} as follows. Let z, = inf{x € [yj - 2r, y; + 2r]: x flips at time 0}
and for £ >1 let z,,, =inf{x €[z, —r,2z,]: x flips at time k}. Clearly
zy>2y;—2rand 2,,,>2,—randso z,,, >y, — 2r — kr.

For [ > 2r, let w; = inf{x: [x,y; + r] is a 1-blob at time /}. Now, no 1’s
will switch to 0 until the effect of the 0-blob to the left of the origin begins.
Also, at time 2r, [y; — r, y; + r] are all 1’s. From these two facts, it follows
that as long as there is no effect of the blob to the left of the origin, each x €
[2),y; — r — 1] sees at least as many 1’s at time 2r as z; saw at time 0 and
hence at time 2r + 1, all x € [2,,y; + r] are in state 1. Similarly, since
2,2, —r and [2,,y;, + r] is a 1-blob at time 2r + 1, all x € [2,,2,] see at
time 2r + 1 at least as many 1’s as 2z, saw at time 1. Hence [2,,y; + r] are all
I’s at time 2r + 2. By induction, [z,,y; + r] are all 1’s at time 2r + k.
Therefore z, > w,,,, forall & > 1 and s0 2,,,;, > 2;, — 2r2 > w,, ., — 2r In
words, after time 2r, the leftmost point that flipped as a result of the blob
starting at [y; — r, y; + r] is at most 2r? points to the left of the growing blob
at that point in time.

By applying the same argument to the first blob to the left of the origin, and
using the fact that the range of the interaction is 2r + 1, this last inequality
implies that the blobs will eventually be within 472 + 2r + 1 units, which
gives us the desired result,

1 ot 3
Fx=z_r31[,~x21—;. O
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