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IDENTIFYING A LARGE DEVIATION RATE FUNCTION

By I. H. DINWOODIE

Tulane University

Assume a sequence of probabilities {P,} has a large deviation rate
function I. It is proved that I takes a form analogous to a convex
conjugate. If I is also assumed convex, then I is a convex conjugate of an
explicitly defined function . The results are applied to the empirical law of
a Markov chain yielding universal bounds on I. Examples are given of
Markov chains in which the empirical law has a large deviation rate strictly
between the given bounds.

1. Introduction. Suppose a sequence of measures {P,} on a Polish space
(X, d) has a large deviation rate function I: X — [0, =], by which we mean
that I is lower semicontinuous and

(1.1) liminf n=!log P,(U) > —I(U),
(1.2) limsup n~"log P,(C) < —I(C)

for all open sets U and closed sets C contained in X. We are using the
customary notation in which I(A) = inf{I(x): x € A} whenever A c X. We
will say that a function I is a lower rate function if (1.1) holds for all open sets
or an upper rate function if (1.2) holds for all closed sets. This article seeks the
form of a large deviation rate function I and establishes certain inevitable
formalities under the assumption that I exists. It is a basic and well-known
fact that a large deviation rate function I is unique (see Lemma 1.1 below). By
starting with a generalization of a theorem of Varadhan (1966, 1984), we
identify in Theorem 2.1 the rate function in terms of a quantity analogous to a
convex conjugate. This identification is valid regardless of whether the rate
function is convex or not.

In Section 3 the rate function I is assumed convex and a simpler represen-
tation for I is given in terms of a convex conjugate. In Section 4 we apply the
results of Section 3 to the empirical probability measure L, in the weak
topology of a Markov chain on a Polish state space S. Theorem 4.1 gives a
precise characterization of a convex large deviation rate function in terms of a
convex conjugate. Theorem 4.2 shows that a convex rate function always lies
between the convex conjugate of the logarithm of the reciprocal of the conver-
gence parameter of a certain irreducible kernel T, and the convex conjugate of
the logarithm of the spectral radius of the same kernel considered as an
operator on the continuous bounded functions on the state space of the chain.
Example 4.1 shows that the correct rate function may be strictly between
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AN IDENTIFYING RATE FUNCTION 217

these two rates, depending on the initial distribution of the Markov chain.
Finally, Proposition 4.1 shows that for initial distributions concentrated on a
certain core of the state space, which we call a minimal closed set, the
empirical law can only have the convex conjugate of the logarithm of the
reciprocal of the convergence parameter as a rate function. The results of
Section 4 complement and to some extent are based on results of de Acosta
(1985, 1988, 1990) and Ney and Nummelin (1987).
We begin with two well-known results for completeness.

LemmA 1.1. A large deviation rate function is unique.

ProoF. Suppose that I and J are two rate functions for a sequence of
probabilities {P,}. If I and J are different, then there is a point where I or J
is superior to the other. We can assume that I(x) > J(x). Let ¢ > 0 be such
that

0<dJ(x) <c<I(x) <o,
By the lower semicontinuity of I, there exists ¢ > 0 such that if y € Ex,s =

{z: d(z,x) < ¢}, then I(y) > c. Let B, , = {2: d(z, x) < ¢}. Then, by the large
deviation property,

—J(x) < —J(B,, e)

11m1nf log P(B,.,)

< hmsup logP (B...)

=< _I(Ex,e)

< —c,
which contradicts the fact that J(x) <ec¢. O

ReMARK 1.1. The uniqueness of the rate function is proved as Theorem
I1.3.2 in Ellis (1985) under the additional assumption that I have compact
level sets. Ellis credits the result to Varadhan. The result is stated in Orey
[(1986), page 202] without the hypothesis of compactness, but the proof
presented here seems to be the simplest.

Recall the following slightly generalized version of a theorem of Varadhan
(1966, 1984).

TueEoREM 1.1. Let {P,} satisfy the large deviation principle with rate
function I. Then for any continueus function f: X > R that is bounded above,

1imn-110g[ enf® dp = — inf {I(x) — f(x)}.
X xeX
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The theorem differs from that of Varadhan in allowing f to be unbounded
below. Varadhan’s proof generalizes with no difficulties.

2. General rate functions. Theorem 1.1 can be used to describe the
rate function I in a precise way whenever it exists. Let C(X) denote the
bounded continuous functions on X, and let

$(f) =limn~'log [ e"/®dP,
X

for f € C(X). Theorem 2.1 below shows that ¢: C(X) — [—x, ) contains all
the large deviation information for {P,} and confirms the importance of the
formalism of the convex conjugate in large deviations. The idea of characteriz-
ing the rate function I through a version of Theorem 1.1 seems to have first
appeared in Stroock (1984) for the special case of the occupation time for
Markov chains. Similar ideas appear in Bryc (1990). The function ¢ could be
called the free energy function [see Ellis (1985), page 46], or it could be called
the pressure of the sequence {P,} by analogy with the topological pressure of
Ruelle [(1973), Theorem 5.1].

THEOREM 2.1. If {P,} satisfies the large deviation principle with rate
function I, then

I(x) = sup {f(x) = o(f)}.

feC(X)

Proor. Since ¢(f) = sup,{f(y) — I(y)}, it is immediate that
I(x) = sup {f(x)—¢(f)}.

feC(X)

To show that I(x) < sup;ccxff(x) — ¢(f)}, we can assume that I(x) > 0.
Let ¢ < I(x) and choose ¢ > 0, using the lower semicontinuity of I, such that
I(y) > ¢ for each y € B, ,, = {y: d(y,x) < 2¢}. Fix M > 0, and let f;, be a
continuous, bounded function defined on X such that

fM(y)=O, d(y,x)s.e,
fmu(y) = —M, d(y,x) = 2,
and —M < f,(y) < 0 for ¢ < d(y, x) < 2¢6. Now
1
6(fu) = lim g [ ep(nfy) B+ [ () dE,

,x)>2¢
1 -
< limsup Py log[Pn(Bx,gg) + e—nM]

< max{-I(B, ,,), -M}
= —min{I(B, ,,), M},
and therefore min{I(B, ,,), M} < —¢(fy) = fu(x) — ¢(fy). Now if
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I(B, ,,) = =, this would imply that M < f;,(x) — ¢(f3,), and hence
I(x) =w= sup {f(x)—¢(f)}

feC(X)

Otherwise, choose M > I(B,, ,,) so that

¢ <I(B, ) <fu(x) —¢(fi) < sup {f(x) —&(f)}.

feC(X)
Now since ¢ was chosen arbitrarily such that 0 < ¢ < I(x) < o, it follows that

I(x) < sup {f(x)—¢(f)},

feC(X)

which completes the proof. O

Theorem 2.1 can be used when a rate function may not be convex. For
example, an exchangeable sequence of 0-1 valued random variables has a
nonconvex rate function related to the de Finetti decomposition [Ellis (1984),
page 3, Dinwoodie and Zabell (1992)]. A Markov mixture example is given
below.

ExampLE 2.1. Let the transition matrix for a Markov chain on {1, 2, 3, 4} be
given by

1100
~_|0 1 0 0
0 0 3 1
100 0 1

Let the initial distribution be (a, 0, 1, —«, 0) for 0 < a < 1. Then the law P, of
the empirical probability measure L, is the convex combination

pp,=[alP,oL;' +[1 - a]Pyo L1,

where P, is a Markov measure on {1, 2, 3, 4] with initial distribution (1, 0, 0, 0)
and transition matrix = and P, is a Markov measure on {1, 2, 3,4} with
initial distribution (0, 0, 1, 0) and transition matrix 7. It is not hard to see that
P,o L' i=1,3, has large deviation rate function A, on the probability

simplex in R* given by

pylog2, ifp;=p,=0,
A’ b b b = .
1(P1; P2, Ps p‘%) {00, otherwise;

pslog2, if p,=p,=0,
As(P1, P2, P3, Pa) = {003 oth;rwise2

b
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Now from Theorem 2.1, if {P,} has a large deviation rate it must be

I(x) = SI;p{f(x) - ¢(f)}

sx;p{f(x) - ilgig{st:p[f(y) - M(y)]}}

sup min inf{f(x) — f(y) + A,(3)}.
f i=1,3 y i

Then I(x) is inferior to min,_; 3 A,(x), which can be seen by setting y = x in
the infimum of the above expression. But by setting f to be min,_; 5 A;(x) in
the supremum of the above expression, I(x) is also seen to be superior to
min;_; 3 A;(x). Hence the large deviation rate function must be min;_, 3 A,(x)
if such a rate exists. It is easy to see that min,_; 3 A,(x) is in fact the large
deviation rate function for {P,}.

The empirical probability measure for the following Markov chain also has a
nonconvex rate function. The Markov chain is irreducible and ergodic accord-
ing to the general theory of Markov chains developed in Nummelin (1984).

EXAMPLE 2.2. Let the transition matrix for a Markov chain on {1,2,3,4} be
given by

0 ; 3 O

1 1
W_Ozoz
o o 1 1

0 0 0 1

~ Let the initial distribution be &, and let L, = (L, ;), 1 <j < 4, denote the
- empirical law of the Markov chain as an element of the probability simplex in
R*, where

1z )
Ln,j = Z lo{Xi =J}
ni-1

If the law of the sequence L, had a large deviation rate function I, we could
find I using Theorem 2.1. For f defined on the probability simplex in R?,

&(f) = max{sup{ £(0,0,a,1 - a) — alog2),

sup{ f(0,2,0,1 —a) — alog2}},

where 0 < a < 1. Now if p = (p,) belongs to the probability simplex in R* and
p1 >0, let f(x,x,, x5, xy) = cxi to see that I(p) > f,(p) — &(f,) = cp,, for
any c¢ > 0, and thus

I(p) =» ifp,>0.
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Similarly, one can use the function f,(x, x,, x5, x,) = c(xy A x3), ¢ > 0, to see
that

I(p) =~ if p,>0and p; > 0.
Finally, excluding these two cases, one can show that
I(p) = (1 —py)log2 otherwise.

In fact P~ L' has large deviation rate function I on the probability simplex
in R*.

REMARK 2.1. A probabilistic characterization of the rate function follows
immediately from the definition. Let B, , denote the open ball of radius ¢ > 0
centered at x € X and let B,, be its closure. If {P,} satisfies the large
deviation principle with rate function I, then

1 -
I(x) = — lim limsup — logP(B c)

e—0 n

= — lim llmlnf IOg P (Bx e)

e—0

This is immediate since the lower semlcontmuity of I implies

I = limI(B = limI(B, ).
(x) = imI(B, ) egr(l)(x,e)

3. Convex rate functions. The goal is to replace C(X) with a smaller
class of functions which could simplify the calculation of I in the representa-
tion of Theorem 2.1. Assume henceforth that X is a closed, convex subset of a
locally convex and separated space E whose relative topology is that of a
Polish space. Extend I to E by setting I(v) = © when v € E — X. The
function I extended to E remains a large deviation rate function for the
sequence {P,} extended to E. We try to replace C(X) with the continuous
linear functions on E, which we denote by E’. The function I must be convex
if substituting E’ for C(X) is to yield I.

If f1 E—> (—»,x], let f*: E' - (—, ] denote its convex conjugate given
by )

f*(€) = sup(v, &) — f(v).
veE
It is a basic property of the convex conjugate that if f: E — (— o, »] is lower
semicontinuous and convex, then f** = f when the dual of E’ in the second
transformation on f* is taken to be E [see Ekeland and Temam (1974),
Proposition 4.1].
Define y(¢) for £ € E’ by

W(€) = lm (¢, € A M),

which exists according to Theorem 1.1.



222 I. H. DINWOODIE

THEOREM 3.1. Suppose that I is a convex large deviation rate function for
the sequence {P,}. Then * = I.

Proor. If I is convex and l.s.c., then I = I**, The theorem will follow if
we can show that ¢ = I'*. Now

Y(é) = lim ¢({-,¢) AM)
M—>oo
lim sup [{(x,¢é) AM —I(x)]

=0 X

= sup sup [{x,&) A M — I(x)]
M xeX

= sup [(x, &) — I(x)]

xeX

= sup [<v, &) — I(v)]

vek
=1I%(¢),

which proves the result. O

Let ¢(¢) = limsup(1/n)log E,, exp( - , £). Many large deviation results con-
cern themselves with * rather than ¢* [Gértner (1977), Ellis (1984),
de Acosta (1985)]. In particular, it is a result of de Acosta [(1985), Theorem 2.1]
that ¢* always works as an upper bound for compact sets whether the
sequence {P,} has or does not have a large deviation rate I. It is immediate
from the definitions that

(&) < P(&)

and thus we have the following corollary of Theorem 3.1.

CoroLLARY 3.1. If the sequence of probabilities {P,} has a convex large
deviation rate function I, then * is an upper rate function for all closed sets.

Proor. I =y* > y¢*. O

Suppose for the moment that P, is the law of the mean of an i.i.d. sequence
of random vectors {X;: i > 1}. From the monotone convergence theorem it
follows that

¥(€) = log Ee**V = y(¢).

Thus, whenever the law of the mean of an i.i.d. sequence of random vectors
has a large deviation rate function, the rate function must be the convex
conjugate of the logarithm of the moment generating function. Conditions
under which this sequence of probabilities does in fact have a large deviation
rate function can be found in Bahadur and Zabell (1979). In particular, it
follows easily from their results that the mean X, of any i.i.d. sequence
{X;: i > 1} in R! does indeed have a convex large deviation rate function. Then
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Theorem 3.1 can be used to give a simplified if indirect proof of Chernoff’s
theorem [Chernoff (1952), Theorem 1]. Most proofs of this fundamental result
become complicated when dealing rigorously with the case where the moment
generating function of X, does not exist [see Bahadur (1971), Theorem 3.1,
Azencott (1980), Théoréme 2.3]. Chernoff credits Cramér (1938) with the
result under strong conditions, but Chernoff furnished in the general case only
what he himself described as a brief sketch of a proof.

REMARK 3.1. The assumption that {P,} has a convex rate function I also
permits a strengthening of the probabilistic characterization of I. If {U }, . 4 is
any base of open and convex sets at x € E, then when I(x) < o,

(3.1) I(x) = sup{I(U,)},

(3.2) lim — logP(U) - —I(U,).

Statement (3.1) follows from Theorem 2.2 and the local convexity of E.
Statement (3.2) follows from the fact that the segment joining x to any
boundary point of U, is contained in U, and thus when I(x) < « and I is
convex, I(U,) = I(U,). Example 2.1 shows that (3.1) and (3.2) may hold even
when [ is not convex.

In Section 4 we proceed with computing ¢ and ¢* for the empirical law L,
of a Markov chain.

4. Application to Markov chains. In this section we turn to computing
(&) when studying the empirical probability measure L, of a Markov chain.
Let S be a Polish space with Borel field B and let {w(x, - ): x € S} be a family
of transition probabilities on S. Let u be an initial distribution on S and
define the Markov probability P, on the pair (Q = S*, B(S¥)) so that for
A XA, X XA, €B(Sh,

P(AL X Ay - X Ay) = [ du(ey) [ w(ay,dug) - [ w(xy, ).
A, A, Ay
The coordinate process {X;: i > 1} on 0 = 8” is a Markov chain and the
empirical law L, can be written

1n
=;§

The Polish space X will be the set of probability measures on S with the weak
topology and the vector space E containing X will be the set of finite signed
measures on S with the topology generated by the bounded continuous
functions on S acting as linear functionals on E. We are concerned with the
sequence of laws on X given by P, = P, L, !, Assume that 7 is a Feller
transition probability and define the operator T on the Banach space C(S) of
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continuous, bounded functions on S by

(4.1) T(&)(%) = [ exp(5,, £)g(y)7 (%, dy).
Define the measure u, on S by

(4.2) pe(A) = [ exp((3,, ©)u(dy).
Then we have the following representation for .

THEOREM 4.1. Suppose that {P, o L'} has a convex large deviation rate
function I. Then for any £ € E',

1 n
w(¢§) = limzlog/.bg[Tg] (1)
and I = §*.

Proor. Observe that if M > [|£]l = sup, < g 1£(y)l, then

1
o, E)AM) = limzlogfxexp[n«p,g} A M)]P“OL;I(dp)

1
_— _ o [,71
= lim " longexp[n<p,§>]P# L, *(dp)

since the measure P, o L' is concentrated on the probability measures and
{p, £) < €]l for every probability measure p € E. Therefore

1
¥(¢) = lim —log [ exp[n(p,£)]P, > L, (dp)
n X
1
= lim ;logfswexp[n<Ln,§>]P#(dw)

1 n
= lim — log[SweXp[iglg(yi)}PM(dw).
Now, de Acosta [(1985), page 557] showed that
[ e8| T 60| Bid) = 1)),
i=1 .

and therefore ¢ takes the form stated and it follows from Theorem 3.1 that
I=y* O :

The limit (£) can be related to two familiar quantities in the theory of
nonnegative operators. If r(¢) denotes the'spectral radius of the operator T, it
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is clear that
lim — loguf[T] (1) <logr(§).

On the other hand, if 7 is A-irreducible and k(¢) denotes the convergence
parameter of the operator T, [see Nummelin (1984)], the following lower
bound is always valid.

THEOREM 4.2. Suppose 7 is A-irreducible and let T, and p, be defined as
in (4.1) and (4.2). Then

1
k(f)]

Proor. We first produce a small measure [see Nummelin (1984), page 14]
inferior to u,T," for some n > 1. Let » be any small measure for the kernel
T;. Now pu, may be singular with respect to v, but u,T,;” cannot be singular
with respect to v for every m > 1. Indeed, suppose on the contrary that every
measure u,T,", m > 1, is singular with respect to v. Let A,, and B,, be a
disjoint decomposition of S such that

Let A= U _A_ andlet B=( B Then AUB=S, ANB = & and
v(A) =0, wT7(B)=0

for every m > 1. Now since B = S — A, it follows that »(B) > 0. Now by the
irreducibility of T, it follows that

S=U {x €S: T,*(x, B) > 0},
m

and therefore one of these sets, say {x € S: T,"°(x, B) > 0} has positive
wg-measure. Hence u,T,"°(B) > 0, which contradicts the assumption that
u T" was singular with respect to ». Hence one of the measures {u T}
m > 1}, say u,T;™, is not singular with respect to v.

Let a, be the (nontrivial) absolutely continuous part in the Lebesgue
decomposition of u,T,™° with respect to ». Define a new measure y on S by

lim — logp,g[T] (1) = log[

y(A)—f—/\ldv

Clearly, y(S) > 0, y < v, y < u,T;"° and finally y is small since
S®r=>s®vy.
Finally, it is obvious that

lim sup — logp,g[Tf] (1) > limsup — logy[Tf] (1)
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and the right-hand side is superior to log(l/k(¢)) by Proposition 3.4 of
Nummelin (1984) since vy is a small measure. O

We thus have trapped a potential convex rate function I in the following
way:

1 *
(4.3) [logr]* <I< [log ;] .
In the example below,
1
[log rI*(p) < ¢*(p) < |log ] (p)

for certain p € X and ¢* is in fact the large deviation rate function. In
particular, neither [log(1/&)I* nor [log rI* is the rate function.

ExampLE 4.1. Consider the Markov chain on the state space S = (1,2, 3}
with transition matrix

o

(=2~
D=

3
|
o O -

1

We identify the probability measures on S with the probability simplex in R3.
The Markov chain has maximal irreducibility measure 85, and since

72> Bl ® 8,
for some B > 0, it follows from Proposition 3.4 of Nummelin (1984) that if
&= (51’ §2’ §3)’ then

1
log — = lim — log 85T (1)
kf

1 loén 1loée 0 1
= lim - log[0,0,1]| 0  le®> Llefs [1}
0 0 efs
= &3.

Hence [log(1/k)*(85) = 0 and [log(1/k)]*(p) = « for p # §5.
One can quickly see that if p = (py, py, p3) belongs to the probability
simplex in R2, then

[log r*(p) = sup,{&,p; + &xps + £3P5 — logmaX{aefl, etz efs}}

= (p; t pg)log2.

Now by starting the Markov chain at state {2}, neither [log(1/k)[¥ nor
[log r¥ is the large deviation rate function for the empirical probability
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measure L, . The correct rate function is the convex conjugate of

n

1 %eﬁ %efz 0 1
#(6) =lim —1ogl0,1,0][ 0 ot fets| |1
0 0 efs 1

= logmax{je‘z, e%s},
which for (p,, p,, p3) on the probability simplex in R? is

pylog2, ifp, =0,
* =
] (pp Ds; p3) {oo, ifp1 > 0.

It is not hard to see that if the Markov chain starts at {1}, then [log rI* is the
large deviation rate function, whereas if it starts at {3}, then [log(1/&)]* is the
rate function.

In general, one cannot expect that [log(1/k)[¥ would equal [log r]*, as
Example 4.1 shows, since log r(¢) is, roughly speaking, lim(1,/n)log u AT ()
when u, and f are large (in an imprecise sense) whereas log(1/k(¢)) is,
roughly speaking, the same limit when u ¢ and f are small [in the precise
meaning of Nummelin (1984)]. A notion of a large measure u could be the
following: For some % > 0 and some 8 > 0,

k
(4.4) p Y w = Bw(x, )
i=1

for all x € S. Assuming (4.4), if {P,oL,"} has convex large deviation rate
function I, then ¢(¢) = log r(¢) and I = [log r1*. The proof is straightforward
and will be omitted.

Let us see how condition (4.4) applies to Example 4.1. The measures
satisfying condition (4.4) are those with some mass at {1}, which can be seen by
setting x = 1 in (4.4). But the measures for which the conclusion that I =
[log rI* holds are those with some mass at {1). Therefore the condition is
precise when applied to Example 4.1.

Recall that de Acosta [(1990), Theorem 6] showed that if (i) 7 is irreducible
and if (ii) for every m-closed set C and every x € C°, there exists 2 > 1 such
that 7*(x, C°) = 0, then [log(1/£)}* = [log r]*. Although the Markov chain in
Example 4.1 is §z-irreducible, the second of the two conditions of de Acosta is
not satisfied and [log(1/k)I* > [log r]*. It appears that even in simple cases
[log(1/k)]* may be strictly greater than [log rI* and that a large deviation rate
function can often be strictly between [log rI* and [log(1 /£)]*.

A discussion of the relationship between r and 1/k can be found in
de Acosta (1988). De Acosta [(1988), Remark 1, page 952] noted that the
existence of an irreducibility measure 8 with respect to which each transition
probability 7(x, - ) is absolutely continuous implies the two conditions of the
preceding paragraph. The existence of such a measure 8 is Hypothesis H of
Donsker and Varadhan [(1976), page 410],- under which the authors proved
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that the I-function
I q) = sup log dq

where u ranges over the bounded continuous functions bounded above zero,
serves as a lower rate function for L,. De Acosta [(1985), page 562] showed
that in fact the I-function above is equal to [log r]*.

Consider now an elaboration of Example 4.1 in which for every starting
point of the Markov chain the function [log rJ* is not the large deviation rate,
but there is a starting point for which the chain has large deviation rate

(log(1/R)I*.

ExampPLE 4.2. Let the countable state space S for the Markov chain be
{1,2,3,...} and let the transition probabilities be given by

11 1,
7Ti,i—1_2’ 124,
— 1 ;
7Ti,i_2’ 122.

The transition kernel is §;-irreducible and if ¢ = (£, &,,...) is a bounded
continuous function on S, then

log = lim n~ "' log 6,T;"(1y,) = &;.

k(¢)
Hence [log(1/k(£)I*(8,) = 0, but [log(1/E(EN]*(p) = = for p # §,.
It is easy to see that

log r(£) = log[sup{e, e, Je%, .. }]

and hence [log r1*(p) = (1 — pplog2 [set ¢ =(1 —log2,1,1,...) in the ex-
pression [log 7]*(p) = sup {(p, £) — log r(¢)} to attain this value]. If the chain
starts at the point 2 > 1, then it is easily shown that the large deviation rate
I, is

(pg +pg+ - tpy)log2, p,=0,i>k,
00 otherwise,

I(p) = {

which is clearly neither [log r]* nor [log(1/k)I*.
To formulate Proposition 4.1 we define a minimal closed set to be a
ar-closed and topologically closed set C, with the property that

(4.5) 7(x,C) =0

’

for fgevery x € C, and every m-closed set C. For example, a m-closed and
topologically closed set C, that is contained in every other mr-closed set is
minimal. In Examples 4.1 and 4.2, the minimal closed set is a singleton. Under
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Hypothesis H of Donsker and Varadhan (1976), the support of the irreducibil-
ity measure B is a minimal closed set.

Whereas Example 4.2 shows that even in simple cases the sequence {P, > L%}
may have a large deviation rate different than [log r[* for any starting point
z € S, this cannot happen for [log(1/k)I* in the presence of a minimal closed
set. The next result says that when there exists a minimal closed set,. every
starting point z € C,, begins a Markov chain such that the sequence {P,~ L'}
can only have [log(1/k)J* as a rate function.

PROPOSITION 4.1. Let m be A-irreducible and suppose there is a minimal
closed set C, C S. Then the sequence {P, > L, B with any initial distribution u
such that /.L(CO) = 1 has large deviation rate functzon I = [log(1/R)I* if in fact
it has a convex large deviation rate function.

Proor. Let I be the large deviation rate for the Markov chain with initial
distribution u. Let v be a probability measure on S. If »(C§) > 0, then since
C¢ is open, there is a weak neighborhood N, of v with q(C§) > 0 for all
q € N,. But by Remark 2.1, I(v) = . On the other hand, de Acosta [(1990),
page 417] showed that [log(1/k)[*(v) = © when »(C§) > 0 and C,, is m-closed.

Assume now that »(C,) = 1 and let v, be the restriction of v to C,. Define
the operator T : C(Cy) — C(C) by

T o(8)(%) = [ exp(¢3,, )g(y)m(x, dy).

Let ry(¢) denote the spectral radius of T, , and let %,(£) denote the conver-
gence parameter of the kernel T ,. (Note that if 7 is A-irreducible, then T ,
- is A-irreducible and %, is defined.)

Observe next that

[log lr(v(,) - e ] ).

To see this, let ¢ € C(S) and let ¢, denote the restriction of ¢ to C,. Since 7
is A-irreducible, any m-closed set C, has positive A-measure and hence from
Propositions 2.6 and 3.4 of Nummelin (1984), £(¢) = ky(&,). Therefore

1 17*
k(£) ngdVo log ——— 0(50) [ng_o] (o)

and [log(1/R)F(v) < [log(1/k)I*(vy). To show the inequa.lity in the other

direction, extend continuous functlons on C, to all of S and use a similar

argument.

Now it follows from the result of de Acosta [(1990), Theorem 6] discussed
before Example 4.2 that [log(1/k)I* = [log ryI* for all probability measures on
C,-. One looks at the Markov chain restricted to C, and notes that any closed

fsgdv—log
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set C for this Markov chain is actually a closed set for the original chain on S,
and thus 7(x,C°) = 0 for all x € C;, by the minimality of C,. Thus condition
(2) of de Acosta is satisfied and hence the equality follows. Then from (4.3) we
have that the large deviation rate function I, for the chain restricted to C, is
[log(1/%y)I*. But this means that

17" 17*
I(v) = Io(vo) = [log k_o] (vo) = [108 ;] ()

on measures v with v(Cy) = 1.
Together with the result when »(C,) < 1, it follows that I(v) =
[log(1/R)¥(») for all ». O

Examples such as those presented here indicate that many interesting
questions remain in the study of large deviations of L, for Markov chains
which do not satisfy conventional regularity conditions.

Acknowledgment. I would like to thank the referee for many helpful
comments and for the reference Bryc (1990).
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