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ON THE STOCHASTIC CONVERGENCE OF REPRESENTATIONS
BASED ON WASSERSTEIN METRICS?

By ArAcELI TUERO

Universidad de Cantabria, Spain

Suppose that P and P,, n € .#, are probabilities on a real, separable
Hilbert space, V. It is known that if P satisfies some regularity conditions
and X is such that Py = P, then there exist mappings H,: V — V, such
that Py  x, = P, and the Wasserstein distance between P, and P coincides
with (fllx — H(x)|® dP)"/2, n € .#. In this paper we prove that the weak
convergence of {P,} to P is enough to ensure that {H,(X)} converges to X
in measure, and that, if V = R?, then the convergence is also a.e. This
property seems to be characteristic of finite-dimensional spaces, because we
include an example, with V infinite-dimensional and P Gaussian, where
a.e. convergence does not hold.

1. Introduction. Wasserstein metrics can be defined in the following
way:

Let V be a Polish space and 8 its Borel o-algebra. If o: VXV >R is a
measurable, nonnegative map and P and @ are probabilities defined on S,
then the Wasserstein distance between P and @ with respect to o is related,
through a suitable increasing function, to

(1) o(P,Q) =inf{f¢rdA;A eM(P,Q)},

where M(P, ) is the set of all probability measures defined on 8 X 8 whose
marginal distributions are, respectively, P and Q.

These metrics are related to the so-called Kantorovich—Rubinstein problem
and were first developed by Kantorovich [9]. We use the terminology Wasser-
stein metrics as do most articles on the subject. Good surveys are [14] and [15].

Given two random variables (r.v.) X and Y defined on the probability space
(Q, a, u), we say that (X,Y) is an optimal coupling (o.c.) between P and @
with respect to o, if the marginal distributions of (X,Y) are P and @,
respectively, and

7(P,Q) = [o(X,Y)dnu.
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We often use the simpler expressions ‘“(X,Y) is an o.c. with respect to o”’
or “(X,Y)is an o.c.”

If V is a separable Banach space with norm || — I, o(x,y) = llx — yII’,
1<r <o, and P and @ are two probabilities on g8 that verify [|lx||" dP < «
and [|lx|" dQ < », then the o.c. between P and @ always exists; see [1].
However, explicit representations of the o.c. are only known when V = R; see,
for instance, [10, 20, 12]. If V= R”?, p > 2, only some partlal answers are
known even if we restrict our attention to o(x,y) =[x — y||

. Riischendorf and Rachev give in [17] a necessary and sufficient condition for
a given pair be an o.c. This condition allows them to find an o.c. in some
situations. Knott and Smith [11] show that if ¢ is a regular invertible
function, then (X, (X)) is an o.c. between P and P¢~'. This includes the
case in which P and @ are normal. In this situation, o.c.’s have also been
proposed in [5, 13, 8]. Riischendorf [16] solves a problem qu1te similar to (1).
Finally, when V is a Hilbert space and o(x,y) = [lx — ylI?, it is proved in [3]
that if P satisfies a continuity property, then there exists an o.c. between P
and @ of the form (X, H(X)), where H is increasing in the Zarantarello sense
(see definition and Proposition 2.3 below).

On the other hand, if V = R, the result in [12] mentioned above is equiva-
lent to the following proposition:

Let P and @ be probabilities on B, with P continuous. Let H be an
increasing function and let X be a r.v. such that the distribution of X is P
and that of H(X) is @. Then (X, H(X)) is an o.c. between P and @.

The required increasing function always exists (take H = G~ ' F, where F
and G~! are the distribution function of P and the quantile function of @,
respectively).

This construction is related to the following Skorohod representation theo-
rem:

“If V=R and {P,} are probabilities on B that converge weakly to the
probability P (P, —,, P), P is continuous, X is a r.v. with distribution P and
H,, n € ¥, are increasing functions such that the distribution of H,(X) is
P,, then H,(X) converges almost everywhere (a.e.) to X (H(X) —,, X).”

Note that the key to both results is the increasing character of H. This and
the result in [3] suggest the following question:

Let V be a Hilbert space and (X H,(X)) an o.c. between P and P,, n € ./,
with respect to o(x,y) = |lx — yl|°. Let us suppose that P, -, P. Is it then
true that H (X) —,, X?

Surprisingly the answer is yes, without any additional hypothesis if V = 7
(Theorem 3.1), but Theorem 2.6 and Example 3.4 show that the convergence is
only in probability when V is an infinite- dlmenswnal Hilbert space, even if P
is a Gaussian distribution.

Finally, let us mention that some generalizations of Skorohod’s representa-
tion theorem are available: The theorem was proved by Skorohod in [19] for
Polish spaces; more general versions have been given in [6, 21, 18]. The
existence of simultaneous representatlons has been obtained in [2] and inde-
pendently in [7].
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2. Convergence in measure. First we present the notation to be em-
ployed. From now on we denote by V a real, separable Hilbert space, by
{(—,—=>, -1 and B its inner product, norm and Borel o-algebra, respec-
tively.

I, is the identity and X,Y,... (with or without subscripts or superscripts)
represent V-valued r.v.’s defined on the same probability space, (2, a, u), and
such that [|X|I®du, [IY|?du,... are finite. Py, Py,... denote their proba-
bility distributions.

Zlv,w,...] is the linear subspace spanned by v,w,... and -Z[v,w,...]*
is the corresponding orthogonal subspace. The angle between the vectors v
and w is denoted by v, w or by ang(v, w).

Let w eV, w # 0, v € Z[w]*. Let P be a probability on 8. We represent
by P, and P,(— /v) the marginal probability on .#[w] and a regular condi-
tional probability on #[w] given v, respectively.

Given t €V and r > 0; B(¢,r), B(t,r) and S(t,r) are, respectively, the
open ball, the closed ball and the sphere of center x and radius r. If A is a set
in V, then A° A and v(A) denote its topological interior, closure and bound-
ary, respectively.

We only use (1) in the case o(x,y) = l|lx — yl|>. Therefore, given two proba-
bility measures P, @ defined on B such that [||x|[* dP < « and [[x* dQ < ,
the Wasserstein distance between them is (W(P, @))'/%, where

W(P,Q) = inf{fIIX— Y|®du, Py =P and Py = Q}

and we say that the pair (X, Y) is an o.c. between P and @ if Py = P, Py = Q
and W(P,Q) = [IIX - YII* dp.

Finally, given a function H: D cV —» V, we say it is increasing if it
satisfies (H(x) — H(y),x —y) = 0 for every x,y in D.

We use the following condition to solve some measurability problems (see
Proposition 2.2). )

Let P be a probability measure on 8. We say that P satisfies ¢ if there
exists a dense sequence {w,} in S(0, 1) that contains a complete orthonormal
system and for every n and almost everywhere w in -£[w,1*, P, (- /w) is
atomless.

€ is related to the continuity of P and holds in many common situations.
For instance, it is easy to prove that P satisfies ¢ if V=R? and P is
absolutely continuous with respect to the Lebesgue measure. We will see next
that if P is a nondegenerate Gaussian measure in an infinite-dimensional
Hilbert space, then it satisfies €.

ProrosITION 2.1. Let P be a Gaussian distribution on B and let S be its
covariance operator. If V= _Z[v € V: Sv = A ,v; A, # 0], then P satisfies €.

ProoF. Let {e,} be a complete orthonormal system in V of eigenvectors of
S. We will show that it suffices to take as {w,} the set of the vectors in S(0, 1)
which are finite linear combinations with rational coefficients of vectors in {e,}.
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Let w = X7_,a;e; with «; rational, i = 1,2,...n, and let v, = w,v,,...,v,
be an orthonormal basis of #[e,...,e,]. Let m; be the projection from V on
Zlv;] for 1 <i <n and from V on _Z[e,] for i > n, respectively. Let A be a
set in the Borel o-algebra in f. Taking into account that

E[I(ﬁeA}/o'(Wz, ey Ty Ty i1y - - )] = E[I(,TleA)/O'('n'z, ... ,wn)] .

we obtain that a version of the regular conditional probability of A, given
u € £[v,]*, coincides with a version of the regular conditional probability of
A given 7*, where 7* is the projection on .#[v,,...,v,] which is a nondegen-
erate normal. O

With the next proposition, we solve some measurability problems. Its proof
is given in the Appendix.

PrOPOSITION 2.2. Let P be a probability measure satisfying <. If D € B8
and H: D —» V is an increasing mapping, then H is measurable in the
P-completed o-algebra.

¢ implies the hypotheses of Theorem 2.8 in [3], which is stated here for
further reference.

PROPOSITION 2.3. Let P, @ be two probabilities on B such that [ llx|I? AP
and | lxl|”> dQ are finite and suppose that P satisfies €. Let X be a r.v. such
that Py = P. Then there exists a mapping H: D c V — V such that:

(i) For every x, x' in D: (H(x) — H(x'),x —x') > 0.
() Pyix, = Q.
(iii) f||X H(X)I?du = W(P, Q).

ReEMARK. Note that D in the previous proposition is a P-probability 1 set,
so often D will not appear in the notation.

On the other hand, after Propositions 2.2 and 2.3, whenever we have a
probability P which satisfies € and we need to choose an o.c. between P and
another probability measure, we will always take it as (X, H(X)), where X is a
r.v. such that Py = P and H is increasing in a P-probability 1 set.

We will show next that the o.c.’s give a Skorohod representation for the
convergence in distribution if we just want to get convergence in measure. We
start with the following proposition, which is a trivial consequence of Theorem
2 in [17], and continue with Lemma 2.5, which is a trivial consequence of
Lemma 8.3 in [1].

ProprosITION 2.4. Let P, @ be two probability measures on B such that P
satisfies €. Suppose that H: D c V - V is such that (X, H(X)) is an o.c.
between P and Q. Let A € B such that P(A) > 0. Let P, be the P-conditional
probability measure given A. Let Y be a r.v. such that Py= P, and let
P 2 = P HY)"
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Then (Y, H(Y)) is an o.c. between P1 and P, and

W(Py, Py) = gy [l — H)I aP.

P(A

LEMMA 2.5. Let P be a probability measure defined on B such that [||x||*> dP
is finite. Let {B,} be a sequence of measurable sets such that { P(B,)} converges
to 1. Let Q, be the P-conditional probability measure given B,, n € .#. Then

lim W(Q,, P) = 0

The next theorem is proved by using a truncation technique for the con-
struction of two sequences of probability measures such that their Wasserstein
distances converge to 0.

THEOREM 2.6. Let {P,}, P be probability measures on B such that P
satisfies €, [llzl|®> dP < =, fIIacII2 dP, <o, ne 4, and P, >, P. Let X be a
r.v. with Py =P and H,: D, CV—-> V, n €., such that (X H, (X)) is an
o.c. between P and P,, n € .

Then H,, —., 1;.

Proor. Let {A,}, be a sequence of bounded, measurable, P-continuity sets,
such that P(A,) > 1 — (1/r),r € 4. Let r,n € .# and consider the probabil-
ity measures defined by

1
P! .(B) = mP[Hgl(Ar) nBJ,

P% (B) =P} ,[H,Y(B)],
1
(B) = 5z )P[A N B].

First we prove the existence of a subsequence, {W(P, ., P? )},, which
converges to 0.
By the triangular inequality, we have

1/2
(W(Py,,» P2))

< (W(P},, P)"* + (W(P,Q))"" + (W(&, P,))

Let r € .# be fixed and let B € B such that @,.(v(B)) = 0. Then, A, N B is
a P-contlnulty set and Lemma 8.3 in [1] implies that, for every r € .#,

W(Qr, n r n — 00 0’
- On the other hand, varying r, we obtain the existence of a subsequence

{n,}, such that
(3) P(H;(A,)) =, 5w 1.

(2)

1/2
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Then, by Lemma 2.5 and (2),
(4) W(P}

n,,ro

P?,) =, 5x0.

r—ow

Now note that if X, issuchthat Py =P, ,,r&€ ./ then Py x ,=P? ,
so by Proposition 2.4, i "

1

2
PO HAD) b I e T 0P

W(P! ,,P%.)=

n.r’ n,r

and from (4):
_ c.p.
I,ap(la = H,) = 0,

where I, denotes the indicator function of the set C, and then

H, 51,
n—woo
Therefore we have proved that every subsequence of {H,} possesses a new
subsequence, {H,, }, such that H, - 5 _1I,, and, consequently, H, — PI,.
O

3. Almost everywhere convergence. In the preceding section we have
needed the fact that {H,} are increasing only to prove their measurability. The
increasing character of { H,} is essential in this section because the main result
(Theorem 3.2) relies on Theorem 3.1 which is, essentially, a property of
increasing functions.

THEOREM 3.1. LetV =RP p € 4. Let {P,} and P be probability measures
on B such that P is atomless, P satisfies €, P(S(P)°) = 1, where S denotes
support, fIIacIl2 dP < x, fIIxII2 dP,<»,ne ., and P, -, P. Let X be a r.v.
with Py =Pand H,: D, cV -V, n € 4, be increasing functions such that
(X, H,(X)) is an o.c. between P, and P, n € V.

Then

Hn “ae. Id'

Proor. Note that it suffices to prove that {H,(x)} converges to x for every
x in S(P)° N liminf D,.

Therefore, let x € S(P)° N liminf D, and n, € # such that x € D,, V
n>n,. Let n > n,. We use the following notation:

en = Hu(x) — x|,
B(x,(¢,/2V2)) N {y # x: ang(H,(x) — x,y —x) <7/4} N D,

B, = ife, >0,
@, ife,=0.
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Let y € B,; then y # x, and, taking into account that H, is increasing,

<Hn(y) _x’y—x> > 8,1\/—2—
lly — I T2

I H () = =] =

Hence

€p

&
— <|H(y) — x| <|H.(y) — 5| +ly — 2l <|H (y) —y| + —.
5 <IHu(2) — =l <[ H(y) =yl +lly - xll <[ H () - 5] o

Thus
8n

H -yl = >y —xll,
[H.(y) -] 55 ly — xll

which shows that B, c V, .= {y € D,: |H (y) — yll = lly — xll}.
Let ¢ > 0. Then

0 < limsupP(V,)
< limsup(P{y: [|H,(y) — y|| = &} + P[B(x,¢)]) = P[B(x,¢)]

since H, —., I; by Theorem 2.6. Now letting ¢ tend to zero, we have that
lim P(B,) = 0, because P has no atoms.

Let us next suppose that (¢,} does not converge to zero. In this case there
exists £ > 0 and a subsequence {¢,,} such that ¢, >, V k.

Let y,, be the projections of H, (x) on S(x,(s/ 2V2)). Then there exists a
subsequence (which we still denote {y,,) which converges to x, in
S(x,(e/2V2)).

Let A = B(x,(¢/2V2)) N {y # x: ang(x, — x,y — x) < w/4}; then P(A) >
0 because x € S(P)° and

>

A Climinf[B(x, 5\/2:) N {y #x:ang(H,(x) —x,y —x) < g}

which contradicts that {P(B,,)} converges to zero.
So, {£,} converges to zero and the theorem is proved. O

We now summarize Proposition 2.3 and the preceding theorem in the
following result which shows that the o.c.’s, besides their importance from
the Wasserstein metric viewpoint, can be used to get a.e. representations for
the convergence in distribution in R~.

THEOREM 3.2. Let V=RP p € A Let {P,}, P be probability measures on
B such that P is atomless, P satisfies ¢, P(S(P)°) =1, [llx|®dP < o,
[lxl* dP, < o, n € 4, and P, -, P. Then, there exists a sequence of r.v.
{(X,,, X)} such that:

@ (X, X) is an o.c. between P, and P, n € ¥
G) X - X

n a.e.

(iii) X, = H,(X) with H, increasing, n € 4.



WASSERSTEIN METRICS 79

Next, as stated in the Introduction, we are going to construct a counterex-
ample to Theorem 3.1 in infinite-dimensional Hilbert spaces. The key is that in
these spaces, B(x, 1) is not compact but weakly compact and this precludes the
use of the arguments leading to a.e. convergence. Moreover, the distributions
{P,} and P in our counterexample are such that P is Gaussian and, from
equality (5) below, :

sup | P,(A) — P(A)| - 0.
Aep

In the construction we use the following lemma:

LemMA 3.3. There exist two sequences of real numbers, {a,} and {o,}, such
that a, <0, 0,> 0, Lo? < o and plZ, > 0] = 1/(n + 1), where Z, is a real
r.v. with normal law N(a,,02), n € A.

ProoF. Let Y be a real r.v. with normal distribution with mean 0 and
variance 1 and let y, and &, (> 0) be such that Y satisfies ulY > y,] =
1/(n + 1) and u[-8, <Y <§,]=1— 27" It suffices to take

1 d ~Yn
T C A 3 R Y G

The example is as follows.

ExampLE 3.4. Let {e,} be a complete orthonormal system in a real, separ-
able, infinite-dimensional Hilbert space V. Let {«,} and {o,} be the two
sequences in the preceding lemma and let S be the operator given by
S(Xx,e,) = Loz x,e,. Then there exists a Gaussian measure P on B with
mean vector m = YL, e, and covariance operator S. The measure P satisfies
¢ by Proposition 2.1. Let n € # and E, = {x € V: («, e,,) > 0}. We define P,
as follows:

Let A €8:

P(ANES) =P(ANEY),
P(AN(E, +e,)) = P((A-e,) NE,),
P(ANE,Nn(E,+e,)")=0.
Then P, —, P because for every A € B, n € 4"
(5) P(A)=P(ANE;)+P((A-e,)NE,)

and {P(E¢)} converges to 1.
JLet X be ar.v. such that Py = P and

H x, if x € E¢,
W(%) = x+e, ifxek,.
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It takes an elementary computation to see that H, is increasing and
Py (xy = P,. Since P satisfies ¢, by Proposition 2.3, we can assume that there
exists (X, G (X)), that is an o.c. between P and P,. Then, we have

W(P,P,) = W(P", P}) = P"[0,) = [|lx - H,(x)|*dP,

where P", P? are the nth marginal distributions of P and P, and then
(X, H (X)) is an o.c. between P and P,.

To end, note that {x: H,(x) » x} = lim sup E, and that P(E,) = 1/(n + 1).
Then, by the Borel—Cantelli lemma, the conclusion holds if we prove that {E,}
are independent events. For this, let i, ,,...,7, be natural numbers. Now

P(E; NE;,N - NE;)=Prizi0,w) X X[0,),

where P'viz--ir i the rth-dimensional marginal distribution of P on the

subspace ZTe; ,e;,,...,e; ], which in turn, is a normal distribution with
independent marginals.
Then

P(E,.1 NE_ N--nN Ei,) = P(Eil) X -0 X P(Eir).

APPENDIX

To end the paper we give a proof of the measurability of increasing
functions. We need some auxiliary results, most of which are of a geometrical
nature.

LemMmA 4.1. Let t € Vand 6 > 0. Let {w,} be a sequence of elements from
S(¢,8), dense in it. We define R, ={x € V: {x —w,,t —w,) <0}, n €.
Then

B(t,8) = NRE.

Proor. Let x € B(t, 8). We have that
(x—tt—w,) > —8%= —(t — -w,)

and, therefore, (x — w,,t — w,) > 0. On the other hand, let x & B(¢,5). It
suffices to consider y = ¢ + (x —tX8/llx — tl) and a subsequence of {w,},
{w, }, such that w, —, .y in order to get the existence of n € .#" with

xeR ]

LEMMA 4.2. Let 6 > 0 and x,y €V, y # x. Then
llx — yli
(I — yII? + 82)"

for every z € B(x, 8) such that (z — x,y —x) < 0.

ang(z —y,x — y) < arccos
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Proor. If{(z—x,y —x) =0,
o — ) llx — Il . llx — Il
cos(z —y,x—y) = iz =
(Iz - xl® + llx —y||2) (llx - ylI? + 82

Suppose that (z — x,y — x> < 0. There exists a, € (0,1) such that if z* =
agy + (1 — ay)z, then (z* —x,y —x) = 0 and

1/2 "
)

—

cos(z* -y, x— y) =cos(z —y,x —y).

Therefore the lemma holds. O

PROPOSITION 4.3. Lett € Vand r > 0. Let p € V be such that ||p — tl| = r
and define R, ={y € V:{y —p,p —t) > 0}. Lety € R,,,. Then, there exists
e = (e(y, p, t)) € (0, w/2) that satisfies

{z#y:ang(z —y,p —¢t) <w/2+¢} NB(t,r) =

Proor. To simplify the expressions set w = p — ¢. Let « € R be such that
x =y + aw is the unique point in the set [y + Llwll N[p + Llw]*]. It
follows from {x — p,w) = 0 that & < 0 because y € R,

Let & = ||t — x|| + r. It is evident that B(x, 8) > B(¢, r).

Let &* = arccos [|lx — yll/(lx — ylI> + §%)'/2. Note that & =m/2 —&* €
(0, 7/2). Let us show that ¢ satisfies the proposition.

First, note that if z satisfies (z — p, w) < 0, we have

(z—x,y—x)={z2—p,—aw) +{p —x, —aw) < 0.

Then, if z € B(x, 8) and {z — p,w) < 0, by Lemma 4.2, we may conclude
that ang(z — y, x — y) < &*.

By the same argument as in the proof of the Lemma 4.1, if (z — p, w) > 0,
then z & B(¢,r). So, B(t,r) c {z: ang(z — y, aw) < &*}.

Finally, taking into account that a < 0, we have

{2:ang(z —y,aw) > e*} = {z: ang(z —y,w) <7/2 + ¢}. ]

ProposITION 4.4. Let w € Vand H: D c V — V be an increasing function.
Then for every & € (0,7 /2), there exists 8, € (0,7/2) such that if ang(y —
x,w) <8, y,x €D, then ang(H(y) — H(x), w) <7/2 + ¢.

Proor. To prove this proposition we use the following function (which has
been suggested as a definition of the angle between two vectors in [4], page 74):

u v
el Tloll
¢ is related to the usual definition of angle through the function

¢:[0,11] - [0,2],

6 — 2(1 — cos®(6/2))

; u,veV.

1/2
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In fact, after some computations, we obtain that

o(u,v) = ¢(u,v).
Therefore, by the triangular inequality,
) ¢(ang(H(y) — H(x),w))
< ¢(ang(H(y) — H(x),y — x)) + ¢(ang(y — x, w))

Let p €(0,2) be such that ¢(7/2) + p < o((7/2) + €). Then there exists
8, € (0, 7) such that ¢(3,) = p. Thus, if ang(y — x,w) <4, y,x € D, by (6)
we obtain that ¢lang(H(y) — H(x), w)] < ¢(1/2 + ¢) and therefore

ang(H(y) —H(x),w) <w/2 +e. a

ReEMARK. Note that in the preceding proposition, §, does not depend on x

or w. It only depends on e.
The following result is a corollary of Propositions 4.3 and 4.4.

COROLLARY 4.5. Let H: D ¢V — V be an increasing function. Let t € V
andr > 0, and let p € Vsuch that ||p — tll = r. We definetheset R ,, = {y € V:
(y —p,p—1t) >0} Let x €D such that H(x) € R,,. Then, there exists
(= 8(x, p,t)) € (0,7/2) such that

yeD, ang(y—-=x,p—1t)<6é=H(y)¢&B(,r).

LEMMA 4.6. Let x,w € V such that |lw|| = 1 and let 6 € (0,7/2). Then the
set C, , o= {y # x: ang(y — x, w) < 6} is open.

Proor. Let yeC, ,, and y, =y — sw, where s > 0 is such that y, €
Cy o Let z€C, , o Then z + x and
(z—x,w) (z—ypw) llz—yll <y —x,w) ly, —«ll
lz = xllllwll Nz = yillllwl lz ==l Iy, — =l lwll llz =l

lz = yqll + lly, — «ll
> cos 0 > cos 6.
lz — Il

Therefore C, ,, < C, , -

Now let v be such that [[vll = 1 and v, w= 0. Let r = inf{|ly — (y; + ho)ll,
h € R}. Some computations give that r = s(1 — cos? 6)'/2 independently of v.

Note that y, & B(y,r). Let z # y; be such that ang(z — y;, w) > 6. Then
there exists p, € (0, 1] such that ang(y + py(z — y) — y;, w) = 6 and therefore

r<lly =y — (v +po(z —y) —y)| <llz -yl

“so that the lemma is proved. O

Before starting with the next proposition, let us present some notation.
Given t €V, 8§ >0 and {w;} a denumerable set in S(¢,8) with the same
properties as those in Lemma 4.1, let us denote B = B(¢,8) and R, = {x € V:
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(x —w;,t —w;) <0}. Now, if H: D cV -V is increasing, we set ./, =
{ie #* HYR,) + O} and, for every i € /:

(i) Let x € A(w; — t)* and p be such that y = x + p(w; — )
€ H R;). Weset C, ,,=C,, ., where 0 is a positive

real number chosen in such a way that DnC, ,;
H~YB®). Such a 6 exists by Corollary 4.5.

(ii) I = U Cx,p,i‘

x+p(w,—)eH YR))

fi: Llw; —t]" > R,

(i)
x = infla: x + a(w, — t) € T}}.

(iv) A ={x:x €L (w,—t)" and fi(x) # =}

(v) N; = {x + fi(x)(w; — t),x € A} N H (B°).

Note that for every x € A(w; — )+, {a: x + a(w; — ¢) € I}} is a nonempty
interval without upper bound.

ProposiTioN 4.7. Let t€V, r>0 and assume that H: DcV -V
is increasing. With the notation just presented we have that H™'(B°) =
Uies[(T; N D) U NI

Proor. H '(B°)> U, ,(I; nD)UN,) by the definitions of I} and of
N;.

Now, let x € H (B°). Lemma 4.1 implies that there exists i, such that
H(x) € R; . Then i, € #, and, if we write x =x, + a(w; — t), with x, €
Lw;, — t)l then f; (x;) < a. Thus, if @ = f; (x,), then x, e A, and x € N, ,
by deﬁnltlon of N, .

Otherwise, « > f;(x;) and there exists &> 0 such that x, + (a —¢)
(w;, —t) €T; and x € I;, N D and the proof is complete. O

THEOREM 4.8. Let P be a probability measure on B satisfying € and B be
the P-completion of B. If D € B and H: D c V — V increasing, then H is
B-measurable.

Proor. We use the same notation as in the f)receding proposition. Let
t €V, r> 0, and we denote B B(t,r).
. We have

H-Y(B°)=(TND)UN, whereT'= (JTI, and N= | N.
T e iet,
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I' is an open set by Lemma 4.6. Thus, the proof will be complete if we prove
that N, i € .4, is a P-null set. O

Let i € #,. We define g,;: V> R by g; = f,m¥ — m,, where =, and = are
the projections from V on -#[w; — ¢] and on #[w; — ¢]*, respectively. g; is a
measurable mapping and g; X(0) = {x + f.(x)Xw; — ¢),x € A,}. Then this set is
measurable.

On the other hand, V = Z{w; — ¢] ® £[w; — ¢t]* . Then

Pla + fx)(w, = 1),x € A} = [ Py ({fi(x)}w) d(w),

where P, _,(—|w) is an atomless version of the regular conditional probability
on L[w; —t] given we Llw,—¢t]* and u; is the marginal of P on
Zlw, — t]*. Then P{x + f(xXw; — ¢),x € A,} = 0 and so N, is a P-null set.

O
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