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LARGE DEVIATIONS FOR MARKOV PROCESSES
CORRESPONDING TO PDE SYSTEMS

By ALEXANDER E1ZENBERG! AND MARK FREIDLIN 2

Hebrew University and University of Maryland

We continue the study of the asymptotic behavior of Markov processes
(X?(t), v5(t)) corresponding to systems of elliptic PDE with a small parame-
ter £ > 0. In the present paper we consider the case where the process
(X*4(2), v¥(¢)) can leave a given domain D only due to large deviations from
the degenerate process (X(¢),»°(¢)). In this way we study the limit
behavior of solutions of corresponding Dirichlet problems.

1. Introduction. Consider the Dirichlet problem for the PDE system

wwr(x) + f'. dyj(x)(us(x) —us(x)) =0, xeDCR,
j=1

usloD = ¢, uj, € C?*D)nC(D), k=1,...,n.

(1.1)

Here D is a connected bounded domain with a C2-class smooth boundary dD.
The differential operators Lj are given by the formula
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for any u € C%D), ¢, € C(OD); (a¥/(x)) = a,(x) € C*R") are positive defi-
nite matrices, k = 1,...,n; d,(x) > 0, ¢ > 0 and b, d,; € CY(R™). Without
loss of generality, we assume that the coefficients as well as their first
derivatives remain bounded in R”. In the present paper we continue the study
of the asymptotic behavior of u5 when ¢ | 0 that was started in Eizenberg and
Freidlin (1990). Recall that the system (1.1) can be associated with a right
continuous Markov process (X4(¢), v(¢)) with the phase space R” X {1,...,n}.
The first component X*(¢) satisfies the stochastic differential equation

(1.3) dXe(t) = Ve 0, ( X2(2)) dw () + b, ( X°(2)) dt,

where 0,(x)of(x) = a,(x), by(x) = (bp(x),...,b5(x)), k =1,...,n, and w(?)
is a Brownian motion in R”. The second component v*(¢) is a random process
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1016 A. EIZENBERG AND M. FREIDLIN

with the states {1, ..., n} such that
P{ve(t + A) =jlve(t) =i, X°(¢t) =x} = d;;(x)A +o0(A)
(1.4)
uniformly in R”,

provided A |0, 1 <j,i <n, i+ j. Denote

(1.5) 7¢ = min{¢: X°(¢) € dD}.

The solution {z§(x),..., u%(x)} has the stochastic representation [see Eizen-
berg and Freidlin (1990). Theorem 3]

(1.6) up(x) = E, pih,eoe( X°(7%)).

[Here, as usual, the subscript x,%k means the initial condition X®(0) = x,
v°(0) = k.] It was pointed out in Eizenberg and Freidlin (1990) that in contrast
to the case of a single equation, in the case of systems the degenerate process
(X°(#), v°(2)) is not a dynamical system, but a random process. In the case of a
single equation the asymptotic behavior of solutions depends, as is known, on
the properties of trajectories of corresponding dynamical systems. Similarly, in
the case of systems we can describe several typical situations according to the
behavior of the degenerate process (X °(¢), v°(¢)). Let 7° = min{¢t: X°(¢) € 4D}
be the exit time of X°(¢) from D. In Eizenberg and Freidlin (1990) we
considered the situation where P, ,{r° < o} = 1. The last assumption is analo-
gous to the Levinson conditions for a single equation. It was shown that in
such a case the solution {u{(x),...,u%(x)} of (1.1) tends to the solution
{u(x),...,u’x)} of the corresponding degenerate system with the same
boundary conditions on the regular part of the boundary, as ¢ | 0.

In the present paper we will discuss the situations where the trajectories of
the process X°(t) starting from some point x, € D remain in D with a
positive probability; that is,

(1.7) P, ,{r°=o} >0 forsomex,<cD,1<k,<n.

X0, ko
More precisely, we will concentrate our attention on the case where the
degenerate process hinders the exit from D and the exit occurs only due to the
large deviations of the process (X°(¢),v¢(¢)) from the degenerate process
(X°@), v°()).
This case is a generalization of the situation considered in Wentzell and
Freidlin (1970) for the Dirichlet problem with a single equation

*u’(x ) . du’ (x)

(1.8) —Za“( )(9 Tand Zb() =0, uloD =y

[see also, Freidlin and Wentzell (1984) and Freidlin (1985)], where the vector
field b(x) = (bX(x), ..., b"(x)) satisfies the condition

(dl 9 (n(x),b(x)) <0 forxe€dD

' [here n(x) is the outward normal to dD]

and the corresponding diffusion process X°(¢) exits D only as a result of large
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deviations from the dynamical system X°(¢) defined by
dX°(t)
dt

It was shown in Wentzell and Freidlin (1970) that the rough asymptotic
properties of the probabilities of large deviations in the case of a single
equation are defined by the functional

(1.11) Ir(¢) = [ L(e(s), 6()) ds

for any ¢ € C; 7(R") absolutely continuous [otherwise one sets I (o) = ],
where L(x,v) = (¢~ Nx)(v — b(x)), v — b(x)) for any x,v € R”. More precisely,
(1/e)I;(¢) is the action functional for the family of measures u® induced by
the diffusion processes X“(¢), 0 < ¢ < T, on C;, +(R") as £ | 0. One of the most
important results concerning the cases where (1.9) is satisfied can be formu-
lated as follows.

Denote

(1.10)

= b(X°(2)).

V(z,y) = inf  Ip(e).
¢: [0, T]->R"
o(0)=x,
o(T)=y
T>0
Suppose that there exists a compact K € D that contains all the limit points of

(1.10) and
V(x,y) =0 forx,y € K.

If there exists y, € dD such that
V(K,y,) <V(K,y) forye€dD,y #y,
[here V(K,y) = V(x,y) for any x € K|,
then
lifr&u*’(x) =y(y,) forany x €D,

where u‘(x) is the solution of (1.8).

In the present paper we will develop a similar approach for the case of
systems and, in particular, we will study the large deviations of the diffusion
component X*(¢) from the degenerate random process X °(#). Such a class of
large deviations problems was discussed by Bezuidenhout (1987) for the
particular case when the discrete component was a Markov process itself or, in
other words, the functions d,;(x) were independent of x.

In the present work we consider the general case of the Markov process
(X*(8), v(¢)) given by (1.3) and (1.4). Similarly to Bezuidenhout (1987), we will
assume throughout this paper that a%/(x) = §; ;- It seems that the case of
general diffusion matrices a,(x) requires a more sophisticated approach. We
will give a simple and explicit representation for the lower semicontinuous
version of the action functional for the family X*“(¢) when ¢ | 0.
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One can see, however, from the formula (1.6) that it is necessary to know
not only the action functional for X°(¢), but also the limit behavior of v*(+°) to
get the complete picture concerning the asymptotic behavior of u%(x).

We describe the limit behavior for the second component in Section 3,
together with the precise formulation of the main results of this paper.

2., The general approach. Through all this work we will assume that
the second order terms of the operators Lj are equal to the Laplacian, that is,

a/(x) = §, ; for any k =1,...,n. Thus, the stochastic differential equation
(1.3) takes the form
(2.1) dXe(t) = Ve dw(t) + b, ( X°(t)) dt.

Our purpose in this section is to derive uniform large deviation estimates for
the process X°. Using absolute continuity we reduce the problem to large
deviations for the simpler process Z¢ defined in (2.2) and (2.3) and utilize the
fact that Z° is a continuous functional of the independent processes sw and ».
We accomplish this in three steps. Our first step is to formulate some class of
rather abstract Assumptions A-D concerning continuous functionals acting on
products of measure spaces and to show that those assumptions are satisfied
for the process Z°. Next, in Theorem 1 we prove that the assumptions imply
some large deviation estimates for the measures induced by such functionals.
Finally, in Theorem 2, we extend these estimates to the process X°.

Now we pass to details. As in Eizenberg and Freidlin (1990), we will use the
fact that the measure !¢ induced by (X*(¢), »*(¢)) in the space of trajectories
for 0 <t < T is absolutely continuous with respect to the measure u%®
induced by the Markov process (Z¢(¢),v(¢)), which can be defined in the

following way: v(¢) is a discrete Markov process on a phase space {1,...,n}
with the transition probabilities
(2.2) P{v(¢t + A) = klv(¢) =i} = A +0(A), ALO

for any i # k, 1 <i,k <n, and the process Z°(¢) is the solution of the
stochastic differential equation

(2.3) dZ*(t) = Ve dw(t) + b, Z°(2)) dt,

where w and v are assumed to be independent. As was pointed out in
Eizenberg and Freidlin [(1990), Section 3], the density is given by the formula

dule
PHZ) () = T (Z0),0(0)

n(T)-1
'l_!) d”(m)”(mﬂ)(zs( Mi+ 1))
i=

(2.4)

n(T)
Xexp| — Y, [an‘AT(dy(n,)(ZE(S)) —n+ 1) ds |,
i=0 "M

i
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where

(2.5) dy(x) = 1§1dkl(x),
l+k

7, is the sequence of Markov times defined by

(2.6) mo=0, 1M1 =inf{s > n;:v(s) # v(n,)}
and
(2.7 n(T) = max{iln, < T}.

[If n(T) =0, pp(Z(-),v(-) = exp(— [ (d,(Z(s)) = n + 1)ds).] Similarly
to Eizenberg and Freidlin (1990), at first we will consider the properties of the
auxiliary Markov process (Z*(¢), (), and then we will extend these results
onto the process (X*(¢), v*(2)).

The Markov processes of type (Z¢(¢),v(¢)) were studied by Bezuidenhout
(1987), where they were considered as a particular case of a more general class
of Markov processes (X*(¢), £(¢)) such that £(¢) is a Markov random process
itself and X°*(#) satisfies the stochastic differential equation

(2.8) dXe(t) = e dw(t) + b(X*(t), £(t)) dt.

Here the Brownian motion w(#) is supposed to be independent of £(#), the
bounded function b: R” X R? — R” satisfies Lipschitz conditions and R?,
d > 1, is a phase space of £(¢).-[The other example of such processes was
considered in Freidlin and Gartner (1978), where £(¢) was assumed to be a
Markov process in R? with continuous trajectories and 5(x, y) was assumed to
- be continuously differentiable.] Since only part of the estimates that we need
can be obtained directly from the results of Bezuidenhout (1987), we prefer to
develop a slightly different approach to the processes of form (2.8). This
approach is similar to the method of Bezuidenhout (1987); however, it will
allow us to apply the results concerning the processes given by (2.2) and (2.3)
to a general case of processes (X*(¢), v*(¢)).
We will consider the following general situation.

AssuMPTION A. Let Q be a metric space with a metric p. Suppose that the
family of probability measures u° is defined on Borel subsets of () and that a
function S: Q — [0, ] is the action functional for u® with respect to the
parameter ¢ | 0, that is [see Freidlin and Wentzell (1984), Chapter 3]:

(HO) For any s > 0, the set ®(s) = {w: S(w) < s} is compact.
(H1) For any § > 0, y > 0, w € Q, there exists &; = £/(5,y, ») > 0 such
that for ¢ < ¢;, .

1
p{o': p(w,0) <8} > exp - ;(S(w) + y))
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(H2) For any vy,8 > 0, s > 0 there exists &, = 4(v, 8, s) such that for
e < &y,

1
{0 (0, 0(5)) 2 9) < exp( = (s = 7).

AssumpTION B. Let F and G be two metric spaces with the metrics p; and
pg, respectively, and X be some set of parameters x. Suppose that m is some
probability measure on Borel subsets of F. Let Z,: QX F - G, CG be a
family of operators Lipschitz continuous uniformly with respect to x € X:

(2.9) PG(%(“’D f1), Zi(wg, fz)) <C, maX(PF( fi, fz)»P(wz»wz))

for any f,, fo €F, w;,wy € Q, x € X. Let 3° be the family of measures on
Q X F defined by 4° = u° X m. Then one can define a family of the measures
P on G X F, ¢ >0, x € X using the operators .Z,: for any Borel sets A C G,
BcFandforanyx € X, ¢ > 0,

(2.10) P:(A X B) = i#{(w, f): ZL(w', f)) €A, f € B}.

Moreover we assume that G = U, . xG, and G, are disjoint for different x.
[Clearly, P:(G, X F) = 1]

To make the situation clear, let us show the connection between Assump-
tions A and B and the processes of form (Z°(¢), v(¢)). Notice, that although we
are interested in obtaining our estimates uniformly with respect to initial
conditions (x, i), we should not worry about the second component because it
admits only a finite number of possible initial values. Thus, without loss of
generality, we can fix v(0), for instance »(0) = 1. For a given T > 0 choose F
to be the space of trajectories of v(#), that is, the set of right continuous
functions v: [0,T] - {(1,...,n}, »(0) = 1, with the metric p, given by the L,
norm on F. Set

Q={y(-) € Cyr(R"): ¢(0) = 0}

with the family of measures u° induced by the process sw(¢) [w(0) = 0] and
with the metric p = pg given by the uniform norm in C; ;(R"). Next, let
G =Cy (R, X=R" and G, ={¢(-) € G: ¢(0) = x}. Finally, we define the
measure m on F as the measure induced by the trajectories of the process v(¢)
under the initial condition »(0) = 1.

Each trajectory ¢(¢) of the process Z#(¢) with the initial condition ¢(0) = x
€ X = R™ which corresponds to given trajectories (¢) and »(¢) of the pro-
cesses sw(t) and v(t), respectively [we will designate the process v(¢) and its
trajectories in the same wayl], is the unique solution of the integral equation

(2.11) o(t) =x + /Otl?v(s)((p(s)) ds +(t), 0<t<T.

The equation (2.11) defines the operator
Z QX F - G,
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as follows:
(2.12) Z(W(),v(") = e().

The measures P} defined in (2.10) are exactly the measures induced by
the process (Z°(¢), v(¢)) on C, (R") X F, corresponding to initial conditions
Z*(0) = x. Notice that the family of measures u® in our case satisfies the
conditions (H0)-(H2) with respect to the parameter ¢ | 0, where

(2.13) S(() =4[ “li(s)I ds

[see Freidlin and Wentzell (1984)].

Finally, using the Gronwall inequality and the fact that b; are smooth, one
can show immediately in the standard way that (2.9) holds, where the
Lipschitz constant C,, certainly depends on T' > 0.

Another example where Assumptions A and B are satisfied is the case of
Freidlin and Gartner (1978) mentioned above.

To obtain the main results of this section we will need some additional
assumptions concerning our general model.

AssumpTION C. Suppose that for any f € F, g € G,, x € X there exists a
unique w = w,(f, g) € Q such that

(2.14) Z(w.(f.8),f)=8.
Denote for any g € G and f€ F,

(2.15) S(f,8) =S(w.(f,8))
_ where x is defined by g € G, and

(2.16) S(g) = inf S(f.8).

We will suppose here that for any given g such that S(g) < «, S(f, g) is
continuous with respect to f.

Particularly, in our special case of the process (Z°(¢), v(¢#)), one has for any
sample paths ¢(-) and v(-) of Z*(¢) and v(¢), respectively,

(2.17) W, (v(+), (1)) =¥(-) € Co r(R7),
where ¢(-) is defined by

(2.18) W(8) = 0(t) =% = [(b,((s)) ds,
as follows from (2.11). Thus, by (2.17), (2.18) and (2.13) one has

(2.19) S((4),0()) = 3 [ 16(5) = b (s)I* ds
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and
(220)  S(e()) =Ir(¢) = inf3 ["lo(t) ~ bue((8)I* dt.

[We will use the more conventional designation I.(¢) when we formulate the
main results for our process (Z°(¢), v(¢)).] It is clear that if S(¢(+)) < ', then

(2.21) [OT|(,3(;:)|2 dt < o

and one can easily show using the Cauchy-Schwarz inequality that
S(+), ¢(+)) is continuous with respect to v(-).
Next, we will formulate our last assumption.

AssumpTION D. Suppose that there exists a sequence of Borel subsets
F,CF, F,CF,,,, k=1, such that for any k,a > 0, f, € F,,

(2.22a) m(f € Fy:pp(f', fo) <a)=d(k,a) >0,

where d(k, a) is independent of f,. Moreover, for any §,s > 0 there exists
k = k(3, s) such that for any f € F, g € G,, x € X satisfying S(f, g) < s one
can find f€ F, and & € G, such that

(2.22b) ra(8,8) <9,
(2.22¢) S(f.8)<5S(f.g) +5.

We will concentrate our results concerning the connection between the
process (Z°(), v(t)) and our general approach in the following proposition.

ProPoSITION 1. Let F be the set of right continuous functions v: [0,T] —
{1,...,n} with the metric py defined by the L, norm and with the measure m
induced by the process v(t),v(0) = 1 and choose F, = {v(-) € F: N(T,v(-)) <
R}, where

(2.23) N(T,v(+)) = max{i: n, < T}

and n; = 7;(v(-)) are the ““ jumps” of the trajectory v(-) defined as in (2.6).

Set Q= {y(-) € Cor(R"): ¥(0) =0}, X=R", G=Cy,(R") and G, =
{¢ € G: ¢(0) = x}. ‘

Let p and pg be the uniform metrics on Q and G, respectively, and u° be
the family of measures induced by the processes ew(t) on Q. Define the family
of operators £, as in (2.11) and (2.12).

Then the measures P; defined in (2.10) are exactly the measures induced by
(Z°(t), v(t)) on the space of trajectories, Assumptions A-D are satisfied, and
the functionals S(w), S(f,g) .and S(g) have the forms (2.13), (2.19) and
(2:20), respectively.

Proor. In light of our discussion just following Assumptions B and C we
need to prove only that Assumption D is satisfied. First, we will prove (2.22a).
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For a given £ > 1 and v(-) € F, denote U(B) = U N7y, — B, 7, + B],
where N(T,v(-)) was defined in (2.23). In general, the segments [n;, — 8, n; +
B] are not disjoint. It can be seen immediately that one can represent U(8) in
the form

Jo
(2.24) UB) = UA,
i=1

where A, are pairwise disjoint segments and each one of them is a union of
some segments [n; — B, n; + Bl. Therefore, A; = [a,, @], such that a,,; > o,

1=

Jo
(2.25) 1Al>28, Y IAl<2Bk, 1<i<j,
=1

where |A;| is the length of the segment A;.

Denote the segments A; such that vy(a,) # v,(a;) by Bjy,..., B;, where
B; =[b;,b/]and b;,, > b,.

Define the function #,(¢) on [0, T]1\ U!_,B; in the following way:

vo(£), t€[0,TI\NU(B),

(226) VO(t) - V()(ai)7 t e Ai such that Vo(ai) = Vo(a,i)'

Notice that the points a;,a;, 1 <i < j,, cannot coincide with any of jump
points 7,.

Therefore, it is clear that [0,T]\ U3=1Bi is a union of some disjoint
intervals and semiintervals, and 7,(¢) is constant on each one of them. Then
according to elementary properties of the process »(#) and (2.25), one has

(2.27) P(o/(vy)} = e T(B)"

provided 0 < B < B,, where &/(v,) is the event that the process v(¢) is equal to
7o(#) on [0,T]1\ U!_,B, and that all the jumps of »(#) can occur on the
segments B; only, not more than one jump on each segment B,.

On the other hand,

m{v(:) € Fy: pp(v(+),vo(")) <}
(2.28) = P{N(T,v(-)) <k, fOTh/(s) —vo(s)lds < a}

= P{/(v,)},

provided B = a/2kn, which together with (2.27) proves (2.22a).
Now we will prove (2.22b) and (2.22¢). Let s > 0. Suppose that

v(') €F and ¢() €Cor(R"), ¢(0) =x

are such that

S(r(+), e(*) < 5.
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It follows immediately from (2.19) and the last inequality that

(2.29) [ l¢(2)I* dt < 4s + 4T sup b,(y)I”

l<i<n
yeR"

and thus, ¢(¢#) satisfies the Hélder conditions of order 1/2 [see, e.g., Freidlin
and Wentzell (1984), proof of Lemma 2.1b, Chapter 3]. More precisely,
(2.30) le(t:) — ()] < C(s)lt; — &'

for 0 < ¢,,¢, < T, where C(s) depends on T, but is independent of ¢(-) and
v(+). For any given m > 0 let us break [0, T'] into m segments of length T'/m.
On each segment jT/m <t < (j + 1)T/m we have

JT T\'?
(281) o) - oo )| <]
where
ab;
Ci(s) = C,C(s), C, = sup , 0<j<m-1,1<i<n
cerr | 0%
l<i<n
Thus, by (2.19) and (2.30),
1m- (G+DT/m .]T) 2
S((),e() ~ 5 EO fmm o(0) = b o[ 2] @

1<i<n

< Cy(s)m™V2,

where C,(s) depends on s and T only. [In the right inequality we also use
(2.29) and the Cauchy-Schwarz inequality.]
Let us introduce the following functions: for 1 <i < n,

. 1, v(t) =i
2.33 (t) = ’ ’
( ) X'(t) {0, otherwise,
and denote
(234) o/ = [V i) dt for0<js<m-1,1<isn.

/m
Define v,,: [0,T'] = (1, ..., n} in the following way:
(2.35) v(t) =1 forteA,02j<m—-1,1<i<n,
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where
o lJTr iz T Lo
s-[Ee Bl £l
m - k-0 m - k-0
(2.36) : :
CJAJ=£(J+*1)T sincei '=£O<'<m—1-
iZ1 o m’ m i=1},’l m’" == .

Clearly, v,(#) is defined for any ¢ € [0, 1]. Notice that some A’ can be empty,
but

v,,(0) = 1.
Next, we define ¢,, by

2ult) =60 + b0 o[ 5| =t o[ 2]

(2.37) " ; JT (j+1)T 0 0
or te ;,T7¢m()_¢( )-
One can verify directly that
JT JT .
(2.38) qom(—) =qo(—) forany0 <j<m — 1.
m m
Moreover,
(2.39) max le,(1) = ¢(t)| < MyT/m,

-where by M; we will denote constants depending on the fields b; only.
It follows from (2.37) and (2.30) that the functions ¢,, satlsfy the Hélder
condition with the same constant of the form C,(s) = C(s)1 + M,T/?).

Therefore, similarly to (2.32) one has
, JT\\[
‘Pm(t) - bum(t)(qom( Z )
< Cy(s)ym~12,

However, by (2.38) and (2.37), for 0 <¢t <T,0<j<m — 1,

o0 e ) s o 2]

The last equality together with (2.40) and (2.32) implies

(241)  IS((),0()) = S(ru(-), o)) < Co( ) m V2,
Let 6 > 0. Choose m = m(s,5) large enough such that max(Cy(s)m /2,

dt

(2.40) |S(vu(*),0(*)) - = Z f¥+1)T/m

JOJ/m
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M,Tm™ ') <. Set # =v,, €F,, and = ¢,,. Then by (2.39) and (2.41) we
obtain a much stricter statement than (2.22b) and (2.22c) setting k(s, ) =
nm(s,8). O

Now we will formulate the main results of this section for our general
model. Denote S*(g) = liminf,._, S(g) A S(g). The functional S*(g) is
lower semicontinuous. '

Set ®*(s) = {g: S*(g) < s}, F(s) = P*(s) N G,.

THeoREM 1. (a) For any 8,vy,s > 0 there exist ¢, = ¢(s,68,y) and M =
M(s,y, 8) such that
S*(g) + 7)

(2.42) P:(g', f):pa(g,8) <dandf € Fy} > exp(— .

provided g € ®f(s), x € X, e <¢,.
(b) Forany 6 > 0,y > 0, s > 0, there exists e, = £,(8,v, s) such that

s =Y
(2.43) P{s: pol 8, 9¥(5)) 2 3} < exp[ - |
for e <&y, x €X.

Proor. (a) By the definitions of S and S*, for any B: 0 <8 < 1 and for
any g € ®(s) there exist g; = g,(g) and f € F such that

- B
(2.44) S=5(f.8)<S(g)+5=<8%(8) +B=s+p
and
(245) pG(gl,g) SB'

On the other hand, by (2.22) there exist g; € ®,(s) and feF, k=Fk@B,s),
such that p(g;, g;) < B and

(2.46) S(w.(f.2)) = S(f.2) <S(f. &) +B.
By (H1) there exists e = £4(e, B, s) such that for & < &3,
S(wx( f, gl)) + B

€

S*(g)+3l3)‘

€

'u'e{w,: p(w" wx( f’ gl)) = a} = exp(—
(2.47)

> exp(—

TNotice that &, is independent of x, g and f by Theorem 3.2, Chapter 3 of
Freidlin and Wentzell (1984).] The right inequality in (2.47) follows from (2.44)
and (2.46). .
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Choose B = min(3, y)/4. Thus, by (2.10), (2.14) and (2.9), the definition of
2%, (2.22) and (2.44)-(2.47),

P:(g', ): pe(g',8) <8, f' € F})

5
> P:{(g’, ):pe(8, &) < 3 f'e Fk}

el s oof 0l 10 A F2). ) = 5 £ < B

v

ﬂf{(w', £):p(o 0. £ 81)) < o) S o e Fk}
(2.48) ¥ 3Cy 3C,

0 - o
=/«Le(w,:p(w’,wx(f’gl)) =< E)m{f,:p(f,’ f) =< 3—00’ fIEFk}

S*(g) + 3B 5
< o - SO,

> exp(— ___S*(gg) i )

provided & < £,(8, v, s) = min(eg4(a, B, ), Blln d(k, 8/3C,)). [Here we set a =
5/3C, in (2.47)]

Setting M(s,y, 8) = k(B, s), we complete the proof.

(b) Denote ®(s) = {g € G: S(g) < s}. It is clear that

d(s) c D*(s)
and thus
(249)  Pi{g: palg, D*(s)) = 8} < Pi{g: pa(g, ®(s)) = 3}.

Next, for any o € ®(s), f€ F and x € X one has, according to definitions
(2.14) and (2.15),

(2.50) o =w,(f, Z(o, f))
and thus
(2.51) S(f,#(w, f)) =8(w) <s.

Therefore, by (2.16), Zlo, )€ &(s) for any x € X. Then, if g' € G, is such
that pg(g’, ®,(s)) = §, we have in particular that

(2.52) pa(g', 2w, f)) 2 8

for.any x € X, f € F and o € ®(s).
On the other hand, g’ = Z(w,(f, g", ) and then, by (2.9),

(2.53) pc(8', 2w, ) < Cop(w.(f, &), ®)
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for any w € ®(s). Thus, by (2.50)-(2.52) and (2.41), taking into account (2.10),
(2.14) and (H2),

Pxe{(g,a f’): pG(g’7&)x(s)) = 6}

é
= {(g" ) p(0.(8's ), (s)) = E,}
| é
) ’16{(“’" )i p(w (L@, ), F),0(s)) = cT,}

é
- ﬁe((w’, £): p(, ®(s)) = go)

® é ( s—v )
=u’lw' ! >—| < -
W\ o oo, @) = - | < expl -
for ¢ small enough, which together with (2.49) proves (2.43). O

Before we formulate the consequences of the last theorem for our special
case, let us find the explicit representation of the lower semicontinuous
modification S*(¢(+)) = IF(¢) for S(¢(-)) = I(¢) defined in (2.20).

LEmMmA 1. The functional

i fo TR(gb( t), e(t)) dt, if ¢ is absolutely continuous,

(2.54) Ir(e) = {

0, otherwise,
where
n 2
R(v,x) = min |v— ) a;b(x)|,
ay, ..., a,>0 i=1

n

Ya,=1

i=1

for any x,v € R’, is the lower semicontinuous modification of I.(¢) for T > 0,
that is,

(2.55) I#(¢) = liminfIp(¢) A Ip(e).
e

Proor. It is clear that
(2.56) I#(¢) <Ip(p) forany ¢ € Cy p(R").
Ijet us prove that
(2.57) IF (o) = li‘?l_)igfIT(qo’).
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The last inequality trivially holds if ¢ is not absolutely continuous or if
¢ & Ly([0, T]. Now we are going to show that for any absolutely continuous ¢
with L,-derivative one can find a sequence ¢, € Cy, r(R") such that ¢, — ¢
uniformly as m — « and

(2.58) I(¢) = liminfI;(e,,)-
m— o
Since CZ 7(R") is dense in {p € Co 7(R"): ¢ € L,} with respect to the norm
Il - lll, defined by
el = llels + l¢llz,
and I (¢) is obviously continuous with respect to Il - ll, it is enough to prove

the existence of {¢,,)7 _, satisfying (2.58) for ¢ € C§ r(R"). Suppose, therefore,
that ¢ € C§ #(R"). One can easily see that the function R(¢(2), ¢(2)) satisfies
Lipschitz conditions with constant

(2.59) C, = (2v1(¢) + Cs)(v2(@) + Csv1(9))
where
C,=2 Vb, |b, = b = ol.
s =2 max (V5L I6)),  7i(e) = max|él,  v:(e) = max |3
l<is<n
By compactness reasons, for any ¢ € [0, T] there exist a; = a;(8), i = 1,..., 1,

Y?_,a; = 1 such that

n 2
(2.60) RG5(0, (1) =|6(0) = T (9(0) -
i=1
Then, breaking [0, T'] into m equal segments for a given m > 1, we obtain
1 m | (jT noo JTWPT| C.T?
* _ 'Y A Jb. T _
ot (1) -3 £ [o(o) - Lamel ]| 2] = o
J i
where of = a,(jT/m),0<j<m—1,1<i<n.
Define v,,: [0,T] = {1,...,n} in the following way:
(2.62) v,(t) =i for t€A,0<j<m-11<i=<n,
where
(2.63)
) T Tizl ;T T @& .
A{=[’—+— Laf, 2 +—¥ )
m m , = m m o
no o [jT (j+ 1T no
(U A{=["—,(—J—)'—) since ), o/ =1,0<j<m— 1),
i=1 m m i=1

and thus, v, (¢) is defined for any ¢ € [0, 1D.
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Now we can define ¢,,(¢). Set

én(t) = @(t) + bum(t)(‘P(j;T)) B Zn: a{bi(¢(j£))

i=1 m
(2.64) .
T 1
forte[’;,“;) ),¢m(0)=.¢<0>.

One can verify directly that

JT JT :
(pm(—) =<p(—) foranyl<j<m-1

m m
and that

C,T
(265)  max |, (t) — o(t)| < —,‘;— where Cj is defined in (2.59).
<t<

Further,
1 T, 2
Ir(¢n) < 5 [ 16a(8) = bo,@n(t))P dt
1m2l G+ nT)/m L JT
== ¢(t) — Zafbi(¢(~))
2 /> j;'T/m 2 i=1 m
(2.66) o
_bum(t)(¢m(t)) + bvm(t)(‘)o(;)) dt
Lm2l G+ omy/m LA T\ Cy
> 6(0) - L atto[ 2] @t
2 ;20 im/m i=1 m m

for some C, > 0 depending on ¢ [here we take into account the smoothness of

b(x) and ¢(2)].
Finally, by (2.66) and (2.61),

1m=1] (jT noo JTW\P? T
—_ M — | — Jh. - R
Ir(em) < 5 E,O 90( m) Elalb,(qv( - )) —
1ml Grry/ml . (JT
ty X [ ™ g(t) —<P(;)‘
(2.67) j=17T/m .
JT L JT C,
(TN P LG
X qo(m)'+qo(t) +2i§1albl(qo(m))'dt —

<Ir(¢) + Z
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for some C5 = C5(¢), which together with (2.65) proves (2.58), and therefore
(2.57). Thus
(2.68) liminflr(¢") < IF(¢) < Iz(@).

¢ e
To complete the proof of the lemma, we need to show that I} is lower
semicontinuous. According to Ioffe and Tikhomirov (1978), it is enough to
prove that R(v, x) is convex with respect to v. Indeed, for any «;, @; = 0 such
that ¥7_,a; = X' ja, = 1 and for any B: 0 < B < 1, x,v,,v, € R’, one has

R(Bvl + (1 —B)uy, x)
2
<

Buy + (1= Buy — X (a;B + ai(1 — B))bi(x)
i-1

2

(2.69) n
=’B(U1 - Z a;b,(x)
i-1

+(1- B)(Uz - Zn: a’ibi(x))
i=1

2

2

<B +(1-8)

Uy — Z a;b,(x)
i=1

Ug — Z a;b,(x)
i-1

Since a; and o) are arbitrary, we can take the minimum over all possible
{a,}v, and {«},, which proves that R(v, x) is really convex, that is, I7(¢) is
lower semicontinuous. O

REMARK. Generally speaking, I7(¢) # I(¢), as follows from the example
given in Bezuidenhout (1987).

Now we can formulate our results concerning large deviations for the
process (X*(¢), v:(¢)).

THEOREM 2. (i) The set ®F(s) = {I*(¢) < s} is compact for any s > 0,
x € R".

(ii) For any 6 >0, y >0, s > 0 there exists &5 = ¢5(s,8,y) and M =
M(s, vy, 8) such that

Px,i{ sup |X*(¢) — o(¢)l < 8 and A(T) < M(s, 7, 5)} > exp

(_ I*(¢) +vy
0<t<T

€

for any ¢ € ®¥(s), ¢ <e5, x €R", 1 <i < n, where i(T) is the number of
jumps of v¢(t) defined as in (2.6) and (2.7).
(iii) For any 8,7y, s > 0 there exists ¢ = (s, 8,y) such that

P, {por(X°(), ®%(5)) 2 b} < exp[ - — |

for e <eq, x € R", 1 <i < n, where p, ¢ is the uniform metric on Cy 7(R").

Proor. (i) One can prove the compactness of ®(s) in a completely similar
way to the case of a simple equation, using the facts that I is lower
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semicontinuous and that [T|¢|? dt is bounded on the set ®(s) and the Arzela
theorem.
(ii) Without loss of generality we can assume that

(2.70) 0< min d;;< max d;; <1linR"
1<i,j<n 1<i,j<n
xeR” xeR"
Denote

Q= { sup 1Z°(¢) — ()] < 6 and n(T) sM(s,y,a)},

0<t<T

where n(T) is the number of jumps of »(¢). On @ it holds by (2.4) and (2.70)
that

M(s, v, 8)
) = C(s,y,6) > 0.

@1 iz () = min d,
PR

Thus, by (2.61),

P’i{ sup |X°(¢) — o(¢)| < 6 and 7(T) sM(s,y,S)}

* 0<t<T
(2.72) = E, ixqP7(Z°(*), ¥ ("))
= C(s; Y 6)Px,L{Q} .

Here x, means the indicator of Q.
However, by Theorem 1(a) and Proposition 1, one can immediately see that

I7(¢) + 7/2)

€

(2.73) P, {Q} = exp| —

for ¢ small enough and for any ¢ € ®*(s), which is compact according to (i).
The estimates (2.72) and (2.73) together prove the statement (ii).
(iii) Under assumption (2.70), p% is bounded from above. Thus

P, i{po,r(X°(*), ®¥(s)) = 8}
(2.74) = Epp(Z°(:) () Xtpozer, on =)
< CePpor(Z°(+), ®,*(s))} < exp(—s——s—y)

for ¢ small enough [by Proposition 1 and Theorem 1b]. The fact that the
estimates are uniform with respect to 1 < i < n is trivial. O

" 3. The main results. Denote for given x,y € D,

(3.1) V(x,y) = in,;l%"(m,
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where the infinum is taken over all
p€Cor(R"), T>0:9(0)=x, ¢T)=y.
In this section we suppose that:
AssuMmPTION 1. There exists a compact %, C D containing all the limit
points of the dynamical systems '
dS}ix

(3.2) ke b(Six), Slx=x 1l<i<n,
such that
(3.3) V(x,5) = V(3,%) = 0

for any x,y € %,.

AssumpPTION 2. (n(x),b{x)) <0 for x € 9D, 1 <i < n, where n(x) is the
outward normal at x € dD.

It is clear that, as in the case of a single equation, for any x,y,z € R" it
holds that

(3.4) V(x,y) < V(x,2) + V(z,5).
Thus, for any y € R” one can define
(3.5) V(*#,,y) = V(x,y) foranyx € %.

It follows from (3.4) that V(x, y) is continuous with respect to x, y.
Our next assumption is:

- AssumptioN 3. There exists x, € D such that
(3.6) V(H#y,x0) < V(H,,x) foranyx €9D, x # x,.

In the second part of our main theorem we will need the following assump-
tion.

AssumpTioN 4. There exists iy: 1 < iy, < n such that
(3.7) 8i (%) <&i(xy) forl<i<n,i#i,
where x, has been defined in Assumption 3 and
(3.8) gi(x) = —(bj(x),n(x))>0, x€dD,1<i<n.

Now we can formulate our main results.

THEOREM 3. (i) Under Assumptions 1-3,
(3.9) lim P, {1 X*(r%) = %ol > 8} = 0
el

for any 8 > 0, 1 < k < n, uniformly on compact K C D.
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(i) If, in addition, Assumption 4 is satisfied, then
(3.10) lifr(}Px’k{ve(re) =i =1

for 1 < i < n uniformly on compact K C D.

COROLLARY .  Let Assumptions 1-4 hold. Then
(3.11) 1in3u; =¢; (%), 1=<k<n,
el

uniformly on compact K C D, where uj(x) are the solutions of the Dirichlet
problem (1.1) with a’/(x) =&

REMARK. Similar results also can be proved for general a’/; however, one
cannot find such a convenient representation of lower-semlcontlnuous modifi-
cation for the action functional as (2.43).

Proor oF THEOREM 3. The proof of (i) is based on Theorem 2 in a
completely standard way, similar to the case of single equations [see Wentzell
and Freidlin (1970) and Freidlin (1985)] and we will leave it to the reader.
Notice, that although X° is not, in general, a Markov process, its hitting times
are stopping times with respect to the Markov process (X*¢, v*). Therefore we
can use the standard technique of hitting times sequences. We use a similar
technique in a much more complicated situation in the proof of (ii) just below.
For example, the formula (3.16) 1llustrates the use of the strong Markov
property in our circumstances.

(i1) Without loss of generality we can set i, = 1 in Assumption 4.

Choose 8, > 0 such that
(3.12) min gi(x) — gi(x) =a,> 0.

x€dD: |x—xyl <8y
2<i<n
Let y = y(¢) be such that y = exp(—a,y/¢) (one can easily see that such y
exists). Denote

I'f = {x € D: dist(x,dD) = v},
I = {x € D: dist(x,D) = 2y},

8o
K;=T7in {x lx — a0l < ——} # ¢, for ¢ small enough,

K3 =TT\ Kj.

Define 7¢ = inf{¢ > 0: X°(¢) €Ki} A 7. Then for any i €({1,...,n}, x €
KcD,

(3.13) P, {v°(+%) # 1} <P, {5 <7} + P, {v(r°) # land #* = r}.
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Notice, that for £ > 0 it follows from Assumption 3 and from the continuity of
V(x, y) that
(3.14) V(H#,,x4) = min V(¥%,,x) < inf V(%,,x) for e small enough.
x€dD x€K§

Thus, it can be proved, again by the standard way, that
(3.15) lilnéPx,i{f*’ < 7%} =0 uniformly on compacts in D.
Thus, our main problem is to estimate the second term of (3.13).
Define sequences of Markov times
of =inf{t > 0: X(¢) € T§} A 75,
e, = inf{t > o X*(¢) € 9D U T§},
of 1 = inf{t > 75, X°(¢) € TF} A 18,
Set m% = min{m: 75, = 7¢}. Clearly, m% < » a.e. and
T8, =05, =1 for m > mf.
Thus
Px’i{VH(TE) #+ land 7° = 7¢}

Px,i{v‘(‘r‘) # 1,7 =71 mf = m}
1

ﬁMB?MQZ

3.16
( ) < P, {ve(r%) # 1, X*(7;) € 9D and X*(oy:) € K}}
1
=E.;, ) X(X"(a,';l)eKi}PX"(a;l),u"(u,';,){XE(T]b:) €D, ve(7}) # 1}.
m=1
Similarly,
(3.17) met

= Ex,i Z X(Xt(ot)e rf)PX*’(a;L),u*’(a,;){XE(Ti) = aD}'

m=1

(Remember that y, is the indicator of A.) According to (3.13), (3.15), (3.16)
and (3.17) it is enough to show

(3.18) sup P, {v(7§) # 1|1X*(r{) €D} - 0
x€ Kj
l<j=<n

as £ 0. To prove (3.18) we will reduce the problem to the one-dimensional
case. It is a well known fact that the function
dist(x,dD), x<€dDUD,

P(®) =1\ _dist(x,0D),  x&D,
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is smooth for x: dist(x,dD) < p, for some p, > 0 small enough, and that
(3.19) Vo(x) = —n(x) for x€dD.

Clearly, one can introduce a function p(x) smooth and bounded with bounded
first and second derivatives in R” such that

(3.20) p(x) = p(x) for x: dist(x,aD) < %

and
lo(2)] > ’;—0 for x: dist(x,D) > %.

Then {p(x) = a} = {p(x) = a} for a: |al < p,/2. Let us consider the random
processes F¢(¢) and °(¢) defined by

(3.21) Fe(t) =y 'p(Z(v?))
and
(3.22) ¥e(t) = v(vt),

where the process (Z°(¢), v(¢)) is defined as in (2.2) and (2.3). Using the It6
formula one can easily verify that for any ¢ > 0,

Fe() = F*(0) + /%y [[(Vp( 2" (v5)), dib(s))
(3.23) +(8/2)/:Ap(Z8(ys)) ds

+ [(0(Z°(15)), b Z(v5))) ds,

where w(t) =y /2

definition of v,

w(yt) is a Brownian motion in R”. Notice that by the

3.24 c !
(3.24) y |lnegl’

The transition probabilities for (¢) are
(3.25) P{yc(¢t+ h) =ily°(t) =j} =yh +o(yh) fori+j,t,h >0.

Togéther with the process F¢(¢) we will consider the one-dimensional Markov
random process

(326)  Y;(1) = Y(0) = [ (byr(),n(3)) ds + &2y 2wy (1),
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where y € 4D and the one-dimensional Brownian motion w,(¢) is defined by
(3.27) wy(t) = = (n(y),w(2)).

Now we will stop the proof of Theorem 3 for a moment and will prove the
following.

Proposition 2. If Y (0) = F*(0) and |Z°(0) —y| <y for some y € dD,
then

(3.28) P{ sup [V(s) = F'(5)] 2 5} < exp(— Cyo(£) 5y 172)
for e < &(8,t), where (8, t) is independent of y.
Proor. By (3.19), (3.23) and (3.26), for any ¢ > 0,
Fe(s) = Y7 (s)
329y = (e/2) [ Bp(Z"(vs)) ds + e/3y 12 [(V,(2(v9)), dii(s))

+ [ (Bur Z(r)). T Z5(19)) = (Byea9), To(5)) ds,

where
(3.30) V,(x) = Vp(x) — Vp(y).
Thus
OsigtlY}s(S) ~ F(s)l < (e/2)t max]Ap(2)|
(3.31) +Ossl:1;el/zv'”2 fos(Vy(Ze(vu)),dw(u))

+ C,t sup |Z%(ys) — yl,
O<s<t
where C; > 0 depends only on the upper bounds of the first and second
derivatives of b,(x) and p(x). According to the assumption of the proposition,
one has by definition of Z¢(yu),

sup |Z°(yu) =yl <ly — Z°(0)| + sup |Z°(yu) — Z°(0)I

O<uc<t O<ucx<t

(3.32) <y + yt max Ib,(x)| + /2y/% sup | (u)l.
<i<n

TCR” O<ucx<t

By the standard martingale estimates for Brownian motion we derive from
(3.32), )
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B
| sup 12:(r3) =51 5|
(3.33) :
82Cq4(t)

£y

< exp( - ) for £ small enough.

Now we will estimate the second term of (3.31). By the exponential martingale
inequality [e.g., Friedman (1976), Theorem 7.5], one has for any A > 0,

s )
P{81/2’}/—1/2 sup [0( y(Ze('yu)),dlf)(u))'Z §}

O<s<t

S . . A S . 2
<P sup |[(V,(Z*(yw)), dib(w)) = 5 [V(Z"(yu))[* du
1
(3.34) > 68_1/2’}'1/26}
. \ 1
+P{ sup | [V,(Z5(yu))lP du| > Ze7/2yV/2A s
O0<s<tI1”0 3

w

1 1
< exp(— g)ta_l/zylﬂ&) + P{t sup IVy(Z'S(yu))l2 > —8'1/271/2/\'16}.

O<uc<t

However, by (3.30), the smoothness of Vp and (3.32), using the standard
martingale estimates for @w(¢) and setting

(3.35) A=g" 12

one has for some Cy, C,((¢) > 0 and ¢ small enough:

P{ sup |V,(Z(vu))l* = %t'la'l/zyl/zx\'lé}

O<ucx<t

(3.36) < P{ sup li(u)l® = Cgt_ly_1/2a_15}

O<uc<t
< exp(—Cio(t)e~ 1y~ 1/%5).
Now, by (3.31), (3.33), (3.34), (3.35) and (3.36) we obtain the statement of the

proposition. O

[The estimate (3.28) is sufficient for our purposes, but, certainly, one can get
a stronger estimate.]
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We will need the following simple fact concerning the process Y, (s): For any
A > 0 there exists T = T(A) large enough such that for any y e D: |y — x,l
< 8, the initial condition YE(O) € [0, 2] and ¢ small enough it holds that

(3.37) P{ sup Y:(s) < 3} < exp(—AyeY).

O0<s<T

Indeed, for any trajectory of °(¢), one has .
(3.38) Y5(0) — f( vo(),n(¥)) ds = ayt,

where a; = min;_; _,, .1~ <5,(0:(3), n(y))|. Thus, for T large enough and ¢
small enough,

P{ sup Y(s) < 3} < P{Plw,(T)| = y"/%~*(a,T - 3))
0<s<T

(3.39) < exp(—ys—l((alT - 3)%2r) ™! - 1))
< exp(—Aye™ ')

according to the standard martingale estimates, which proves (3.37).
We will use also processes of the form

xE (8) =2y~ 12 () + B + at
(3.40) ay(?) Y 5(8)
for givena > 0,8 € R,y €4D,

where the Brownian motion w,(¢) was defined in (3.27). The processes x5 (t)
are an almost trivial partlcular case of diffusion processes for single equatlons
with a small parameter, and we can apply to them the well known large
deviations estimates of Wentzell and Freidlin (1970). The action functional for
x; ,(t) has the form

(3.41) I$(p) = %/OTW) —al*dt for ¢:[0,T] - R

(if ¢ is not absolutely continuous, then, as usual, I%(¢) = «). Simple analysis
of the proof of Theorem 3.1 of Freidlin and Wentzell [(1984), Chapter 4] for
this particular case shows that for any g > g, it holds that

(342)  VB,BLT)=  inf  If(e) =2a(B - By),
(,DECO’T(R)
¢(0)=8, p(t)=8,;
for some t€[0,T]

provided T > (B — B;)/a [the extremal is ¢ (t) = —at + B8, 0 <t <
(B — B,/a)]. Moreover, for any 8 € (B8,,8,), T > 0, By > B,

(3.43) inf If(¢) = V°(B,B1,T),
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where
®={peCor(R):p(0)=p;Is<T
such that ¢(s) = 8; and ¢(u) # By, for 0 < u < s}

€

(since the extremal ¢, € ®). Thus, under the initial condition x; ,(0) = 8 one
has by the standard Wentzell and Freidlin estimates,

(3.45) Eﬁ)‘ —eylln P{x;,y(fg,y(ﬁl, Bz)) = Byand 75 < T} = 2a(B — B),

(3.44)

where 75 (B, By) is the exit time of x; (¢) from [B;, B,] and T is large
enough.

Now we can return to the proof of the theorem. Our goal is to prove (3.18),
that is, to estimate P, {v°(r{) # 1/X°(7{) € 4D} for different x € K| and .
For a given x € K¢ one can find y € 4D such that |x — y| < y. Then by (3.12)
for £ small enough it holds that

(3.46) g:(y) —gi(y) =a, foriz=>2.

Denote by o the exit time of Ft(¢) from [0,2] and by 7°(y; By, By) the exit
times of Y (s) from [By, B,], By > B;. Notice that if Ye(t) =1 for each t €
[t,,t,] and Yj(¢)) = xg ,, ,(¢;), then

(3.47) () = x5y,,(t), provided ¢ € [t;,t,].

Under the initial conditions X®(0) = x, »*(0) = 1, it holds by (2.4), (2.70),
(3.21), (3.28), (3.45), (3.47), and (3.25) and the fact that w,(t) and ¢°(¢) are
independent that

P{X*(r}) € D)

= Ep?y(ze( ), v( ))X(Zf(ff)eap, 78 < Ty;v(t)=1for each t €[0,yT]}

> exp(—yT(zl‘lEaﬂ.g(dl(z)) -n+ 1))
X P{F*(c) = 0, c° < T;y*(t) = 1 for each ¢ € [0, T}
> P(Y;(7°(y; —a,2 —a)) = —a;7°(y; —a,2 —a) < T;9°(t) = 1
(3.48) for each ¢ € [0, T']}

- P{OEBETIFE(S) —Yr(s) = a/z}
> P(x5) (T (—@,2 — @) = a3 74—, 2 —a) < T)

X P{y*(t) = 1for each ¢t € [0, T]} — exp(—(1/2)ay~*C,o(T))
> exp(—(2g,(y) + 8))e ™'y

for a given 8 > 0, T large enough, a = a(8) and ¢ < £(5), where 7{ = inf{t > 0:
Z4(¢t) € 9D U T'5}). [Here and later x;l(y)’y(O) = F*0) = Y;(O) =1.]
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Next, by (2.4), (2.70), (3.28) and (3.37) for any A > 0 there exists T = T(A)
large enough such that

P{r{ =T} = EX(f;ZyT)PiT(ZP('), v(+))
<exp(yT(n — 1))P{e* > T}
(3.49) . ‘ ‘ ‘
< 2P{ sup Y < 3} + 2P< sup |YF(t) — Fe()| > 1/2}
1<t<T 0<t<T

< exp(—Aye™ ')

provided & < e(A).

If v°(0) =1, X°(0) € K%, |y — x| < 8,/2, then according to the fact that
Xg ), (8) < ¥, (s) everywhere for any s > 0, taking into account (3.28), (2.4),
(2.70), and (3.45), one has for a given T > 0, § > 0,

P{X*(7%) €D, 7} <yT and v*(7}) # 1}
<exp(yT(n — 1))P{Z(7%) € 0D, 75 < yT,v(7}) # 1}
< 2P(F¢(o°) =0,0° <T,#(T) = 1)
< 2P{Y;(7*(y;,2 + @) = a;7°(y, 0,2 + a) < T; A(T) > 1}

(3.50) 2P{ sup [¥:(s) - F*(s)| > a/z}
0<s<T

< 2P{x5 0 (Tens(@:2 + @) = a, 75, (@,2 + @) < TYP{A(T) = 1}

810),y
+ 2exp(—(1/2)Cyo(T)ay™1/?)
< yexp(—2(gu(y) — 8)ye™?)

for @ = a(8) > 0, provided ¢ < (8, T'), where ii(T') is the number of jumps of
¥ ¢(t) on the time segment [0, T']. Then, choosing A and, therefore, T in (3.49)
large enough, we derive from (3.49) and (3.50),

(3.51) P{X*(7{) € 9D and v*(7{) # 1} < yexp(—vye '(2g(y) — 39))
for ¢ < &(9).
Therefore, by (3.48), (3.51), (3.24) and the definition of v, one has
sup P, ,{X*(7]) # 1X*(]) € oD}
(3.52) x<Kj
. < yexp(4ye '6) = exp(—vye '(a, — 45)) < %
fior 8 <a,/8 and ¢ < £(5).

Suppose now that v(0) =i+ 1, x = X%(0) € K{ and |x — y| <§,/2 for
some y € dD. Notice that for any given @ > 0 one can find & = A(a) such that
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if $°(¢) =1for h <t < T and x,, ,(0) = Y(0), then
03
(3.53) Y5() = x5s(O)l < g for0<t<T
by (3.26), (3.40) and (3.8), since b; are bounded.
Thus, by (2.4), (2.60), (3.53), (3.28) and (3.45) one has
P, {X°(r{) €D} = P, {X°(r{) €9D,n(yT) = 1,7{ < vT}
= Ex,ip;T(Ze(')’ V('))X(ZE(ff)eaD, n(yT)=1,7 <yT}
> min d;(x)P{F*(c%) = 0,#(T) = 1, y*(¢) = 1
n

1<i,j=<
x€D

forh<t<T,o° <T}
> ClzP{YyE('rE(y; -a,2 —a)) = —a;
Ts(y; _a’2 - a) < T’ ﬁ(T) = 1, ll’e(t) = 1;
forh <t <T}
(3.54) - P{ sup |F*(s) — ¥(s)| = a/z}

0<s<T
= Cl2P<x§1(y),y(T§1(y),y( —2a,2 - 2a))
JS(—2a,2 -2a) <T,

— €
= —2a, Tey),

i(T) =1,y°(t) = 1foreach t € [A,T]}

- eXP(_C10(T)(a/2)Y_1/2)

> hyexp(—&'y(2g,(y) + 8))

_ exp(—Clo(T)(a/2)7_1/2)
>y exp(—2¢ " 'y(gi(y) +9)),

setting x; ., ,(0) = Y;7(0) = 1, choosing T large enough, @ < a(5) and & < £(8)
and taking into account the independence of x; ., ,(¢) and ¥°(¢).

Next, notice that if »(0) =i # 1, v(7}) # 1 and 7{ < yT for some T > 0,
then only two possibilities exist:

(1) »(¢) # 1 for any ¢ € [0,yT];
(ii) there was more than one jump of v prior to yT.

; Clearly, the possibilities (i) and (ii) can intersect. If (i) holds, then
(3.55) Y7 (t) = xg (t) foranyt e [0,T],

8o(¥),y
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where go(y) = min,_,_, g(»), ¥,;(0) = x; ., ,(0). Thus, for T large enough,
P, {Z¢(7}) € D, 7{ < Ty and (i) holds}
=P{F(0°) =0,0°<T and ¢*(¢) + 1Lfor t € [0,T]}
<PlY (r"(y;0,2 +a)) =a,7°(y, 2,2 +a) < T
and y(t) # 1for ¢t € [0,T]}

(3.56) + P{ sup [Y;(s) — F*(s)| > a/2}
0<s<T
= P<x§o(y),y(7go(y),y(a’ 2+ a)) =a, Ty (a2 +a) < T}

+ exp(—Cio(T)a(2y) )

< exp(—2(gy(y) — 8)ye ')

for o = a(8), ¢ < (5, T), by (3.55), (3.45) and (3.28).
Suppose now that (ii) holds. By the elementary properties of Poisson
processes one has

(3.57) P(A(T) = 2} < Cyy(T)v?,

where we recall that 7(T) is the number of jumps of *(¢) prior to T'.
Notice that for any ¢ > 0 and y satisfying (3.46) one has

YyE(t) = x;;l(y),y(t) ’

provided Y;(0) = x; ,, ,(0).
Thus, one has by the standard arguments of this section that

P, {Z*(75) =D, ¥ < Ty, #i(T) = 2}

< Px,,.{ sup 1¥;(s) — F*(s)l > a/z}
0<t<T

(3.58) + P{x;(y),y('rgl(y),y(a’z + a)) =a, Ty (@2 ta) < T}
XP{i(T) = 2}
< exp(—aCio(T)(2y) ") + y? exp(—2(&y(y) — 8)ye™?)
<vy?exp(—2(gi(y) — 28)ye™"),
where we use the independence of ¢°(¢#) and x; ., (#) and assume x € K7,
F*(0) = Y;(0) = x5 ,,,(0) = 1 and & < &(5,T). Choosing A and T(A) large

enough in (3.49) and taking into account our assumption that p% is bounded,
we obtain for x € K%, y: |y — x| < 8/2, v*(0) =i #'1, by (3.56) and (3.58),

| P, {X*(r}) €D, vi(s1) # 1)
(3.59) <y exp(—2(gy(y) — 38)ye )
+ 2exp(—2(g(y) — 8)ye™?).
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Finally, by (3.54), (3.59), (3.12) and the definition of y = y(¢) one has
sup P, [{v°(7f) # 1X°(7{) €D}

xeKj{
2<i<n

(3.60) ! —2ye 1 - ~ 25 85ye 1
<— sup exp(—2ye Y(go(¥) — &) )) + v exp(85ye™")
7Iy—y0|530 )

1/2
<y'?,

provided & is chosen to be small enough and ¢ < ¢.
The estimates (3.60) and (3.52) prove (3.18) and this completes the proof of

the theorem. O
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