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CHARACTERISTIC EXPONENTS FOR TWO-DIMENSIONAL
BOOTSTRAP PERCOLATION

By ENRIQUE D. ANDJEL

Université de Provence

Bootstrap percolation is a model in which an element of Z? becomes
occupied in one time unit if two appropriately chosen neighbors are occu-
pied. Schonmann [4] proved that starting from a Bernoulli product measure
of positive density, the distribution of the time needed to occupy the origin
decays exponentially. We show that for @ > 1, the exponent can be taken as
6p2* for some & > 0, thus showing that the associated characteristic
exponent is at most two. Another characteristic exponent associated to this
model is shown to be equal to one.

1. Introduction. Bootstrap percolation in dimension 2 is a discrete time
process on X = {0, l}zz, where Z? is the planar integer lattice. Elements of Z2
are called sites and when the process is at state n € X, we say that x is
occupied or vacant according to whether n(x) = 1 or n(x) = 0, respectively.
For n=0,1,2..., n, will represent the state of the process at time n.
Denoting by {e;, e,} the canonical basis of R?, we describe the evolution of the
process by means of the following rule: A necessary and sufficient condition for
M, +1(x) = 0 is that either

M(x —e1) = (%) =n,(x +e) =0
or
nn(x - e2) = nn(x) = nn(x + e2) =0.

This means that an occupied site remains occupied forever and that a vacant
site is occupied in one time unit if at least one of its horizontal neighbors and
one of its vertical neighbors are occupied. This evolution is deterministic but
the initial state n, may be random. In this paper we are interested in the
behavior of the process for initial states n, satisfying the following condition:
The random variables n,(x) (x € Z2?) are i.i.d. Bernoulli with parameter
p €1[0,1]. For each value of p, the probability measure generated by this
initial distribution on the space of trajectories of the process will be denoted
by P,.

Tlll,is model has been recently studied by Schonmann [3] and a slightly
modified version of it is treated in van Enter [4] and Aizenman and Lebowitz
[1]. The interested reader will find in these papers some older references on the
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subject. To describe some of the known results, let
T = inf{n > 0: 1,(0) = 1},

that is, the time we have to wait for the origin to be occupied. Schonmann [3]
adapted a proof of van Enter [4] to show that for all p > 0, T' < o, P, -as., and
using this result he also proved that for p > 0, there exist C and y in (0, «)
such that

(1.1) P(T=n)<Ce ™ Vnx=0.
Then he introduced the quantity
v(p) = sup{y > 0:3 C such that P,(T >n) <Ce ™"V n},

and raised the following question: How does y(p) behave as p | 0? Does the
characteristic exponent
. log(v(p))
v = lim ———~
plo  logp
exist? What value does it take? He also gave a simple argument showing that

log(y(p)) .

(1.2) lim inf >1,

plo log p
which we present for the sake of completeness: Note that

P,(T > n) > P,(ne(ie;) =0, —n <i<n)=(1-p)**,
hence y(p) < —2In(1 — p), therefore

p)

lim sup i <2,
plo p

which implies (1.2).
It is harder to give upper bounds for v (assuming it exists). Our main result
shows that it cannot be bigger than two:

THEOREM 1.3.

lim sup —log v(p)
plo IOg(p)

Another characteristic exponent can be defined in the following way: For
AcCZ?and nn €X,let :

ni(x) = {

Then, say that A is internally spanned by 7 if for all x € A, lim,, _, (1%),(x) =
1. This concept was introduced by Aizenman and Lebowitz [1] and was later

1, ifxe Aandn(x) =1,
0, otherwise.
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used by Schonmann [3]. Connected to it is the following probability:
N(L,p) = P,([0, L] x [0, L] is internally spanned).

In both of the above mentioned papers it is shown that N(L, p) converges
exponentially to 1 as L goes to infinity. In view of this we let

¥(p) =sup{y > 0:3 C suchthat 1 - N(L,p) <Ce "' VL > 0}
and we define a new critical exponent:
log ¥
v = lim L(p) if the limit exists.
plo log(p)
The techniques developed to prove Theorem 1.3 give us better information
about v:

THEOREM 1.4. The critical exponent v exists and is equal to one.

The paper is organised as follows. In Section 2 we compare oriented bond
percolation to oriented site percolation. This will enable us to use, in the
context of site percolation, known results concerning bond percolation. In
Section 3 we give the proofs of Theorems 1.3 and 1.4. Throughout this paper
the following notation will be in force: e; = (1,0) and e, = (0,1) are the
elements of the canonical basis in R?; in that same space { ) and | || will
denote the Euclidean inner product and Euclidean norm, respectively. For
A € Z% |Al will denote its cardinality. The natural logarithm of x will be:
written as log x and, finally, we define

Z,={neZ:n>0)
and
Z_ ={n€Z:n>-1}.

2. A comparison between oriented bond percolation and oriented
site percolation. Consider the following oriented bond percolation model
on Z, X Z_,. From each element x € Z, X Z_,, start two oriented bonds
whose respective endpoints are x + e, and x + e, + e,. These oriented bonds
will be open, independently from each other, with probability p. We will say
that the event x —, y occurs if x =y or there exists a finite sequence
Xg=%,%,...,%, =y of elements in Z, X Z_; such that for all i =
0,1,...,n — 1, there is an open bond starting at x; and having x,,, as its
endpoint. It is easily seen that this model is equivalent to the model studied by
Durrett [2]. From this last paper we will need the following results. Let
p=9/10 and for A Cc Z, X Z_,, define

={y€ZyXZ_,:x >,y for some x € A}.
Then there exist positive constants C, and vy, satisfying
(2.1) P(ICyl <») < Cie™  VACZ,x{-1}.
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Now, for A cZ, X {—1} and n € Z_,, define
[A={yeC,:({y, e =n}
Elementary arguments show that given g > 0,

9\28lA|

P(IC4l < ) = P(for some n, IT;A| < BlA])(1 — &
= P(for some n, [T,A| < B A[)e 108002814,

This and (2.1) are easily seen to imply that for some constants y, > 0 and
B > 0, we have

(2.2) P(ITAI < BIA| for some n) < Cre™ 744 VA CZ,x{-1}.

Although (2.1) and (2.2) have been shown for p = -5, standard coupling
techniques prove that the same inequalities (with the same constants C,, B, v,
and vy,) hold for all p > . .

The oriented site percolation model we will consider is defined in the
following way: elements x € (Z,)? are called sites. Sites will be open indepen-
dently with probability p. We say that the event {x —, y} occurs if there exists

a finite sequence of open sites x, = x, x;,..., x, = y such that
X;41—X; =€, OF X;_{—X; =€y, 1=0,1,...,n -1,
(%09 —%;,e90 =21, i=0,1,...,n— 2.

This means that among two consecutive steps at least one is upwards. As in
the previous model, we define for A c (Z,)?,

C, = {y € (Z,)*: x —, y for some x € A}
and
TA={yeCy{ye=n}

The following proposition will allow us to compare these two percolation
models.

ProposITION 2.3. Let p € (0,1). Then there exists a probability space ()
supporting two sequences of iid Bernoulli random variables (X; ,5); . _, and
(Zi)i207 satisfying (a) P(X(i/z) = 0) =1- P, (b) P(Zl = O) = p(l - p)3, (C)
P(Z; > max{Xi_(1/2), X, Xi+(1/2)}) =1Vi>0.

Proor. Consider a probability space () supporting two independent se-
quences of iid random variables (X, ). —; and (U}); ., with the following
properties: each X; , has a Bernoulli distribution with parameter p and each
(Uy); » o has a uniform distribution in the interval [0, 1]. In this space ( we will
construct an i.i.d. sequence (Z,), . , satisfying (b) and (c). First, let

Y, = maX{Xi—(l/Z)’ X, Xi+(1/2)}'
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Then for any sequence a, ..., a, of zeros and ones, define
c(agy..-a,) =P(Y,,1=0lY,=qa;,0<i<k).
The coefficients c(a,, ..., a,) satisfy the inequalities
c(ag,--.,a;_1,0)

P(Y,=a;,0<i<k—1, X4 qm=2X,=0,Y,, =0)
- P(Y,=a,,0<i<k—1,Y,=0)

P(Y,=a;,0<i<k—1,X, om=2X,=0)P(Y,,, =0)
N P(Y,=a,,0<i<k—1,Y,=0)

> P(Y,,, = 0) = (1-p)°
and
c(ag,...,a,_1,1)
S P(Xk+(1/2) = X1 =Xk+(3/2) =0,X,=1,Y=0a;,0<i<k- 1)
- P(Y,,:,=0,Y,=1,Y,=0a,,0<i<k—-1)

p(1 —p)°P(Y,=a,,0<i<k—1) 5
= . >p(1-p)".
P(Y,,,=0,Y,=-1,Y,=a,0<i<k-1)
Hence c(ag,...,a;) = p(1 —p)® ¥V (ay,...,a,) € {0,1}**1. We now proceed to
construct the random variables Z;:
4 _ [0 Y, =0andU,<p,
0 1, otherwise,

0, ifY., —0and U, <p(1—_”)3——
’ i+1 i+1 = C(YO,---,I’i)’

1, otherwise.

Since condition (c) is clearly satisfied, we only have to show that the Z.’s are
i.i.d. Bernoulli with parameter 1 — p(1 — p)®. To do so, note that the random
variables U,, ..., U, are independent of the random variables Y, ..., Y,, Z, ;.
This implies that for u; € [0, 1],

P(Zk+1=OI(Y0,...,Yk) =(a0,...,ak),U;Sui,0SiSk)

p(1 - p)°
=P|Y,,,=0,U,,, <——|(Y,,...,Y}) = ey
kv1 =0, Upiq c(ao,...,ak)(o ) = (ag a)
p(1 - p)° )
=P Uk+1—m P(Yk+1=0|(YO""’Yk)=(a0""’ak))
=p(1-p)".

This shows that each Z, has the desired distribution and that Z, , is



BOOTSTRAP PERCOLATION 931

independent of the random variables (Y,,...,Y,, U,,...,U,). Since Z, is a
function of U,,Y,,...,Y,, it follows that Z,_ ; is independent of Z,,...,Z,. O

COROLLARY 2.4. Suppose that p and p € [0,1] satisfy p =1 — p(1 — p)3.
Then we can construct on the same probability space an oriented bond percola-
tion model with parameter p and an oriented site percolation model with
parameter p in such a way that ¥V x,y € (Z,)?, x — ey + y, we have

{x —ey =y} c{x—,y} a.s.

Proor. By standard coupling techniques it suffices to prove the result for
p=1—p1 —p)3 It follows easily from Proposition 2.3 that there exists a
probability space containing random variables (X; g, j» X_(1,2) j» Zi )i j=0
such that all the X’s are i.i.d. Bernoulli with parameter p, all the Z’s are i.i.d.
Bernoulli with parameter 1 — p(1 — p)? and

P(ZI,J > maX{Xi_(1/2)7j, Xi,j’ X"+(1/2)a.]}) = 1 V l,j (S Zo.

Now let the site (i, j) € (Z,)? be open if Z; ; =1, let the bond connecting
(i, j — D to (i, j) be open if X; ; = 1 and let the bond connecting (i, j — 1) to
(i+1,j) be open if X; ;5 ;=1 It is now easy to see that these two
percolation models satisfy the desired properties. O

COROLLARY 2.5. There exist constants C, y and B € (0,x) such that for
p =1 - 3(55)3 we have

P(TA=2BlAIVR=21)>1-Ce4  VACZ,x{0}.

Proor. This is an immediate consequence of (2.2) and the previous corol-
lary. O

3. Proofs of Theorems 1.3 and 1.4. The first important tool in the
proofs of both theorems is renormalization. Instead of considering single
points in Z?2 as sites, we define renormalized sites of size N. These are squares
of the form

[kN,(k+1)N—-1] X [IN,(I+1)N-1] k,l€Z.

The above renormalized site will be denoted by (%,7). This establishes a
natural correspodance between renormalized sites and Z2. Renormalization
techniques were used by Schonmann [3] to prove (1.1). However, his renormal-
ized sites are much larger than the ones involved in our proofs. Here we fix
a > 1 and our renormalized sites are of size N =[1/p®], where [ ] denotes
integer part of. In the sequel, to simplify the notation the symbol [ ] will be
omitted, since we believe that this will not confuse the reader.

The second important tool in our proofs is the following definition: A
reriormalized site is easily covered if at time zero each line and each column of
that renormalized site have at least one occupied site. The reasons for intro-
ducing this appear in the following lemmas,
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LemMmaA 3.1. If a renormalized site is easily covered and one of its neighbors
is entirely occupied at time n, then it will be entirely occupied at time
n+ (1/p*)?2.

The proof is obvious and we omit it.

LEMMA 3.2. The probability that a renormalized site is easily covered
converges to one as p | 0.

Proor. The probability that a renormalized site is not easily covered is
bounded above by

1 a 1 1/p*p
2;;(1 -p)" = 2;;[(1 -p)"7] :

For p small enough, this is less than

pa

2

)

1 ( 1 )(1/p"‘)p

which goes to zero as p goes to zero. O

From now on we use the following abbreviations: e.c.r.s. will mean easily
covered renormalized site and i.s.r.s. will mean internally spanned renormal-
ized site. Of course, each i.s.r.s. is an e.c.r.s. but the converse is false. However,
for any p > 0, e.c.r.s.’s are i.s.r.s.’s independently, with probability f(p) > 0.

We need now to introduce four different types of oriented paths of renormal-
ized sites. All these paths are formed by a finite or infinite sequence of
renormalized sites (k,,(,),(kq,1)),...,(k,,1,),... such that (&, 1,1, —
(B, IDIl=1, Vi > 0. A path will be said of type 1 if %k,,,—%;>1 and
liy1-1;,<0Vi>0,type2ifk;, , —k,>0and!;,,, —[,>1Vi>0,type3
ifk,,,—k;<O0and/;, ,—1,21Vi>0,typedifk, ., —k, >0and /,,, —
l,<0Vi>0.

REMARK. In Section 2 we considered paths of type 2.
For £ > 0, we introduce the following events:

A, = {3 an infinite path of type 3 formed by e.c.r.s.’s and
such that (k,,1,) € [3k,4k — 1] X {0}},

B, = {3 an infinite path of type 1 formed by‘e.c.r.s.’s and
such that (k,,1,) € {0} X [3k,4k — 1]}.

Note that although Corollary 2.5 was written for paths of type 2, considering
the appropriate symmetries we see that it also holds for paths of types 1 and 3.
In view of this and of Lemma 3.2, we conclude that there exist strictly positive
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constants p,, C and y such that

P(A,) >=1-Ce Vkx>1 VY p e (0,p,),
and

P(B,)21-Ce™™ VE>1 Vpe(0,p,).

Of course, p, has been chosen in such a way that the probability that a
renormalized site is an e.c.r.s. is, for all p € (0, p,), large enough to allow us
to use Corollary 2.5 for e.c.r.s.’s. Since we are interested in limits as p | 0, we
need only consider values of p in (0, p,). In the exponential estimates below,
the constants will not depend on p as long as it belongs to that interval. In
particular, y will remain fixed in the sequel. Now let C, = {3 a path of type 4
formed by e.c.r.s.’s and such that (k,,,) € {0} X [3%k,4% — 1] and for some n,
(k,,1,) €[3k,4k — 1] X {0}}. Obviously, C, > A, N B,, hence

Pp(Ck) > 1 - 2Ce_yk.

We state now a lemma that will be needed later. Its proof is easy and we omit
it.

LemMA 3.3. Consider a path as in the definition of C,. If it is entirely
covered at time n, then the origin will be occupied at time n + 8k(1/p®).

Let D, = {IT>*) > Bk, V n > 0}. Here we have applied the definitions of
Section 2 to the renormalized lattice and we have considered a renormalized
site as open if it is easily covered. Besides this, the constant B8 is as in
Corollary 2.5. It now follows from the same corollary that for p € (0, p,), we
have

P,(Dy)=1- Ce 7k,
Therefore,
(3.4) P(C,NDy)=1- 3Ce™ 7%,

Proor or THEOREM 1.3. Consider a path of type 4 joining an element of
{0} x [3%k,4%k — 1] to an element of [3%,4%k — 1] X {0} and a path of type 2
contained in the set [0,6%] X [0, 6%] (see Figure 1). Note that the sum of the
lengths of these paths is at most 8% + 12k = 20k. Suppose now that both
paths are formed by e.c.r.s.’s and that at least one of these is an i.s.r.s.
Suppose also that these paths intersect. It now follows from Lemma 3.1 that
both paths will be entirely covered by time 20%(1/p*)?. Hence, by Lemma 3.3,
the origin will be occupied at time 20k(1/p*)? + 8k(1/p*) < 28%(1/p*)2.
Suppose now that C, occurs; then there exists a path of type 4 as above. In
fact, there may be many such paths and we simply choose one of them in an
arbitrary manner. Supposing that D, also occurs, the chosen path is con-
nected by paths of type 2 formed by e.c.r.s.’s to a large number of e.c.r.s.’s
contained in the region [0,6%] X [4%, 5k]. This number is bounded below by
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FiG. 1.

BE2. Hence, the probability that at least one of these e.c.r.s.’s is an i.s.r.s. is
bounded below by

1-(1- f(p))ﬁkz = 1 — ellog—f(PNBRIE
which for % > y[—log(1 — f(p))B]~' is at least 1 — e~ 7*. This shows that for

those k’s, we have
1 2
PP(T > 28k(—a)
p

Recalling (3.4), we conclude that

C,N Dk) <e 7

1 2
Pp(T > 28k(}—);) ) < 8Ce "k + ek
for k > y[—log(1 — f( p)B1~ L. Therefore, for n large enough (depending on
p) there exists § > 0 and K> 0 depending on a but not on p such that
P(T > n) < Ke "™,
This implies that

: log y(p)
limsup ——— <

2a.
ploO logp

. Since this holds for any a > 1, the theorem is proved. O

Proor oF THEOREM 1.4. The proof of Theorem 1.3 shows that starting
from nl® 6k(1/PIIXI0.6kA/PO) where n has as distribution a Bernoulli product
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measure with positive density p, all the sites of [0,3%(1/p%)] X {0} U {0} X
[0, 3%(1/p*)] will be eventually be occupied, with probability at least

1—3Ce 7% — e 7k,
Using the symmetries of the model we see that all the sites of the boundary of
[0,6%(1/p*)] X [0,6k(1/p*)] will eventually be occupied with probability at
least :
1 — 12Ce™ "% — 4e7 7%,
The inequality
. log ¥(p)
lim sup ——
pi0 lOg ( p )

now follows from the fact that once the boundary of a square is occupied, the
whole square will eventually be occupied. To complete the proof of the theo-
rem, observe that a square cannot be internally spanned if on a given column,
no site is occupied at time zero. Hence

1-N(L,p)>(1-p)* "VL=1,
therefore ¥(p) < —log(1l — p) and this implies that

logy
lim inf——g—z(—li)— >1
plo log p
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