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BOREL STOCHASTIC GAMES WITH LIM SUP PAYOFF

By A. MArTRA AND W. SUDDERTH !

University of Minnesota

We consider two-person zero-sum stochastic games with limit superior
payoff function and Borel measurable state and action spaces. The games
are shown to have a value and the value function is calculated by transfi-
nite iteration of an operator and proved to be upper analytic. The paper
extends results of our earlier article [17] in which the same class of games
was considered for countable state spaces and finite action sets.

1. Introduction. In[17], a class of two-person zero-sum stochastic games
was formulated as follows. Let X be a countable, nonempty set of states, and
let A and B be finite, nonempty sets of actions for players I and II, respec-
tively. Let « be a bounded, real-valued utility function on X and let g be a
function which assigns to each triple (x,a,b) € X X A X B a probability
distribution on X. The game starts at some initial state x. Player I chooses an
action a; € A and, simultaneously, player II chooses b; € B. The next state x,
has distribution q(- x, a;, b,) and is announced to the players along with their
chosen actions. The procedure is iterated so as to generate a random sequence
X1, Xg, ... and the payoff from player II to player I is
(1.1) u* = limsupu(x,).

n
It was proved in [17] that this game has a value.

The aim of the present article is to extend this result to a Borel measurable

setting. The following assumptions will remain in effect throughout the paper:

(1) X, A, B will be nonempty Borel subsets of Polish spaces.
(i) F,G will be Borel subsets of X X A, X X B, respec-
tively, with nonempty vertical sections F(x), G(x) for all
x €X. At the state x, F(xXG(x)) is the set of actions that
player I (II) is allowed to use.

(iii)) G(x) is compact for every x € X.

(1.2)  (iv) g is a Borel measurable transition function on o X
#(X), where J is the Borel set {(x,a,b) € X X A X B:
a € F(x) and b € G(x)} and #(X) is the Borel o-field of X.
(v) For every fixed set E € #(X) and (x,a) € F, the
function ¢(E|x, @, - ) 1is continuous on G(x).
(vi) u is a bounded, upper analytic function on X, that is,
for every real c, the set {uz > c} is analytic.
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862 A. MAITRA AND W. SUDDERTH

Let .#(u)(x) be the stochastic game with initial state x in which the payoff
from player II to player I is u*. (The play of the game is as described in the
first paragraph above with measurability conditions which will be explained in
Section 2.) Here is the main result of the paper.

THEOREM 1.1. Assume that the conditions (1.2) hold. Then, for each
x € X, the game 4 (uXx) has a value. The value function is upper analytic.
Furthermore, for every € > 0, both players have e-optimal families of univer-
sally measurable strategies.

The techniques which will be used to prove Theorem 1.1 are similar to the
methods of [17]. However, there are problems of measurability which arise and
which are solved by methods from the theory of inductive definability. Similar
methods were used to resolve problems of measurability in the theory of
gambling in [7] and [16].

Stochastic games were formulated by Shapley [23], with state and action
spaces finite and payoff function equal to the total discounted reward. Shapley
proved that his game had a value and that both players had optimal stationary
strategies. Thereafter, a number of authors considered the problem when the
payoff function is the average reward per day. Notable contributors to the
average reward problem include Gillette [11], Hoffman and Karp [12],
Blackwell and Ferguson [5] and Kohlberg [13], who solved different special
cases of the problem. The definitive solution of the problem was provided by
Mertens and Neyman [18], who based their proof on a difficult result of Bewley
and Kohlberg [2] on the asymptotic behavior of the value of the discounted
reward game as the discount factor tends to one. Stochastic games with
general state and action spaces were considered by a number of authors.
Nowak’s article [21] provides an excellent bibliography. In the same article,
Nowak formulated the conditions (1.2) and he considered both discounted and
positive stochastic games under these assumptions. Indeed, his Theorem 5.1
will be the point of departure of the present article.

Blackwell [3] proposed a variant of Shapley’s game in which the law of
motion was eliminated but which allowed for payoff functions more general
than either the total discounted reward or the average reward per day. He
proved that a win-lose game, where the winning set for player I is a G; subset
of the set of histories, has a value. In [4], he gave an operator solution of the
same problem. This second paper of Blackwell is the inspiration for the present
paper, as it was for our previous article [17].

Our paper is organized as follows. The next section sets down definitions,
notation and some preliminary results. Auxiliary games are treated in Sections
3 and 4. Section 5 handles the measurability problems involved in iterating the
auxiliary games a transfinite number of times. Theorem 1.1 is proved in
Section 6.

“2. Preliminaries. Let Z = A X B X X and define the space of histories
tobe H=2ZXZ X +--. Elements of H will be denoted by ~ = (2, z,...).
We use p,(h), or more briefly, p, to denote the partial history (2, z,, ..., 2,).
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Let P(A) and P(B) be the sets of probability measures on the Borel subsets
of A and B, respectively. Equip P(A) and P(B) with the weak topology, so
that P(A) and P(B) are both Borel subsets of Polish spaces. Moreover, the
sets {(x,n) € X X P(A): w(F(x)) =1} and {(x,v) € X X P(B): v(G(x)) = 1}
are Borel in X X P(A) and X X P(B), respectively, and for every x € X, the
set {v € P(B): v(G(x)) = 1} is compact. See Parthasarathy [22, Chapter 2] for
details.

Let K = {(x, u,v) € X X P(A) X P(B): w(F(x)) = 1 = v(G(x))}. Then K is
a Borel subset of X X P(A) X P(B). We now define a function m on K X %#(Z)
by the formula

m(A; X By X Xy, pu,v) = [B [A q(Xlx,a,b)du(a) dv(b),
1 1

where A,, B,, X, are Borel subsets of A, B, X, respectively. It is easy to verify
that m is a Borel measurable transition function.
A universally measurable (or, more briefly, measurable) strategy o for
player I available at x is a sequence o, oy,... where o, € P(A), such that
oo(F(x)) = 1, and for n > 1, o, is a universally measurable mapping from Z"
to P(A) (i.e., measurable when Z" is endowed with its o-field of universally
measurable subsets and P(A) is equipped with its Borel o-field) such that, for
every (21, 2y, ...,2,) € Z", 0,24, 29, ..., 2, F(x,)) = 1, where 2z, =
(a,,b,,x,). A universally measurable (or more briefly, measurable) strategy v
for II available at x is defined analogously with P(B) and G(x) in place of
P(A) and F(x), respectively. Measurable strategies o and 7 available at x
determine a probability measure P, = P, , . on the Borel subsets of H. (The
initial state x will usually be clear from the context and we will suppress it.)
Namely, the P, -distribution of the first coordinate z; = (ay, by, %) is

P, ., = m(lx, 0 7o) .and the P, . conditiqnal distribution of z,,; =
(@ni1r bpit Xpi1) given 2y, 2y,...,2, is P, (lzg, 25,...,2,) =
m(-lx,, 02y, 25, . . ., 2,), (24, 2, . . ., 2,)). The existence of P,  is proved in

[1, Proposition 7.45]. If g is a bounded, universally measurable function on H,
we write its expectation under P, _as [gdP, , or E, (g).

If o is a measurable strategy for player I available at some x and p =
(24, 2, . . ., 2,) a partial history, the conditional strategy o[p]is defined by

o[plo = ou(p),
o[ pln(2, 25, o 20) = 0 (21,29, 324,21, 255+ 0, 20y)
for all m >1 and (2,25,...,2,,) € Z™. Note that o[p] is a measurable

strategy for player I available at x,. Given measurable strategies o and 7 for
players I and II available at x, the probability measure P, ;1,; = Px. otp},ip]
is easily seen to be a version of the P,  conditional distribution for
(2,11 242, ---) given (21,24,...,2,). Thus, if g H— R is bounded and
universally measurable, '

(2.1) E, (&) = [{Eutpinripun(@0n(h))} dPs (1),
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where for p = p(h) = (21, 2,,...,2,), gp is the p-section of g defined on H
by (gp)( ) = (gpX2}, 2y, ...) = 8(21, 25, - - ., 2,, 21, 25, . ..). In the special case
when g(h) = u*(h) = limsup, u(x,), the function u*p is just »* and (2.1)
simplifies to

E, . (u*) = [{E(r[pn(h)],f[pn(h)]( U*)} dp, .(h).

The upper value V(x) and the lower value V(x) of the game .#(uXx) are
defined as follows:

(2.2) V(x) = infsupE, (u*)
and
(2.3) V(x) = sup infE, _(u*),

where the suprema are over all measurable strategies o for player I available
at x and the infima over all measurable strategies 7 for player II available
at x.

We say that (0(x)), < x is a universally measurable family of strategies for
player I if for every x € X, o(x) is a measurable strategy for I available at x
and, for every n > 0, (o(x)), (24, 23, .., 2,) is a universally measurable map-
ping from X X Z" to P(A). One defines a universally measurable family of
strategies for player II analogously.

A stopping time t is a mapping from H to {0,1,...} U {»} such that, for
n=0,1,..., if #(h) = n and &' agrees with % in the first n coordinates, then
t(W) = n. [Notice that, if #(h) = 0 for some A, then ¢ is identically zero.] A
stop rule t is a stopping time which is everywhere finite. A stopping time (stop
rule) ¢ is universally measurable if, for every n > 0, the set {t <n} is a
universally measurable subset of H.

If ¢ is a stopping time, h = (2, 2, ...) = ((ay, by, x1), (ay, by, x5),...), and
t(h) < », we define the variables z,, x,, p, to have values z,,), X4, P(h) =

(21,2, - -+, Zyny) 8t h. Suppose now that ¢ is a universally measurable stop
rule. Then, it is not hard to verify that P, ., =Py, . is a version of
the P. _ conditional distribution for (2,1, 2,,9,.-.) given (zy, zy,..., 2,) and

g, T

(2.1) generalizes to

(24) E(r,‘r(g) = f{E(r[pt],f[p;](gpt)}dPo’,'r‘
If ¢ is a stop rule and p = (24, 2, ..., 2,) is a partial history, define [ p] on
H by
t{pl(2, 25, ) =t(21,29, ..., 2,21, 25,...) — 1.

Notice that, if #(2y, 25, ..., 2,,--.) = n, then ¢[p] is itself a stop rule, in which
case #[p] is called a conditional stop rule given p. If t is universally measur-
able, then so is ¢{[p]. When p = (2), we write z for p and #[z] = #[p].
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There is a natural way to associate with every stop rule ¢ an ordinal number
J(¢) called the index of t by setting j(0) = 0 and requiring, for ¢ > 0, that

J(¢) =sup{j(t[z]) + 1:z € Z}.

This definition of the index is equivalent to that of Dellacherie and Meyer [6],
as was pointed out in [15, Proposition 4.1]. Furthermore, j(¢) is familiar to
students of Dubins and Savage as being the structure of the finitary function
z, (cf. [8], Sections 2.7 and 2.9) except for the uninteresting case when Z is a
singleton. Some of our proofs (Lemma 2.3 and Theorem 4.3) will use transfi-
nite induction on j(¢#) and it is important to notice that, for all ¢ > 0 and all z,
J(#[ 2] is strictly less than j(#).

Suppose ¢ > 0 is a universally measurable stop rule and consider the special
case of (2.1) where n = 1 and g = u(x,). Note that

(x,21) (29,23, ) = x(21,22,...) = %y, (22,25, .)

if we make the convention that x,, (2,,2;,...) =x, when #[z,] = 0. Thus
(2.1) gives

(2.5) E, (u(x,)) = /{Ea[zll,r[zll(u(xt[zﬂ)) dPy, - (21)-

A universally measurable (or, just measurable) policy for player I available
at x is a pair (o, t) where o is a measurable strategy for I available at x and ¢
is a universally measurable stop rule. We say that (o(x), #(x)), . x is a univer-
sally measurable family of policies for player I if (o(x)),. x is a universally
measurable family of strategies for player I, #(x) is a stop rule for every x € X
and #(x) k) is a universally measurable function on X X H.

We conclude this section with some results which will be needed in the
sequel.

Recall that a real-valued function ¢ on a Borel set ) is upper analytic if the
set {¢ > c} is analytic for every real c.

LemMa 2.1.  Let ¢ be a function on a Borel subset Q) of a Polish space into
[0,1]. Then ¢ is upper analytic if and only if the set

E={(w,¢) €Qx[0,1]: ¢(w) > c}
is analytic in Q X [0,1].

Proor. The “if”’ part follows from the fact that a section of an analytic set
is analytic. For the converse, note that

E=U[{we€Q: ¢(w)>r} x[0,r)],

where the union is over all rationals r in [0, 1]. Plainly, E is analytic. O

LEmMma 2.2. Let x € X, ¢ be a bounded, upper analytic function on X and
u be a probability measure on A such that u(F(x)) = 1. Define a function  on
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G(x) by
P(b) = ffgo(xl)q(dxllx,a,b)/.L(da).
Then  is continuous on G(x).
Proor. Use [21, F3.9] and the dominated convergence theorem. O

For each n > 1, let % Dbe the o-field of subsets of H of the form
AXZXZX---, where A is a universally measurable subset of Z", let
Fy=1{¢, H} and let %, be the o-field generated by U, . ,Z,. Suppose now
that ¢ is a universally measurable stopping time on H. Define %, to be the
collection of all sets E € &, such that E N {t <n} € &, for every n > 0. It
is straightforward to verify that %, is a o-field.

Suppose next that o, o'(r,7') are measurable strategies for player I (II)
available at x, and that ¢ is a universally measurable stopping time. We say
that the pair (o, 7) agrees with (o', ') prior to time ¢t if n < t(h) implies

0u(Pn(h)) = 0n(Pa(h))
and

Lemma 2.3. Let o,0'(r,7') be measurable strategies for player I (II)
available at x, and s a universally measurable stop rule such that (o, 1) agrees
with (o', ') prior to time s. Then P, . =P, , on %,.

Proor. The proof is by induction on the index j(s). For s = 0, the result is
trivial. So assume the result is true for all universally measurable stop rules of
index less than ¢, where £ > 0 is a fixed ordinal. Let s be a universally
measurable stop rule of index ¢. Suppose L € &%. Then, denoting by Lz; the
z;-section of L, we have:

PO‘,?(L) = [PO'[ZI],T[ZI]( Lzl) chro,'ro(zl)’

= [PO‘I[ZI],TI[ZI]( Lz,)d Ub,Tb( 2q)
= Pa',T'(L) ’

where the first and last equalities are by virtue of a variant of (2.1) dnd the
~ intermediate equality uses the inductive hypothesis applied to

olz,], o'l21], 7l2,], 7'[2], s[2], the fact that Lz, € &, and the fact that
0y =0y and 7y = 7 since s > 1. O

Lemma 2.3, in the gambling context, is proved in [25].
We now want to extend Lemma 2.3 to universally measurable stopping
times. The next result is due to V. Pestien and S. Ramakrishnan.
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LEMMA 2.4. Let t be a universally measurable stopping time. Then &, is
the smallest o-field # containing U, .o . ,, Where t A n is the stop rule
whose value at h is the smaller of the numbers t(h) and n.

Proor. Let n,k > 0 and let £ > n. We claim that
(2.6) Ae % implies AN{t>k} e ZF,,.
To establish (2.6), we must prove for each m > 0 that

Anf{t>k}n{tAnk<m}eZF,.

If m <k,then An{t>k}N{t ANk <m}is empty. If m >k, then A N {¢t >
kRYyn{tANk<m}=An{t>k}) Since Ae &, {t>k}e &, and m > k > n,
it follows that A N {¢ > k} N {¢ A k < m} € FZ,, which proves (2.6).

Next, we observe that

(2.7) A e % implies AN {t=wx} e f

o

Suppose A € #,. Then

Anft=x}= (1 An{t>k},
k=n+1
so, by (2.6), An{t=x} € £ Since U,.,%, is a field generating &, a
monotone class argument establishes (2.7).
Now let A € &,. Write

UAn{t<n}|U[AN{t=mx}].

n=0
It is easy to see that AN {t <n}e & ., c_# for every n > 0. Hence, by
(2.7, A e _# Thus, & C /.

For the reverse inclusion, observe that %, ,, ¢ %,. Hence, if A € &,, ,
then An{t<mle &%, form=nIlf Ae & ,, andm<n then AN {t <
m}=An{t \n<m}e Z, Hence & ,, c % forevery n>0,s0o _fC .

O

LEmMMA 2.5. Let o,0'(r,7') be measurable strategies for player I (II)
available at x, and t a universally measurable stopping time such that (o, 1)
agrees with (o', 7') prior to time t. Then P, . = P, . on &, In particular, if ¢

is a bounded, universally measurable function on X and s a universally
measurable stop rule, then

i x,)dP, . = x,)dP,. .
(i) J,_ g0 dP = [ e(x)dPy.

for every m > 0, and

(i) ﬁ

¢u>dm—ﬁ o(x,) dPy ..

t =} t=
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Proor. The first assertion is an immediate consequence of Lemma 2.3 and
Lemma 2.4. For (i), observe that the function ¢(x,)1,_,, is % -measurable.
For (ii), note that ¢(x,) is &, -measurable and that the o-fields & and %
coincide when restricted to the set {t = ©} € % N %, so that the function
o(x )1, _., is F-measurable. O

3. Auxiliary one-day games. Consider an auxiliary one-day game
& (p)x) starting from x, where ¢ is a bounded upper analytic function on X.
In the game 27(¢)(x), players I and II choose actions a, b simultaneously such
that @ € F(x), b € G(x) and the payoff from II to I is

fgo(xl)q(dxllx, a,b).

It follows from Lemma 2.2 and an old result of Fan [10, Theorem 2] that for
each fixed x € X, the game /(o) x) has a value, I has an e-optimal strategy
and II has an optimal strategy. The value of the game 27(p)x) will be denoted

by (Se)x).
Here are some facts about the measurability of the value function and of

e-optimal (optimal) strategies of the players.

LemMA 3.1.  Let Q be a Borel subset of a Polish space. Suppose that v is a
bounded, upper analytic function on Q X X. Let ¢: Q X X - R be defined by

¥(w,x) = (Sv(w,))(x).
Then ¥ is upper analytic.
LEMMA 3.2. Let ¢ be a bounded, upper analytic function on X. For each

> 0, there is a universally measurable function f: X —» P(A) such that for
each x € X, f(x)F(x)) =1 and ‘

,dnf [[o(x)q(dxlx, a,b) f(x)(da) = (Se)(x) — .
Furthermore, there is a universally measurable function g: X — P(B) such
that for each x € X, g(x)G(x)) = 1 and

sup [[o(x1)q(dxlx, a,b)g(x)(db) < (Se)(x).

acsF(x)

Lemmas 3.1 and 3.2 are straightforward consequences of Theorem 5.1 in
Nowak [21]. We now record for later use two useful properties of the oper-
ator S. .

Lemma 3.3. Let ¢, < ¢, < --- be uniformly bounded, upper analytic
functions on X. Then (a) S¢; < S¢, and (b)lim, S¢, = S(lim,, ¢,).
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Proor. (a) is obvious. For (b), set ¢ = lim, ¢,, so ¢ is a bounded, upper
analytic function. Now let ¢ > 0 and fix x. Choose u € P(A) such that
w(F(x)) =1 and

[[e(x)a(dx,lx, a,b)u(da) > (Se)(x) — /2

for all & € G(x). By the monotone convergence theorem,

(3.1) ff(pn(xl)q(dxllx,a,b),u(da)Tf/go(xl)q(dxlIx,a,b),u(da)

for all b € G(x).

Now the functions in (3.1) are continuous on G(x) by virtue of Lemma 2.2,
so, by Dini’s Theorem [9, page 190], the convergence in (38.1) is uniform on
G(x). Consequently, for sufficiently large n and all b € G(x),

[[ea(x)a(dxilx,a, b)u(da) = (Se)(x) - &

Hence
Ve}i)?é'(x))//f<pn(x1)q(dx1|x,a,b),u(da)v(db) > (Se)(x) — ¢

for all sufficiently large n, and so

s nf [[[en(x)a(dx,lx, a, b)A(da)v(db)
> (S¢)(x) —&.
It follows that
(Se,)(x) 2 (Se)(x) —¢

for all sufficiently large n. This completes the proof. O

4. Leavable games. Let u be a bounded, upper analytic function on X.
Then u and an initial position x determine a leavable game _Z(u)(x), which is
played exactly like the game .#(u)(x) introduced in Section 1, except that now
I gets to terminate the game unilaterally at any time of his choice and the
payoff to I from II is the value of u at the terminal state. More formally, I
chooses a measurable strategy o available at x and a measurable stop rule ¢,
player II chooses a measurable strategy r available at x, and the expected
payoff to I from IT is E, (u(x,)). Here we allow ¢ = 0 and require x, = x.

Define inductively

(4.1) ’ Uy=u
and for n > 0,
(4.2) U,,,=uVvSU,.
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Here a V b is the maximum of a and b. th

(4.3) U= suplU,.

LeEMMA 4.1. (a) For every n > 0, U, is upper analytic and U, < U, ,.

(b) The functions U, are uniformly bounded.

(¢) U is upper analytic and sup|U| < suplul.

(d) U is the least, bounded, upper analytic function ¢ on X such that
(@) ¢ > uand (i) S¢ < o.

(&) U=u vV SU.

Proor. To prove (a), use induction, Lemma 3.1 and Lemma 3.3. Next,
observe that if ¢ is bounded and upper analytic on X, then sup|S¢| < suplel.
It follows from this and induction that sup|U,| < suplu| for every n > 0. This
establishes (b) and also that sup|U| < suplul. The other assertion in (c) is
immediate from (a). For (d), assume that ¢ is bounded, upper analytic on X
and satisfies (i) and (ii). So ¢ > U, = u. Suppose that ¢ > U,. Then ¢ > S¢ >
SU, by Lemma 3.3(a) and, so ¢ > u VvV SU, = U, ,. Hence, ¢ > U, for all n
and so ¢ > U. On the other hand, U > u, and, by Lemma 3.3(b), SU =
S(lim, U,) = lim, SU, < lim, U,,; = U. This proves (d). It follows that U >
u VvV SU. For the opposite inequality, fix x and suppose that u(x) < U(x).
Then, for n sufficiently large, u(x) < U, (x) and so U(x) = lim, U,, (x) =
lim (SU,Xx) = (SU Xx) by Lemma 3.3(b). This completes the proof of (e). O

LemMmA 4.2. For every n = 0 and ¢ > 0, player 1 has a universally mea-
surable family of policies (o(x),t"(x)), < x Such that t"(x) <n, x € X, and
such that for any measurable strategy T of player 11 available at x,

(4.4) E iy, (u(%pn)) = Up(x) — &

for every x € X.

Proor. First, fix a universally measurable function f* on X into P(A)
such that f*(x)(F(x)) = 1 for every x € X. The existence of f* is a conse-
quence of the von Neumann selection theorem [19, 4E.9, page 240].

For n =0, let ¢°%(x) = 0 and 0°(x) be the strategy which uses f* every
day. Then (4.4) is a triviality for n = 0. Assume next that the result is true for
n. Define

" H(x)(h) =0 if u(x) = U,.y(x),
=t"(x1)(29,25,...) +1 ifu(x) <U,, x).

Plainly, t""X(x) < n + 1. If u(x) > U, ((x), let 6" '(x) be the strategy which
uses f* every day. Suppose, next, that u(x) < U,,(x). Fix a universally
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measurable function f: X — P(A) such that for each x € X, f(F(x)) = 1 and
4.5 inf U dxlx,a,b da) = (SU, —&/2.
(45)  inf [[U,(x)a(dxilx,a,)f(x)(da) = (SU,)(x) = ¢/
The existence of f follows from Lemma 3.2 by taking ¢ = U, . Define
a1 (x)o = f(x),
o N x)i(21, 29,45 2;) = 0 o(%1);_1(29,23,...,2;) fl<i<n,
=f*(x;) fn+1x<i.

It is easily verified that (¢"*'(x),#"* (x)),c x is a universally measurable
family of policies. It remains to verify (4.4) for n + 1. If u(x) > U,, (x), once
again (4.4) is trivial. So suppose that u(x) < U,, (x). Let 7 be a measurable
strategy for player II available at x. Then, for fixed x € X,

Eypoigey,(u(2imn1)) = f f w( X 1ayzy)) Pop iz e Ponia), -
= f / u(Xpn(ry) dP alya(x1), Tlz1] dP,nrg)

> [[[U(x)a(dxlx, @, b) f(x)(da)ro(db) — &/2
> (SU,)(x) — ¢
= Un+1(x) - &,

where the first inequality is by virtue of the induction hypothesis and the
second by virtue of (4.5). Thus, (4.4) is established for n + 1. O

THEOREM 4.3. The game Z(uXx) has value U(x) for every x € X. For
“every € >0, I has a universally measurable family of e-optimal policies.
Player II has a universally measurable family of optimal strategies.

Proor. For x € X, define n(x) to be the least £ > 0 such that U,(x) >
U(x) —e/2. Then n(x) is a universally measurable function of x. Let
(05(x),t" (%)), x, n = 0, be as in the statement of Lemma 4.2. Set

F(x) = o/ (x)
and
i(x) =t"™(x).

Then (5(x), #(x)), < x is a universally measurable family of policies. Moreover,
by Lemma 4.2, for any measurable strategy = for player II available at x,

E(?(x),T(u(xf(x))) = Eag}g)(x)’T(u(xt"(")(x))
(4.6) " 2 Uy(x) —e/2
>U(x) —¢
for every x € X. :
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Using Lemma 3.2, fix a universally measurable function g: X - P(B) such
that for each x € X, g(x)XG(x)) = 1 and

(4.7) sup f/U(xl)q(dxlls,a,b)g(x)(db) < (SU)(x).
acF(x)

Define
T(x)o = &(x),
(%) n(21,29,...,2,) = 8(x,), n=>1.
Then (7(x)), c x is a universally measurable family of strategies for II.

We will now prove that if (o, 7) is any measurable policy of player I available
at x, then

(4.9) E, o (u(x,)) < U(x)

for every x € X.

We prove (4.9) by induction on j(¢). The inequality is obvious when
J(@) =0, that is, when ¢ = 0. Let ¢ be a measurable stop rule with index
J(#) = a > 0 and assume that (4.9) holds for all measurable strategies o of
player I available at x, all x € X and all measurable stop rules of index less
than a. Then, by (4.7) and Lemma 4.1(d),

E, .o (u(x,)) = //u(xt[zl]) AP, ) rwyz) WPo, ()

(4.8)

= f/u(xt[zl]) dPo'[Zl],T(xl) dPo',q-(x)
< [U(x)) dP,

= [/fU(xl)q(dxllx, a,b)o,(da)g(x)(db)

< (SU)(x)
< U(x).

This terminates the proof of the theorem. O

Consider now a modification .#*(u)x) of the leavable game in which player
I chooses a measurable strategy o available at x and a measurable stop rule
¢t > 1, player II chooses a measurable strategy 7 available at x and, as before,
IT pays I the quantity E, (u(x,)). The only difference is that player I is not
allowed to choose ¢ = 0.

THEOREM 4.4. The game .Z*(u)x) has value (SUXx) for every x € X.
For every ¢ > 0, I has a universally measurable family of e-optimal policies.
Player 11 has a universally measurable family of optimal strategies.
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Proor. Let X _be a homeomorphic copy of X and disjoint with X. If
x € X, its copy in X will be denoted by x. Consider a new problem with state
space X U X, the same action sets F, G, the same utility » and the same law
of motion g on X and extended to X as follows:

F(x) =F(x); G(x)=G(x),
u(x) =influ(y):yeX} -1
and
q(-1x,a,b) = q(lx,a,b).
Notice that, for any x € X, the leavable game Z(uXX) is equivalent to
Z*(u)x) because I will not have any incentive to use ¢ = 0 if the starting

state is ¥. Consequently, U(X), the value of the game £ (uXx), will also be the
value of the game #*(u)(x). By Lemma 4.1(e),

U(x) = u(X) v (SU)(X) = (SU)(F) = (SU)(x).

Hence the value of Z*(u)x) is (SUX«x), as was to be proved. For any
0 <& < 1, by Theorem 4.3, player I has a universally measurable family of
¢-optimal policies (o(%), #(%)), < x in the games Z(u)(¥), ¥ € X. But then
t(x) > 1 and o(%) is available to I at x for every x € X, so this family of
policies will be e-optimal in the games -#*(uXx), x € X. Finally, let 7(x) be
defined by (4.7) and (4.8). Then, as was observed in the course of the proof of
Theorem 4.3, for any measurable policy (o, ¢) available to I at x with ¢ > 1,

E, (u(x)) < (SU)(x).

Hence, (7(x)),.x is a measurable family of optimal strategies for II in
Z*(u)x), x € X. This completes the proof. O

5. Inductive definability. In order to prove that the games .#(«) have
a value and that the value function is measurable, it will be necessary to
iterate the .Z* games of the previous section a transfinite number of times,
ensuring at the same time that these iterated games have value functions that
are measurable. A result of Moschovakis from the theory of inductive defin-
ability is tailor made to handle these problems of measurability. To formulate
the result, let Y be an infinite set and ® a mapping from the power set of Y to
the power set of Y. Say that ® is a monotone operator if, whenever E, C E, C
Y, then ®(E,) c ®(E,). Define the iterates of ® by transfinite induction as
follows:

(5.1) ®f = CIJ( U <I>”),
n>§
where ¢ is any ordinal. So, in particular, ®° = ®(¢). It is easy to verify that
&~ .the least fixed point of ®, is'given by U{®": n < «}, where « is the least
cardinal greater than the cardinality of Y.
Suppose that Y is a Borel subset of a Polish space and ® is a monotone
operator on Y. We say ® respects coanalytic sets if, whenever () is a Polish
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space and C is a coanalytic subset of () X Y, then the set
(5.2) C*={(0,y) €O X Y:y e ®(C,)}
is also coanalytic. (Here C, = {y € Y: (w,y) € C}.)

THEOREM 5.1. Let ® be a monotone operator on a Borel subset Y of a
Polish space and suppose that ® respects coanalytic sets. Then:

(a) @~ is a coanalytic subset of Y,

b) = U, <w1¢>§, where w, is the first uncountable ordinal,

(o) if E is a Borel set contained in ®%, then there is ¢ < w, such that
E c &%

Part (a) of the theorem is a special case of a very general result of
Moschovakis [19, 7C.8, page 414]. Parts (b) and (c) are not stated explicitly in
[19], but they can be deduced from results there and this deduction is carried
out by Louveau [14]. Zinsmeister [26] also gives a nice exposition of
Moschovakis’s theorem.

Without loss of generality, we assume that the bounded, upper analytic
utility function « takes values in [0, 1]. Set

B={(x,c) € X x[0,1]: u(x) > c},

so B is an analytic subset of X X [0, 1] by virtue of Lemma 2.1.
Let E be a subset of X X [0, 1]. Define ¢z: X — [0,1] by

¢g(x) = sup{c € [0,1]: (x,¢c) € E° N B},

where sup(¢) = 0.
Suppose, next, that w: X — [0, 1] and let

E(w) = {(x,¢) € X x[0,1]: w(x) <c}.

Then, as is easy to see, g, = u A w, where (z A w)x) = the minimum of
u(x) and w(x).

We now extend the definition of the operator S, introduced in Section 3, to
all functions on X onto [0, 1]. For w: X — [0, 1], define

¥ x
Sw)(x) = inf sup w(x')q(dx'lx,a,b)(n X v)(da X db),
( )( ) veP(G(x)) }LGP(F(X))f ‘[ ) ( )(

where [* stands for the outer integral (see [1], page 273, for a definition).
Set
w;=8Sw Vuw,
w,,; =Sw, Vw, n>1
and

w, = supw,,.
n
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Finally, define a new operator T' by setting
Tw = Sw,,.

Notice that, when w is the function u of Section 4, w, = U is the value of the
game .Z(u) and Tw = SU is the value of .Z*(u).

We are now ready to define a monotone operator on X X [0,1]. For-E c
X x[0,1], let

(5.3) D(E) = {(x,¢) € Xx[0,1]): (Teg)(x) <c}.
It is easy to verify that ® is monotone.
LeEmmMmA 5.2. ® respects coanalytic sets.
Proor. Let Q be Polish and let C be a coanalytic subset of ) X X X [0, 1].
We have to prove that the set
C* = {(w,x,¢) € QXX Xx[0,1]: (x,c) € ®(C,)}

is coanalytic.
Define v: Q X X — [0, 1] by

v(w,x) = sup{c € [0,1]: (x,¢c) € CE N B},
that is, v(w, x) = ¢¢ (x). The function v is upper analytic, for
v(w,x) >a < (Ic)(c>aand(w,x,c) €C°N(QXB)),

which is an analytic condition in w, x, a. Hence, by Lemma 3.1, the function v,
defined by

vi(@, %) = v(@,x) V (Su(w, ))(x)

is upper analytic. So, by induction and Lemma 3.1, the functions
Uprr(@, ) =v(w,x) V (Svn(w’ ))(x)
are upper analytic as well. It follows that so is the function

U@, x) = supv,(w, x).
n

Using Lemma 3.1 one more time, we see that the function
(To(w, ))(x) = (Suw, ))(x)
is upper analytic on X X. Since )
C* ={(w,x,¢) € A XX x[0,1]: (Tv(w, *))(x) <c},
it follows from Lemma 2.1 that C* is coanalytic. O

Lemma 5.3. If w is a function on X into [0,1], then ®(E(w)) =
E(T(u A w)).
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Proor. This is immediate from the definitions of ® and 7. O

Define by transfinite induction the functions @, on X as follows:

(5.4) Qo = Tu
and for £ > 0,
(5.5) Q= T(u A ggf;Qn).

LEMMA 5.4. (a) ®¢ = E(Q)), ¢ < w.
(b) For every ¢ < wy, Q, is upper analytic.

Proor. If E = ¢, then ¢z = u. Hence

0 = B()
={(x,¢) € XX [0,1]: (Tu)(x) <c}
={(x,¢) € Xx[0,1]: Qo(x) < c}
= E(Q).

Assume next that ¢ > 0 and that (a) is true for all n < ¢&. Let

<e _ .

® < = Yor and Ef—E(;gf;Qn).

It is easy to verify by using the inductive hypothesis that

PEE = Po<t.
But

=u A Inf@_,

Pps= U n<§Q,,
S0
T(u A iann) = Tog-c.

n<§&

Consequently,

®¢ = B(D<¢)
={(x,¢) € X x[0,1]: (Togp<)(x) < c}

_ {(x,c) e X x[0,1]: T(u A irit;Q,,) < c}

={(x,¢) €Xx[0,1]: Q:(x) < c}
=E(Q,).

For (b), first observe that it follows from Lemma 5.2 and induction on ¢
that ®¢ is coanalytic for all ¢ < w,. It then follows from (a) and Lemma 2.1
that the functions @, £ < w,, are upper analytic. O

‘ "Let
(5.6) Q = inf Q.

(<wy .
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THEOREM 5.5. The function Q is upper analytic and T(u A @) = Q.

ProoF. First, note that the monotone operator ® defined by (5.3) satisfies
the hypothesis of Theorem 5.1 by virtue of Lemma 5.2. So, according to
Theorem 5.1(b),

»* = |J Pt
<o
Hence, by Lemma 5.4(a),
"= U {(x,¢) €Xx[0,1]: Q(x) < ¢}

<o,
(5.7) - {(x,c) e X x[0,1]: (gi?‘f Qg)(x) < c}
- E(Q).

Hence, by Theorem 5.1(a) and Lemma 2.1, @ is upper analytic. Moreover, from
(5.7) and Lemma 5.3, we have
D* = P(P)
- B(E(Q))
- B(T(u A Q).
Hence T(u A Q) = Q. O

6. Nonleavable games. In this section we prove that the game .#(u)(x)
of Section 1 has value Q(x). Let V(x), V(x) be, respectively, the upper value
and lower value of the game .#(u)(x) as defined by (2.2) and (2.3). The next
result shows that V > Q.

THEOREM 6.1. Let ¢ > 0. Then there is a universally measurable family of
strategies (0(x)), c x for player 1 such that for any measurable strategy = of
player 11 available at x,

(6.1) By, (u*) > Q(x) — ¢
for every x € X. Consequently, V > Q.

Proor. Consider the game Z*(u A @) x). By Theorem 4.4 and Theorem
5.5 this game has value (T'(z A @)Xx) = Q(x). Moreover, by virtue of Theo-
rem 4.4, we can choose, for each & > 0, a universally measurable family
(6(x, 8), £(x, 8)) of S-optimal policies for player I in the game .Z*(u A @)x).

Let 8,8, ... be positive numbers such that ©,8, <'e. For each x € X and
n >0, set 0™(x) =a(x,3,), t,(x)=1tx,5,). For h = (24,24,...,2,,...), de-
fine . :

so(%)(h) = to(x)(R),

sn+1(x)(h) = sn(x)(h) + tn+1(xs,l(3c))(zsn(x)+1’ an(x)+2’ e )
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and
o(x)o =0a°(x)o,
(%) (21,29, .., 2,) =0%(%) (21,29, ..., 2,)  if 1 <so(x)(R)
= ak+l(xsk(x))n_sk(x)(zsk(x)+17 Zgyxy+20 2 Zn)

if 5,(x)(h) < n < s, i(x)(R).

Plainly, (o(x)), c x is a universally measurable family of strategies.

We shall now verify (6.1). So fix x, € X and a measurable strategy = for
player II available at x,, and let P = P, .., The expectations and conditional
expectations below are all with respect to P. Recall that, for a stop rule ¢ and a
history h = (2, 25,...) = (ay, by, x,), (ay, by, x5),...), we define x,(h) = x,,
and p(h) = pypy(h) = (21, 25, .., Zychy)-

Set

v
e

Yn = (u A Q)(xsn(xo))7 n=z
By assumption,
E(Y,) = Q(x,) — d
and for n > 1,
E(Y,lp,, (xp) = @(%,, ) — 5, almost surely (P),

where the conditional expectation is with respect to the o-field &, ., .
So, for n > 1,

E(Y,) = E(Q(x,, ) — ba
>E(Y,_,) —9,.
By iterating the last inequality, we get, for n > 0,
E(Y,)) 2 E(Y,)) — (6, +8;,+ -+ +8,)
2 Q(x9) = (8g+ 8, + -+ +3,)
> Q(xy) — &.
Hence
limsupE(Y,) = Q(x,) — .
But
E(u*) = E(limsupu(x,))

n

> E( lim supu(xs,xxo)))
n
> lim supE(u(xs,,(xo)))
n
> limsupE(Y,)
n
> Q(x) — &,

which verifies (6.1). O
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Now we have to prove that V < @. We need a result which may be viewed as
a measurable version of one-half of the Fatou equation. The proof is adapted
from [24].

LEMMA 6.2. Let € > 0. Then there is a universally measurable function
t*(uw, h) = t(u, h) from P(H) X Hto N =(1,2,...} such that (a) for fixed u,
t(u, - ) is a stop rule greater than or equal to 1, and (b) for every u,

Eﬂ(u*) = Eu(u(xt(u,~))) te,

where E, is the expectation operator under u.

Proor. Foreach n > 1, let ulzy, 2, ..., 2,] be a Borel measurable function
from P(H) X Z™ to [0,1] such that u[z,2,,...,2,] is a version of the
conditional distribution under u of z,,1,2,.9, ... given 2z;,2,,...,2,. The

existence of such a function is established in [16]. Consequently,

E (u*l2),29,...,2,) = fu*,u[zl, 29y...,2,](dR)
is a universally measurable function from P(H) X Z" to R ([1], page 180). By
the Levy 0-1 law ([20], page 133),

E (u*lzy, 29,...,2,) = u*(%q, %,...)

almost surely (u).
Let s(u, k) be the least 2 > 1 such that

E (u*lzy, 29, ..., 2,) <u(x;) + 9,

if such a k exists. Otherwise, set s(u, h) = .
Then s is a universally measurable function on P(H) X H such that for
each fixed u, s(u, - ) is a stopping time and u({s(u, - ) < }) = 1. Let

gm(#)=#({s(:"‘7') Sm})’ mzx=1,

so g,, is universally measurable on P(H) ([1], page 177). Let N(u) be the least
m such that

gm(/"‘) >1- 6’

so N(u) is also universally measurable.
Let

t(u,h) =s(u, h) AN(n).

Plainly, ¢ is universally measurable and, for each fixed w, #(u, - ) is a stop rule.
Moreover,

/J*({t(/'l” ) = S(/J*a )}) >1-39
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for every u € P(H). Hence,
E(v*) - E,(u(%yy, )

_f (¥ P, ) = w(Fu, )] A

- (s(u, ,)SN(#)}[E/-L(u*lpt(#, ‘)) - u(xt(p,, ))] d/.L

o .)>N(#»[E“(u*|p,(#,‘)) — u(%y,, )| due
<&+ 2|ulls
=8(1 + 2llul),
where [|u|l = sup, < xlu(x)l.

Now choose & so that 6(1 + 2|lz|) = £ to complete the proof. O

THEOREM 6.3. For every ¢ > 0 and ¢ < w,, player II has a universally
measurable family of strategies (74%(x)), < x such that for any measurable
strategy o for player 1 available at x,

(6.2) Eo.,Tf,s(x)(u*) S Qg(x) + &
for every x € X.
Proor. The proof is by induction on ¢. So consider the case when ¢ = 0.

By Theorem 4.4, choose a universally measurable family (7(x)), . x of optimal
strategies for player II in the games .Z*(u)x), x € X. Set

r%¢(x) = 7(x), xeX.

Now fix x, € X and let o be a measurable strategy for I available at x,. Let
P =P, 4., Use Lemma 6.2 to choose a universally measurable stop rule ¢ > 1
such that

Ep(u*) < Ep(u(x,)) + .
Then
Ep(u*) < Ep(u(x,)) +¢
< Qo(xg) + &,

since 7(x,) is optimal in #*(uX(x,).

For the inductive step, let £ > 0 and assume that the result is true for all
n < & By Theorem 4.4, we can find an optimal family (7(x)), c x of universally
megsurable strategies for IT in the games -#*(u A inf, _, @ )x), x € X. Let

A(R) = inf{k > 1: u(xy) > (igt;Qn)(xk)},
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where inf(¢) = =, so that A is a universally measurable stopping time. Let, for
n <§¢,

c, = {x € X: Q,(x) < (}25 Q) (x) + 8/8}.

Note that the sets C, are universally measurable. For A = (21, 295+ -5 Zys - ),
we now define 7%¢(x) as follows:

T8(x)o = T(%)o
78 x) n(215 295 - -5 25) = T(X) (21,29, ...,2,) if n <A(h)
= Tn’s/s(x/\)n—/\(z/wp Zy42s- 005 2n)

if n>A(h)andx, €C, — U C,.

n'<n

Plainly, (74¢(x)), < x is a universally measurable family of strategies.
Fix x, € X and let o be a measurable strategy for I available at x,. Set
P =P, ., Choose m > 1 such that

Since 7%¢(x,) and 7(x,) agree prior to time A, it follows by virtue of Lemma
2.5 that

(64) Po-,f‘(xo)({/\ < 00}) < Po-,F(xo)({/\ < m}) + m

Now define a function s as follows:
s(h) =(AAm)(h) ifA(h)<m
=m+ t**(P[pn(h)],(Bpits Bppigs-..)) EA(R) >m,

where the function #¢/% is as in the statement of Lemma 6.2 and P[p,(h)]
abbreviates P, .y 64p, ny 1t is easily verified that s is a universally
measurable stop rule.

In the calculations below, expectations and conditional expectations will be
with respect to the probability measure P. First, write

(6.5) E(u*)=[ = u*dP+ u* dP.

{A<m) {A>m}

We will now obtain bounds on the two terms on the right-hand side. For the
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first term, condition on p, . ,, and calculate
u* dP = [ w*dP, . .. ]dP
/(Asm) (A <m) / (A 8 (%) Pl

<

()\sm)(fllrifon)(x/\) b +e/4

(6.6) = u A infQ,)(x,) dP + /4
n<§

{/\sm)(

= (u A ;Iif;Qn)(x/\) d o, 7(xg) te/4

{A<m}

_ (A 32§Qn)(xs)d e T8/,

{A<m}

where the first inequality uses the definition of 7%°(x,)[p,] and the inductive
hypothesis, the third equality is by virtue of the fact that 7%(x,) and 7(x,)
agree prior to time A and Lemma 2.5(i), and the final equality is by the

definition of s.

For the second term on the right side of (6.5), we condition on p, and

calculate

[ u* dP = [/u*dP[pm]}dP
{A>m} {(A>m}

< [fu(xts/‘;(P[me ) dP[pm]] dP + ¢/4

{(A>m}

= }E(u(xs)lpm)dP+s/4

{A>m

= u(x,)dP +¢e/4

{A>m}

= u(x,)dP+ [ u(x,)dP +e/4
{m <A<} {A =}

(6.7)
< (A ian,,)(xs)dP+s/4
n<é

N {m <A<}

+ (u A iann)(xs)dP+e/4
n<¢

{A =}

< (u A T§r<1f;Qn)(xs) dP, ., T 2¢/4

B {m <A <o}

+ (u A ,:Ilf;Q,,)(xs) APy, gy + /4

(A=)

_ (Pm)(u A gt;Qn‘)(xs)d ey + 36/4,
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where the first inequality is by virtue of Lemma 6.2, the second equality is by
the definition of the stop rule s, the second inequality is by virtue of (6.3) and
the facts that [1Q,|l <llull and u(x,) < (inf, ., @,)Xx,) on {A > s} and, the
final inequality is by virtue of (6.4), the fact that 7%°(x,) agrees with 7(x,)
prior to time A and Lemma 2.5(ii).

Hence, by (6.5), (6.6) and (6.7),

E(u) < [(u A infQ,)(x,) AP sy + ¢

< Qs(xg) + &,

the last inequality being justified by the fact that 7(x,) is optimal for player 1I
in the game £*(u A inf, _, @,)(x,), which has value @,(x,). Thus, we have
verified (6.2) and the proof is complete. O

COROLLARY 6.4. V < Q.

Proor. It follows from Theorem 6.3 that V < @, for every ¢ < ;. The
conclusion now follows from (5.6). O

COROLLARY 6.5. For every ¢ > 0, player 11 has a universally measurable
family of strategies (t(x)),c x such that for every measurable strategy o of
player 1 available at x,

Eo’,'r(x)(u*) = Q(x) +e
for every x € X.

~ Proor. Assume without loss of generality that 0 < u < 1. Let C, = {x € X:
- Q.(x) = Q(x)}, £ <w;. Then, as is easy to see, the sets C, are universally
measurable and U, ., C; = X. We define

m(x) =75%(x) ifxeC,- UC,

n<§

where 7¢¢ is defined by Theorem 6.3. In order to prove that (r(x)), . x is
universally measurable, we have to verify that, for each n > 0,
7(x),(21, 23, - - -, 2,,) is universally measurable in x, z;, 2, ..., 2,. So let p be a
probability measure on the Borel sets of X X Z”. Let u, be the marginal of n
on X. Then Q is u,-measurable, so there is a Borel function @: X — [0,1]
such that @ > @ and @ = Q a.s. (u,). Plainly, the set {(x,c) € X X [0, 1]:
Q'(x) < c} is Borel and is contained in E(Q) = {(x,¢) € X X [0,1]: @(x) < c}.
But, by (5.7), E(Q) = ®, where the monotone operator ® is defined by (5.3).
Consequently, by Theorem 5.1(c), there is ¢ < w; such that {(x, ¢) € X X [0, 1]:
Q'(x) < c} ¢ ®¢. So, by Lemma 5.4(a), it follows that @, < @, so that @, = @
a.s. (o). Thus, p(X — C,) x Z") = 0. Now it is easy to verify directly from
the definition that, restricted to the universally measurable set C, X Z", the
function 7(x),(2;, 2y, - . -, 2,) is universally measurable, hence it follows that it
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is u-measurable on X X Z™. Since u was an arbitrary probability measure on
X X Z", this proves that 7(x),(z, 25, ..., 2,,) is universally measurable.

Finally, fix x, € X and let o be a measurable strategy for I available at x,.
If xp€C,— U, ,C, for ¢ <w,, then

Eo’, ‘r(xo)( u*) = Eo’, Tf’s(xo)( u* )
< Q(xg) + &

= Q(xy) + ¢,
where the inequality is by virtue of Theorem 6.3. This completes the proof. O

Theorem 1.1 now falls out of Theorem 6.1, Corollary 6.4 and Corollary 6.5.
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