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MODERATELY LARGE DEVIATIONS AND EXPANSIONS OF
LARGE DEVIATIONS FOR SOME FUNCTIONALS OF
WEIGHTED EMPIRICAL PROCESSES!

By Tapeusz INGLOT AND TERESA LEDWINA

Technical University, Wroctaw

Let «,, be the classical empirical process. Assume T, defined on D[0, 1],
satisfies the Lipschitz condition with respect to a weighted sup-norm in
D0, 1]. Explicit bounds for P(T(a,,) = x,Vn ) are obtained for every n > n,
and all x, € (0, ], where n, and o are also explicitly given. These bounds
lead to moderately large deviations and expansions of the asymptotic large
deviations for T'(a,). The present theory closely relates large and moder-
ately large deviations to tails of the asymptotic distributions of considered
statistics. It unifies and generalizes some earlier results. In particular,
some results of Groeneboom and Shorack are easily derived.

1. Introduction and summary. Let U, U,,... be a sequence of inde-
pendent uniform (0, 1) random variables, and for each n > 1, let F, denote the
empirical distribution function based on U,...,U,. Let

a,(t) =n*(F,(t) -t), 0<t<l1,

denote the uniform empirical process.

This paper deals with some large and moderately large deviation results
about some functionals T of a,. So, some asymptotics of P(T(a,) > ¢,),
¢, — o, are studied. The case ¢, = O(n'/2) corresponds to large deviations and
the case ¢, = o(n'/?) to moderately large deviations. Since, by the Komlés,
Major and Tusnady (KMT) (1975) inequality, for every n, «, can be well
approximated by some Brownian bridge B and since probabilities P(T(B) >
t,) are well investigated for a large class of T'’s, it is very useful to know under
which conditions on T the difference between P(T(«a,) > ¢,) and P(T(B) >
t,) is negligible. Inglot and Ledwina (1990) have shown that if T is Lipschitz
with respect to the uniform norm on D[0, 1] and for a positive constant a,

(1.1) log P(T(B) 2y) = —%yz(l +0(1l)) asy— =,
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then for ¢, = o(n'/?),

lim ¢, % log P(T'(a,) > t,) exists and equals

(1.2)
a
lim ¢, ?log P(T(B) > t,) = — R

n—o

So, this application of the KMT inequality gives the desired negligibility and in
this way unifies and clarifies isolated earlier results. For more details and some
examples see Inglot and Ledwina (1990). Further applications can be found in
Koning (1991). Moreover, in Inglot and Ledwina (1990) it has been shown that
using the Lipschitz property and KMT inequality in the case ¢, = O(n!/2)
leads to different lower and upper bounds for (1/n)log P(T(a,) > t,) (cf. also

Theorem 4.1 and Proposition 5.1 of the present paper). So, the approach does
not ensure that

(1.3) I(x) = lim n"'log P(T(a,) > xVn ) exists.

Existence of I(x) is guaranteed in a very general case by Sanov-type theorems
proved by, among others, Groeneboom, Oosterhoff and Ruymgaart (1979) and
Groeneboom and Shorack (1981). Moreover, Sanov-type theorems state that
I(x) is the infimum of the Kullback-Leibler information over an appropriate
set of functions. However, for practical applications one needs to know a more
explicit form of I(x), at least for small x’s. Usually, some expansions of I{x)
are sufficient. In general, to find such expansions is a nontrivial problem. For
several special cases many different methods have been applied. For example,
Nikitin (1980) and Groeneboom and Shorack (1981) related the minimization
of the Kullback-Leibler information to associated differential equations.
Kremer (1979, 1981) analysed some integral equations defining I(x) for
rank statistics. Ledwina (1987) used Hoeffding’s result to provide simple solu-
tion of problems considered by Kremer. The first general result on expansion
of I(x) is due to Kallenberg and Ledwina (1987). Their approach was, how-
ever, restricted to asymptotically normal statistics. Recently, Jeurning and
Kallenberg (1990) extended this approach to quadratic statistics. Inglot and
Ledwina (1990) developed a new approach, showing that in the case x — 0 for
T satisfying (1.1), (1.3) and the Lipschitz condition, the KMT Brownian bridge
approximation is again sufficient and results in the following:

lim x"2I(x) = lim x~2 lim n~!log P(T(B) > xvn)

x>0+ x—>0+

(1.4)
= limy~2?log P(T(B) > y).
y—o >
So, this application of the KMT inequality allows us to replace the analytical
problem concerning the left-hand side of (1.4) by a probabilistic one concerning
the right-hand side of (1.4), whose solution is already known in many cases.
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In the present paper we extend (1.2) and (1.4) to the case of T satisfying the
following weighted Lipschitz condition:

(1.5) IT(x) = T(y)l < sup {lx(¢) —y()l/w(t)}, forallx,y < D[0,1],

0<t<1

where w satisfies some mild conditions precisely stated in Section 2. For
example, the Anderson-Darling statistic defined by

Ty (%) = {folt_(xi(—t—)t) dt}

1/2

and the statistic Tg(e,,), where

1
x(t)log————

Tes(x) = sup (1 1)

O0<t<l1

’

introduced and investigated by Groeneboom and Shorack (1981), satisfy our
assumptions. Counterparts of (1.2) and (1.4) under (1.5), that is, Propositions
2.1-2.5, are formulated in Section 2. Similarly as in Inglot and Ledwina
(1990), these results are derived from some explicit lower and upper bounds
for P(T(a,) > t,) given in Theorem 4.1 of Section 4. To derive the bounds,
in addition to exploiting (1.5) and the KMT inequality, some delicate analysis
of sup, ., . fa,(t)/w()} for b close to 0 is necessary. To this end a useful
inequality is stated and proved in Section 3. This section also contains a
version of a known result on the behaviour of sup,_,_,{B(¢)/w(?)} that we
need to get the bounds. Section 5 contains proofs of Propositions 2.1-2.5.

2. Expansions of large deviations and moderately large deviations.
In this section we shall collect and comment on some counterparts of (1.2) and
(1.4) for T satisfying the weighted Lipschitz condition (1.5).

We begin with a precise description and some discussion of the class of
weights appearing in (1.5). Set w = h(¢#(1 — ¢)), t €[0,1], and assume A
satisfies the following conditions:

ConprTioN 1. A(0) = 0, A is continuous and increasing on [0, 1/4].

CONDITION 2. t/h*(t) is nondecreasing on (0,7), 0 < v < 1/4.

ConpiTiON 3. [}/*dt/h*(t) = H < o,

ConpiTION 4. There exists a constant A,, A, > 1, such that for every
A > A, there exist ¢ = ¢(A) and 71, n not depending on A, 0 <& <7 < 1/4,
such that the function A(#)log{ A¢/h(#)} is nonincreasing on (0, £] and nonde-

creasing on (g, ).

REMARK 2.1. Conditions (1) and (2) are standard assumptions to get expo-
nential bounds for the supremum of a weighted Brownian bridge. We shall use



1694 T. INGLOT AND T. LEDWINA

them together with the unrestrictive Condition 3 to get a variant of the
It6-McKean inequality (see Proposition 3.1). Condition 4 is crucial to get
useful bounds for the supremum of weighted empirical processes (Proposition
3.2). The essence of Condition 4 consists in the following property: There
exists m, n € (0,1/4], such that for large A the function A(¢){log At/h(¢)} is
u-shaped for ¢ € (0, n]. After the present paper was submitted for publication,
Einmahl kindly informed us that he imposed a similar assumption to get a LIL
for weighted tail empirical processes [cf. Einmahl (1992)].

REMARK 2.2. The functions A 4(t) = log™°(1/8), 6 > 1, h (¢) = t*, y < 1/2,
hy(8) = 1/{log(1/){1,(1/t)}, where [,(x) is defined inductively as I,(x) =
log(max(x, e)) and /,(x) = log(max(e, [, _(x)), satisfy Conditions 1 to 4. Some
elementary calculations connected with checking Condition 4 for A; and h,
are contained in Section 5.

ReEmARK 2.3. Both T, and Tqg satisfy (1.5) with w(t) = ch,(t(1 — ¢)),
where h(t) = log~(1/¢) and c is suitably chosen. The function A, satisfies
Conditions 1-4 with ¢ = 0, Ay =e, n = 1/4 and v = e~ 2. Note that h, plays
a fundamental role in large deviations theory for weighted Kolmogorov-
Smirnov statistics. As shown by Groeneboom and Shorack (1981), the heaviest
weight w(¢) = A(¢(1 - ¢)) under which sup, ., {la,(®)|/w(#)} has nonnull
large deviations probabilities has to satisfy

(2.1) liminfh(t)log(1/¢) = 6 €(0, +].
t—>0+
The function £, is also a key function in our considerations (cf. Remark 5.1).

Throughout this section we shall assume that T satisfies (1.1), that is, for a
Brownian bridge B and some positive constant a,

log P(T(B) > y) = —gyz(l +0(1)), asy > o,

REMARK 2.4. Note that (1.1) is not a restrictive assumption. In the statisti-
cal literature, since Bahadur (1960), it is one of the standard assumptions on
T(a,). In particular, (1.1) holds for T, with a = 2 [cf. Gregory (1980), pages
119 and 127] and for Tgg with @ = {sup, _,_, Var(B(#) - log(1/¢t(1 — t))} " =
e?/4 [see Marcus and Shepp (1972)]. A general result of Borell [(1975), page
214] is also applicable for both statistics. The result specific to our situation is
as follows. Suppose T': D[0, 1] — (-, ] is sublinear, that is, T(x + y) < T'(x)
+ T(y), T(cx) = cT(x) for all ¢ > 0 and x € D[0, 1]. Moreover, assume 7T is
finite B-as. Set |Tllp = sup,co, T(x), where O, is the unit ball in the
reproducing kernel Hilbert space of B. Then (1.1) holds with a = ||T|32% For
related general results see also Kallianpur and Oodaira (1978).

The first two results presented in this section will concern a functional T
satisfying (1.5), with & obeying (2.1).
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ProposITION 2.1. Assume T satisfies (1.1) and (1.5) with h fulfilling
Conditions 1-4 and (2.1). Then

lim x~?liminfn~'log P(T(a,) = xVn)

x—-0+ n—o
a
= lim x 2limsup n~!log P(T(an) > x\/n) = ——,
x—-0+ n—ow 2

where a is defined by (1.1). In particular, if (1.3) holds then

a
2.2 li -2 = ——.

REMARK 2.5. Groeneboom and Shorack (1981) got (2.2) for T, and
Tos by rather complicated analytical considerations on the infima of the
Kullback-Leibler information over some special sets. Earlier Nikitin (1980)
had derived (2.2) for T, via solving a related variational problem. Recently,

Jeurnink and Kallenberg (1990) proposed an alternative way to obtain (2.2) for
Tp- )

PRrOPOSITION 2.2. Assume T satisfies (1.1) and (1.5) with h obeying Condi-
tions 1-4 and (2.1). Then, for arbitrary x,, = 0 such that nx% — =, we have

(2.3) lim (1/nx2)log P(T(a,) = x,Vn) = —%.

It is intuitively clear that even if (2.1) does not hold, some moderately large
deviations can exist. Propositions 2.3, 2.4 and 2.5 describe important functions
h and corresponding sequences of x,’s for which (2.3) still holds.

PROPOSITION 2.3. For T satisfying (1.1) and (1.5) with h4(¢) = log=%(1/¢),
8 > 1,(2.3) holds for x,, = O(n=") with p > (6 — 1)/(26 — 1).

ProposITION 2.4. For T satisfying (1.1) and (1.5) with h,(t) =
(log(1/1,(1/tN~, k = 2, (2.3) holds for x, = O((1,_{(n))"") with an arbi-
trary p > 2.

ProposITION 2.5.  For T satisfying (1.1) and (1.5) with h (¢) = ¢?,y < 1/2,
(2.3) holds for x,, < (An"1log n)'/2, where A < (1 — 2y)?/y(1 — y)a. In par-
ticular, (2.3) holds for x,, = o((n"! log n)'/2).

Proofs of Propositions 2.1-2.5 are given in Section 5.

REMARK 2.6. As we have said before, Propositions 2.1-2.5 result from our
basic bounds given in Theorem 4.1. Observe that Proposition 2.4 exemplifies
the accuracy of our bounds, in the sense that for weights almost equal to
h(t) = log=X(1/t) the moderately large deviations we get hold for almost
constant sequences {x,}. Note also that some further moderately large devia-
tions can be derived from Theorem 4.1 (cf., e.g., Proposition 5.2).
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REMARK 2.7. Results like those given in Propositions 2.1-2.5 are important
in mathematical statistics for comparing tests and estimators. Some recent
applications of Proposition 2.3 to bound remainders in a decomposition of
some L- and U-statistics can be found in Inglot, Kallenberg and Ledwina
(1992) and Inglot and Ledwina (1993), respectively.

3. Inequalities for the weighted Brownian bridge and empirical
processes. First we state a version of a known result on the weighted
Brownian bridge B.

ProposITION 3.1.  Suppose h satisfies Conditions 1-4 and w(t) = h(¢(1 —
t)). Then

(3.1) sup < 35

>A| < exp
o<t<b W(2) A2V

provided that 0 < b < min(v,1/8) and Ah(b) > 6Vb .

P( [B(t)l ) 2H { —A2h2(b) }

Proor oF ProposiTION 3.1. By the formula (1.28) of Shorack and Wellner
(1982), for example, one easily gets

|B(t)l 2 5 1 AR(uw) 3 2,2
- 7 - —(A*h%(u)/2u)
P(Osgltlzb 0 22| < \/—/0 2R (w) T e du.

By Condition 2 the function Ah(u)/Vu is nonincreasing on (0,v). The
function f(x) = x3 exp(—x%/2) decreases for x > V3 and satisfies f(x) <
exp(—x2/3) for x > 6. Thus, by the choice of » and A and Condition 3, the
inequality (3.1) follows. O

The next inequality links the property of 4 described via Condition 4 (see
Remark 2.1, also) with the behaviour of the distribution of the weighted
empirical process near zero.

PRrROPOSITION 3.2. Suppose h obeys Conditions 1, 2 and 4, and w(¢)
h(t(1 — t)). Define by = 2v/[1 + (1 — 4v)'/2]. Then for arbitrary n > 1, 1 <
m <n, 0 <b < by, and positive z such that max{2b/w(b),2m /nh(n)} <z <
2e/(1 - b)A,,

P —an(t) — > z)

0<t<b w(t)
(3.2)

m

enh™1(2/nz) enh~'(2m/nz)\" [(ebn\™
<m 1-5 +m m(l b + ( )
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Proor. By Condition 2 and the choice of z we have ¢ /w(¢) < z/2 provided
that 0 < ¢ < b. Hence

IFn(t) -t n(t) 2
(3.3) Pl sup ————— =z| < P| sup = .
0<t<b w(t) O0<t<b w(t)
Let now U,, < - < U, denote the order statistics of uniform (0,1) rv’s

U,,...,U,. Define also U, ., = 1. The probability (3.3) can be majorized as
follows:

P b R Py i : b< T,
i vz p<
Os<1tlI<)b w(t) = foud 1m3§ nw(U(l)) R (k) = (k+1)
m k l
< P <b<U
kgl igl nh(U(i)(l (l)) (k) (k+1))

+ ¥ P(Uypy < b < Upeyy)

m m l z
(34) =< ~¥1 k;P( nh((l b)l]( )) l](k) <bs (J(k+1))
+ P(Ugny < b)
m 2
- £ B(h( - 0)Uy) < 2 Uy 5 < T

IA
u [\/]5

~1(2i/nz)
( <z)—ﬁ) P(Umy < b).

Since P(Uj, < u) < (';)ui, 1<i<n,ue(1),and k!> ki k> 1, then
(3.4) is majorized by

[

i=1 m

(3.5)
2

m nz
- zexp{—-—
i=1 2

~.

n

N

m

h=%(2i/nz) 2e ebn \™
log - . + | —
2i/nz (1-05)z ( )
Defining now ¢; via h(¢;) = 2i/nz, by Conditions 1 and 4 and the assumption

2m/nz < h(n), we get 0 < ¢, < -+ <t, <mn. Note that the exponent in the
first term of (3.5) has the form

nzh 1 At; N 2e
2 (ti)°g(h(ti))’ Ta-ve

By the assumption on 2z, A > A, and by Condition 4 the sum in (3.5) can be
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majorized by the first component plus the last component times m. This leads
to (8.2). O

REMARK 3.1. The estimate (3.5) can be written in an integral form. For this
purpose put m = [nd], i = [nx], where [v] stands for the integral part of v.
Then, under Conditions 1, 2 and 4, we get

|Fn(t) - tl d eh"l(zx/z) nx eb [nd]l-1
o o

foralln>1,0<b<by,2/n <d <1 and z satisfying
max{2b/w(b),2d/h(n)} <z <2e/(1 - b)A,.

4. Explicit bounds for P(T(«a,) >¢,). Let J, denote the class of
mappings T': D[0, 1] - (=, ] such that (1.5) holds with A satisfying Condi-
tions 1-4 and such that P(T'(B) > y) > 0 for all y > 0. Obviously, we have
Iy € T« provided that h* < h. For T € 7, we shall state in this section
explicit bounds for P(T(a,) > x,Vn) valid for all x, € (0,0] and n > n,,
where o and n, are also explicitly given. To formulate the bounds some
further notation is introduced.

For T € 9, and a positive a define the function g(y) via

(4.1) log P(T(B) 2y) = —(a/2)y*(1 +g(y)), y€ER.

Since P(T'(B) > y) > 0 for all y, such a function g always exists. We do not
require that (1.1) hold, that is, g(y) - 0 as y — ». However, to derive from
Theorem 4.1 some asymptotic results like Propositions 2.1-2.5, the condition
(1.1) obviously has to be imposed, in addition. Note also that using some more
detailed information on g, the inequalities we shall state can be applied also to
get some explicit bounds for the exact distribution of T'(a,). For an illustra-
tion see Section 3 of Inglot and Ledwina (1990).
For h satisfying Conditions 1-4 and arbitrary D > 0 define

H'=sup(t < v:t/h(t) < 2e/DA,}
and set
Xy = min{(4e)_1, 7, éf}

Finally, recall that Komlés, Major and Tusnady (1975) have constructed a
sequence of independent uniform (0, 1) random variables U,,U,,... and a
sequence of Brownian bridges B;, B,, ... sitting on the same probability space
such that for universal positive constants C, L and /,

P( sup n'/2la,(¢) — B,(£) > Clogn + x) < Le'=,
0<t<1

for all —o <x < ® and all n. Recently Bretagnolle and Massart (1989) have
shown that one can take C = 12, L = 2 and [ = 1/6.
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THEOREM 4.1. Let T € , and set K = a/l. Then for arbitrary 1 <p < 2,
n > 1and x, > 0 such that nx? > max{1,(2eK)"'} and Kx? < x,,,

a
(4.2) P(T(a,) 2x,/n) < (1+ Rn)exp{— §nxf(1 -s5,)%1 + rn_)}
and
a
(4.3) P(T(a,) =a,/n) = (1+ Ln)exp{— (1 +5,)°(1 + r,j)},
where
s, = KDx?~'/h(Kx?(1 — Kx?)), D > 16e,
ro=g(xn(1-s,), ri=g(x/n(l+s,)),
while R, and L, are explicitly given by (4.14), (4.15) and (4.13).

Proor. Define z, = x,s, and take B, and the version of «, defined in the
KMT (1975) inequality. Then (1.5) yields

P(T(a,) 2 x,/n)
<P(T(B,) 2x,(1—s,)Vn)

(4.4) | |
a”(t) - Bn(t)
vr O<t<1 w(t) _Zn‘/;)
and
P(T(a,) = x,/n)
(4.5) > P(T(B,) = Ixn(l + sn)\/E)l
a,(t) — B,(¢)
| g S e |

The first components of (4.4) and (4.5) shall later on be written in exponential
form resulting from (4.1). The rest of the proof consists of sufficiently precise
estimation of the second term in (4.4) and (4.5). To get such an estimate, first
of all observe that for arbitrary 0 < b, < 1/2,

la,(2) — By(2)l
Pl e, G =
(4.6) 52P( sup 1B,.(¢) > Z"‘/;)
0<t<b, W(¢) 2
(4.7) + ZP( sup () > znx/r?)
0<t<b, w(t) 2
(4.8) + P( sup la,(¢) — B,(¢)l > w(bn)znﬁ).

0<t<1
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We shall estimate (4.6) and (4.7) by means of Propositions 3.1 and 3.2,
respectively, and majorize (4.8) by using the KMT inequality. The involved
parameters s,, b, and m shall be chosen in a way ensuring that the resulting
estimates, for a wide class of A’s, behave like ¥, exp{—¢;nx¢}, 1 < ¢ < 2, for
large n and some positive constants V¥, ¢, i = 1,2, 3 [cf. (4.9), (4.11), (4.12)
and Remark 4.1].

Set b, = Kx?. Since Kx? < x, < 1/4e then b, < min(v,1/8). Besides, by
nxf > 1/2eK and D > 16e it easily follows that A = z,Vn /2 > 6Vb , /h(b,).
So, Proposition 3.1 yields the following bound for (4.6):

8H { nz,%h2(bn)} 8H { D2Knx? h(Kx,’l’)}
exp{ — exp{ — 2 ,

neifm 126, |~ D¥m 12 B Knar
where the last inequality follows by the definitions of z,, b, and the mono-
tonicity of A. By Kx? < 1/4e, nx? > 1/2eK and Condition 1, one finally gets
(4.9) P( sup B.(4) > 2"‘/;) <C, exp{— KD2M£ + log n}
o<t<s, W(?) 2 12 )’

where C; = 32 He?h*(1/4e)/D*Vrr .

To majorize (4.7), Proposition 3.2 will be applied. To this end put
m = [2eKnx? + 1]. Observe that by Condition 1 and Kx? < &# one has
2,(1 —b,) <2e/A,. By D > 16e one gets 2b,/w(b,) < z,/2. Finally, by Con-
dition 1, Kx2 <, nx? > 1/2eK, D > 16e and by the choice of m, we have
that 4m /nz, < h(n). Hence

lan(t)  2,Vn
P| sup >
0<t<bd, w(t ) 2
enh~1(4/nz,) enh Y(4m/nz,)\" [enb, )m
———"4m + :
1-9, m(1l-5,) (

By nx? > 1/2eK one has m < 4eKnx?. Observe that the choice of m implies
that the second term in (4.10) simplifies considerably and behaves similarly to
the third component of (4.10). Besides, for such m the first term of (4.10) will

usually dominate. Using Condition 1 and the assumption D > 16e, the right-
hand side of (4.10) can be majorized by

4h( Kx?)
DKnx?

(4.10)

m

5e2Kn2x,1;h—1( + (4eKnxl + 1)272Kn=l,

By nx? > 1 one finally gets

lan () 2,Vn
0<t<b, w(t) B 2 )
4h(Kx?)
" DKnx?
where C, = 5¢2K while C; = 4¢K + 1.

d
(4.11)

< C2n2x,§’h‘1( ) + C3nx? exp{—2eK (log 2) nxZ},
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By KMT (1975) the component (4.8) is majorized as follows:
P( sup la,(t) — B,(¢)| > w(bn)z,,\/;)

0<t<1

< L exp{ —IDKnx? + IC logn}.

(4.12)

Put
M = min{e log4, DI}, w = max{lC,1}.
By Kx? < 1/4e and D > 16e, (4.9), (4.11) and (4.12) yield

lae, (£) — B,(¢)l
g
(4.13) <S,= (201 + L) exp{ —KMnx? + plog n}
" 4Ke + L "
Hence (4.2) and (4.3) follow with
(4.14) R,=8, exp{(a/2)nx,21(1 ~-s,)%(1 + r)}
and
(4.15) L,=8,exp{(a/2)nx2(1 +s,)*(1 + 1))}

This concludes the proof of Theorem 4.1. O

REMARK 4.1. If x, —» 0 and nx2 — =, then for p € (1, 2), (nx?)"*logn — 0
as n — «. Moreover, if (2.1) is satisfied, then
h(Kx7)

nx?

(4.16) h‘l( ) < ¥, exp{ —¢nxf}

holds with ¢ = p and some positive constants V¥,, ¢,. Hence S, <
¥ exp{ — ¢y nx?} for some positive ¥, . Moreover, Propositions 2.3-2.5 provide
examples of h’s defining heavy weights [(2.1) does not hold] and related
sequences {x,} for which (4.16) still holds, at least with ¢ = 2 and i, suffi-
ciently large to ensure that R, and L, tend to 0 (cf. Section 5).

5. Proofs of Propositions 2.1-2.5. First we shall state a little more
general result than Proposition 2.1.
Setting in Theorem 4.1 p = 2, x,, = x and defining for arbitrary 0 <8 < 1
x* = x*(B) = sup{x €(0,1/4]:1 — s, > B}
and

w _ | {R"(6D/81)/K}"*, if 9D /81 < h(K/16),
1/4, otherwise,

X

one easily gets the following proposition.
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ProOPOSITION 5.1. Assume T € 7, with h satisfying (2.1) and suppose
(1.1) holds. Then for every 0 < x < min{x*, x**,(x,/K)'/?},

a, DKx S
- 5% 1+ R (K31 = Kd)) < ll'IzIngfn log P(T(a,) = xVn)
(5.1) < limsup n~!log P(T(a,) = xVn)
@ of, DEx 2
<-= - :
=72" h(Kx?(1 — Kx?))

Proor orF ProposiTioN 2.1. Proposition 2.1 is an immediate consequence
of (5.1). O

REMARK 5.1. Observe that every continuous function A satisfying (2.1)
satisfies h(¢) > c,;h(¢) for some positive ¢; and all ¢ € (0,1/4]. So, omitting
the assumption T € .7, one can get (5.1) with h replaced by c;h; and
suitably changed x,, x* and x**. Hence, obviously Proposition 2.1 follows,
also. However, in this way one loses some precision in (5.1).

Proor oF ProposiTION 2.2. By Remark 5.1, it suffices to carry out the
calculations for functionals T satisfying (1.5) with w defined via h; only.
Taking arbitrary 1 < p < 2, an elementary analysis of (4.2) and (4.3) yields
Proposition 2.2 (cf. also Remark 4.1). O

When deriving asymptotic results under x, - 0 from Theorem 4.1, the
main point is to prove that L, and R, tend to 0 as n — «. The following
proposition gives sufficient conditions for the convergence. In particular, proofs
of Propositions 2.3 and 2.4 will be based on this proposition.

PropoSITION 5.2. Assume T € 9, and liminf,_,, h($)log(l/t) = 0.
Moreover, suppose

(5.2) Po = inf{p e(1,2]: lim tP~1/h(t?) = 0} <.
t>0+

Then, for every x, — 0 such that nx2 — » and

(5.3) lim sup (log h~*(4h( Kx?) /DKnxZ)) /nxl < 0

for some p and q satisfying p, < p < q < 2, equality (2.3) holds.
Proor. Take p € (p,,2). Then (5.2) implies ¢t? "' /h(t?) > 0,as ¢t = 0 + .

So, s, — 0 and consequently r,y — 0 and r, — 0. Thus, to get (2.3) from (4.2)
and (4.3) it suffices to show L, —» 0 and R, — 0. By the definition of S,, R,
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is of the form c,e* + cze*“2, where c, and c; are some constants while
(nlogn) }
(nx,z,)p/2n1“"/2 ’
4h(Kx7) )
DKnx?

a 2— 2 -
w, = —nxpP KM—§xn P(1-s,)(1+r))—

el 2] — g )2 - g1 -1
wz—nxn{2xn (1-s5,)(1+r;)+ (nxf) "logh (

2q — log n
(P 10gnx’“(q p)(logn)
qnx] qnx]!
Since x, > 0, nx? > » and p <2, then w; » —». By (5.3) and ¢ <2,
w, —» — also. L, is completely analogous to R,. O

Proor oF ProposiTION 2.3. First we shall check Condition 4 for h;. Put
G,(t) = hy(t)log{At/h(¢)}, where hy(¢) =log™>(1/¢), &> 1. Setting u =
log(1/¢) it is enough to investigate the function f(u) = (log A —u +
slog u)/u’, u>0. We have f'(u)=208%(6 — 1)6 %u — 6 'log(A/e) ~
log u]/u®*!. Consider § > 1 and set A, = e. For every A > A, define u, =
uy(A, 8) to be the largest root of the equation (8§ — 1)8 % — 8~ ' log(A/e) =
log u. So, on (0, e %) the function G4(¢) is decreasing. Moreover, for A > e,
f'(u) <0 on (1, u,). Thus, one can take n = e~ %, since G4(¢) is increasing on
(e“0,e™1). For 8= 1lonegets Ay=e, e =0,n7=1/4.

Now, it is enough to check (5.3) of Proposition 5.2. By log h; (u) = —u~1/°
one has

(log h;'(4hs(KxP)/DKnx?))/nxl
= —(K9/?(D/4)" log(1/b,))/(b,nre= 1/ @s-p)ae /e,

where b, = Kx?. As p, = 1, one can choose p close to 1 and ¢ close to 2 such
that p = (6 — 1)/(g6 — p). Then b,nP@®~1/@®~P) js hounded from above and
(5.3) follows. O

Proor oF ProposiTION 2.4. We begin with checking Condition 4 for 4 ,.
Define

G(t) = (log A —log(1/¢t) + Iy(1/t) + L, 1(1/2))/(log(1/t))1,(1/1),
set u = log(1/¢) and denote f(u) = G,(e™). Then f'(u) = N,(u)/u?l2_(u),
where

Ny(u) = {u —log A(1 + (L,_y(w)) -+ ~logu)}(ly_o(u) - -+ - logu) ™"
+ L o(w) + ((Ly_g(u)) - -+ - logu) ™" — (log u)l,_4(u)
~ (L))l o(w) = ((Laoar)) - - Ly(u))

= (L) ((La=s(w)) * -+ ~logu) ™,
where [(u) = 1. For large u the first term of N,(u) definitely dominates and
for A > A, = e there exists u, = uy(A4, k) such that f'(x) > 0 for u > u,. On
the other hand, there exists u,, not depending on A, such that f'(u) < 0 for
u € (uq, uy). Hence Condition 4 follows.
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Now, to check (5.3) define G(u) = 1/ul, _{(u). Thus h,(¢) = G(og(1/t))
and hence log hj; '(u) = =G~ Xu). So

. hy( Kx?
(nad)” loghzl(%)
_ G~'(4h,(Kx?)/DKnx?)
(5-4) T EG(m))

G~(4{DKnx? log(1/KxE)1,(1/Kx)} )
G ({nagly_y(nag)} )

Now observe that G~! has the following property. If a, » 0 and a* —
0 in such a way that a,/a% <M/Il,_(1/Ma*) for some M, then
G Xa,)/G Y a*) > M~! for n sufficiently large. Indeed, this statement eas-
ily follows by G(u) < u~!, G"u) < u~! and the monotonicity of G~ X(u).
To verify that (5.4) is negative for large n set

a, =4/DKnx? log(1/KxP)l,(1/Kx?),

o = 1/nxfly (nxf), W, =a,(a}) 'l,_y(1/a}).
We shall show that W, < 1 for large n. We have x277 = O(l,_(n))~P@~P),

where p > 0 is arbitrary. Choose p > 1, p close to 1, and g close to 2 such
that ¢ = p(q — p) > 2. Consequently,

(55) W, < cof(Leor(n2)” + (Tauoa()*} [ (Luos(n)) (1u(1/KxD))

for some constant c,. The right-hand side of (5.5) goes to 0 as n — . This
concludes the proof. O

As (5.3) does not hold for k., we shall derive Proposition 3.5 directly from
Theorem 4.1.

PRrOOF OF PROPOSITION 3.5.  For h_(¢) = ¢?,(5.2) holds with p, = 1/(1 — ).
For p, < p < 2 we have s, — 0. Consequently, »; — 0 and r, — 0. As in the
proof of Proposition 5.2, R, has the structure c,e*! + c5e*? and w, » —.
So, we shall consider only

[4h(BxD))  (a .
cge™ = cgn’xPh; 1(—1;—K,@—)exp{§nx,21(1 -5,) (1 +r, )}

Because h'(¢) = t'/7, for sufficiently large n we have
(5.6) cge? < xP@7V/ V2717 exp(anx?/2).
Hence, by x2 < An"'logn and A < (1 — 2y)?/y(1 — y)a, the right-hand side

of (5.6) goes to 0 as n — ». The same reasoning applies to L,. O
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