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LAWS OF LARGE NUMBERS FOR A
CELLULAR AUTOMATON

By Harvan Ca1 AND X1a0LoNG Luo

University of Missouri and Cornell University

We prove laws of large numbers for a cellular automaton in the space
0,1,...,p — 1} with p being a prime number. The dynamics 7 of the
system are defined by tn(x) = n(x — 1) + n(x + 1) mod p for n € X.

1. Introduction. The cellular automaton considered in this paper is a
dynamical system in the configuration space X ={0,1,..., p — 1}4, where Z
is the one dimensional integer lattice and p > 2 is a prime number. The
evolution rule of the system is specified by a mapping 7: X — X such that for
any n € X,

(1.1) ™(x) =n(x — 1) + n(x + 1) mod p.

Let 0" and o~ denote the right-shift and the left-shift on X, respectively:
o' n(x) = n(x + 1), e n(x) = n(x — 1). Then 79 = (6" + 07 )n mod p. Let 7"
be the nth iterate of the map 7. Then "1 = (6 + 07 )"n mod p. Therefore,

n

(1.2) "n(x) = ) ('il)n(Zi —n+x) modp
i=0

for x € Z. We will sometimes denote the system by {n,: n > 0}, where 7, =
™,_, for n > 1. If the system starts from the configuration n, = 8§, with
80(0) = 1 and 8y(x) = 0 for all x # 0, then 7, gives the nth row of Pascal’s
triangle mod p.

This dynamical system has been studied for the case p = 2 by several
people and it was proved by Miyamoto (1979) and Lind (1984) independently
[see Durrett (1988)] that if u is a shift invariant product probability measure
on X such that u{n(x) = 1} # 0,1, then as N — o,

1 N-1
(1.3) ~ Z "u = Mi1/2,

n=0

where 7"u is the distribution of the nth iteration when the system starts from
K, Ko is the product probability measure such that u, son(x) =1) =1/2 for
all x € X and “ = " means weak convergence.
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1414 H. CAI AND X. LUO

In this paper we will generalize the above result by showing that a similar
convergence theorem holds for all prime numbers p. More precisely, we have
the following:

THEOREM 1. Let 6 = (8,,0y,...,0,_,) be such that 6, > 0, £,6, = 1 and p,
be the product measure on X with density 0, that is, u(n(x) =i)=190,, i €
Z/(p). Then:

(i) 7", does not converge unless 6, = 1or 6, =1/p, V i,
(i) if 6, < 1,V k then
1 N-1
(1.4) N Y i = sy as N o o,

n=0

X

where u, ,, is the shift invariant product measure on X such that p, ShAm(x) =
k}Y=1/pforall 0 <k <p—1landx € Z.

We will also show in this paper a result which contains a strong law of large
numbers for the system:

THEOREM 2. Let u, be a measure on X satisfying the conditions of Theorem
1. For any cylinder set B in X, there exist two constants ¢, and c, depending
on u, and B such that
1 N-1
lim inf — Igor® =c -a.S."
im inf — EO poT™(M) =¢1 K
1 N-1
limsup-ﬁ Y, Iget™(n) =cy He=a.S.
N-oow n=0

and ¢y < py1,,(B) < ¢y If pg = py,p, then ¢; = ¢y = uy ,,(B).

Because of the technical difficulties arising from some irregularities of
nonprime integers, we are unable to prove the above results for general
integers at this point. Some discussion about this matter will be given in the
last section of this paper. In Section 2 we discuss some useful tools which are
convenient to the analysis of this kind of system. The proofs of the theorems
will be given in Section 3. In the proof of the first theorem we adopt an
approach similar to that of Lind which uses the ideas discussed in Section 2.
Two properties of Pascal’s triangle mod p are the keys to our results, whose
proofs along with other results about the triangle will be given in Section 4.

2. Characters and the dual system. In this section, we will discuss the
characteristic functions of {0, 1, ..., p — 1}?-valued random variables and then
show a self duality of our system in terms of the characteristic functions. The
results in this section do not require p to be a prime number.

We consider {0,1,...,p — 1} = Z/(p) as an Abelian group with the usual
mod p addition and X ={0,1,..., p — 1} as the direct sum of the copies of
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Z /(p). Let Z/(p) have the discrete topology and X have the product topology.
Then X is a locally compact Abelian group. A continuous function y: X - ¢
is called a continuous character if |y(x)| = 1 for all x € X and y(x +y) =
y(x)y(y) for all x,y € X. Let X be the collection of all such continuous
characters. Our first step is to identify X.

For any map ¢: Z — Z /(p) with finite support, that is, ¢(k) = 0 for all but
finitely many k € Z, we denote ¢, = ¢(k), k € Z and let y, € X be such that

21
Ys(m) = exp{l’; )y d>(k)n(k)}, VneX.

keZ

We have the following:
Lemma 2.1. X = {v4: & has finite or empty support}.

Proor. Obviously X o {y4: ¢ has finite or empty support}. Let §, € X be
such that §,(k) = 1 and §,(z) = 0, for z # k. For any y € X, we can write
y(8,) = e!@7/P: for a unique real number y, in [0, p). Since e'®™V: =
y(ps,) = 1, we know that vy, is in Z/(p). Let ¢.: Z > Z/(p) be such that
¢.(k) = v,,V k € Z. We claim that ¢, has finite support.

Indeed, if not we can choose infinitely many points {z,: »n > 1} € Z and
some g # 0 in Z/(p) such that ¢.(z,) = g or ¥(8, ) = e’®"/P% Let x, € X
be such that

1, z=z,,1<j<n,
xn<z)={ =

0, otherwise.

Then, as n — », x, = x,, where

1, z=z; for some j,

i~

Thus, y(x,) — y(x,). On the other hand, it is clear that y(x,) = ¢!®"/P"£ and
hence y(x,) does not converge to anything. This contradiction shows that ¢,
has finite support. Finally, we can easily see y = Yo, This proves the lemma.

O

0, otherwise.

Note that from the proof of Lemma 2.1 we have for any y € X a unique
¢, € X with finite support such that

21
(2.1) y(n) = expi— Y. b, (k)n(k).
P %

Suppose u is a probability measure on X. Define its characteristic function
A as

fi(y) = fXY(x)M(dx), VyeX
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Then, we have the following:

LEMMA 2.2. Let p;, i =1,2, be two probability measures on X. Then
= puy if and only if G(y) = fy(y) forall y € X.

Proor. See Rudin [(1962), page 29, 1.7.3(b)]. O

Lemma 2.3. Suppose {u,: 1 < n < »} is a family of probability measures
on X. Then w, = p, asn — « ifand only if lim, . 4,(y) =4 (y),Vye€E X.

Proor. Since X is compact, every subsequence of {u,: 1 <n < «} has a
subsequence converging to a limit point. From Lemma 2.2, all these limits are
the same if and only if lim, _, 4,(y) = 4{y),V vy € X. Therefore Lemma 2.3
is true. O

Next we show a self duality of the system in terms of the characterlstlc
functions. For y € X define Ty e X as

(2.2) ry(n) = expi7 %‘,[d)y(k — 1) + é,(k + 1)]n(k).

Let H: X X X > € be such that H(y,n) = exp i27/p)L, b, (k)n(k). Then
from (2.2) and (1.1), we have H(y,rn) = H(ry,n). Let {y,: n > 0} be the
system in X with y, = y and y, = 7y, _,. Then {y,: n > 0} is the dual system
of {n,} in the sense that

(2.3) H(y9,Mm,) = H(¥n,M0)-

From (1.1) and (2.2), we know those two systems have the same dynamics.
Suppose 7, has the distribution u, and y, =y for some y € X. From (2.3)
and the definition of the characteristic function, we have

(2.4) (Tnl»‘«e)(Y) = fig(7"7).
We will apply this duality in Section 3.

3. Proof of the theorems. It is clear from the definition that the
dynamics of the cellular automaton considered here are completely determined
by the properties of Pascal’s triangle mod p. Before proving the theorems we
list below two lemmas whose proofs, along with a study of some other
properties of the triangle, will be given in the next section. From now on we
will always assume that p is a prime number.

Suppose 11 € X is such that n(x) = 0, if |x| > m for some integer m, but
n # 0. Then the system {n,} with n, = is a Pascal trapezoid mod p. For
0<i<p and ¢ €X, let N(¢) denote the number of i’s in the configura-
tion ¢:

N;(¢) = the number of j’s such that £(j) =i.

The following lemma says that in most rows of Pascal’s trapezoid mod p, the
number of the terms which equal some i € {1,..., p — 1} can be very large.
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Lemma 3.1. Suppose m # 0 but has finite support. Then, for any i, 0 <
i<pand M > 0,

1 N-1
L L Nny <y

n=0

lim = 0.

The second lemma we need says that in each column | of Pascal’s triangle
mod p, the number of nonzero terms is relatively small.

LEmma 3.2.  For any integer I,

) 1 N-1 ) n
z\lzlinoo Nngol{n:nz lI], n + lis even and ((n +1)/2 ¢Omodp} = 0.

PrOOF OF THEOREM 1.
(1) From (2.4) we have, for any m > 1,
1

(F%)<60>=(Zee“2m>k) and (r?"* i )(%)—(zla el@ﬂ/m),

0
where £22760,e’®™/P* % 0,1 unless §, =1 or 6, = 1/p. Thus, we can con-
clude that 7‘_,41:(60) does not converge and hence by Lemma 2.3, 7"u, cannot
converge.

(ii) By (2.4) and Lemma 2.3, (1.4) is equivalent to
1 N-1
(3.1) Jm 5 T A7) = ()

for all y € X, where £ 1 ,p(y)is the characterlstlc function of the measure u, ,,.
It is easy to see that

. _ |1 ify=1,
Aap(v) = {0, otherwise.

When y = 1, (3.1) is trivial.
When vy # 1, y can be identified by a unique element ¢, in X with finite
support [see (2. 1)] Let

A} = {x €Z:¢.n(x)= k}
for k =1,...,p — 1. Then |A}| < » and

Bo(T"y) = I] expt-—-k X n(x)

x€A%
(3.2) =11E,, expz—k Y n(x)
k+0 xeAY

E ei@m/phn@) 44
I!;IO( Ko )
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It follows from the conditions of the theorem on the measure u, that there
is a 6 > 0 such that for any nonzero integer k,
p—1
Y 9 eim/pki
ji=0
Therefore, for any ¢ > 0, from (3.2), there is an M > 0 such that if |A}| > M,
V k # 0, then

Eﬂee"‘z”/”)’“"wﬂ = <1-6.

(3.3) |2e(7™y)| <.
For this fixed M, from Lemma 3.1, we have
1 N-1
(3.4) Al/i-l—}lml—\f ZOI(n:|A2|<M,EIk#O) =0.

Therefore, from (3.3) and (3.4),

lim sup
N-ow

< e&.

1 N-1
= X fe(m"y)
Nn=0 ?

Since ¢ is arbitrary,
1 N-1
lim — io(™y) = 0.
lim — nz=:o Ao(T™y)

Thus, (3.1) is true for the case y # 1, which completes the proof of the
theorem. O

Proor orF THEOREM 2. Let f, and f, denote the lower limit and the upper
limit of (1/N)LY-}15  7(n), respectively. Let n have the distribution u, and
. = N5 _go{n(x): lx| > n}. Since u, is a shift invariant product measure, %,
is trivial with respect to u,. Therefore to prove that f, and f, are constants
We-a.s., it suffices to show that they are in %, or, equivalently, to show that for
any finite cylinder set A, these limits are independent of A.

Let M, > 0 and M, > 0 be two arbitrary integers and

A={n:n(i)=a;,,i=-M,...,0,..., M},
B={n:n()=25;,i= -M,,...,0,..., M,}.
Rewrite the formula (1.2) in the following way. Let

n o4 dljl <
e(n, ) = L\ (n+)/2) if n +jisevenand |j| <n,
0, if n +jisoddand |j| < n.
Then
(3.5) (k) = X c(n,j)n(j+ k).

j==n
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Now write
1 N1 1 , 1 .
N EOIB”"(n) = N%IB“"n(’?) + 'N‘%IB"T'I (m),

where the first summation is over all n' such that »' <N and c(#/, j) =
0 mod p for —(M, + M,) <j <M, + M, and the second summation is over
all the remaining terms. It is easy to see from (3.5) that the first sum is
independent of A. The second sum can be written as

1 "
—1\—7%1307"(17)

M, +M,

3 (number of n": n” <N and c¢(n",j) # 0 mod p)/N
Jj=-M,-M,

M, +M, 1 N-1
Y — Y I{n":n”z |jl, n” + j is even and
j=-M-My \ &V =0

((n,, f"j)/z) # Omodp}}

and it follows from Lemma 3.2 that, for each j,
1 N-1
— Y. I{n":n" = |jl,n" + j is even and
N .~

”n

(' +)/2

¢Omodp}—>0

as N — o, Therefore
1 N1 1
= liminf — Igor™ = liminf — Y Izo 7"
fu=liminf g & Tpor"(n) = lminf g 2Ty 7" ()

is independent of A. This is obviously true for f, also. Therefore, by Theorem
1, ¢; =f; <y, ,(B) < fy =cy pgas. The last statement of the theorem fol-
lows from the fact that 7u,,, = u,,,, Birkhoff’s ergodic theorem, and what we
have just proved. O

4. Pascal’s triangle mod p. In this section, we will prove Lemmas 3.1
and 3.2 and highlight some insights into Pascal’s triangle or Pascal’s trape-
zoid. As mentioned above, by Pascal’s triangle, we refer to the system
{n,: n = 0} with n, = 8, and, by Pascal’s trapezoid, we refer to the system
with 7, having finite support. From a rescaling argument (Lemma 4.4), we
will see that there is a Pascal’s triangle embedded in a Pascal’s trapezoid. Thus
some properties of the triangle can be transformed into the properties of the
trapezoids.

First, let us look at Pascal’s triangle. Let F be the field Z/(p) = (0,1, ...,
p — 1} with mod p addition and F[x] the polynomials on F. The nth row of
Pascal’s triangle mod p consists of the coefficients of the polynomial (1 + x)”
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€ F[x]. Since F is a field, it is convenient to express the integer n as a
polynomial in p:

n=a,p"+a,_pm "+ +a,p +ay,

where 0 <a, <p, 0 <i <m and a,, # 0. This expression is unique. Thus,
using the fact that if p is a prime number then (1 + x)? = 1 + x? in F[x], we
have, in F(x),

(1+x)" = ﬁ (1 +x)"
i=0

Il
=
+
&

S

~'

(
(4.1) = ﬁ [ aZ ((;i)xjp"]

_ Qg a; an k+k1P+“'+kmpi"'
2 (R] e

m

Note that in this formula, (Z) #0modp fori=20,1,...,m.

In Lemmas 4.1 and 4.2 we will show that most rows of the triangle contain
a large number of representatives of any integer from 1 to p — 1. This is a
special case of Lemma 3.1. Later we will use a rescaling argument to generalize
this result to obtain Lemma 3.1, which is basically Lemma 4.2 with the
triangle being replaced by trapezoids.

Fori=1,...,p—landn=a,p"+a,_p™ '+ - +a;p + ay let

Ni(n) = l{j:a; =i}l

LEmMMA 4.1. For M > 0, we have

1 N-1
z\lzlinm[ﬁ ;0 I(n:N’(n)sM)] =0.

Proor. First, we consider N =(p — 1)p™. Any integer n <N can be
written as n =a,p"™ +a,_p" '+ - +ap+taywithO<a, <(p-1
and 0 <a;<(p—1,0<i<m—1 Out of (p — Dp™ choices of these n,

there are E[J.”ﬂ)(';)(p — 1™/ of them satisfying Ni(n) < M. So,

1 N-1 1 [%] m ;
J— In. in s —m ( .) p_ 1 m— —)O
N,E'o NI = (p — 1)pm T\ J ( )

as m — «©,
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In general, let m 5 be such that (p — 1)p™~ < N < (p — 1)p™~*1, Then,

1 N-1
N E I( : Ni(n)< M)
N nzo n n)<
(p - 1pmv*t 1 <p—1>2pm~“1
< LN
= N (p _ l)pmN+l o (n: N'(n)< M)

1 (P_I)PmN+1
=P —1prt Y Innm=m| 0

n=0

as N — « from the above special case. O

For 0 <i < p, let Ny(n) denote the number of i in the nth row of Pascal’s
triangle mod p:

N;(n) = the number of j’ssuchthat0 <j <n and (?) =i mod p.
LemMa 4.2. Foranyi, 0 <i<pand M > 0,

N-1
lim | — I . = 0.
N oo N ngo (n: N(n)< M)

Proor. Consider the field F = Z/(p). We know that G =F \ {0} is a
group with order p — 1. So, i!»"D*! = in G or F for any ! > 0. For each
n=a,p"+a,_ p" '+ +a;p + ag, by carefully taking ks as 0 or 1
Ni(n)

. .
»—1)4+1) 'S appearing

in (4.1), we know there are at least L;. ;,_1)+1 < nu(n) i«

in the nth row of Pascal’s triangle mod p. But ;. l(p—l)+1£K(l(p _Ii) . 1) 2 ®©
as K — . So,
M* = min{ K: . K >M) <o
' (p—-1+1 )
Ll(p—-D+1=2K
Thus,
1 N-1 1 N-1
1—\7_ Zo I(n:Ni(n)sM) = N Eo I(n:N"(n)sM*) -0
n= n=

as N - o, from Lemma 4.1. O
The possibility of rescaling comes from the following fact.
LemMA 4.3. If the system {n,} is Pascal’s triangle mod p in the space

{0,1,...,p — 1}%, then the system {¢,} with ¢(x) = nnpx(pr) is Pascal’s
triangle mod p in the space {0,1,...,p — 1})?"%
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Proor. Note that (1 + x)*?™ = (1 + x?™)* in F[x]. We have
kp™ kp™ ) k ]
Y ( P )xJ =) (,?)x”’m.
j=o\ J i—o\?!
Comparing the coefficients in F[x], we see that
npK . op s K . . Ko
(a) f =0in F if j <np® and j # ipX, i < n;

np¥

W |

)=('il)inFifi5n.

np¥
ip¥

é‘,o('il)f(Zi -n+x).

Hence, by (1.2) we have, in F,

£,(x) n(2ip¥ — npX + p¥x)

Il
s

12

Thus, in the space {0,1,..., p — 1}?*Z, the system {¢,} has dynamics defined
by (1.2). O

Suppose n € X has finite support, that is, n(x) = 0, if |x| > m for some m,
but n # 0. Without loss of generality, we assume 1(0) # 0. Call m a support
range of 1. Then, the system {n,} with n, = 7 is Pascal’s trapezoid mod p. We
rescale time and space by a factor pX, where K is any integer such that
p¥ > m. Define a system {¢,} as

(%) = m,px(px).

From Lemma 4.3 we see that the system {£,: n > 0} is Pascal’s triangle mod p
starting with &, = 1,8,. This leads to the following result:

LemMmA 4.4.  Suppose a support range m of n satisfies m < pX. Then, for
anyi,0<i<pand M > 0,
1 N-1

(n: N(m,,K)< M) .
N-oo| N n=0 e

Proor. Since F is a field, there is a j such that j£(0) = i in F. Note that
N{(¢,) = Ni(n) > M implies Ny(n, ,x) > M, where N,(n) is as in Lemma 4.2.
We have

N-1 N-1
1 ' I 1 ' I 0
_— < — -
N (n: Ni(nppK) < M) = N (n: N(n)< M)

n=0 i n=0 ’

as N — oo, from Lemma 4.2. O
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Proor or LEmMA 3.1. Let m be a support range of 7, that is, n(x) = 0,
lx| > m. For any & > 0, choose a K > 0 such that m /p¥ < ¢. Regrouping the
sum according to the remainder of n divided by p*, we have

1 N-1
N Z L. N, M
N o (n: Ny(n,)< M)
1 [pX-ml-1
= ﬁ Z I(n:N,(n,,px+,)sM)
r=0 n:npK+r<N
1 Pt
t= X h Lin: Nynppkoy< M)
r=[pX—mln:np¥+r<N
K_ 1_ _ K
(42) T /PR 4 1 e
= N [(N _ r)/pK] +1 = (n: N(MppKyp) < M)
pK-1 [(N - r)/pK] +1 1 [(N—i)/PK]
+ I,
,.=[pZK_m] N [(N _ r)/pK] +1 o (n: Ny(nppKyp)< M)
[”K_Z’”]_l [(N-r)/p¥]+1 1 [(N_‘B/pK]I
= = N [(N _ r)/pK] +1 = (n: Ny(MppKi,) < M)
[(N-r)/p¥]+1
+ ~ (p¥ = [p¥ - m]).

Note that 7, ,x,, = T""Knr. When r < pX — m, the support range of 7, is
at most m + r < pX. From Lemma 4.4, each term in the first sum tends to 0
as N — . From (4.2), we have

1 N-1 1
limsupﬁ X I Ny <y <0+ _K(pK_ [pK - m])
N-oow n=0 p
m
< — <e&.
pk

Since ¢ is arbitrary, the lemma follows. O
For the proof of Lemma 3.2, we need:

LEMMA 4.5. Suppose the integers k > | can be written as
k=a,p™+ - +ap+a,,
l=b,p™+ - +bp +b,,

where 0 < a; <p,0 <b, <p. Then, (’;) = 0 mod p if and only if there is some
;,0<i<m-—1,suchthata; <b,.
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Proor. Note that ’; is the coefficient of x‘ in (1 + x)* in F[x]. From

(4.1), we know the nonzero coefficients come from those powers [ with a; > b,,
Y i. Thus the lemma is true. O

Proor or LEMMA 3.2. Observe that

1 N-1
bl]iinm—ngol{n: n + [ is even and ((n +nl)/2) #* Omodp}

1 2k + 1
lim — Y I{k: ( ) # Omodp}
Now N 4 o ok+i<N k+1

{k:0s2k+l<N and (Zkk_:-ll) #Omodp}‘.

. 1
lim —
N-ox

Suppose N has the form
N=a,p™+ - +a,p+a,
with ™ > 0. We claim that

2k +1

‘{k:052k+l<N and (k+l)¢0modp} <(p+ 1"t omt1,

This, combined with the above observation, will prove the lemma.
Let k=b,p™ + -+ +byp+byand [ =c,p™ + -+ +c1p + ¢o. Then

2k +1=(2b,, tcp,)p™ + - +(2b; + c1)p + (2by + ¢p),
k+1=(b,+c,)p™+ - +(by+cy)p+ (by+cyp).

Write
2b, + ¢y, if 2b, + ¢, < p,
2by+co={pP + (205 + ¢, —p), if p <2by+c,<2p,
2p + (2by + ¢q — 2p), if2by+co=2p
and
by + ¢y, if by + ¢y <p,
by + ¢y = .
p+(by+cy—p), ifby+cy=p.
From this and Lemma 4.5, it is clear that in order to have
(4.3) (Zkl+ l) # 0 mod p,
b, must satisfy either
(4.4) 2by + ¢y <p
or
by +c,=p,
(4.5) 0" % =P

2by + ¢y < 2p.
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Assume b, satisfies (4.4) or (4.5). Then 2% + [ and % + I can be rewritten as
2k +1=(2b,, +c,)p™+ -+ +(2by + ) p% + (2b, + ¢})p + d,,
E+1=(b,+c,)p™+ +(by+cy)p?+ (b +cy)p+d,,
where ¢} = c¢; and d, = b, + ¢, if b, satisfies (4.4), or ¢; =c, + 1 and d, =
by + ¢y — p if b, satisfies (4.5). Apply the previous argument to (25, + ¢;) and
(b, + c}). We see that b; must satisfy conditions similar to (4.4) or (4.5) to

have (4.3). Repeat this procedure m times. We conclude that if (4.3) holds then
b;,i=0,1,..., m, must satisfy either

(4.6) 2b,+c;<p
or
b, +c;=p,
4.7
(4.7) 2b; + c; < 2p,

where c; are some integers. Out of p possible choices of b, from 0 to p — 1,
there are no more than (p + 1)/2 of them that satisfy conditions (4.6) or (4.7).
Therefore

‘{k:Os2k+l<N and (Zkk_:-ll) #Omodp}‘

<H{(Bp, -, by): b; satisfies (2.12) or (2.13)}]
<(p+ 1)t gmrt O

5. Discussion. In this section, we discuss some other features of the
above system.

The first problem is what will happen if the condition of Theorem 1(ii) fails,
that is, 6, = 1 for some %. In case p = 2, n,, will be 0 after at most two steps.
In case p > 2, if a is the smallest positive integer with p® = 1in Z/(p), then
the system {n,} will appear periodically with period a.

Next, we consider the situation when p is not a prime number. One simple
case is that the modulus is the product of two prime numbers p and gq. In this
case, we consider Z/(pq) as the direct product of the groups G, =
{0,9,2q,...,(p — 1q} and G, =10,p,2p,...,(qg — 1)p}, where each of them
uses the addition mod pg and hence is Z/(p) and Z/(q), respectively. Sup-
pose {n’} as a GZ-valued system and {n?} as a GZ-valued system are defined as
in (1.1). Then, Theorem 1 holds for each of them. Now we can see that
{nf + mg} is the system mod pq and (1.4) holds with the limiting distribution
K1/pq- Therefore the theorem holds for modulus pg with those initial distribu-
tions which are the sum of two simple cases.

Based on the above observation for the case of nonprime numbers, we see
that we should consider the case when the modulus is a power of a prime
number. Even though little is known so far, we can see it differs from the
prime number case in the following example. Let the modulus be 4 and
0y + 0, = 1. Then it is clear that 1 and 3 will never appear in the system and
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hence (1.4) will not be true. However, we are still quite convinced, from some
computer simulations, that (1.4) is true when 6; > 0 or 6, > 0.
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