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SINGULAR DIFFUSION LIMITS OF A CLASS OF REVERSIBLE
SELF-ORGANIZING PARTICLE SYSTEMS
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California and University of California

We establish hydrodynamic limits for a class of attractive, reversible
particle systems with an infinite range of interaction. The limiting nonlin-
ear diffusion equations have diffusion coefficients which are functions of
the local density, and which have a singularity at a critical value of the
density. On open driven systems, these singular diffusion limits explain the
observed nontrivial scaling behavior known as self-organized criticality.

1. Introduction. A variety of interacting particle systems (probabilistic
cellular automata) on an open driven lattice are known to exhibit large
temporal fluctuations and extended spatial correlations in the ahsence of an
obvious tuning parameter. This behavior is known as self-organized criticality,
and the associated models have generated a lot of interest because of their
possible application to a broad class of problems relating to the ubiquitous 1/f
noise and fractal structures observed in nature. The prototypical examples of
self-organizing systems are referred to as sand piles and were first introduced
in Bak, Tang and Wiesenfeld (1987). Many variations of the model have since
been studied [see, e.g., Kadanoff, Nagel, Wu and Zhou (1989) and Dhar (1989)].
In these models, the configuration at each site of a large but finite d-dimen-
sional lattice is some nonnegative integer, interpreted as the number of grains
of sand at the site. The system is driven by adding individual grains of sand
randomly or deterministically. After each addition, if the local slope (or, in
some cases, height) exceeds a uniform threshold value, sand is redistributed to
neighboring sites or falls off the edge according to a prescribed set of rules.
These rules are iterated until no sites are above threshold, in which case the
event, or avalanche, is complete. Numerical simulations reveal that for each of
these models the distributions of a variety of quantities, including the number
of sites involved in an avalanche and the number of grains that fall off at the
boundary, have power-law tails, which are reminiscent of the slow decay of
correlations observed in equilibrium statistical mechanical systems at a critical
point. For these models, there has been some ambiguity regarding the appro-

priate definition of time. We will take the point of view that sand is added to
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the system at some fixed finite rate, in which case the local transitions are
instantaneous, and the range of interaction is given by the maximum spatial
extent of an avalanche, which is governed by the system size.

From a mathematical point of view, the difficulty with the original sand pile
models is that, while they are easy to simulate on a computer, they are devoid
of the technical attributes which typically make interacting particle systems
tractable, such as attractiveness and reversibility. In an attempt to calculate
certain exponents, continuum descriptions of self-organizing models were
postulated on the basis of symmetry arguments [Hwa and Kardar (1989),
Grinstein, Lee and Sachdev (1990) and Garrido, Lebowitz, Maes and Spohn
(1990)], although little was known rigorously, and the results did not agree
with the exponents obtained from the automata models, which exhibit a wide
variety of scaling behaviors. It was clear, however, that common to most, if not
all, self-organizing systems are: (i) the existence of a conserved quantity; and
(ii) some anisotropy in the model provided by a driving mechanism. The main
point of this paper is that self-organizing models have a third essential feature:
(iii) The length scale (mean range of interaction) on which the conserved
quantity is redistributed diverges as the density of the conserved quantity
increases to a critical point.

In this paper we examine a class of reversible, attractive models which have
both a conserved quantity and a diverging mean range of interaction as the
density of this conserved quantity increases (an anisotropy arises in open,
driven versions of these models, where self-organizing behavior is in fact
observed). We prove that the continuum limits of these one-dimensional
reversible particle systems are diffusion equations with diffusion coefficients
which not only vary with the local density, but which can in fact have
singularities (poles) at a particular value of the local density.

The utility of the singular diffusion limits of self-organizing models is
discussed in Carlson, Chayes, Grannan and Swindle (1990b), where numerical
evidence for singular diffusion in a class of sand pile models was also pre-
sented. In Carlson, Chayes, Grannan and Swindle (1990b) it was shown that
on an open driven system the local density converges to the singularity of the
diffusion coefficient as the size of the system diverges. The nontrivial scaling
behavior associated with this convergence was seen to depend upon the order
of the pole in the diffusion coefficient, the driving mechanism and the dimen-
sion. In these calculations, in order to extract the stationary behavior the
approach was to apply the continuum limits established here for a symmetric
closed system to an open driven system with the appropriate boundary condi-
tions. It remains to be proven that the hydrodynamic description for the open
system is valid, although results of this type have been shown for the more
conventional short range models such as the simple exclusion process [Eyink,
Lebowitz and Spohn (1990)].

Establishing diffusion limits for symmetric particle systems with a con-
served quantity is not new. Among previous results are those of Guo,
Papanicolaou and Varadhan (1988) and Kipnis, Olla and Varadhan (1989),
which use the spectral properties of the self-adjoint generator to establish the
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diffusion limits of two types of models with local interactions—this is often
referred to as the entropy method. We will, in fact, rely heavily on the
techniques developed in these references. However, the nonlocal nature of
the interactions in these self-organizing models requires that we also use the
attractiveness of these systems to prove a maximum principle for the particle
system which will be used to bound the effective range of interaction with
exponential tails.

The organization of this paper is as follows. In Section 2 we describe the
one-dimensional systems that we consider, consisting of a class of two-state
models (0’s and 1’s) with prescribed jump rates c(j) which are nonincreasing
functions of the jump distance j. The transition rates will depend both on the
function c(j) and on the configuration of the system. We then state our
principal result: Under appropriate rescaling each of these stochastic systems
converges to a deterministic limit described by a diffusion equation, in which
the diffusion coefficients can depend on the local density. Moreover, depending
on the rate of decay of the jump rates c(j), the diffusion coefficient can in fact
be singular at a critical point, with the order of the singularity depending on
the asymptotic behavior of ¢(j) for large j. The proof of this theorem is given
in Section 3, where we begin by establishing several properties of the systems
considered. In particular, we show that product measures with density p €
[0, 1] comprise a one-parameter family of invariant measures describing the
occupation probabilities, and that the process is reversible with respect to
these measures. Additionally, we show that the process is attractive [here it is
important that the jump rates c(j) are nonincreasing in jl. A superexponen-
tial estimate is then established, which plays a major role in the subsequent
proof of the main result. For many of the supporting results used in Section 3,
the proofs appear in the Appendix. Section 4 contains concluding remarks.

2. The main result. We begin by introducing the models that we con-
sider. The state space is Xy = {0, 1}”¥, where ,, is the discrete torus with
sites: {i /N, i = 1,..., N}, that is, our system consists of sites which are either
occupied (1) or vacant (0) on the N-site torus scaled into the unit torus. We
denote the configuration of the system at time ¢ by 7,, and we adopt the
coordinate notation 71,(i) = 0, 1 according to whether the state of site i /N at
time ¢ is 0 or 1, respectively.

All transitions involve a 1 at site ¢ hopping to a vacant site i + j (j may be
positive or negative and positions are defined modulo N), and we denote the
new configuration, in which the occupied site i and the vacant site i + j are
switched, by

n(k),  ifk+i,i+],
(1) nhit(R) = {n(i +j), ifk=i,
(i), ik =i+].

The transition rules are as follows. If 7,(i) = 1, and if the nearest vacant site
to the right is i + j, then at rate c(j) the 1 at site i jumps to site i +j. The
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same is true for jumps to the left (i.e., for j < 0), and we assume that the
function ¢(j) is symmetric [i.e., ¢(j) = ¢(—)]. The generator for this process is
given by

(®) Lyf(n) = NILf(n) ~N*E T ALF9) = F]eCi) (6 ),
i=1j=—

where f is any cylinder function (i.e., a function which depends only on the

configurations of a finite set of sites), and

s(j)
Jy(i4) = (1= (i +) TT n(i +m),
(3) " _ .
j—1, ifj>1,

where s(;j) = {j+ 1, ifj<—1.

To simplify our notation, we will also write
Jj
(4) L(i,j) = TG +m).
m=0

In words, J,(z, j) is equal to 1 if there is a 1 in configuration n which could
Jump from site i to site i +j, and I,(i, j) is equal to 1 if all sites in the
Interval i to i +j are occupied [recall that we are implicitly taking (i + j)
mod N . The factor N2 is the desired diffusion scaling of the rates, commensu-
rate with the spatial rescaling in J.

Let M, be the space of measurable functions p(6) on the continuum unit
torus 9= R/Z with 0 <p(f) <1 and with the weak topology. For each
continuous function G(8) € C(.9"), we let

5 (p,G) = | G(8)p(9)d6.

(5) p,G) = [ G(6)p(0)

We next use the discrete process 7, to define an empirical density,
N

(6) M]tv(a, Th) = Z nt(i)l((i/N,(i+1)/N])(0)'
i=1

In words, uY is given by a density with value 1 on the interval (i /N, (i + 1)/N]
at time ¢ if n,(i) = 1. This is effectively assigning mass i/N to each particle.
We note that u € D([0, T'], M,), the space of right continuous functions from
any time interval [0, T'] to the measurable functions M, with left-hand limits.
We choose the initial distribution of the process to be product measure V;V
where y(0) € M, and v,Y(n(i) = 1) = y(i/N), and we assume that the associ-
ated empirical densities po(ﬂ "70) converge weakly to y as N — . The system
is out of equilibrium unless y is taken to be a constant. We denote the path

measure of the process by Py.

THEOREM. For the process m, defined by (2), assume that the jump rates
satisfy c(1) =1, ¢(j + 1) < c(j) for all j = 1, and that c(—j) = c(j). If the
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initial density profile is measurable with y(0) < 1 for all € 7, then, with

the initial distribution vf’ selected as above, as N —  the empirical density

w given in (6) converges weakly to the unique weak solution of

p 9 ap
(7) 5=£(D(P)£)
with
) p(0,6) = ¥(8) and D(p) = . c(j)i% .

Jj=1

SpECIAL CASE 1. If ¢(j) =1 for all j, then we have the self-organizing
process introduced and studied in Carlson, Chayes, Grannan and Swindle
(1990b) in which 1’s hop to the nearest vacant site to the left and right at rate
1 each. In this case D(p) = (1 + p)/(1 — p)3.

SPECIAL CASE 2. The jump rates c¢(j) = 1/j correspond to the nearest-
neighbor, symmetric long range exclusion process [Spitzer (1970) and Liggett
(1980)], and in this case D(p) = 1/(1 — p)2.

SpeciAL casE 3. If ¢(j) ~ 1/j* with 0 < A < 3 asymptotics reveals that
the diffusion coefficient (8) is singular as p — 1, where the singularity is a pole
of order ¢ = 3 — A for A < 3, and is logarithmic for A = 3.

The proof of the theorem is given in the next section.

3. Preliminary results and proof of the theorem. Before we proceed
with the proof of the theorem, we will present two useful features of the
systems that we are considering, reversibility and attractiveness. It is primar-
ily these features which make the models we study tractable. We then use the
reversibility of the processes to establish a fast (superexponential) convergence
result, which plays a key role in the proof of the theorem which follows.

We begin with the reversibility of the systems (i.e., these processes satisfy a
detailed balance condition).

LEmMA 3.1. The process m, described by (2) is reversible with respect to
product measure v, for any constant density a € [0, 1].

REMARK ON THE PROOF. The process is reversible if and only if the genera-
tor [equation (2)] is self-adjoint, that is,

(9) [fLedv, = [gLfdy,

for all functions f and g on X,. This result is easily established [see Liggett
(1985)]. O
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The next step is to establish attractiveness, essentially a partial ordering of
the configurations. This property is used later in the paper to limit the
effective range of interaction when the local density is less than 1.

LemMA 3.2. If the jump rates c¢(j) are nonincreasing in j, then the process
n, defined by (2) is attractive.

ReEMARK. The restriction that c¢(j) be a nonincreasing function of distance
J plays a crucial role in establishing this property. Attractiveness, and conse-
quently our proof, breaks down when c¢(j) increases with j, although we
suspect that the hydrodynamic description may still be valid even when ¢(j)
increases algebraically with j.

Proor. We use the basic coupling of two versions of the process starting
from two different initial configurations n{” and 7 which are ordered in the
sense that n{’(x) = 1 = n@(x) = 1, so that this ordering is preserved in time.
The coupling is straightforward: If a 1 at site x in the 1{® process jumps, and
if n{®(x) = 1, then the 1 at site x also jumps (in the same direction) in the n®
process. This coupling is possible due to the monotonicity of the c¢(j)’s . It is
easily checked that the ordering is preserved, which is the desired result. O

The last of our preliminary results is a superexponential estimate, which is
the heart of the proof of the hydrodynamic limit. In essence, here we focus our
attention on a large block of sites, which is still small relative to the total
number N of sites on the discrete torus 7. We show that the empirical
average of a general cylinder function on the block of sites is essentially equal
to the expected value of the cylinder function with respect to product measure
at the local density of the block. In the proof of the theorem we will choose the
cylinder function to be the local transition rates. The superexponential esti-
mate reduces the dependence of these transition rates on details of the local
configuration to a simple dependence on the local density field. This allows us
to close the system of equations which describe the particle system as we take
the diffusion limit.

LeEMMA 3.3.  Let n, be the process defined in the theorem, and let P}, denote
the associated path measure at density y. For any 8 > 0 and any cylinder
function ¢,

(10) lim sup lim sup — logPN[f N Vi o(ns) ds > 6
0

-0 N-oow
where Vy (n) is given by

N

1 (1 ,
(11) VN,s(n)=i§1m )y Tjd’(n)—d)(m > 17(J))‘~

|i—jl <Ne li—jl<Ne
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Here 7; is the spatial shift operator and H(a) is the expectation of the cylinder
function with respect to product measure at the local density o, $(a) = E,,a(d)).

PrOOF. The proof of this result is outlined in the Appendix, and is based
on techniques developed in Guo, Papanicolaou and Varadhan (1988) and
Kipnis, Olla and Varadhan (1989).

We now proceed to the proof of the theorem. Several supporting lemmas
will appear throughout, with the proofs provided in the Appendix.

PROOF OF THEOREM. Our goal is to show that any limit point p(¢, 6) of the
sequence of discrete empirical densities u [equation (6)] satisfies the weak
form of the singular diffusion equation (7). In other words, for any G(¢,6)
C¥[0,T] x ), and for any subsequential limit p(z, §):

. G
(p(,0),G(t,0)) - (p(0,8),G(0,8)) — f0<p(s,e), g(s,e)>als
(12)

‘ %G
—[O<F[p(s,e)], W(s,0)>ds =0,

where F'(p) = D(p), the diffusion coefficient given in (8).
We begin by introducing the martingale

ME = % é {n,(i)G(t, %) - no(i)G(O, %)
(13)

5 (5137 ds = [0 ) Entnn(o] as),

which should be viewed as a discrete form of (12). We will show that MS
converges in probability both to 0 and to (12), thereby identifying the weak
limit in D([0, T'], M,) of u" as the unique weak solution to (7). We denote the
quadratic variation of M by QC, and a direct calculation yields

19 Q=3 ¥ ft{[G(s’i;j)_G(s,i];l,)rc(j)Jns(i,j)}ds.

i=1j=-N"0

The following lemma states that the quadratic variation of M vanishes as
N diverges.

LeEMMA 3.4. Let m, be the process described in the theorem, and let Q,G be
given by (14), where G(t,0) € C*3([0,T] X ). Denoting expectation with
respect to the path measure Py, by EY, it follows that

(15) lim EX{QF} = 0.
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Proor. See the Appendix.

To complete our calculations we will also need:

LemMA 3.5. The sequence of measures {Pg;} is relatively compact.
Proor. See the Appendix.

Lemma 3.5 implies the existence of subsequential limits, and we will now
show that any limit point concentrates on paths which satisfy (12). The first
three terms in (13) will converge to their counterparts in (12) due to the fact
that only the empirical density uY appears in these terms. The real work is
associated with the last term, which involves products of the occupation events
{n,(i) = 1}. We begin by rearranging the series into one indexed by the
occupied sites {i/N: n,(i) = 1}, and then splitting the result into two terms
corresponding to jump sizes less than and greater than some integer C (this is
done in the calculation below). The plan is to apply the superexponential
estimate (Lemma 3.3) as N diverges to the rate corresponding to jump size
less than C, and then to let C diverge. It is in the second step that we require
the maximum principle provided by attractiveness (Lemma 3.2), to show that
the terms associated with jumps exceeding C in size vanishes as N — «. The
third term in (13), which we denote by F°, is

7O [ £ 0[5 Ealnol a

_ fotNéns(i)é{[G(i—;i) - G(l—i,-)]c(j)J,,s(i,j)
|

+ G(i;fj) G Ll;l_)]c(j)Jns(i,—j)}ds
S| CCTRES
+|a “f) _q %)]c(j)Jns(i,—j)}ds

|
) -6l e

G(i;]j) G L&)]c(j)Jns(i,—j)}ds,
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where we have neglected to write the temporal coordinate of G for conve-
nience. We will write the last expression in (16) as

(17) Ff=F%C+ &5C(N),
where F,% ¢ corresponds to the contribution from jumps of size C or less, and

&G C(N ) corresponds to jumps greater than C. Working first on F,%C, we
regroup terms and integrate the sum by parts to obtain

ree- L E (o 5) ol 5]

xe(f)[Jn i, —7) = I, (i —j,j)]} ds

~
I
-
~.
Il
-

(18)

I
)
4
™M=z
Ma
o
~~
.
N
/‘\
k.
+
p—t
N’

~.
I

-
~.
I

-

Using smoothness we find

(19) FS:C = ['fl % { ‘z_g(%) + 0(%)] él[jc(j)Ins(i, —j+ 1)]} ds.

o N5
Our next step is to convert this form of F,%C into a form which is
vulnerable to the superexponential estimate. To do this we show that the
transition rates appearing above can be replaced with rates averaged over
boxes of 2¢ N + 1 sites. More specifically, for any fixed C, given any a > 0, if ¢
is small enough and N is large enough, then

FO-C ’IIZV‘, ZG( )Z
‘ _foNllaez J(J)2N+1

(20)

x ¥ IL(k—j+1l)ds|<a

|k—il <Ne
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almost surely. Now, the superexponential estimate implies that for any C,

1
lim sup lim sup N log P}

e—0 N-oow
1 N aZG .
(1) X(Nj; i§1 36® ( ) ZJ (J)2 N+1 Ik—iNgIm(k’ —Jj+1)
2G
_ caVld
El 262 (N) L Je()(ws )’ |ds = a)

)

where «,(6) = (1/2¢)1,_, .(6) and * denotes convolutlon Note also that if
p(-,0) denotes a weak subsequentlal limit of u”, then along the subsequence,

(22) lim lim (s a,)’,G) = <p(1, ), @Y.

Finally we will need to take C — «, and to do this we use two results stated in

the following lemmas. The first states that the term &% €(N) associated with

jumps of size exceeding C vanishes uniformly in probability as C — .
LeEmMmA 3.6. For any 6 > 0,

(23) lim sup sup P,Z,( sup |£%C(N)|> 6) =0.
Coo N>C  \0st<T

Proor. See the Appendix.

The second result is a maximum principle for any subsequential limit,
which is an immediate consequence of attractiveness.

LeEmMA 3.7. Any subsequential limit p of {u} satisfies 0 <p < ¥ (a.e).
Proor. See the Appendix.

Lemma 3.4 and (20) and (21) imply that

lim sup limsupPy | sup [{ul¥(7m),G(t,0)) — (u)(7),G(0,0))
£-0 Noox 0<t<T
oG
24 vy =
(24) fo<,uS, 75 (s,0)>ds

2

t c j 9 G
_fo< .ZIJ'C(J')[.U«ZSV* aE] , W(s,0)>ds + GOtG’C(N)
j=

>5)=O.
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Recalling (22), we now take the limit C — ». Lemma 3.6 annihilates the
&% C(N) term, and Lemma 3.7 guarantees convergence of the series. There-
fore, we see that for any 8 > 0, any weak limit of {u"} is concentrated on paths
p(+, 6) such that for any § > 0, for all ¢ € [0, T'],

(p(t,0),G(t,0)> — {p(0,6),G(0,6)) — f0‘<p(s,0), g(s,b’))ds
(25)

<8é.

¢ ) . azG
_j;)< .lec(j)[p(s,O)]J, W(s’0)>ds
Jj=

Since § was arbitrary, the proof of the theorem is complete, provided that we
have uniqueness of the subsequential limits.

To obtain uniqueness, note that F(p) is an increasing, differentiable func-
tion of p on the interval [0, 1). Additionally, Lemma 3.7 implies that we can
consider the limiting diffusion equation with a modified diffusion coefficient,

A D(p), ifp<7,
(26) Doy = {D(&), ifp >3,

and uniqueness follows from results in Aronson, Crandall and Peletier (1982).
O

4. Conclusion. We have shown that a class of reversible, attractive inter-
acting particle systems have diffusion limits which can exhibit a singularity at
unit density. In particular, if we take the jumps rates to be c(j) =j*,
standard asymptotic analysis reveals that when the rates c¢(j) decay rapidly
enough (A > 3), the diffusion coefficient is analytic. On the other hand, when
the decay of the jump rates is slow enough (A < 3), then the diffusion
coefficient will have a pole of order ¢ = 3 — A at unit density (the singularity
is logarithmic when A = 3). This singular behavior can be associated with
critical phenomena on the torus [Carlson, Chayes, Grannan and Swindle
(1990a, b)], which for these systems is particularly simple. Viewing the density
of 0’s as the order parameter p, =1 — p, it follows immediately from the
transition rules that p, is strictly conserved. Furthermore, as the density p
approaches unity (the critical point), p, goes to 0, signaling a transition.

The concept of self-organized criticality, however, is associated with the
appearance of critical behavior on open driven systems, without the special
tuning of a parameter (in this case, the density). Indeed, numerical simula-
tions of a broad class of particle systems of the type discussed here but on an
open driven lattice, where the density is conserved only locally, are seen to
exhibit self-organized scaling behavior. In this context the appearance of
singular diffusion equations is more than a curiosity. In particular, the scaling
behavior of open driven versions of these systems can be derived from the
stationary solutions of the singular diffusion limits with appropriate boundary
conditions [Carlson, Chayes, Grannan and Swindle (1990a)]. Furthermore, the
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scaling behavior is seen to depend exclusively on the order of the pole, the
driving mechanism and dimension.

While this work establishes the hydrodynamic behavior of a rather large
class of systems on a torus, some important questions remain. In particular,
hydrodynamic limits for open systems, with either fixed densities at the
boundaries or with the driving mechanism described in Carlson, Chayes,
Grannan and Swindle (1990b), remain to be established. Additionally, our use
of attractiveness required that the jump rates c¢(j) be nonincreasing. This is
probably not essential to the validity of the hydrodynamic limit, although
establishing singular diffusion limits without attractiveness remains an open
problem.

APPENDIX

Proof of auxiliary results. This appendix contains the proofs of Lem-
mas 3.3 through 3.7.

Proor or LEMMA 3.3. We present an outline of the proof of the superexpo-
nential estimate for the benefit of the reader. Only minor changes from the
original proof which appears in Kipnis, Olla and Varadhan (1989) are required.

First we note that it is sufficient to establish (10) when y(8) = 1/2. To see
that this is true, take any set B < D([0,T'], X)) and note that

(27) PY(B) = ¥ (dv)/dvi)s)(m)PR(B)vy?*(n) < 2VPY/*(B)
neXy
since
(28) Idva/dva/zl < 2NV,
Taking y = 1/2, we will now bound the expression in (10) in terms of the
largest eigenvalue of the operator Ly + aVy, on the space LA(Xy,v, /25
where a is any real number. Notice that by Lemma 3.1 this operator is

self-adjoint, so, using the Feynman-Kac formula and the spectral theorem we
have

(29) EPN*{e®Vn.nds) < gthy, @),

where Ay (a) is the largest eigenvalue of Ly + aVy ..
Using (29) with Chebyshev’s inequality,

1 .
PI/Z(_ V. ds > 5) < et[/\N,E(a)—NSa]
(30) N N'/(; N,E(ns)
= eNIt/Niry, (a)=8a],
We now see that (10) will follow from showing that for any a,
1
(31) limsup limsup —Ay (@) =0,
es0 Now N 7

since we can then let ¢ — « in (30).
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We will use the variational formula for Ay (a). The following class of
functions play the role of functions of unit norm:

(32) Hy= {fN: Xy Rst. fy(n) =0and Y fy(n)2 V= 1}‘
nEXN
We have
(3 Awu(@ = s {a T Vi (m) (2 - N*Dui)),
fNE%ﬂN neXy

where Dy is the Dirichlet form

(34) Dy(fn) = —fw> Lfy

with (¢, ¥)n = £, c x,2"V¢(n)y(n). The factor N? in (33) is a result of the
diffusion scaling of the rates. The Dirichlet form is

N N
Dy(f) =% L 2V % ¥ {e()d,i.d)
(35) neXy i=1j=—-N
X[\/f(n"’”j —x/f(n)]z}.

The next step is to use the convexity of the Dirichlet form D, to reduce the
class of functions considered to those elements of &#), which are translation
invariant. That Dy is convex is an immediate consequence of the fact that for
any nonnegative sequences a; and b;,

(36) [VZa - VTb] < Z|va - &’

which follows from Hélder’s inequality.

Dy and Vy , are translation invariant [i.e, Dy(fy) = Dy(7; fy) for any j
where 7; is the shift operator, and likewise for Vy ], so (33) implies that the
maximum eigenvalue satisfies

1 N
NE

AN,E(a) = sup {a’ Z 2_NVN,5(T,)
fNEXN neXy

7 fn(m)

1N ]
-N? ﬁigle(TifN)-}

(37) 1 N T
< sup {a Y 2_NVN,5(77)[F X 7 fn(m)

fnEHy neXy i=1 1

1 N
_NZDN{[N '§1(Ti fn) }},

where the second step used the convexity of Dy. Note that (1/N)LY 7, fy isa
translation invariant function, implying that it is sufficient to take the supre-
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mum in (33) over the translation invariant subset of #):
(38) feuy=A{fve #y:7ifn="Fn}
Noting that there exists a C < o so that Vy () < CN uniformly in 7, if fy

is such that Dy(fy) > C/N, then by (33), (31) holds. Therefore, (31) follows
from

1
(39) limsup limsup sup — Y 27%Vy  fy(m) =0,
e—>0 Noow fyeBy Y neXy
where
C
(40) Fy = {f & i Dul ) < g |
By translation invariance it is sufficient to show that
limsup limsup sup ), |———— Y 7:6(n)
-0 Now fyedByneXy 2¢eN +1 l<eN !
(41)
1
e ; -N _
¢(28PJ4—1 l]E;N17(J)) fn(m)2 0.
The first step in establishing (41) is to observe that for each configuration 7,
T L To(n)
2eN + 1 ll<eN J
42
- e
T o N+ T0(n); + Ol =
28N+1U|S8N 2k+1[/‘—l|sk N
and that

1 N )
muz T,d’(ﬂ)‘d’(m P 17(J))‘

|<eN V'l<eN
- X b Y (i
= 2eN+1 UIEN 2k +1, 2, M g U_l|<k’7( )
(43) =TT :
A 1
W gg) T T S ()
2¢eN +1 /l<eN |j'l<eN 2k +1 V'—l<k

1
"oy, O

U—ll<k

oy

which follows from a sequence of applications of the triangle inequality and
Hélder’s inequality. Therefore, (41) will follow as a consequence of the follow-
ing claims.
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CraM.
3 . 1
limsup limsup sup Y. z Y mh(n)
(44) koo Now fye@ynexy| 2k +1 lil<k
—é )y n(j)) fn(m27 = 0.
2k 11,7,
Cram.
. . 1
limsup limsup limsup sup sup Y, Y ()
k—w -0 N—>® r:|r|<Ne fNE-@N‘neXN 2k +1 lil<k
(45)
- Y n(h)|fx(m2™V =0.
2k +1 V+ri<k

PrROOF OF (44) (One-block estimate). For any function g of X,,,, =
{0, 1}2#*1 (think of this as the space of configurations of a 2k + 1-site block of
the N-site torus), let

k
@=3 X 27® Yy ¥

(46) NE€Xop+1 i=—kj:j+il<k

o iit) 2
x{c(j)Jn(l,J)[Vg(ﬂ ) = vg(n)] }
be the Dirichlet form corresponding to the original process 7, restricted to

Xor+1- Next we define what are effectively the marginal distributions of
functions fy on X,,,

(47) %={f13: Fe(n) = 20N+ 20y fN(n>}.

n(n): n|>k
For any function in 5%, (46) yields

n(n): nl<k i=—k j:|j+il<k n(n): n|>k

k
D;:(fle') = % Z 2-N Z Z {C(J)Jn(l,J)[ Z fN(,ni,i+j)

- Z fN(n)} }

n(n): |n|>k
k 2
<3 I T2 T {hn@ e - )
i==k 7 Jilj+il<k
2k +1
= TDN( fn)s

for f € %y. The calculation above moves the sum over all coordinates of 7
outside of the square roots, and the last inequality is due to the additional
nonnegative terms associated with transitions outside of the 2% + 1-site block
and the fact that we are summing only over 2k + 1 sites out of the total of N
sites. We used the convexity of the Dirichlet form in the second step. D
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corresponds to a Markov process on the k-site block. We are dealing with
functions fy such that Dy(fy) < C/N, so the above bound tells us that the
Dirichlet form D} converges to 0 as N — . In other words, the 2% + 1-site
process is very close to equilibrium when N is large. To make this precise, we
begin by replacing the supremum over %, in (44) by a supremum over the
appropriate functions on X,, ,, (acquiring an innocuous error due to the finite
range of ¢):

sup )

fNEBy neXy

Z Tj¢’(77) - 92;

lil<k

ok + 1 fu(m)2=N

1 .
2h 1 X n(J))

i<k

1 1
49 < sup ¥ Y mb(n) — & )» n(j))
ErEF, nE€Xyy 44 2k +1 U=k ! 2k +1 lil<k
1
Xgy(m)2~ @+ 4 O(_k_)’
where
. (2k + 1)C

The compactness of the level sets of D} and the fact that (2% + 1)C/N2 - 0
as N — o implies that,

J 1
limsup sup Y, Y Tid(n) — P n(j))
Noo gedynexXy,, |28+ 127 2k + 157,
1
Xgy(m)2 D + 0(;)
(51) 1
= sup Y Y rd(n) — ¢ )y 77(]))|
g Dig=0meXy,,, | 2k + 1 ;25,7 2k + 1,2,
1
Xgy(n)2~ @D + 0(7;)~

We can take g(n) > 0, and recalling the definition of &, we can view
&:(m2~@**D a5 a probability distribution on X,,,,. Therefore, the relevant
set of probability distributions are those with Dirichlet form zero:

(52) Si = {g:(m)2~®"V: Di(g,) = 0},
Note that S, is the set of convex combinations of measures with a fixed

number of particles / with 0 </ < 2k + 1 uniformly distributed on X, .
With this fact, the proof is completed upon observing that

-1
lim sup sup P ( 2k l+ ! )
k—o  le{1,..., 2k +1} n:):j‘n(j)=l

(53)
1 2k+1 . l
2k + 1 El 76(n) = ¢(2k n 1)} =9
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which follows from the fact that uniform distributions on the torus converge
to product measure in the sense of uniform convergence of finite dimensional
distributions (¢ is a cylinder function).

Proor oF (45) (Two-block estimate). This proof involves two finite blocks
of sites in the same way the previous proof involved one block. Let

(54) fik = 2N RDL Y £y ()

n(): 1jl>k
lr—jl>k

For g(ny,mp) on Xy, 1 X Xy let

D;(g) — % Z 2—2(2k+1)
(55) (N1, M) EXop 1% Xop 41

x{c(j) (i J)[\/g(n‘ mg) — V&(n1,m2) ] }

and

k
Di(g)=3 X 27%**D ¥ ¥

(56) M1, M2 i=—kj:lj+il<k

X{C(j)an(i,j)[ g(nl’n;»iﬂ' - Vg(mﬂ?z)]z}~

The configurations 7, and m, represent the configuration in two disjoint
blocks of sites in 7 of size 2k + 1 each; this is essentially what we have in (45).
The goal is to extract a product measure of the same density in-both blocks in
the limit, and to do this we need to have a coupling between the two blocks.
This is accomplished via

(67) A& =} T 27 y/g((nm2)°) ~ Va(mom) | -

N1 M2

where (1, 7,)° is the configuration with 7(0) exchanged with n(r). Now, as
before,

2k + 1 2k +1
(58) Dlﬁ( fz\rr’k) < TDN( fn)s DE( fz\rf’k) = N Dy(fn),

so we only need to ponder A,:

M(fit) =4 L ozl [B f(nor)

n(: lil<k n(: il >k
lr—jl<k lr—jl>k

2

— Z fN(TI) 2—N+2(2k+1)

n(j): 1jl>k
Ir—jl>k

<1 T 2V VA@®) - Vinm ]

neXy

(59)
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where we have again used convexity. The main idea here is that if D} and D?
are small, then each one separately should be close to a uniform (i.e., asymp-
totically product) measure. Furthermore, if A, is small, then the two densities
must be the same. We therefore need a bound on A,(f3*). Note that we can
consider ¢(1) to be the rate at which each nearest-neighbor pair of spins switch
location, independent of configuration. Observe that we can write the switch-
ing of the spins at sites 0 and r in n%” as a sequence of nearest neighbor
switches:

(60) 7%= ( ((( (o) - )1)12) )

Then, writing /fy(n%") — Vin(m) as a telescoping series, using Holder’s
inequality (L fg]* < Lf%Lg? taking g = 1), and noting that all transitions
associated with longer jumps {c(j)};_, correspond to nonnegative terms in
Dy(fy) yield

1,0

2r — 1)?
(61) Ak(fz\rr’k) < (—N‘)—DN( fn)-

We now have three conditions on functions of the configurations on two
2k + 1-site boxes separated by at most ¢ N sites, and we let

. X 2k + 1
Ay = [aCnm): Dite) < =0
(62) , 2k + 1 ,
D;(g) < NT C;A(g) <¢ c}.
Then
Y o T - o T ()2
sup  sup n(Jj) - n(J) |fv(n
|r|$8N fNE'@NWEXN 2k + 1 |j|$k 2k + 1 |r—j|sk
(63) 1 1
< sup Y > m(J) - Y m2(J)
gedl , mong| 2B T 15T, ' 2k +1 %,

Xg(1my,my)27 2D
and the compactness of the level sets implies that it is sufficient to show that

limsup sup E E 1(J) — Z M2(J)
k> Dlg)=0n1,ms 2k +1 ljl<k 2k +1 ljl<k
(64) D¥(g)=0
Ak(g)=0

X g(”’h, 772)2—2(2k+1) = 0.

Now, Dj(g) = 0, D(g) = 0 and A,(g) = 0 imply that the uniform distribu-
tions are the relevant extremal measures, and as before, the uniform distribu-
tions converge to product measure, and the claim is established. O
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Proor oF LEMMA 3.4. The goal is to use the attractiveness of the process
and the exponential decay of the probability that an interval of n sites are all
occupied at product measure with density less than 1, to show that the
quadratic variation (14) vanishes in the limit N — . Let § = sup, . 5 y(6); by
assumption 9 < 1. Note that all terms in (14) are nonnegative, and we may
put an upper bound on Q¢ by replacing J, (i, j) with I, (i, j — 1). Then, by
attractiveness and the fact that product measure v, is 1nvar1ant since I,(i, j)
is an increasing function of 1 we have that (14) is bounded by

T T e 1)[ ( j)—G(%)]zds

0;=1j=-N

£ £ conti-n[e( ) -olx)

i=1j=-N

|
<t »E zc(j)In(i,j—D[G(%i)‘G(fv")r

ljl<yN
65 . o
(65) + ¥ c(j)In(i,j—l)[G(%)_G %)]}
ljil>VyN
N aG .9 ‘ ‘
E 20l & 0(1);{,—2?’+4IIGIIE Y o))y’
) li1=VN 1> VN
<t ” 70 7\,‘ Y %) + 4IGIEN Y c(mj},
T il i> VN

which vanishes as N — «, due to the boundedness of the c¢(j)’s and the
exponential tails of the product measure v,. Higher order terms omitted above
are easily seen to vanish. O

Proor oF LEMMA 3.5. We need to establish that, for each G € C(9),

(66) lim limsupPX,( sup [{uN,G)| > a) =0
a=® N-oow 0<t<T
and, for any ¢ > 0,
(67) hm hmsupPN( sup [(uN,G) — (WNG)| > s) =0.
20 Now 0ss<t<T
—S

The first condition is immediate, and the second is established using tech-
niques developed in Holley and Stroock (1979), which establish (67) using
moment conditions from the Censov criterion and Doob’s inequality. The
computations are analogous to those used to prove Lemma 3.4. O
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Proor or LEMMA 3.6. Using the integration by parts described in the proof
of the theorem [see (18)] we see that

vz, £ ool oz

lim sup lim sup Py | sup
Co®w Noow 0<t<T

; G(%) - G(%)]Jns(i, —j)}ds >
(68)
<umawimewrs| 1] £ )V E ([o(52) - o]
_G(i—J’;__j) N G(i ;:]1 )}Ins(i, i+ 1)}‘ ds > 5).

Now, by attractiveness and the fact that I,(i, j) is an increasing function of 7,
we replace Py with PJ obtaining the following bound for the right-hand side

of (68):
i—Jj i
G( ) ‘G(ﬁ)

Gi+1—j Gi+1
_( N )+ (N)

I(i,—j+ 1)} ds > 5)
1 . N N i—J i
slimsuplimsup—E}’V(fT Y c(j)NZ{G( J) —G(—)
Coo Now 0O 0 j=Cc+1 i=1 N

o) el )

where we have used Chebyshev’s inequality. Therefore, we need only show
that

lim sup hmsupPN(f Z C(J)Nf: {

C>x N-ox J C+1 i=1

(69)

L(i,—j+ 1)}ds),

N N
lim sup limsupEf\,(fT N c(j){NZ G
C-ow» N-oow 0 j=C+1 i

olit1=d) , ofitd
-o{ =)+ o[ 5.

(70)
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Using Fubini’s theorem and the invariance of vy, We have
G —_
( N ) (N )

ol el
o+

N
limsuplimsup/jE}i,( Y C(J){NZ

C—o» N->ow j=C+1

N N
—hmsuphmsupTE( Y C(J){ )»

C—»o Noow j=C+1 i=1

_G(;+1 J) )I(z J-+1)})
w15, T E[o] ) o[
of ) o )
(71) N N i—j i
+TE,, =§+10(J')Ni§1 G( )_G(N)
o 5ol s
=1ig‘f§*’“?fﬂp{ g‘, g Jﬁa_G l)+0( )‘

N
XL(i,=j+1)+ ¥ c(J)4NIGI.IL (i, —j+ 1)
J=VN+1
2G \/IV .
<limsup limsupT{|—|| X c(J)j($)’
C—-w N-ow a0 ®j=C+1
N .
+4|Gl.N* Y c(j)(9)’
J=VN +1

=0,

since ¥ < 1 and the ¢(j)’s are bounded. Higher order terms also vanish. O
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Proor oF LEMMA 3.7. The lower bound is trivial. The upper bound follows
immediately from attractiveness as used in the proof of Lemma 3.4 in (65). O
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