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THE DISTRIBUTION OF VECTOR-VALUED RADEMACHER SERIES

By S. J. DiLWORTH AND S. J. MONTGOMERY-SMITH *

University of South Carolina and University of Missouri

Let X = Y¢,x, be a Rademacher series with vector-valued coefficients.
We obtain an approximate formula for the distribution of the random
variable || X|| in terms of its mean and a certain quantity derived from the
K-functional of interpolation theory. Several applications of the formula are
given.

1. Results. In [6], Montgomery-Smith calculated the distribution of a
scalar Rademacher series Y¢,a,. The principal result of the present paper
extends the results of [6] to the case of a Rademacher series Ye,x, with
coefficients (x,) belonging to an arbitrary Banach space E. Its proof relies on a
deviation inequality for Rademacher series obtained by Talagrand [9]. A some-
what curious feature of the proof is that it appears to exploit in a nontrivial
way (see Lemma 2) the platitude that every separable Banach space is isomet-
ric to a closed subspace of Z,. The principal result is applied to yield a precise
form of the Kahane-Khintchine inequalities and to compute certain Orlicz
norms for Rademacher series.

First we recall some notation and terminology from interpolation theory
(see, e.g., [1]. Let (E,, [l - l) and (E,, |l - Il2) be two Banach spaces which are
continuously embedded into some larger topological vector space. For ¢ > 0,
the K-functional K(x,¢; E;, E,) is the norm on E; + E, defined by

K(x,t; Ey, Ey) = inf{llx;lls + tllxylle: x = 21 + x5, %, € E;}.

For a sequence (a,) € Z,, we shall denote the K-functional K((a,),t; ¢, ;)
by K, 2((a ), t) for short For 1 <p < =, a sequence (x,) in a Banach space
(E,|I-1D is sa1d to be weakly 2, if the scalar sequence (x*(x )] belongs to ¢,
for every x* € E*. The collection of all weakly ¢ sequences is a Banacﬁ
space, denoted ¢,“(E), with the norm given by £,"((x,,)) = supy < 1[(x*Cx, D,
[where [(a,)ll, = Zla )71 If (x,) € £,°(E), "we define the following:

KYo((%,),t) = . S;up Ky o((x*(x,)), t).

Observe that K{*,((x,), t) is a continuous increasing function of ¢. In fact, it is
a Lipschitz function with Lipschitz constant at most ¢, 5 ((x,)).

Next we set up some function space notation. Lct Q, 2 P) be a proba-
bility space. A Rademacher (or Bernoulli) sequence (¢,,) is a sequence of inde-
pendent identically distributed random variables such that P(e, =1) =

s
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P(¢, = —1) = 3. For a random variable Y defined on (, its decreasing
rearrangement Y* is the function on [0,1] defined by Y*(¢) = inf{s > O:
P(lY] > s) < t}. For 0 < p < «, the weak-L, norm of Y, denoted 1Y 1l p, 0 is
given by Y|l = supg, <t /PY*(t) As usual IYll, denotes (E|Y")'/7. Let
¥ be an Orlicz function on [0,®). The Orlicz norm, ||[Y|ly, is given by
IY |l = infle > 0: E¥(|Yl/c) < 1}. We shall be particularly interested in
the Orlicz functions ¥, (¢) = et — 1 for 2 < g < . The weak- 4, norm of the
scalar sequence (a,) i is defined by (e )y« = sup n'/Pa* where (a*) is the
decreasing rearrangement of (la ,|).

Finally, we shall write A = B to mean that there is a constant C > 0 such
that (1/C)A < B < CA. We shall try to indicate in each case whether the
implied constant is absolute or whether it depends on some parameter, typi-
cally p €[1,»), entering into the expressions for A and B.

Now we can state the principal result of the paper.

MaIN THEOREM. Let X = Ye,x, be an almost surely convergent
Rademacher series in a Banach space E. Then, for t > 0, we have

(1) P(”X” > 2|E||X|| + 6K{‘:2((xn)’t)) < 4e—t2/3’
and, for some absolute constant c, we have
(2) P(IXI > LEIXI + cKPy((x,),t)) = ce™/.

The proof of the main theorem will be deferred until the end of the paper in
order to proceed at once with the applications.

CoROLLARY 1. Let X = Y¢,x, be an almost surely convergent Rademacher
series in a Banach space. Then, for 0 <t < 1, we have

(3) S*(t) = EIXI + K5((x,), Vlog(1/t) ),

where S denotes the real random variable ||X|. The implied constant is
absolute.

Proor. Inequalities (1) and (2) give rise to the inequalities S*(4e~**/8) <
2EI1 X + 6K} o((x,), ) and S*(ce t*/°) > 1EIXI + cK 72((x ), t), respec-
tively, whence (3) follows for all sufficiently small ¢ by an appropriate change
of variable. To see that the lower estimate implicit in (3) is valid in the whole
range 0 < ¢ < &, we recall from [2] that E|X|* < 9E?|X|. Hence, by the
Paley-Zygmund inequality (see, e.g., [4], page 8], for 0 < A < 1, we have

E2I X
ElX |

P(IXI >-AEIX]) = (1 - A)*

11 2>
> — —
—9( )’

whence P(||X|) > (1 — 8/ V10)EIXI) = &, which easily implies (3). O
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Kahane [4] proved that if P(||X||>¢) = @, where X is a Rademacher
series in a Banach space, then P(||X| > 2¢) < 4a® By iteration this implies
P(|X| > st) < 2(4a)®, for s = 2". According to our next corollary, the expo-
nent s in the latter result may be improved to be a certain multiple of s2.

COROLLARY 2. Let X = Ye,x, be an almost surely convergent Rademacher
series in a Banach space. Then, for t > 0 and s > 1, we have

c182

P(IXI > st) < (Clp(uxn > t)

for some absolute constant c,.

Proor. By choosing ¢, < ¢, where c is the constant which appears in (2),
the result becomes trivial whenever P(||X|| > #) > c¢. Hence we may assume
that P(|X|| > ) < c. Choose a > 0 such that P(|XI|| > ¢) = ce~**/¢. Then (2)
gives ¢ > 3E[| X[l + cK{5(x,), @). Thus,

S
st > EEIIXII + scK{((%,), @)

csa
> 2F| X + 6K{‘j2((xn), —6—)
provided s > max(4, 6/c). Now (1) gives
PIXI > st) < de(cs2)*/288

= 4(%(ce'“2/c))

c2s2/288

2

1 c3s2/288
- 4(Z(PIIX|| > t))

which gives the result. O

Our next corollary, which is the vector-valued version of a recent result of
Hitczenko [3], is a rather precise form of the Kahane-Khintchine inequalities.

COROLLARY 3. Let X = Y¢,x, be a Rademacher series in a Banach space.
Then, for 1 < p < », we have

(ENXIP) = EIXI + K5((%,), VP )-

The implied constant is absolute.

Proor. We may assume that p > 2. It follows from a result of Borell [2]
that (EI|X[*")/2P < V3 (E X|17)*/?. Since 3llYll, <Y llzp, <Y llz, for every
random variable Y (as is easily verified), it follows (letting S denote the
random variable || X|) that 2SI, < [ISlizp,« < V3Sll,. So it suffices to prove
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that ||S]l,,« = ES + K{*5((x,), Vp) to obtain the desired conclusion. By Corol-
lary 1, we have

IS5, = ES + sup t/2K5((x,),/log(1/t) )

o<1

—ES + sup {tl/p sup K1,2((x*(xn)),‘/log(1/t))}

0<t<1 llx*ll<1
=ES + sup { sup tl/"Kl,z((x*(xn)),\/log(l/t) )}
la*l<1 ‘O<t<1

To evaluate the expression in brackets, we make use once more (see Corollary
2) of the elementary inequality K, ,(a,), s) < max(1,s/t)K, ,((a,), ). Thus,

sup ptl/"Klﬂ((x*(xn)), Vlog(1/¢) )

0<t<e™

log(1
< (0 EiuP_ptl/p \/ _O_g(I;Z_tl )KIZ((x*(xn))"\/;)

= e K 5((2*(%,)), VP )-

Moreover,
sup ltl/PKl,z((x*m)), Vieg(1/8) ) < Ky 5((2*(%,)), VP )-
e P
Finally, we obtain

—K5((%),Vp) < sup { sup K, 5((x*(x,)), ylog(1/¢) )}

lx*ll<1 Vo<e<1

= K]'.‘:2((xn)’ \/17)5

which gives the desired result. O

Our final application is to the calculation of the Orlicz norms IISII¢, for
2 < q < . The proof will use the scalar version of the result, which' was
obtained by Rodin and Semyonov [8] (see also [7]). (Recall that by a result of
Kwapieti [5], [IS|ly, = Ell X in the range 0 < ¢ < 2.)

CorOLLARY 4. Let X = Ye,x, be an almost surély convergent Rademacher
series in a Banach space. Then for 2 < q < =, we have

ISHly, = EIXN+ sup [|(x*(2,))]p.0
q

lx*ll<1

where 1/p + 1/q = 1 and S denotes || X1|. The implied constant depends only
on q.
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Proor. It is easily verified that [Iflly, = supgg,(log(1/0)~"f*().
Hence, by Corollary 1, we have

ISy, = EIXII+ sup (log(1/t))” "K¥5((x,),t)

0o<t<1
~EIX||+ sup {(log(l/t)) V1 sup Ky (2% (%)), t)}
0<t<l1 la*ll<1

~ EI|X|| + sup { sup (1og(1/t))‘1/4K1,2((x*(xn)),t)}

lx*ll<1 Y 0<t<1

~EIXI+ sup | Lex*(x,)],

llc*l<1

=~ EIXIl+ sup [[(x*(%,))]p,

llx*ll<1

where the last line follows from the result of Rodin and Semyonov [8]. O
2. Proof of the main result. The principal ingredient in the proof of the
main theorem is the following deviation inequality of Talagrand [9].

THEOREM A. Let X = YN_,¢,x, be a finite Rademacher series in a Banach
space and let M be a median of || X|. Then, fort > 0, we have

N
P( 5 e,
n=1

where o = /3 (x,)Y_)).

M|> t) < 4o t"/80%

LeEmMMa 1. Let X = £N_,e,x, be a finite Rademacher series in a Banach
space E. Then, fort > 0, we have

P(IXI > 2ENXII + 8K((x,) 71,8 4 (E), ¢ (E))) < 4e™*/%.

Proor. It follows from Theorem A that, for all y,,...,y5 in E, we have

(@ P(IZel > 2E e | o) = 40
On the other hand, since max||Ze,y,|l = £;"((y,)), we have the trivial estimate
© P(|Zewsal > 22(20)) =0.

Let x, =20 + 2P, for 1 <n < N;let XD =Yg, x<; and let X® =3¢, x(2)
Then

£2((x0)) + t42((22)) + 2ENX @]
< £2((x0)) + t£2((22)) + 2EI X + 26 X
< 342((x®)) + t£2((x2)) + 2EIX]
< 2EIXI + 3(42((x2)) + 45 ((x)))-
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Let @ denote 2E|| X|| + 3(<*((x{") + t£;'(x?))). Then, by (4) and (5) and by
the above inequality, we have

P(IXI| > @) < P(IXDI + XD > /#((xD)) + t22((xD)) + 261 X2])
< P(IXDl > £2((x2))) + P(IXl > 2EIX D] + t22((x2)))

<0+ 4e /8,
The desired conclusion now follows from the definition of the K-functional. O

LEmMMA 2. Let xq,...,xy be elements of the Banach space ¢,. Then, for
t > 0, we have

K((%,)n-1 65 42(4), 45°(4)) < 2K 15((2,) 210 t)-

Proor. For 1<n <N, let x, =(x, ;)7_; € 4,. A simple convexity argu-
ment gives

(1/p)
I(x) l4#ccp = sup (Z ;17 ) :

l<j<w

It follows that the mapplng ¢ which associates an element (y,);_; € £,°(4)
with the element in £(/,) whose jth coordinate equals (y, ;),_, is an
isometry. Hence K((x, ) t; 27, 45") = K(¢((x,)), t; £(<)), £(4,)). Let
(y,)5_1 € 4(Z,) and let & > O. For each n there exists a splitting y, =2® +
2% such that

1 2
” ZS‘)J.I 1” +t” Zg‘)f.l 1” =K, 2((yn J)J v )+8

It follows that

I e + Ao = sup |2 e s L],

<2 sup K; 2((yn J)J . )+2£

l<n<w
< 2K1’2((yn),t) + 2¢.

Since ¢ is arbitrary, the result now follows from the definition of the K-
functional. O

PROOF OF THE MAIN THEOREM. First we prove (1) for a finite Rademacher
series *N_ ¢, x,. Since every separable Banach space embeds isometrically into
/., we may assume that E is a closed subspace of £,. Recall that K{*,((x,), ?)
was defined as sup;,« <1K; o((x*(x,)), ¢). By the Hahn-Banach theorem, the
supremum is the same whether it is taken over elements of E* or over
elements of £*. Hence (1) follows by combining Lemmas 1 and 2. The result
for an infinite series follows from the result for ©_,¢, x, by taking the limit
as N - «. To prove (2), we use the result from [6] that there exists an
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absolute constant d such that
P(Z‘gnan > dKl,Z((an)’t)) = de—tz/da

for every sequence (a,) € ¢,. Hence

d .
P(”anxn” > EKsz((xn),t)) inf P(| Le,x,] > dKy o((x*(x,)), 1))

llx*ll<1

> inf P(Zenx*(xn)>dK1,2((x*(xn)),t))

lx*ll<1
> de t*/4,

The Paley-Zygmund inequality now gives

\%

1 d
P(IIXII > EIEIIXII + gKi‘fz((xn),t))

v

min( P(1x1> Fe1x1). P(11> SKE(5.0))|

v

1
: —t2/d
mm( 44 ,de ) O
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