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U-STATISTICS OF RANDOMS-SIZE SAMPLES AND LIMIT
THEOREMS FOR SYSTEMS OF MARKOVIAN PARTICLES
WITH NON-POISSON INITIAL DISTRIBUTIONS

By Raisa EpsTEIN FELDMAN! AND SVETLOZAR RACHEV 2

University of California, Santa Barbara

Limiting distributions of square-integrable infinite order U-statistics
were first studied by Dynkin and Mandelbaum and Mandelbaum and
Taqqu. We extend their results to the case of non-Poisson random sample
size. Multiple integrals of non-Gaussian generalized fields are constructed
to identify the limiting distributions. An invariance principle is also estab-
lished.

We use these results to study the limiting distribution of the amount of
charge left in some set by an infinite system of signed Markovian particles
when the initial particle density goes to infinity. By selecting the initial
particle distribution, we determine the limiting distribution of charge,
constructing different non-Gaussian generalized random fields, including
Laplace, a-stable and their multiple integrals.

1. Introduction. This paper pursues two objectives: to study the asymp-
totic behaviour of symmetric statistics with random sample size, and to apply
the resulting limit theorems for U-statistics to study the asymptotic behaviour
of infinite particle systems with random non-Poisson initial distribution. Our
main result is Theorem 1, which describes the asymptotic distribution of
U-statistics in terms of multiple integrals of a non-Gaussian process, whose
distribution is determined by the choice of the distribution of the sample size.
The construction of these integrals is given in Sections 2 and 3 of the paper.

" One motivation for studying statistics with random size is that it is not always
possible to take a fixed number of measurements. In queueing theory, reliabil-
ity and sequential analysis, study of statistics with random size goes back to
the works of Rényi (1956), Robbins (1948a, b) and Gnedenko and Fahim (1965)
[see also the survey Gnedenko (1983) and the recent monographs Lee (1990),
Kruglov and Korolev (1990) and Rachev (1991)]. The rest of the introduction
motivates the study of infinite particle systems with non-Poisson initial distri-
bution. Thus, readers who are not interested in this second problem should
skip directly to Section 2 of the paper.

In recent years much attention has been given to the description of infinite
systems of particles moving according to some law (usually Markovian). Among
these are works by Snitzman (1984), Shiga and Tanaka (1985), Walsh (1986),
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Adler and Epstein (1987), Adler (1989, 1990), Epstein (1989), Adler, Feldman
and Lewin (1991) and others.

Many of these papers deal with particle systems which behave as follows:
Initially (at time zero) a number of independent particles pop into existence at
locations within the space R?, according to a Poisson point process with
intensity A. The particles then move about according to some Markov law. The
asymptotic behaviour of this system as A — « has been studied in Martin-Lof
(1976), 1t6 (1983), Walsh [(1986), Chapter 8], Adler and Epstein (1987), Adler
(1989, 1990) and Adler, Feldman and Lewin (1991) for different conditions. In
particular, Adler and Epstein (1987) obtain convergence of sums of some
functionals of the Markov processes to generalized Gaussian random fields and
their functionals. The authors show how these limit theorems can be used to
study properties of the limiting random fields.

The question we ask in this paper is, ‘““What happens to a Markovian
particle system if we change the initial distribution of the particles?’’ When the
central limit theorem is applied to a sum of N ii.d. random variables,
non-Poisson randomization of the sample size N leads to non-Gaussian limits
(see, e.g., Rachev (1991), Section 19). The choice of a non-Poisson initial
distribution, for example, geometric or ‘‘discretized’’ a-stable, produces non-
Gaussian generalized random fields as limits of sums of some functionals of
Markov processes, and this construction provides a tool for the study of these
fields.

Note that the limiting distributions which we obtain have many practical
applications. Laplace processes, which can be generated via a geometric sum-
mation scheme, are used in reliability [Brown (1990) and Gertsbakh (1990)], in
environmental studies [Rachev and Todorovich (1991)], and in modeling of
financial data [Mittnik and Rachev (1990)]. The recent developments and
applications of stable processes are covered in Samorodnitsky and Taqqu
(1990), Rachev and Riischendorf (1990) and so on. Blattberg and Genodes
(1974) observed that the ¢-distribution provides a better model for ‘‘peaky”
distributions than the Gaussian does. Melamed (1989) studies the generalized
Laplace distribution. By selecting the initial distribution of the particles, we
are able to produce Laplace, stable, generalized Laplace, ‘“‘¢,” and other
generalized random fields. Note that one-dimensional time processes of these
types were obtained in Mandelbrot and Taylor (1967) and Clark (1973) and
used for modeling stock returns, providing better fits than Gaussian processes
do.

We now describe several interesting ways in which particles may be born on
R4, d > 1. Let R? be divided into unit cubes with vertices on the lattice Z¢.
On a probability space take a Poisson random variable N(A) with mean A > 0.
At the initial time, N(A) particles are born independently in each cube, and are
distributed uniformly. Thus, at the initial time we observe what we will call a
“Poisson picture” in R¢9. Alternatively, the particles could be generated
according to the following scheme: Imagine a generator which at each step
remains active with probability q. If active, it produces one particle (uniformly
distributed) in each cube. The particles are held in the cubes where they were
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born until the time of a “catastrophe,” a geometrically distributed moment,
when the generator fails. At that time particles become free to move over the
whole space R? according to some Markov law until their exponential life-
times expire. Note that the starting time ¢ = 0 of the system is the moment
when the generator fails. We are interested in the case where the failure
probability 1 — g is very small, in which case the average density of particles is
very large.

The geometric and Poisson distributions both have the property that the
probability of a large number x of particles being born in one cube approaches
zero at an exponential rate as x — . It might be interesting to consider a
system in which the initial particle density can take very large values with
high probability. This requires a distribution with a heavy tail. As an example,
we use a ‘‘discretized” version of a positive stable distribution. Another
interesting initial distribution is a mixture of Poisson distributions. This
means that the particles are generated by several Poisson distributions, one of
which might produce most of the particles. We also consider mixed empirical
and doubly stochastic point process of particles, each having finite initial
measure.

Following the construction of Adler and Epstein (1987), we shall assign a
Rademacher positive or negative charge to each particle, send an appropriate
parameter of the initial distribution to infinity and study the limiting distribu-
tion of charge left by the system in a set after all particles have died. The
limiting field, which is indexed by sets, or more generally, by functions, will
have a non-Gaussian distribution. As special cases, we obtain Laplace, stable,
Gamma, ‘““¢,”” and other fields. We also construct their functionals using limits
of sums of symmetric functionals of the Markoy processes in the system.

This paper is organized as follows: First, we develop some general limit
theorems for sums of symmetric functionals of independent random variables
with values in an arbitrary measure space when the number of summands is
random. For fixed and Poisson sample size, such theorems were proved by
Dynkin and Mandelbaum (1983) and an invariance principle was established
by Mandelbaum and Taqqu (1984) in their studies of U-statistics. We describe
our generalizations of their results in Section 2; proofs are given in Section 3.
In Sections 4 and 5 we analyze the distribution of charge left in the space by
systems of Markov processes created under different initial conditions.

2. Symmetric statistics with random sample size and multiple inte-
grals. This section contains our results on symmetric statistics, often called
U-statistics, when the number of summands is random. Let X, X;, X,,... be
i.i.d. random variables taking values in an arbitrary measurable space (2, F)
with distribution v. For each T > 0, let &#; be a space of sequences of
functions {h,; k& > 0} for which h, is a constant and h, = h,(x,,...,x,) is a
symmetric function on 2°* such that

© k

Il = ¥ rvh(ed) <=
=0 F-
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where

vh(h%) = fkahi(xl, o xy)v(day) e v(dxy).
Let #= Ny o#p. The function h, will be called canonical if

fngzk(xl,...,xk_l,x)v(dx) =0, vE=l — ae.
Let {h,, & > 0} be a sequence of canonical functions from -#. Define sums

(1) o-kn(hk) = ZZ hk(Xil,"~7Xik)
1<i;< -+ <ip<n
for n > k and o(h,) = 0 otherwise.

The limiting distribution of n~*/20;" as n — « was studied by Dynkin and
Mandelbaum (1983) (as well as by other authors). They also considered
statistics (1) for Poisson sample size, that is, the limit as A — o of A ~#/2g;\,
where N, is a Poisson random variable with mean A > 0 independent of
X,, X,,... . In both cases Dynkin and Mandelbaum obtain the same limits,
which are written in terms of multiple Wiener integrals of Gaussian measure
defined on (Z, . F).

For r > 0, let N(r) be a positive random variable taking integer values
independently of the X;’s and such that

(2) N(r)/r—>5Y asr—w

for some positive random variable Y independent of X’s. We would like to
study the limiting behavior of statistics r~*/20,” as r — . The limiting
distribution in this case appears to be expressed via multiple integrals with
respect to a random measure {M(B), B € ., v(B) < «}.

We will denote by =, weak convergence of finite dimensional distribu-
tions. ‘
The main result of this section.is the following theorem:

THEOREM 1. Let h = {h,, k > 0} be a sequence of canonical functions in
K. Let £y be the Laplace transform of Y. As r — = the finite dimensional
distributions of

3) Z,(h) = ¥ r e} (h,)
k=0

converge to those of L5_o(1/kDd,(h,), where J, are multiple integrals with
respect to a random measure M on (2, &) such that for sets B, ..., B, e ¥
the vector (M(B,),..., M(B,)) has the characteristic functional

¥ ’ n
(4) EeMMBo+ = +itaMBu) — £ 3 3 MAv(B; N Bj)|.
sl

i 1

The construction of the multiple integrals JJ, will be given later, in the course
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of the proof. We will use a technique which has parallel in stochastic analysis,
where many results on continuous local martingales can be obtained via
quadratic variation time change from results on Brownian motion [see Revuz
and Yor (1991)]; our main tool will be a “random function change” in the
Wiener integrals with respect to Gaussian measure, defined in Dynkin and
Mandelbaum (1983). A
Before we proceed into technicalities, let us give some examples of random
measures M which correspond to different distributions of sample size N(r).

ExampLE 1 (Poisson sample size). If N(r) is a Poisson random variable
with mean r > 0, then N(r)/r » 1 and M coincides with the Gaussian
measure {W(B), B € &, v(B) < «} such that EW(B) = 0, EW(A)W(B) =
v(A N B). This is the case considered by Dynkin and Mandelbaum (1983) and
Mandelbaum and Taqqu (1984).

ExaMPLE 2 (Geometric sample size). Let N(r) be a geometric random
variable with mean r. Then Y is a standard exponential and M is a Laplace
random measure {L(B), B € %, v(B) < «} such that

1

5 E iML(Bp+ - +id,L(B,) — .
( ) ¢ 1+ %Z?,j=1AiAjV(Bi N BJ)
ExampLE 3 (Mixture of Poissons). Define N’(r), j=1,2,...,k, as a se-
quence of independent Poisson r.v.’s with means ra;, a; > 0, ji=12,...,k.

Consider a mixture of Poisson distributions

k
P(N(r)=1)= Y p,P(N'(r) =1),
j=1
where p; > 0, ):f=1 p; = 1. In this case Y is a discrete random variable with
P(Y=aq« j) =p; and the measure M is a mixture of Wiener measures [Kon
(1984) applies such distributions to model stock returns].

ExampLE 4 (Discrete stable sample 2size). Let Y be a positive stable r.v.
with Laplace transform Ee™*Y = =%, A > 0, where the index of Y, /2, is
less than 1. Let N(r) be the following discretized version of Y:

(6) P(N(r)=k)=P(k—1<rY<k), k=1,

Clearly, (2) holds and the random measure M is symmetric stable with
parameter «:

i 1

n a/2
Eei’\lM(Bl)"' o +id, M(B,) = exp{ _ (_% Z )‘i/\jV(Bi N BJ)) }
e
Note that the measure M is different from the stable random measures

studied in Weron (1984) and Samorodnitsky and Taqqu (1990), since its
increments are not independent.
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ExampLe 5. Let 1/Y be a chi-square r.v. and let N(r) be a discretized
version (6) of Y. For B € %, M(B) has a ¢-distribution.

ExaMPpLE 6 (Generalized geometric sample size). Pick any m > 0. Let N(r)
have a generalized geometric distribution [cf. Melamed (1989)]
1 k-1
P(N(r)=1+km) =+ ]_[(

1 1/m 1 k ‘
- 1-— fork>1
A ) (s) e
and P(N(r) =1) = r~/™ Then Y in (2) is a Gamma(l/m, m) distributed
r.v. with Laplace transform Ee~*Y = (1 + mA)~'/™. M has the distribution

EeiMM(Bp+ = +i, M(B,)

m n m/2

i,j=1

We now rigorously construct and characterize the random measure M and its
multiple integrals. For the Gaussian case this was done by Dynkin and
Mandelbaum (1983) and extended to an invariance principle by Mandelbaum
and Taqqu (1984). We proceed in steps, in order to show how the defined
integrals appear naturally in the study of the limiting distribution of Z,(h) of
Theorem 1.

On some probability space, define a linear random family {J(¢), ¢ € L%(»)}
through its finite-dimensional distributions given by

(7 E exp{iAd ()} =,/Y(%A2v(¢2)),
and
(8) ad (@) + bJ () =J(ad +by) as.foralla,db €R,

where _Zy, as before, is the Laplace transform of the r.v. Y. Note that
although J, = J depends on Y, we will suppress the index Y in our notation.
The family J, is defined on a probability space which may be different from
the one which supports the X,’s and Y, but we will use the same sign for
expectations. If we consider the subfamily

(M(B) = J\(15), B &, v(B) <},

then symbolically
Ti(#) = [ #(x)M(dx).
Lemma 1 below shows the relationship between the statistics 07" and the
family ;. .
Let L = {¢ € L*(v): v(¢) = 0}

“LEMMA 1. Under the condzttons of Theorem 1,

N(r)
(9) {r’l/z )y ¢(Xi)} =g{J1(d)}ser-
éeL

i=1
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Our next step is to define an analog of quadratic variation of the process /.
As is seen from Lemma 2, this role will be played by the linear random family
{K(¢), ¢ € L%(v)}, which is defined on the same probability space as the family
J(#), and whose joint distribution with J,(¢) is given by

(10) E exp{iAd (@) + inK(P)} = ./Y(——ip,v(([/2) + %/\Zv(d)z)).
Here the Laplace transform .7 is defined on the right half-plane (Re z > 0).

LEMMA 2. Asr — «,
N(r) N(r)
(11) {("—1/2 'Zl H(X,),r " '21 ‘/’2(Xi))} =5{(Ji(d), K(¥))}s yer-
i= i= ¢, y€L

As the next step, for ¢ € L define h$ = 1,..., h¢(x,,...,x,) = d(x) - -+ -
@(x,), - . Then the sequence h® = {h%, k > 0} is in the space # (# was
defined at the beginning of this section) and Z,(h?) is well defined. We are now
ready to find its limiting distribution. Set

(12) () = exp{Jy(¢) — 3K (o)}
LEMMA 3. Asr — «,
(13) {Z,(h*)}yer = o e(d)}ger.

Recall that the defined function ¢ is a generating function of generalized
Hermite polynomials which serve as multiple integrals [cf. Revuz and Yor
- (1990)]. Specifically, let H,(x) be the Hermite polynomial of order 2 with
leading coefficient 1:

. dk .
Hy(x) = e*/2(=1) -7 (e77%).

For a > 0, set
Hy(x,a) = a*/?H,(x/Va).
We also set H,(x,0) = x*. Then,
© yk ux — au?
£ Sl

Recall that for a real-valued local martingale {A,, ¢ > 0}, A, = 0, with quadratic
variation (A, A), the iterated stochastic integral is defined via a generalized
Hermite polynomial:

k!/;tdAslj;SIdAsz /sk_ldA = Hk(At,<A, A>t)

s
0 ‘k

[Revuz and Yor (1991), page 143]. Similarly, define the multiple integral of
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order % on the space of functions {h%, ¢ € L} as
(14) Jy(h}) = Hy(J(4), K(4)).

Using the last definition, linearity of the processes JJ; and K, (12) and Lemma
3 we obtain the following:

LeEMMA 4. Under the conditions of Theorem 1,

® 1
(15) {Zr(h¢)}¢EL =’9{ Z EJk(h?é)}
k=0 """ $eL
asr — o,

Since the space {h%, £ > 0, ¢ € L} is dense in &, the passage from Lemma
4 to Theorem 1 is possible.

The proofs of Theorem 1 and Lemmas 1, 2 and 3 will follow in Section 3.

We will extend the result of Theorem 1 to an invariance principle for
random sums of symmetric statistics, similar to one obtained by Mandelbaum
and Taqqu (1984). Let f: R,—> R; {f, f)2= [¢f*(x)dx <, ¢ €L. We
extend the definition of the random integral to the product space of functions
L x L%(R,) by putting

Eexp(ir, J (1 1) + - il 70 fir))
(16) L&
=Zyls L MAp(d:9,)<fis 02 (055 13) € L X L*(R,).
i,j=1

Then, the random measure M on the product space (2, #,v) X (R}, #(R ),
Leb) [Z(R ) is the Borel o-field on positive half line] can be defined as follows:

M(B X [0,s]) =J}""(151p,,), B F,s>0.
On 2% x R* define
(17) hk’t(x]_,..',xk, ul,...,uk) = hk(xl,...,xk)].[o’t](ul),...,1[0yt](uk).

We then have the following:

TueoreM 2. Let {h,, k > 0} be a sequence of canonical functions in . As
r — o, the process

(18) Zi(h) = kz r"k/zoliN(’)‘](hk), t>0,
-0 .
converges weakly in D[0, ) to
(19) M'(h) = kE FJI:XLQb(hk,t)’
—o R

where the multiple integrals are taken with respect to the random measure M
on the product space (Z, Z,v) X (R, #(R ,), Leb) defined above.
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Symbolically,

JI:XLEb(hk,t) = fhk(xl’ cee xk)l[O,t](ul) s l[(),t](uk)
XM(dxq,du,) -+ M(dx,,du,),
where the integral is taken over the product (2°X R, ).

3. Proofs of Theorems 1 and 2. Let ¢;, ¢, ..., ¥, ¥y, ... be functions
in L.

Proor oF LEmMA 2. Consider the 2k-dimensional process
[rt]

(&(8),m, (1)) = ¥ (r~/%;, 77 '92),

i=1
¢ = (61( X)), ..., 0u(X)), W= (WI(X), .., ¥i(X))
on D[0, ).
From Donsker’s invariance principle, the law of large numbers and Theo-

rem 4.4 on page 27 of Billingsley (1968) follows the weak convergence of
(¢,,m,), as r — o, to a 2k-dimensional process G, ,, such that

Eexp{ i(2, /-_’«) &, ¢)(t)} = exp| it Z NzV(‘/’2) -3 21/\ V(®:d;) 1>
A= (’\1’“")‘17,)’_/'_" = (K1 os Mg)-

From (2) and the independence of N(r) and the X,’s, it follows that
(N(r)/r,(£,,m,)) converges weakly to (Y, G, ).

By the Skorohod-Dudley theorem [cf. Dudley (1989), Theorem 11.7.2],
there exists a probability space rich enough to support random pairs
(N(r)/r,(€,.,7,)) and (Y, G-(d,,d,)) having the same distributions as

(N(r)/r’(gr’nr)) and (Y’G(tbﬂl/))’

respectively, and such that

_(N N(r
o (M2 52 i

where d is the Skorohod metric in D[0, ») [see Resnick (1987), page 221 and
Rachev and Riischendorf (1990)]

Then .
(Er( NGr) ),m( Ngr) )) =y G, )(Y).

r

-0 a.s,

This immediately gives the result of Lemma 2. O
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Proor oF LEMMA 1. Lemma 1 follows immediately from Lemma 2 when
Yy=0.0

Proor oF LEMMA 3. For any ¢ € L,

N(r)
log Z,(h*) = log| [T (1 + r~2$(X,))
i=1

N(r) N(r)

=75 T 6(X) — g LX) +o,

(04 =4 0 as r — ».) In other words the field {log Z (h?*)}, <, has the same
11m1t1ng distribution (in the sense of weak convergence of finite dimensional
distributions) as the field

1 Nf) 1 Nf) ,
= L (X)) — o L (X))
Vr 5 2r /3 bl
Applying Lemma 2 to the latter field we obtain its convergence to {J,(¢) —
(1/2)K(¢)}; < .- This proves Lemma 3. O

Lemma 4 was obtained in Section 2. We shall now prove Theorem 2;
Theorem 1 will follow from Theorem 2 when ¢ = 1.

ProoF oF THEOREM 2. On an arbitrary measurable space (27, #',v'),
define a Gaussian family {I,(¢), & € LA(2")} with

EL($) = 0; EL,(¢)I,(¢) = V' (d¥).

The multiple Wiener integral of order % associated with the Gaussian family I,
is defined as a linear mapping I, from the space #* of symmetric functions
h(xy,..., %), )¥(h%) < =, into the space of functionals of the Gaussian
family I,. The mapping is uniquely defined by the following conditions [cf.
Dynkin and Mandelbaum (1983)]:

(@ I(h) = H,(I,v'($D), ¢ € LAZ").
(b) For h, € #*, EIXh,) = kI')*(h3).

For {h,, k > 0} € # define the multiple Wiener integral of the function A, ,
[k, . was defined in (17)). The integral is defined on the product space
(2", F',v) = (X, F,v) X (R,, B(R,),Leb) and is associated with the
Gaussian family {I; XLEb(cj) (s, ) e L2(.92” ) X L%(R )}, which has mean zero
and variance v(¢2){ f, f )2 [cf. (16)].

Then, for {h,, k > 0} € #, as r — =,

Vi(R) = ¥ rt%f(hy),  t20
k=0
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converges weakly in D[0, ) to

1
Wih) = ¥ I (hy,), t=0
r-o k! '
[Mandelbaum and Taqqu (1984)].
As in the proof of Lemma 2, the Skorohod-Dudley theorem and the result
on page 221 of Resnick (1987) yield

VO R) ng 20 (W (R)}no as T > o
To complete the proof of Theorem 2 we have to show that
(20) WY (h) =g M (h)
From (10) and the independence of Y and I, it follows that J,(¢) is equal in
distribution to VY I,(¢) =, I, (VY ¢) (the latter is defined on the product of

probability spaces), and K(¢) =, Yv(¢$?) =, v((VY $)?). In particular, for the
random measure M we have

M(B X [0,s]) =5 J7*™"(151 )
9 ‘/YI{'XLeb(lBl[o,s]) g9 IfXLeb(lBI[O,sY])'

The last relationship follows from the facts that Y is independent of I}*le
and that a Gaussian distribution is fully determined by its mean and covari-
ance.

We complete the construction of the multiple integral of order %2 with
respect to the measure M on an arbitrary measurable space as follows. The
comparison of the generating functions for J, and I, for h%, ¢ € L, yields

oouk
Z_

k=0 k!

(21)

Ty(k) = exp{uJ1(¢>) - %Kw)}

= exp{u\/—fll(d)) - %—Yv(d)z)}

© uk
s COAT))
k=0 "*

Thus, we define J,(h,) =4 Y*/2I,(h,) for h, € #*.
Recalling relationship (21) on the product space
(Z, F,v) X (R, #(R,),Leb)

and the definitions of WY (%) and M '(h), we conclude that (20) holds. This
completes the proof of Theorem 2. O

Proor oF THEOREM 1. Take ¢ = 1 in the statement of Theorem 2. Due to
the Cramér-Wold device [Billingsley (1968), page 49] and the linearity of
Z}h) and M'(h) in the argument h, Theorem 1 follows if we prove that
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I *(hy, 1) =5 Jy(h,). However, this follows immediately from the defini-
tion of J, via I, (see proof of Theorem 2) and the relationship I,(¢) =,
I7*%*(p1, ;). (Both variables are Gaussian with mean zero and variance
v(¢2).) This completes the proof of Theorem 1. O

4. The limit theorems and random fields. We now return to the
particle picture described in the Introduction. Let Z,; == {n: n = (n,...,ny )},
that is, the set of all d-dimensional integer-valued multiindices. For each
neZ,; let C, be the d-cube defined by C,={x € R% n,—1<x;,<n,,
i =1,...,d}. Let p(x,y) =p(y,x), x,y € R%, t > 0 be a symmetric Markov
transition density function satisfying [z«p,(x,y)dy = 1 for each x € R¢. Let
g be the corresponding Green’s function

(22) g(x.) = [ “e~'p(x,y) dt.

On a probability space (1, &, P), define an infinite collection X = {X,(®),
t > 0}, c 7, of independent symmetric Markov processes on R? with common
transition density p,(x, y), each process starting according to a uniform distri-
bution in C,. Furthermore, let the probability space be rich enough to support
an infinite sequence X, X,,..., X,,.... of such collections, all independent of
each other. If X is one of the processes in the entire collection (when both
n € Z; and i > 0 vary), then we can think of it as describing the movement of
a particle in the system.

We take (on the same probability space) a sequence &, &, ... of collections
d; ={o0; ,, n € Z;} of independent Rademacher variables, that is, P(o; , = 1)
= P(0;, = —1) = 1/2. We can think of o; , as a positive or negative ‘‘charge”
associated with the Markov particle X; ,. For additional motivation of this
choice of “positive’” and ‘‘negative” particles we refer to Adler (1989).

Extend the probability space to support a random variable N(r), r > 0,
independent of the X’s and ¢’s and such that (2) holds. N(r) represents the
number of collections X, ..., Xy, in the system at the initial time ¢ = 0. We
now describe the evolution of the system in time. When a particle with charge
o at time ¢ passes through a point x in the space R¢, it leaves there a charge
e lo. Let A e B(R?) be a Borel set in the space R¢. We are interested in
finding the amount of charge left in A after all particles have lost their charge
and in the limit of increasing initial particle density, that is, we would like to
find a limiting distribution of

1 N& o :

(23) ®(A) = = L L[ 00 1a(X,, (1)) dt

T i=1n "0

as r — o, More generally, consider a bilinear form

(Fhy = (k= [ [ F(2)8(x,3)h(y) dudy,
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where g is given by (22). Define the class of functions
Sa=S4(8) = {f: fon R with (If], ) < ).

We study the weak convergence, as r — o, of the finite dimensional distri-
butions of the sum

1 N(&

(24) .(f) == L L [ one f(Xin0)) dr.

i=1 n

Define on some probability space a generalized random field {®(f), f € A}
This means [cf. Walsh (1986), page 332]:

(@) ®(af + bh) = a®(f) + bP(h)as. forall f,h € S,, that is, ¥ is a linear
random functional;
(b) ® has a version with values in the dual space S}.

Corollary 4.2 of Walsh (1986) shows that in order to assure (b), ® has to be
continuous in probability. We specify the distribution of ® via

(25) Eexp(id®(f)} = Ly (32, ).

LEMMA 5. A linear random functional ® with distribution (25) is continu-
ous in probability on S,.

The proof of Lemma 5 is postponed to the end of the section.

THEOREM 3. As r — «, the finite dimensional distributions of the field
{®,.(f), f€S,} converge weakly to those of the field (P(f), f € S,}.

We will give the proof of Theorem 3 later.

The limit theorems developed in Section 2 allow us to build multiple
integrals of the field ®( f). To see this, consider £ Markov processes X;,..., X,
from the system. Define

Fe(Xy,..., Xp)
(26) /“’.

= A ../;)e—tl—m —tkfk(X1(t1),...,Xk(tk))dtl dtk

for each function f, from the space
Si = 8k(g) = {fu: fu on R with (Ifyl, Ifyl) < =},
where

VS I C AT ICN

o g( % Yr) R (Y15 Y8) dxy o0 dxy dyy o dyy.
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We study the limiting distribution, as r — «, of the sum

A

(27) V(f)=r 2 LT BpRee., X)),

1<iy< -+ <ip<N(@)
where _ A
(28) ka(Xil’ T Xik) = Z o Eo.il:”l o O.ik:nkak(Xil:nl’ cr Xik:nk)'

n ng

THEOREM 4. As r — o, the finite dimensional distributions of the pair
(D), V.(f,)) on S, X Sk converge weakly to the finite dimensional distribu-
tions of the pair {<®(f),(1/kDV(f,)) where Y(f},) is the multiple integral of
order k associated with the field J(f) =4 ®(f).

Proofs of Theorems 3 and 4 are based on Theorem 1 and the following
lemma:

LEMMA 6. Let f,, h, € Sk The functional ka of (28) is square-integrable
and

EF,F, = (fu, hy).
Proor. For simplicity, take 2 = 1. For f,h € S,
(29)  EFF, - Ezan[:e-tf(xn(t)) dtzamf:e-Sh(Xm(s)) ds.

Since o, 0,, are independent and with zero mean, Eo,0,, = §, ,, and (29) is
equal to

EL [ [(e *f(X () h(X,(s)) deds
(30) - 2[0°°[°°e—t—s dtdszfc da

x [ pda,x) f(x) dx [ po_(x,9)h(y) dy.

Note that p,(a, x) = p(x, a),

Zf pi(x,a)dx =1

n Cn
and that
2" [Tetop,_(x,y) deds = g(x,).
[ f e pe i, y) dids = g(x,y)
Thus, (30) is equal to

[ ez h(s) dudy = Cf, ).
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The proof for general %2 > 1 follows from similar argllments involving longer
formulas but no new mathematics and we feel free to omit it. Lemma 6 is
proved. O

PrOOF OF THEOREM 3. Let the space 2= ((R¥)®+x{—1, 1})%@ be the path
space of pairs (X, ), and denote by v the probability measure the above pair
induces on Z". Then by Lemma 1 the finite dimensional distributions of the
sum (24) converge weakly to those of the field J,( FAf), which is determined by

E exp{iAJl(ﬁf)} = ./Y(%sz(ﬁfz)).

However, v(F?) = EF',? ={f, f> by Lemma 6. Thus, {Jl(lf'f), fesS) =9
{®(f), f<8S,}. This completes the proof of Theorem 3. O

ProoF OF THEOREM 4. Let £ and v be as in the proof of Theorem 3.
Theorem 4 follows immediately from Theorem 1, noticing that {Jl(FA‘f), fe
Sy} =4 (®(f), f€ S,} and so that also J, =, V.

It follows from the above theorems and Examples 1-6 of Section 2 that:

(1) If N(r)is a Poisson r.v. with mean r, the random field {®(f), f € S,}
is a centered Gaussian with covariance E®(f)P(h) = { f, g). [This is the case
studied by Adler and Epstein (1987).]

(ii) If N(r) is a geometric r.v. with mean r, the random field {®(f),
f € S,} has the Laplace distribution

1
Eexp{i)tCI)( f)} = m

(iii) If N(r) is a discretized stable r.v., as defined in (6), the random field
{®(f), f€8S,}is a generalized stable random field with distribution given by

Ee*D — exp{ - (322(f, £)"?}.
We similarly obtain random fields whose marginal distributions include the
t-distribution, gamma distribution, and others. O

Our last proof is of Lemma 5:

Proor oF LEMMA 5. Because @ is linear, it is enough to prove that
d(f,) 2 0as{f,, f,> = 0.
Take € > 0. For any § > 0 take N large enough so that P(Y > N) < §/2 and
n large enough so that (f,, f,> < 8¢2/2N. Then from the relationship
0(1,) o 1{f)) o I,

[Il(Ff) is a centered generalized Gaussian random field indexed by f€ S,
with variance E(I 1(F )% = (f, £7), and from the Chebyshev inequality it
follows that P(|®(f,)| > €) < 8. The lemma is proved. O
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5. Other initial distributions. The results of Section 2 can be inter-
preted via point process terminology [cf. Dynkin and Mandelbaum (1983), page
742]: A sample X;,..., Xy,,, can be viewed as a mixed empirical point process
defined, for example, in Karr (1991), page 7. Of course, if N(r) is Poisson, we
have a Poisson point process. Theorem 1 then says that some functionals
represented as multiple integrals with respect to the random measure M
[given by (4)] are approximated by the functional (3) of the mixed empirical
process. Similarly, Theorems 3 and 4 state that the generalized random field ®
and its multiple integrals can be approximated by functionals of the point
process on the path space of cadlag functions, which is constructed in Section
4. If instead we consider a mixed empirical point process on the path space, we
get the following result:

ProposiTION 1. Let X;, i =1,2,..., be Markov processes as in Section 4,
but with initial probability measure . Let N(r) be as in Section 4. Define the
following functionals of the processes:

1 N»

@) ()= = X [ e (X (D) d,

(32) \I,r( fk) = r—k/2 Z Z g, " Uikah(Xil""’Xik)’

1<iy< -+ <i<N(r)

where the functional F; was defined in (26). Let {®(f), f€ S,} be the
generalized random field whose distribution is specified via (25) with {f, f)
replaced by

(33)  (f, =2 w(da)dedyf(x) f(y)g®(a, ¥)&(x,9),
where
g®(x,y) = [ e *p(x,y) dt.
0
Then the statement of Theorem 4 holds.

Proor. As in the proofs of Theorems 3 and 4, we apply Theorem 1 to a
sample living on the product of the path space of the Markov processes and
{—1, 1}. We only have to establish that E'Ff2 is given by formula (33).

Ef | e‘t‘sf(X(vt))f(X(S))dtdS
(34) - 2]0°°]t°°e—t-'s dtds [ u(da) [ pia,x)f(x)ds

X[ paei(%,9) F(3) dy.
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Making the change of variables ¢ = u, s — ¢t = v gives
“re —2u-v
2[0 fo e du dv fRdu(da)fdeu(a, x)f(x) dfodpv(x,y) f(y)dy.

Using Fubini’s theorem and the expressions for g and g® given above, we
obtain the right-hand side of (83). This finishes the proof of Proposition 1. O

ReEMARK. Following Martin-Lof (1976) we can construct a stationary mixed
empirical point process of Markovian particles with invariant measure r X
Lebesgue. In the notation of Section 4, this would correspond to the case
where the numbers of particles in each cube C, are ii.d. random variables,
each distributed as N(r). [In the construction of Section 4, N(r) has the same
value for all cubes.] We conjecture that a limit theorem similar to Proposition
1 will also hold in this case; however, this remains to be proven.

As a special case of Proposition 1, we obtain the limit for functionals of the
processes which constitute a Cox point process in the path space.

CoROLLARY. Let X;, i =1,2,..., be as in Proposition 1. Let A(r) be a
positive random variable independent of the X;’s such that
A(r)
(35) -4 Y asr > ®,

r

for some positive random variable Y. Let P, be a random variable such that
conditioned on A, P, is Poisson with mean A. Then

1 B o
(f) = 7o L [ e F(Xi(D) di= (),
\Pr( fk) = r—k/2 Z Z o, " a.ikak(Xil""’Xik)=>9\P( fk)’

1<i;< - <iz<P,

where {®(f), f € 8,} is the generalized random field with distribution given
in Proposition 1 and {¥(f,), f, € S% is the multiple integral of order k
associated with .

Proor. Note that as r — o,
P, P, A(r)
_— = —_ -_)9
r A(r) r
Thus, application of Proposition 1 with N(r) = P, completes the proof. O
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