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A PROOF OF STEUTEL’S CONJECTURE

By GUNDORPH K. KRISTIANSEN

A proof is given of a conjecture, due to F. W. Steutel: the set of positive
a-values, for which any positive mixture of I'(a)-distributions is infinitely
divisible, is the interval (0, 2].

Introduction. Steutel (1970, 1980) discusses mixtures of gamma distri-
butions and shows that the set of positive numbers a for which all positive
mixtures of I'(a)-distributions on [0, ) are infinitely divisible is an interval
(0, ay]. He shows that 1 < a, < 2 and conjectures that a, = 2. Here a I'(a)-
distribution is a distribution with density-function g, ,(x) =
(A%/T(a)x%"te~*% A > 0, and its Laplace-transform is F, ,(s) = /(A + ).
The mixing takes place with respect to A (a contribution from A = « is
permitted). Setting A = 1/¢, Steutel (1980) formulates the following:

CoNJECTURE 1. If G is an arbitrary distribution function on [0, ), then

(1) ]:( - _:st)sz(t)

is the Laplace-transform of an infinitely divisible distribution.

For the details of the argument that follows, see Steutel [(1970), Chapter 1.]

Clearly, we can form a sequence (G,) of distribution-functions which are
stepfunctions with 0 as a point of continuity, so that G,(¢) — G(¢) at all points
t of continuity of the mixing function G.

According to the closure theorem for infinitely divisible distributions, it
suffices to show infinite divisibility for the mixture of T'(2)-distributions
obtained using such a stepfunction G, as mixing function, that is, we can
conmder instead of (1), a dlstrlbutlon with Laplace transform F(s) =

oA /(A + s))? with positive probabilities p;, 1 <j < n, and finite posi-
tlve values A 1 <j < n. The function F(s) has n — 1 pairs (z;,2), j=
1,2,...,n — 1 of nonreal zeros, if these zeros are counted with multlphclty,
we shall always let 3z; > 0. We have the representation

. - 1
(2) log F(s) =j (7 = 1) —k(x) dx,

where k(x) = 2% _qe AjE — 272 1R(e%).
To show that Fv(s) is the Laplace transform of an infinitely divisible distri-
bution it suffices to show that £(x) > 0 for x > 0 (in fact, (2) then becomes a
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canonical representation). Obviously, it is enough to show that
n—1 n—1
Z e—)tjx > Z e—xSRzJ
=1 j=1

ji=

(3)

for x > 0.

Karamata’s inequality states that if f is a real, convex and nondecreasing
function, and if x,, x,,...,x, and y;,¥,,...,y, are real numbers, satisfying
Xy ZXg= "0 2Ky, Y1 2ZYe= Y, Lpo1X, =LY, m=1,2,...,n,
then X7 _, f(x,) = Z%_; f(y,). Applying Karamata’s inequality with f(x) = e¥,
n—1 forn, —A,x for x, and —xRz, for y,, k = 1,2,...,n — 1, we see that
to prove Conjecture I we need only prove

Congecture II [Steutel (1980). For n € N\{1}, A;>0, j=1,2,...,n,
and A <Ay < -+ <A, define

n A.

(4) AR = L —

=1 (2= %)
Let the 2n — 2 zeros z, and 2,, k = 1,2,...,n — 1, of A(2) be ordered such
that Rz, <Rz, < -+ <Rz, ;. Then

p p
(5) Y A; < Y Re,
j=1 k=1

forp=1,2,...,n— 1.

Reformulation of the problem. Conjecture II will be proved by induction
with respect to p. Following the argument of Steutel (1970), subsection 2.7, we
note that the imaginary part of A(z) is 2?3z2}’=1Aj(/\j — §Rz)/|/\j —z|* so
that for any zero z, of A(2), the n different numbers A; — Rz,, j = 1,2,...,n,
cannot all have the same sign. In fact, we can conclude that A; <Rz, <
MRz, < -+ <Rz, ; <A,. In particular, this shows that the inequality (5) is
satisfied for p = 1 and any n > 2.

Assume next that Conjecture II is false, and that we have a counter-exam-
ple. Then there is a certain minimal p (> 2), and for this value of p a minimal
n (=p + 1), so that the conditions of the conjecture are satisfied, but the
inequality (5) is not.

Since the problem is invariant with respect to common affine transforma-
tions A; > aA; + b, 2, > az, + b, a > 0, b real, we can assume that A, = 0
and A, = 1.

For the above mentioned values of p and n, we consider the quantity
G = Zp_ Rz, — LP_,A;, where the numbers z,, 1 <k <p, are roots with
positive imaginary part of an equation A(z) = 0 of type (4); the set of roots of
this equation is ordered so that j < k implies Rz; < Rz, and so that a root of
multiplicity m appears m consecutive times in the ordering. Now G will be a
function of the variables A,,..., A, and A,,..., A, _;, notationally considered
coordinates of the n-tuple A and the (n — 2)-tuple A\.
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The function G = G(A, \) is defined in the open set Q c R” X R"~2 whose
elements (A, A) satisfy A; >0 for j =1,2,...,n,and 0 <A, <23 < --- <
A,_1 <1, As G is not changed when the numbers A, j=1,...,n, are
multiplied by a common positive factor, we shall sometimes include the extra
condition E}LIA ;=1L

By assumption, G is not everywhere positive. Clearly, G is a continuous
function (use, for instance, Rouché’s theorem to prove this), and G has an
infimum y > —p. There will now be two cases to consider: G does not or does
attain its infimum.

Cask 1 (G does not attain its infimum). Then y must be negative, and we
have a sequence (A", \'™), m € N, of points in Q so that G(A"™), \(™) — y
for m — . Stipulating Z;LIA(J.’") = 1 for all m, we can choose a subsequence,
also denoted (A™), A™), converging towards a point (A®, AN?) of 3. Then the
coordinates of A® and A® do not satisfy all of the inequalities A > 0,
j=12,...,n,0<AP < -+ <X9 , < 1. As we shall see, this permits us to
construct a function of type (4) with fewer than n variables A; and still
violating (5) (possibly even for a smaller value of p), contradicting the mini-
mality assumptions.

To describe the situation we divide the set {1,2,...,n} of suffixes into
classes, so that two suffixes j and % belong to the same class if and only if
AD = AD (remember that A = 0 and A = 1). For each class C we calculate
the number A, = L, A{. Those classes C for which A; > 0 are numbered
C,Cy,...,C,, sothat, for i = 1,...,q — 1, each integer in C; is less than each
integer in C,, ;. Then

n AO® q B
>z L - ¥ — = =B(2),

j=1 (z - /\(Jf”)2 o (2 = uy)’

where, for C = C,, we have put B, = A, and u, equal to the common value
Ac of A for j € C,. The function B(z) has q — 1 zeros w,, with Jw, > 0.
Each zero w, is a limit of a sequence (w{™) of zeros of the functions
A (2) = L3 A7 /(z — A4V)%. However, each function A, (z) has n —1
zeros 2{™, 1 <k <n — 1 with positive imaginary part, if we count with

multiplicity. These are also roots of the polynomial equation P,(z) = 0, where

n

n—1
P,(2) = ¥ AT (2 — )" = TT (2 — 24™)(= - 24™)
i#j k=1

j=1

(we have here used the normalization £?_, A{™ = 1). For m — », P, — P,
where P, is some real monic polynomial of degree 2n — 2. Now, the polyno-
mial P, has the pairs of zeros (w,, w,), k = 1,2,...,q — 1, but also, for each
class C, a (2m)-fold zero A, where m, equals card C for A, =0 and
(card C) — 1 for A > 0 [this follows directly from the expression Py(z) =

11 ADTT (2 — AP)?] Tt is now easy to see that n — g (the number of
superfluous A-values) equals om, sothat n — 1 =g — 1 + Lom, and we
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have, in fact, accounted for all the zeros of P,. At least one m is nonzero, so
that g < n.

Among the pairs of zeros (z,,%,), 1 <k <n — 1, of P, we consider those
for which z, #+ Z,, that is, those pairs which are also among the (w,, ,),
1 <k <q — 1. A subset of these have original index at most equal to p. Let
the cardinality of this subset be r < p. Then we have, because of the minimal-
ity of n and p, that X, _,Rw, > X7_,u; (with equality only if r = 0).

The set of the remaining (degenerate) pairs of zeros (z{”, ) with &k <p
equals the set of the p — r pairs (AP, A9 of lowest suffix for which A{” was
discarded (i.e., not among the w,). Thus L2_ Rz is at least as great as the
sum of p particular values )\(J‘?), and so also at least as great as the sum of the
smallest p values A, in obvious contradiction to the surmise that y should be
negative.

CASE 2 (G assumes its infimum). We are left with the possibility that the
infimum y of G is a minimum, that is, there is a point (A, A) € Q, so that
GAN) =y <0.

We shall utilize the fact that no change of the parameters A and A can give
a decrease in the value of G(A, \). Let (B, p) € R® X R™~2. For small positive
values of &, (A + eB, A + ep) € Q. To estimate G(A + ¢B, A + gp) we need
the following lemma, which will be proved at the end of the paper.

LeEmMmA. Let two functions f and g be holomorphic in an open region ()
[notation: (f, g} € H(Q)]. Let z, € Q be a zero of f of exact multiplicity m > 1.
Assume that g(z,) # 0, and that for each small ¢ > 0 the function h, € H(Q)
is defined and satisfies h, = f + eg + O(&?) uniformly for z in a fixed neigh-
bourhood of z,,.

Then any given neighbourhood N of z,, containing only this zero of f,
contains m distinct zeros z, ,, k= 1,2,...,m, of h,, if only € is sufficiently
small. For each k we have

2. p — 29 = 61§, + 0(&1),

where ¢, is the positive solution of the equation e* = ¢, and &, 1 <k <m,
are the m roots of the equation ¢™ = —a,, where a, = g(z,). Here g, (holo-
morphic in a neighbourhood of z,) is defined as g/f,, where f(z) = f(2)/
(z — 2y)™. Furthermore,

m
> (2,0 —20) = —€a,_; +o0(¢),
k=1

where a,,_; = g™ Nzy)/(m — 1)

Going on with the estimate of G(A + ¢B, A + en), we must first account for
the splitting-up of each multiple zero of A(z). In our notation we have
2, =2p41= " = Zpym,—1 if m, is the multiplicity, and for sufficiently
small ¢ we have the corresponding new zeros z, ;,,, 0 < g <m, — 1. These



446 G. K. KRISTIANSEN

satisfy the equation

n A. +eB.
(6) y ST,

i1 (2 = &y = ewy)”

where u; = u, = 0, whereas we need not keep the normalization ¥7_;A; =
so that the parameters B;, j = 1,2,...,n, are independent.
In a neighbourhood of z = z,, (6) is rewritten as

n A. n B. 2A .1
(7 Y — ey ; it

2 2 + 3
i=1(z=4;) =1\ (2 =2;)"  (2=4;)

L,

= 0(&?).

We define the polynomial P by the equation
P(z2) n A
(8) =
M-z =4y j-1(2-4))

Then P has z, as an m,-fold zero, and we can define the polynomial

9 p P(z)
(9) (D) =
and the rational function
2
_ Mgz —Ay)

holomorphic in a neighborhood of z,. Using the definitions (8), (9) and (10), we
rewrite (7) as

an  (z-z)™=-e L

B;g,(2) . 2A;1;8,(2)
(z-1)"  (z-n)

In this part of the proof we have p > 2, thatis, n > p + 1 > 3, so that we can
put uy = +1, u; = 0 for j # 2, B; = 0 for all j. Then, according to the first
part of the lemma, the zero z, = - =2,,,, _; does split up, and for
0 <qg <m, —1 we can order the zeros, so that

+0(£).

_ = l/ml Il/m i _ +‘21Ti]_ + 1/m
2 k+q RR+q = € ag exp marg( a,) +1 m 0(8 )’

where a, = 2u,A4,8,(2,)/(2, — A,)%. If, for some k, we have k <p <k + m,
— 1, we see that we can choose p + 1 — k zeros z, ,., and the sign of u,, so
that the sum of the real parts of the chosen zeros z, ,,, is less than
(p + 1 — k)Rz, by a quantity of order ¢!/™. On the other hand, if & + m, —
1 < p, we must use the second part of the lemma, and the sum of the real
parts of the 2, ,,,, 0 <q <m, — 1, differs from m,Rz, only by O(¢). We
conclude that in the situation 2 < p < %k + m, — 1 we do not have a minimum
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of G(A, M), so there is a contradiction. We may thus now assume p = &k + m,,
— 1 for some k.

But then it is time to change the notation: Let z, z,, ..., 2, be the different
zeros (with positive imaginary parts) of A(z), and let m, be the multiplicity of
the zero z,, 1 < k < s. In this notation the last assumption becomes ¥} _;m,
= p for some r. The function G is now redefined as

r p
k=1 j=1
According to the second part of the lemma, we have

P
GA+eB,A+ep) =G(AA) —¢ Z,u,j

Jj=2

(13) _ gmkz; élijk,mk_l(Aj) ¥ gzujAjck,mh_l(Aj)
+ o(¢),

where we have expanded

(14) (7&%)_2 = qgobk’q(Aj)(z -z,)?

and

(15) ‘(;gi(i—j)s = ;Ock,q()‘j)(z —z)".

Equations (14) and (15) are to be considered as identities in the complex
variable A;. Starting from the expansions

(16) &(z) = X dy q(2 — Zk)q’
q=0
oo q
_ -z
(17) (z=4) " = Z(—l)"<q+1)(z—")q+2,
q=0 (20 = A;)
we find
q+2 1 ;
(18) bk,q()‘j) = Z —————.——[(_1) (t - l)dk,q+2—t’
t=2 (2, = ;)
and in particular
m,+1 a, v
(19) bk,mk—l()‘j) = Z -

a-2 (2 — )‘j)q ’

with certain coefficients a, , independent of A;. Differentiating (14) with
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respect to A;, we get for ¢ > 0,

(20) 2¢y,4(A;) = b q(1));
and in particular,

m,+1
k qak,q

g=2 (2 — )‘j)qJr1 ’
Since G(A, A) is minimal, the terms of first order in ¢ in (13) must be > 0

for any choice of parameters p and B.
Letting B; = +1 for some j, all other B, = 0, and all u, = 0, we find

(21) 25, my-1(1;) =

r k+1 ak
(22) Z Y R——2L =0, 1l<j<n.
“1g-2 (2 —4))

Letting u; = +1 for some j, all other u, = 0, and all B, = 0 results in the
two equations

(23a) 1+2A; Zliﬁck my—1(A;) = 2<j<p,
(23b) kzlmck’mk_l(/\j) = O, p + 1 SJ <n-— 1.

Assume first that we had n > 2p + 1. Then (22) could be considered as a set
of n linear homogeneous equations in the 2p quantities a, , and G, ,,
l1<k<r, and for each %, 2 <q <m, + 1. Remember that L,_,m, =p.
Accordlng to (21) and (23a), not all of the a, , and @, , vanish; thus the first
2p rows of the coefficient matrix of (22) are hnearly dependent: there are
complex numbers C;, not all zero, so that

2p C 2p C

(24) Z( BT le(zk o

for every pair (k, q) in the range given above. Replacing C; by éj for all j
gives the same equations, which means that C; could be replaced by the real
quantities C; + C; or i(C; — C;), which are not all zero. Thus we can assume
that C; is real for all j, and even that some C; is positive. Define ¢ =
min{A;/C;|C; > 0}; then, if we put

D _ A;—cC;,, forl<j<2p,

J A, for2p+1<j<n,

the D; are nonnegative; some, but not all of them, are zero. Each root z, with
k<r is also a root of the equations X7_;D;/(z2 —2;)7=0,2<qg<m;, + 1,
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that is, a zero of X7_,D,/(z — A j)2 with at least multiplicity m ,. Writing
n D. n D’
I J
Y — =Y ——3,

iz =) J=1(z_’\'j)

where all D) are positive, we have n' <n, and G(D',X) is the difference
between a minimal sum of real parts of p zeros z), [as usual with 3z}, > 0, and
each counted only as many times as its multiplicity as a zero for D(z)] and the
sum of the p smallest values of X;. The first sum is not greater than the sum
L;_1m;Rz,, and the last sum is not less than Y?_;A; (some of these A; may
not be among the X).

But n was assumed to be minimal with the property that the function G
could have nonpositive values for the given value of p. We have a contradiction
and must conclude that n < 2p.

Next, we shall need an identity, obtained by expansion in partial fractions:

nnzlz_Aq2 S 1 M= 1
qu%frp—(;);=1+z(z_ o Zbkq()‘)(z_zk)
(25) j : k=1 k
s 1 my—1
+ Z o o myp Z bk q()‘ )(Z—Zk)
k=1 (2 — %)

where we have used (14) to expand

(z-A) &)
(z—A)Pk(z) (A

[see (9) and (10) for the definitions of P, and g,; to simplify notation we have
again assumed Y7_;A; = 1].
In (25) the coefficient of 1/z in an expansion at z = « is

n S
q=1 k=1
(26)

s mp+1

=2i$ﬁbkmk (A)=2Y ¥ j—The

k=1 q-2 (zk—"j)q

Defining the complex number
n S
(27) c= Y A, — 2 mRz,

we see that the n distinct real numbers A; satisfy the equation

s mp+1 a dk
- Z > ol BTN L1 | = 0.
2,01 422 (=0T (5,-2)°

(28) A—c-—
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Using (22), we see that the A;, 1 <j < n, satisfy also the simpler equation

1 s m™itl ogq, a,
(29) A—c——= Y Z( ot 2t ,,)=0

2, 7 q=2 (2, — /\)q (2, — 1)

The A;, 1 <j < n, are then also zeros of the polynomial

) = [ TT (G- 0 -0y

1 & ™Il a a
X[A=e-5 ¥ z( R4 2t ))

k=r+1 g=2 (2, — )‘)q (5k - )‘)q

By differentiation we get, for 1 <j < n, using (19) and (20),

(31) Q'(Aj)=( n |zk—A|2<'”k“>)(1—z Z mck’mk_l()\j)).

k=r+1 k=r+1

(30)

For 2 <j < p we use Eq. (23a) and find

s 1 s .
(323) Q,(/\J) _ (kﬂllzk _ Ajlz(mk+1))(1 - A_ -2 Z S‘ick,mk_l(/\j)),

J k=1

while, for p + 1 <j < n — 1, we find from (23b),
(32b)  Q(A)) = (k IT Iz, - Aj|2<"'k“>)(1 -2) mck,mk_l()\j)),.
=r+1 k=1

Again we shall need an identity, obtained by partial fraction expansion and
valid for 1 <j < n:

nZ=l(z ~ Aq)z _ 1 nq*j(’\j B Aq)2
(z=-1)°P(z) 2—4;  P(})
s my—1
(33) *E g L e -
1 m,—1

> v Z Erq(A)(2 = £0)°,

k=1 (2 — %)
where we have used (15). From (8) we also get
P()))
29
I, *j(’\j - ’\q)

so that the coefficient of 1/z in an expansion of the two sides of (33) at z = «
becomes

(34) A=

J

1 8
(35) 1= +2 % Rey p,a(A))-
J k=1
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We see that (32a) and (32b) simplify to
(36a) Q(A)=0, 2<j<p,

S

(36b Q(r;) = lz, — A2 A >0, p+l<j<n-—1.
—+1 * / /

r

Thus the numbers A, 2 < j < p, are double zeros of @, and we can define the
new polynomial

Q(A)
AA = D12 oA = )22k (A = A)

Forp+1<j<n—-1wefind

(37) Q\(1) =

Q())
L (A = D(TT2_5(0 = ) TTazEen (A, = A,)

q#j

(38) Ql(’\j) =

In particular, the quantities
Q:(A;)

K; = ’
Iz p+1 (X = Ay)

q#j

ptl<j<n-1,

are negative.
The degree of the polynomial @, is found from (30) and (37) to be

1+%5_,.:2(m,+1)—(n+p-1)
=1+2(n—-1-p)+2(s—r)-n—-p+1
=n-3p+2(s—-r)<3n-56p-2<n-p-2,

where we have used the two inequalities n < 2p and s —r <n — 1 — p. The
polynomial @, is then completely determined by its values at the n — 1 —p
points A;, p + 1 <j <n — 1. In fact, we have

E Q1(%) H

Jj=p+1 q=p+t +1A A
q#j

Z K, 1_[ (A = Ay).
j=p+1 q =p+1
q*j

— Ay

Qi(A)

We see that the leading coefficient in this polynomial is negative. However, it is
obvious from the definition of @, [see (37)] that this coefficient should be equal
to 1.

This contradiction shows that our assumption is false, and Conjecture II is
proved.
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Proor oF THE LEMMA. Expanding
m-—1

g1(2) = ¥ a;(z = 2)” + (2 — 20) " ga(2),
Jj=0

where ¢, is holomorphic in a neighbourhood of z,, the equation % (z) = 0 can
be written as

Z"n—olaj(z - Zo)j

_ m_ J= + 2
(2 ~ 2) ST+ egy(?) 0(%)
m—1 .
= —¢ ) a;(z—2z)’ +0(c?).
Jj=0
Introduce the new variable w = (z — z,)/¢;. Then
m—1
(39) w"=—a,— ), a;e{w’ + O(e).
j=1

As a consequence of Rouché’s theorem, this equation has, for a, # 0 and for
sufficiently small ¢,, exactly one root in each of m disjoint regions, each
containing one number (—a,)'/™. This proves the first part of the lemma.

Still assuming a, # 0 we consider the polynomial w™ + £7 'a &{ w’, whose
roots are denoted by (., 1 < k2 < m. As we have seen, each {, approaches a
value of (—a,)'/™ as & — 0. Label the roots z,, of k, similarly. Define
M, = (2., — 20)/€;, 1 <k <m. Then 5, — {, - 0 for ¢; > 0. The numbers
n,, satisfy (39), and this can be written 17 (1, — {;) = O(e). Now, |n;, — {;l is
bounded below for j # &k and ¢ sufficiently small, implying that 7, — ¢, = O(¢)
for k=1,2,...,m. Thus also I m, =L {, +0() = —¢"a,,_; +
O(e?). Finally £7 (2, , — 20) = —¢e7’a,,_; + O(eP™Y) = —¢ea,, | + o(e), as
stated. This concludes the proof of the lemma. O
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