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PARTICLE SYSTEMS AND REACTION-DIFFUSION
EQUATIONS!

By R. DURRETT AND C. NEUHAUSER

Cornell University and University of Southern California

In this paper we will consider translation invariant finite range particle
systems with state space {0,1, ...,k — 1}° with S = £Z¢. De Masi, Ferrari
and Lebowitz have shown that if we introduce stirring at rate £ ~2, then the
system converges to the solution of an associated reaction diffusion equa-
tion. We exploit this connection to prove results about the existence of
phase transitions when the stirring rate is large that apply to a wide variety
of examples with state space {0, 1}5.

1. Introduction. The point of this paper is to describe a general method
for proving the existence of phase transitions in interacting particle systems in
which the particles are stirred at a fast rate. To be precise, we consider
processes ¢£: £Z% - {0,1,...,«x — 1} that evolve as follows:

(i) There are translation invariant finite range flip rates

c(x,€) = h;(£(x),é(x + eyy),...,E(x + eyy))
so that if ¢,(x) # i, then

P(§t+s(x) = ll‘ft) ~ Ci(x, ‘ft)s

as s —» 0, where f(s) ~ g(s) means f(s)/g(s) = 1. In words, c,(x, £) is
the rate that site x changes to state i when the configuration is £ The
values of c¢,(x, ¢) on {£: &(x) = i} are not relevant to the definition so we
set them equal to 0.

(i) For each x, y € eZ? with |lx — yl|; = ¢ we exchange the values at x and y
at rate £ ~2/2.

Here |lzll; = |z4| + -+ +1z4/. We will also use |lzll. = sup,lz;] and |z| =
(22 + -+ +2D)12

The reader should note that in (i), changing ¢ scales the lattice but does not
change the interaction between the sites. In (ii), we superimpose “stirring” in
such a way that the individual values will be moving according to Brownian
motions in the limit. The motivation for modifying the system in this way
comes from the following mean field limit theorem of De Masi, Ferrari and
Lebowitz (1986).
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290 R. DURRETT AND C. NEUHAUSER

THEOREM 1.  Suppose £5(x) are independent and let ui(t, x) = P(¢5(x) = i).
Ifu(0, x) = g(x) is continuous, then as ¢ — 0, ui(t,x) = ut, x) the bounded
solution of

(1.1) du;/dt = 5 Au; + fi(u), u;(0,x) = g,(x),
where
(1.2) fiu) =(e(0,€)), = L (¢;(0,8)140-s),

and ($(£)), denotes the expected value of ¢(¢) under the product measure in
which state j has density uj, that is, when £&(x) arei.i.d. with P(&(x) =Jj)=u;.

Theorem 1 is easy to understand. The stirring mechanism [i.e., (ii)] has
product measures as its stationary distributions. When ¢ is small, stirring
operates at a fast rate and keeps the system close to a product measure. The
rate of change of the densities can then be computed assuming adjacent sites
are independent. In many investigations, the proof of results like Theorem 1 is
the end of the story. Here, we view it as a starting point for investigating the
stationary distribution of the particle system with fast stirring. The techniques
we will use can be applied to a wide variety of examples. In this paper we will
confine our attention to the special case in which x = 2 and we have the
following:

(a) when £(x) = 1, co(x, £) = al&(x + ey)), ..., &(x + eyy));

(b) when £(x) = 0, c/(x, &) = b(&(x + ey, ..., E(x + eyy));

(©) if u, v € {0, 1}V with u, < v;, then a(u) > a(v) and b(u) < b(v);
(@ 50,...,00 =0, a(1,...,1) > 0.

Assumption (d) implies that £(x) = 0 is an absorbing state so §,, the point
mass on the = 0 configuration, is a trivial stationary distribution. The basic
question we would like to answer about our systems is: “When do nontrivial
stationary distributions exist?”’ There are some simple general results that can
help us answer this question. [See Liggett (1985) or Durrett (1988).] Assump-
tion (c) implies that the system is attractive, that is, if £y(x) < ¢4(x) for all x,
then we can define the two processes on the same space so that Elx) < E(x)
for all ¢, x. An immediate consequence is that if we start from ég(x) = 1, then
as t — oo, §_;" converges weakly to £, a stationary distribution that is transla-
tion invariant. Since we have started from the largest possible initial state, the
limit £ is the largest stationary distribution. Of course, we may have 2 = §,
and in this case there is no nontrivial stationary distribution.

Before trying to answer our basic question, it is useful to look at some
examples. Since we have taken «x = 2, u, =1 — uy. So if we let u = u,, we
have a single equation:

(1.3) du/dt = 5 Au + f(u).

In describing the examples it is useful to think of 0’s as vacant sites and 1’s as
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occupied sites. In all cases we will have a = 1. That is, particles die at rate 1
independent of their surroundings.

ExampLE 1 (The basic contact process). Here b(x) = AL;u;, that is, the
birth rate is proportional to the number of occupied neighbors. In this case if
we let B = NA, then

flu)y=—-u+(1-u)Bu.

ExampPLE 2 (Threshold contact process). Here b(x) = B if L u; > 0, that is,
the birth rate is B if at least one neighbor is occupied. In this case

f(u)=—u+ @1 —-u)p{l—@1-u)}

ExampPLE 3 (Sexual reproduction). See Durrett and Gray (1985) and Chen
(1992). In these processes one is given a list of pairs of neighbors (y;, z,),
1 <i <, and one has

1
(1.4) e1(%,€) = A X Ligtenyy=1, ecxr2=1)

i=1
when &(x) = 0. That is, each occupied pair contributes a birth rate A. One
possibility in d = 2 is to take [ = 4 and use the pairs {(+ 1, 0), (0, + 1)}. In any
case, if we let B = [A, then

flu)=-u+(1- u)Bu2

ExaMPLE 4 (Autocatalytic reactions). Dickman and Tomé (1991) have sim-
ulated the following systems in d = 1 when & = 2, 3:

cy(x,€) = A{l(g(x—i)=1for1sisk) + 1(§(x+i)=1forlsisk)}

when £(x) = 0. In words, a string of particles of length at least £ produces a
new particle at rate 2A and the new particle appears at a randomly chosen end.
When % = 2 this is a special case of sexual reproduction. One can generalize
this system to include Example 3 by writing down a list of k-tuples (y}, ..., y%),
1 <i <, and defining birth rates by imitating (1.4). In this case if we let
B = IA, then

f(u)=—u+(1—u)Bu*.
If we set k=1, we get the equation in Example 1, but when we refer to

Example 4 we will always suppose that & > 2.

ExaMmPLE 5 (Quadratic birth rate). Combining Examples 1 and 3 we can
define a two-parameter family of systems in which

b(u) =An + /\2(’21), where n = Y u,.

12
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Letting @« = NA, and B = (g))tz, we have
f(u)=—u+au(l —u)+ Bu?(l - u).

In each of the first four examples there is one parameter 8 and increasing
makes it easier to have a nontrivial stationary distribution. The last observa-
tion motivates the definition of a critical value

B.(¢) = inf{B: & + 8,}.
To guess the limiting behavior of B.(¢) as ¢ —» 0, we note that Theorem 1
implies that if we let ¢ — 0, then P(£:(x) = 1) — v(t), the solution of v'(¢) =
f(u()) with v(0) = 1. As ¢t - o, v(¢) decreases to p,, the largest root of
f(u) =0 in [0,1], so by interchanging our two limits (¢ > 0, ¢ — ), we
conclude that if ¢ is small, P(£2(x) = 1) is close to the largest root of f(p) = 0

in [0, 1]. As we will see below this reasoning (which we will refer to as mean
field theory) is correct in Examples 1 and 2 but not in Examples 3 and 4.

ExamPLE 1 (The basic contact process). Here f(u)= —u + Bu(l —u).
The roots are 0 and p, = (B — 1)/B, the latter being positive only if g > 1.
THEOREM 2. As e — 0, B(e) = 1. If B > 1, then
P(&(x)=1)>p, ase— 0.

ExamPLE 2 (The threshold contact process). In this case
fu) = —u+ @1 -u)p{l -1 -u)},
fl(u)y=-1-8{1-(1-u)"}+NB(1-u)",
f'(w) = =B(N + N*)(1 - u)"",
so f is strictly concave on [0,1). If B8 < 1/N, then f’(0) < 0 and there are no
positive roots, while if B8 > 1/N, there is exactly one root p, € (0, 1). [Notice
f()=-11]
THEOREM 3. As e — 0, 8(e) » 1/N. If B > 1/N, then
P(ch,(x) = 1) —p, ase— 0.

ExampLE 3 (Sexual reproduction). Here f(u)= —u + (1 — u)Bu? We al-
ways have u = 0 as a root and if B > 4, we have two other roots p; < p, given

by (1 + 1 — 4/B)/2.
THEOREM 4. As ¢ = 0, B.(¢) = 4.5. If B > 4.5, then
P(&(x) =1)—>p, ase—0.

The first question we should answer is ‘““Why 4.5 instead of 4?’’ This can be
seen from two different viewpoints. The first, due to Schlogl (1972), is to
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rewrite f(x) = —V'(x), that is, the force is minus the gradient of the potential
function V, and observe that for 8 < 4.5, 0 is the global minimum of V, while
for B > 4.5, p, is the global minimum. The last analogy makes it possible to
guess the answer but to prove it we have to use a more complicated approach,
which has the additional advantage that it generalizes to systems in which the
nonlinearity ( fy(x),..., f,(x)) does not happen to be the gradient of a func-
tion. '
Suppose for the moment that d = 1. The equation

(1.5) du/ot = 2 Au + f(u)

has travelling wave solutions u(¢, x) = w(x — rt), where w is a decreasing
solution of the ordinary differential equation

—rw' = sw" + f(w)

with w(») = 0 and w(—=) = p,. [See Section 2 of Fife and McLeod (1977) for
this and other facts we need about travelling waves.] Multiplying both sides of
the last equation by w' and integrating from — o to « gives

3w (2w () dx + [f(w(x))w(x)dx

- rfw’(x)2 dx
(1.6)
=0~ fopof(y) dy

after changing variables ¥ = w(x) in the second integral, since (w')?/2) =
w'w" and w'(x) - 0 as |x| = «. The last equation implies that the sign of the
speed r is the same as that of the integral of f from 0 to p,. When B = 4.5,
p1 = po/2 and symmetry implies that the integral is 0. A little calculus shows
that » < 0 when 8 < 4.5 and r > 0 when B > 4.5.

From the last calculation and the statement of Theorem 4, the reader can
probably leap to the conclusion that

(L.7) B.(g) = By = inf{: r(B) > 0}.

To see that this is consistent with Theorems 2 and 3, we note that in Examples
1 and 2 there are travelling waves with w(—®) = p, and w() = 0 when g8 > 1
[see, e.g., Aronson and Weinberger (1975)]. In this case the calculation above
implies r > 0. In a moment we will explain the significance of the sign of r for
the proofs of our theorems. First, we want to use (1.7) to compute the
asymptotic behavior of the critical value in the two remaining examples.

ExaMPLE 4 (Autocatalytic reactions). f(u) = —u + (1 — u)Bu*. As always
0 is a root. Factoring out the trivial root, we have to solve ¢(u) = u*~1 — u*
=1/B8. Now ¢'(u) = (k — Du*"2 — ku*~1, so if we let u, = (k — 1)/k, then
¢ is increasing on [0, u,] and decreasing on [u,, 1]. When B = B, = 1/¢(u,)
the equation ¢(u) = 1/B has a double root at u,, while for 8 > B, we have
exactly two roots p; < p, in [0, 1]. It is comforting to note that when % = 2,

uy,=1/2and B, =4. When £ =3, u, = 2/3 and B, = 27/4.
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To calculate the asymptotic behavior of B (¢), we have to find the value of B
where

I . Bes*t  Bps*?
2 E+1 E+2°

(1.8) 0= fpo(—x + Bxk — Bx*tl)dx = —
0

Since p, is a root we also have

(1.9) —po + Bps — Brg* ' = 0.
Dividing (1.8) by —p,/2 and then adding to (1.9) gives

2 2
k(1 _ _ R+1fq _ _
T R R

50 po = (& — 1X%& + 2)/(k(k + 1)) and the corresponding value of B is B, =
1/(pk~1(1 — py)). Again, it is comforting to note that when & =2, p, = 4/6
and B; = 9/2. When & = 3, p, = 5/6 and B, = 6°/5” = 8.64.

THEOREM 5. As ¢ — 0, B.(e) = B1. If B > By, then
P(&(x)=1)—>p, ase—0.

RemARK. It is interesting to compare the results of Theorem 5 with the
simulations in Dickman and Tomé. When k& = 2 and 95% of the steps are
devoted to stirrings they find B, = 5.15, in contrast to our limit of 4.5. When
k = 3 and 85% of the steps are stirrings they find B, = 10.415 in contrast to
our limit of 8.64. We mention these results not to cast doubt on the simula-
tions but rather to indicate how slowly B.(¢) converges to its limit. In contrast,
Dab, Lawniczak, Boon and Kapral (1990) have a nonrigorous scheme of
approximating reaction diffusion equations by cellular automata that repro-
duces the limiting critical values almost exactly.

ExamMpPLE 5 (Quadratic birth rate). The first step is to determine when
f(u) = 0 has a nontrivial solution. Factoring out the trivial root gives 0 =
—1+4+al—u)+Bul —u) or Bu®+ (@ —Bu + (1 —a) =0, which has
roots

C(B-a)+V(a-B) —4B(1 - )
u = ZB .

When « > 1, the contact process part of the birth rate is supercritical, the
positive square root is larger than |8 — a| and there is exactly one positive
root. When a < 1, we have two roots p; < p, in (0, 1) if and only if 8 > a and
the expression under the square root is positive, that is,

(1.10) B>2—-a+V4—4a.

However, from our analysis of Example 3, we see that r > 0 if and only if
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Po > 2p,, that is,

(¢ —B)° —4B(1—a) > (B — a)*/9

or, solving the quadratic equation,

(1.11) B> (9 — 5a + V81 — 90a + 9a?) /4.

It is comforting to note that when a = 0, the right-hand sides of (1.10) and
(1.11) are 4 and 4.5, respectively. At the other end it is interesting that when
a = 1 both of these quantities are 1. Let o7 (for above) be the set of (a, B) so
that @ > 1 or a €[0,1] and (1.11) holds. Let & = [0,%)? — /. See Figure 1
for a picture. The constraint in (1.11) is indicated by a solid line and in (1.10)
by a dotted one.

THEOREM 6. If (@, B) € o, then P(£X(x) = 1) - py as £ > 0. If (o, B) €
A, then P(££(x) = 1) = 0 for small «.

two roots

one root

FiG. 1.
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Theorems 2-6 follow from the fact that we can determine the asymptotic
behavior of P(£:(x) = 1) if we impose the following assumptions in addition to
(a)-(d) above. Let 0 = 2, < ‘- < z,, be the roots of f in [0, 1]. [Assumptions
(a) and (b) imply f is a polynomial of degree at most N + 1 so M <N + 1]

(e) If 0 <i < M, then f'(z;) # 0.
() If 0 < i <j <M, then [ f(u)du # 0.
(& M <3.

By proving suitable generalizations of Theorems 2.7 and 3.3 in Fife and
McLeod (1977) one can drop assumption (g). However, this paper is already
quite lengthy so we will give the details in a subsequent publication.

Turning to the proofs, we will now sketch the arguments in the special case
in which M = 3. As the reader will see from the proofs, the details are similar
but simpler when M < 2. The keys to our analysis are two facts about the
solution of the limiting p.d.e. that can be proved using the methods of Fife and
McLeod (1977). (They proved their results in d = 1. The extension to d > 1 is
carried out in the appendix.) Here r is the wave speed deﬁned above, and
0 < p; < py < 1 are the two nonzero roots.

ProposiTioN 1. Suppose r > 0, u(0,x) > 0 for all x, and u(0,x) > p; + &
when |x| < L. If L > Ly and n > 0, then there are constants 0 < ¢, C < » so
that

u(t,x) =py— Ce™ forlx| < (r —n)t.

In words, if the initial configuration is large enough, then inside a ball that
grows at rate less than r the density is not much smaller than p,.

ProposiTION 2.  Suppose r < 0, u(0,x) < 1 for all x, and u(0,x) <p, — &
when |x| < L. If L > Ly and n > 0, then there are constants 0 < ¢, C < » so
that

u(t,x) <Ce™ for|x| < (—r —n)t.

In words, a large enough hole grows linearly even if all sites outside are
occupied. The exponential rate of convergence to 0 should not be surprising
since f'(0) < 0 and hence for small u, f(u) < (f(0)/2)u.

Let p, = P(£5(x) = 1). There are three things to show.

(I) lim Sup£—>0 Pe = Po-

This is a simple consequence of Theorem 1. See Section 3.

(ID If r > 0, then liminf, |, p, > p,.

To get this from Proposition 1 we use a method that is simple, at least in
concept. Pick & < (py, — p;)/10 and L > L;. Proposition 1 shows that if we
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start the p.d.e. with density at least p, + & in [—L, L1¢, then at some time T
we will have density at least p,— & > p; + 8 in 2Le; + [—-L, L]® and in
—2Le; + [-L, L)%, where e; = (1,0,...,0). Theorem 1, when supplemented
by a second moment computation, shows that if ¢ is small, then the particle
system will do this with high probability. Then the existence of a stationary
distribution with density close to p, follows by comparing with a mildly
dependent oriented percolation process in which sites are open with probability
close to 1.

ReMARK.  Noble (1989) proved (II) for Example 3 in his thesis. The proof
we give in Section 3 is similar but incorporates one substantial improvement:
by looking at “reasonable” sites we avoid studying the p.d.e. in a finite interval
with Dirichlet boundary conditions.

(IID) If r < 0, then p, = 0 for small &.

The proof of (III) follows the outline of the proof of (II) but requires more
work. The first and most difficult step is to show that the second moment
computation referred to above works at times ¢ < 0 log(1/¢) for some 6 > 0.
Proposition 2 then implies that if L is large and we start with density at most
p1/2in[—L, L] then at time 6 log(1/¢) we will have density at most &* in a
very large cube. Once the density gets this low, we can ignore the times at
which two particles are in the neighborhood of some point and the system
behaves like a branching process in which the birth rate minus the death rate
is f'(0) < 0. Using the last observation and some simple estimates on random
walk and subcritical branching processes, we can show that at time C log(1/¢)
we have a large vacant cube. Putting the pieces together, one concludes for
suitable L and T' that if initially there are no particles in [ L, L]¢, then at
time T there are with high probability no particles in [—~3L,3L1%, and the
desired result follows from another comparison with a mildly dependent
oriented percolation.

Before embarking on the proofs, we would like to mention two open
problems. In Example 3, or more generally in Example 4, p(8) = P(£5(x) = 1)
converges to a discontinuous function of B, so it is natural to ask if p, is
discontinuous when ¢ is small. Dickman and Tomé claim that for the one-
dimensional systems they investigated the answer to this question is ‘“No”
when %k = 2 and “Yes” when & = 3. We disagree with their conclusion.

CONJECTURE 1. For the systems in Example 4, p, is always continuous in
d=1.

HEURISTIC ARGUMENT. Let & be the system starting with £5(x) = 1 if and

A

only if x < 0. Let r/ = sup{x: £(x) = 1}. It follows from results in Durrett
(1980) that lim, _,, r7/t = a(B) exists almost surely. Based on results in that
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paper and the discussion after Theorem 4, it is reasonable to guess that
(1.12) B.(e) = inf{B: a*(B) > 0},

but all we know how to show is that if a®(B8) < 0, then B < B(¢). Assuming
(1.12) and taking poetic license, we have the following picture of the evolution
for B slightly larger than B,. “Holes” form at a small rate and their size
evolves like a random walk with a small negative drift. When we are close
enough to B, the rate at which holes are created is larger than the drift in the
random walk, so most of the line is covered by holes and the equilibrium
density is low.

To explain the discrepancy between the simulation results and our heuristic
argument, we turn to a seemingly unrelated question: ‘“What meaning can be
attached to p,(B8) when B € (B,, B;) in Example 4?”’ We believe that this curve
gives the densities of ‘‘metastable states.”

CONJECTURE 2. Suppose B > B,. Let Nf = [{x € [-1/2,1/2]%: £(x) = 1}
and let ¢ = inf{t: NF < (p, — 8)e~%). If 6 > 0, there is a constant y > 0 so
that .

P(r° <exp(ye™?)) =0 ase— 0.

To explain this we note that the ordinary differential equation v, = f(v,)
converges to p, as long as v, > p,. Based on this one can leap to the conclusion
that if ¢ is small, then product measure with density p, is stable under small
perturbations. That is, the density will stay close to p, until some ‘“large
deviation” near the origin drives the density below p, — 8 or some hole created
by a large deviation event in another part of the space grows and reaches the
origin. Perhaps the most convincing argument in support of this picture is the
fact that the second author has succeeded in making this argument rigorous
for a long range version of sexual reproduction. Using ideas from the proof of
Lemma 4.3 one can show that

P(TE < 8—0.29/(d+1)) >0,

but this falls far short of Conjecture 2.

Given Conjecture 2, it is easy to explain the discrepancy between the
simulation results and Conjecture 1. Holes form at a very small rate [=
exp(—ye~%)] so the heuristic argument applies to a very narrow range of
values. Dickman and Tomé were well aware of the metastability. Indeed they
use the existence of ‘“multiple locally stable phases’ to argue for the existence
of a discontinuous transition. They .define two transition points by ‘for
B < B, the vacuum (all 0’s state) is locally stable while the active state
remains stable for B > B_.”" They report that when stirring accounts for 95%
of the steps B_= 9.67 and B,= 17. We believe that in the limit as ¢ - 0,
B_-— By=27/4and B,— .

In Section 2 we prove Theorem 1. We give the details for three reasons: (i)
De Masi, Ferrari and Lebowitz (1986) only give the details in one special case,
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(i) we prove convergence directly rather than checking tightness and using
uniqueness results for the limiting equation, and (iii) we need estimates on the
rate of convergence for later proofs. In Section 3, we prove (I) and (II). The
proof of (III) is carried out in Sections 4 and 5. In what follows, ¢ and C are
positive finite constants whose values are unimportant and will in general
change from line to line, and we use the phrase ‘“Markov’s inequality” to refer
to the following obvious estimate: if X > 0, then P(X > t) < EX"/¢t".

REMARK. Since this paper was prepared, a very nice monograph by De Masi
and Presutti (1992) has appeared. Chapters 6 to 10 treat the mean field limit
theorem and various refinements concerning phase separation, interface dy-
namics and escape from an unstable equilibrium.

2. Mean field limit theorem. In this section we will prove Theorem 1.
The ideas behind the proof are simple: We will give an explicit construction
that allows us to define dual processes by asking the question “What is the
state of x at time #?” and working backwards in time. The answer to this
question can be determined by looking at the states of the sites in the “dual
process” IX'(s) at time ¢ —s. The particles in I**(s) move according to
stirring at a fast rate and give birth to new particles at rate

c* = sup Yc(x, €).
& i

So for small & the dual process is almost a branching random walk and
converges to a branching Brownian motion as ¢ — 0. The last observation
leads in a straightforward way to the convergence of the ui(t, x) to limits
u (¢, x) and to the asymptotic independence of adjacent sites, which implies
that the u (¢, x) satisfy the limiting equations.

a. The dual process. The first step in the proof is to construct the process
from a number of Poisson processes, all of which are assumed to be indepen-
dent. For each x € ¢Z¢, let {T?, n > 1} be a Poisson process with rate c¢* and
let {Uf, n>1} be a sequence of independent random variables that are
uniform on (0,1). At time T, we compute the flip rates r;, = c,(x, £(T')) and
use Uy to determine what (if any) flip should occur at x at time T'*. To be
precise we let p, = ¥, _,r;/c* for i = 0,...,k — 1 with p_; = 0 and flip to i if
U; € (p;_1, p)). To move the particles around, we let {S*?, n > 1} be Poisson
processes with rate ¢ "2/2 when x, y € ¢Z¢ with ||x — yll; = ¢, and we declare
that at time S the contents of x and y are exchanged. Even though there
are infinitely many Poisson processes in the graphical representation ({S*?,
n 2z 1L{T}, n > 1},{U?, n > 1}), and hence no first arrival, an idea of Harris
(1972) allows us to construct the process starting from any initial configura-
tion. We omit the proof of this assertion since we will now explain how to
compute the state of x at time ¢ by working backwards in time.

The dual process I*(s) is naturally defined only for 0 < s < ¢ but for a
number of reasons it is convenient to assume that the Poisson processes and
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uniform random variables in the construction are defined for negative times
and define I**(s) for all s > 0. Let .#'= {ey,, ..., cyn} be the set of neighbors
of 0. The dual process makes transitions as follows:

If yeI®»(s)and T? = ¢t — s, then we add all the points of
y + A4 to IX4(s).

If y € I*'(s) and S?* = ¢ — s, then we move the particle at
y to z.

It is easy to see that we can compute the state of x at time ¢ by knowing the
states of the y in I*(s) at time ¢ — s. We start with the values in I*'(s) at
time ¢ — s and work up to time ¢. At S arrivals we perform the indicated
stirrings. When an arrival T)Y occurs at a point of the dual, we look at the
value of the process on y + .#, compute the flip rates r; and use U to
determine what (if any) flip should occur.

To prepare for the proof of the convergence of u5(¢, x), we will now give a
more detailed description of I*‘(s). Let X°(0) = x, let R! be the smallest
value of s so that we have a T arrival at X(s) at time - — s, and set
Xi(s) = ey; + X2(s). Finally, we set u! = 0 to indicate that 0 is the mother of
the N particles created at time R!. Passing now to the inductive step of the
definition, suppose that we have defined the process up to time R with
m > 1. The mN + 1 existing particles move as dictated by stirring until
R™*! the first time s > R™ that a T arrival occurs at the location of one of
our moving particles X*(s), and then we set X™N*i(s) = ey, + X*(s) for
1 <i < N,and u™*! = k. The new particles may be created at the locations of
existing particles. If so we say that a collision occurs and call the new particle
fictitious. We will prove later that collisions can be ignored, but for proving the
convergence of u%(¢, x) it is convenient to allow the fictitious particles to move
and give birth like other particles, so for each m > 1 we define an independent
copy of the graphical representation which we use for the births and move-
ment of the mth particle if it is fictitious. By definition all the offspring of
fictitious particles are also fictitious. One final bookkeeping detail: we set
X*(s) = T before the particle is born.

b. The dual process is almost a branching random walk. The point of
introducing fictitious particles is that %, = mN + 1 for ¢ € [R%,, R%, ;) de-
fines a branching process in which each particle gives birth to N additional
particles at rate c¢*. Our next goal is to show that if ¢ is small, then I*(s) is
almost a branching random walk in which particles jump to a randomly chosen
neighbor at rate de~2 and give birth as above. To do this we will couple X* to
independent random walks Y* that start at the same location at time 8, = the
birth time of X*, and jump to a randomly chosen neighbor at rate ds~2.

We say X” is crowded at time s if for some j # k&, || XJ(s) — X*(s)l; < e.
When X* is not crowded, we define the displacements of Y* to be equal to
those of X*. When X’ is crowded we use independent Poisson processes to
determine the jumps of Y*. To estimate the difference between X and Y},
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we need to estimate the amount of time X?* is crowded. Let j # k, V2 = X*(s)
— X/(s) and W be a random walk that jumps to a randomly chosen neighbor
at rate 2d¢ 2. The transition probabilities of V. differ slightly from those of
WS when ||x[l; = ¢ (here y denotes any point # —x with [|yll; = ¢):

jumps from x to ratein V rate in W
—-x £72/2 0
0 0 g2
x+y g2 g2

From this it should be clear that if we cut the visits to 0 out of the sample
paths of W and call the result W then {|W:ll;: s > 0} and {|V¢]ly: s > 0}
have the same distribution. It follows that for any integer M > 1, vM* = |{s < t:
IVENl, < Me)| is stochastically smaller than wM® = [{s < ¢: |[WF|l; < Me}|. That
is, the two random variables can be constructed on the same space so that
vMe < wMe. Well known asymptotic results for random walks imply that, when
te™? > 2,

CM<2?, d >3,
(2.1) Ew)Me < { CM%?%log(te™2%), d =2,
CMst'/?, d=1.
Let x*(¢) be the amount of time X”* is crowded in [0, ¢]. It is easy to see that
(2.2) E(x*(t)\%, = K) < KEuwf,
(2.3) EX%, = exp(vt), wherev =c*N,
(2.4) E(x}(t)) < exp(vt) Ew;.

To estimate the difference between X*(s) and Y*(s), we observe that if
xk(t) = 7, then the number of “independent jumps” in the ith coordinate of
Y’ that occur in [0, ¢] has a Poisson distribution with mean & ~2r. Let A%(s) be
the net effect of the independent jumps on coordinate i up to time s. Recalling
that changes in the ith coordinate of Y* have mean 0 and variance &2, it
follows that EA%,(s) = 0 and

(2.5) E(Ay(s)") = Ext(s).

Since A%(s) is a martingale, Kolmogorov’s inequality implies

(2.6) B( max Ny (5)?) < 4B(8%(5)).

O<s<t

Using Markov’s inequality followed by (2.6), (2.5), (2.4) and (2.1) gives
P( max |8 (s)| = £°)

O<s<t
(2.7) o
< s'O'GE( max A% (s) ) < Ce®*t'/% exp(vt).

O<s<t

The arguments leading to the last inequality also apply to Ai(#), the net effect
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of jumps in [0, ¢] while X* is crowded, so
(2.8) P(Ozgfft | X3(s) = YA(s) | = 26°%) < Ce®44V/% exp(vt)

The last estimate shows that the X* are close to independent random
walks. To see that with high probability no collisions occur, we note that by
repeating the derivation of (2.4) it follows that the expected number of births
from X* while there is some other X/ in X* + .# is smaller than

(2.9) Cet'/2 exp(vt).
Equation (2.3) and Markov’s inequality imply that
(2.10) P(%,>K) < K 'exp(vt).

When %, < K, (2.9) implies that the expected number of collisions is smaller
than

(2.11) KCet'/? exp(vt).

Combining the last two results and setting K = £~ %2 shows that the probabil-
ity of a collision is smaller than

(2.12) Ce®2t1/2 exp(vt).

Having shown that collisions are unlikely, we no longer have to worry about
the labels u’, that tell us the mother of the N particles created at time R,
since this will be clear from the evolution of the dual. A more significant
consequence of the results in this subsection is that dual processes for differ-
ent sites are asymptotically independent. To argue this, we say the two duals
collide if a particle in one dual gives birth when crowded by a particle in the
other one. The arguments leading to (2.12) show that with high probability
two duals do not collide, and (2.8) implies that the movements of all the
particles can be coupled to independent random walks.

c. Weak convergence of branching random walk to branching Brownian
motion. This is a well known fact. However, for the proof of (IIT) we will need
estimates of the rate of convergence, so we will give a complete proof. As in the
previous subsection we will bound the difference by coupling the ith compo-
nents of the random walks Y’ to one dimensional Brownian motions Z**
that start at the same locations at the birth time B,. Since the increments
Y*UB, +t) — Y?»¥(B,) are independent random walks that start at 0, it
suffices to show how to couple one such random walk S, to a one-dimensional
Brownian motion B, that starts at 0. To do this we use the Skorokhod
embedding, which in our case is particularly simple. Let 7§ = 0 and for n > 1
let

75,1 = inf{t > 77 | B(t) — B(7;)| = €}.
It is easy to see that W, = B(7?) is a discrete time random walk on ¢Z that

jumps +e¢ with probability 1/2 each. To get a continuous time random walk.
we let N(¢) be a Poisson process with rate ¢ =2 and let S, = Wy,
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Our next step is to estimate |S, — B,| by first showing that 7%, is close to ¢
and then estimating the oscillations of Brownian motion. Let ¢, = 77 — 75 _;
for n > 1. The strong Markov property of Brownian motion implies that the ¢¢
are iid. Now, B2 —t and B} — 6B?2t + 3t%> are martingales, so using the
optional stopping theorem at time 75 gives

E(715) = &2, E(*rf)2 = 5¢%/3.
Since N(t) is independent of 72, well known formulas for random sums give

Et{: = EN(t)Eri = t,
Var(rg,) = EN(¢)Var(7{) + (Er{)*Var(N(t)) = Ce?.
Now
TNe — = {‘rfv(t) — szN(t)} + {e2N(¢) — ¢t}
is a martingale, so Kolmogorov’s inequality implies
(2.13) E(Omax | T8e) = s|2) < 4E(m{q — t)2 < Ce?t,
<s<t
and Markov’s inequality gives

2
2.14 P( max |75, — s| > 0'8) < _I'GE( max |75, — S ) < Ce%4¢.
( ) Ossst’TN(s) | © ¢ Ossstl N ’

To estimate the oscillations of Brownian motion we observe that using the
reflection principle, Brownian scaling and then a standard estimate on the tail
of the normal distribution [see, e.g., Durrett (1990), page 9] gives

P( max |B, - B, >h%)
s<r<s+h
(2.15) < 2P(B,) > ho4)
= 2P(1B,| > A7) < 2h%! exp(—h~°2/2).

Since B,,, — B,,,_,, 0 <r < h, is also a Brownian motion, the last estimate
implies
(2.16) P max IB,,, - B, > ko) < 2h°" exp(—h"2/2).

s<r<s+h

Using the last two estimates for A = ¢%® and s = k£%8, where % is an integer
with 0 < & < te %% shows

(2.17) P(B, — B,| > 26°%* for some 0 < u < v < ¢ with |v — u| < ")
' < (te7%® 4+ 1)26%% exp(—£7°16/2)
since u,v € [(j — 1)e®8,(j + 1)%8] for some j with 1 <j < [te~*8] and

|Bu - Bvl < [Bu - Bjeo.sl + IBon.s - BU|.
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Combining (2.14) and (2.17) shows that when ¢ is small we have
(2.18) P(IS, — B,| = 2¢°% for some s < ¢) < Ce®*t for ¢ > £°%.

d. Convergence of ui(t,x). The last two subsections have shown that if ¢
is small, the dual process is close to a branching Brownian motion. Indeed,
(2.10) gives a bound on P(%, > K), and (2.8) and (2.18) imply that, when
t> 60'8,

P( max || X*(s) — Z*(s)||. > 4% for some k < K)

O<s<t

(2.19)
< KCe®*t/2 exp(vt).

To compute the state of x at time ¢, we need not only the dual process I*(s),
s < ¢, but also the labels %, and the uniform random variables U;. However,
the uniform random variables are independent of the dual process and, as we
pointed out in a remark after (2.12), the u°, are only needed when a collision
occurs.

The results in the last paragraph make it easy to show that u®(¢ x) —
u(t,x) as ¢ » 0. Here and in what follows we will use ¢ and b to denote
possible states of the sites to ease the burden on the middle of the alphabet.
The first step is to describe u (¢, x). Let Z, be a branching Brownian motion
starting with a single particle at x and let %, be the number of particles at
time ¢ For 0 <k <%, we let {,(k) be independent and equal a with
probability ¢,(Z}F). Once the {, are defined, we work up the space time set
{ZF .} X {s}. The values of {,(k) stay constant as long as only stirring occurs.
When N + 1 branches Z;_, Z!V+1 . Z**DN come together (corresponding
to a birth in the dual), we compute the flip rate at Z/__ assuming it is in state
{,(i) and its neighbors are in states { (kN +j), 1 <j < N. We generate an
independent random variable uniform on (0, 1) to determine what (if any) flip
should occur at Z;_,. After we decide if we should change {,(i), we can ignore
{ (kN + j) for 1 <j < N. When we reach time ¢ we will only be looking at the
value of (/(0). We call this value the result of the computation and let
1 (t, x) = P((0) = a).

The description in the last paragraph is much like the one given earlier for
the dual, with one exception: The uniform random variables come from an
auxiliary i.i.d. sequence instead of being read off the graphical representation.
When there are no collisions in the dual, then the family structure of the
influence set and the branching Brownian motion are the same. In this case if
the inputs {,(k) and the uniform random variables used are the same, the two
computations have the same result. We have supposed that the initial func-
tions ¢,(x) are continuous so (2.19) implies that as ¢ — 0,

max|gy( X7 (2)) = $u(Z4(1))| = 0,

where the maximum is taken over particles alive at time ¢. The last observa-
tion implies that we can with high probability arrange for all the inputs to be
the same and it follows that u%(¢, x) — u (¢, x). The last proof extends trivially
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to show that if x, — x, then u®(¢, x.) = u (¢, x). At the end of subsection (b),
we observed that the influence sets from different points are asymptotically
independent. Combining that observation with the proofs in this subsection
implies that if x, — x, then

N
(2.20) P(&(x, +6y;)=c;,0<j<N) - l_[oucj(t, x).
j=

We are interested in statements that allow x, — x since this form of the
conclusion implies that convergence occurs uniformly on compact sets.

e. The limit satisfies the p.d.e. The first step is to write the limiting
equation in integral form.

(2.21) LEMMA.  Suppose f,, 0 < a < k, are continuous and g,, 0 < a <k,
are bounded and continuous. The following statements are equivalent:
(i) The functions u [(t, x) are a classical solution of
ou,
ot

1
= Shu, — fu(u),  u,(0,%) = (%),

that is, the indicated derivatives exist and are continuous.
(ii) The functions u (¢, x) are bounded and satisfy

uolt,x) = [Pl )8uy) dy + [ ds [p,(%,9) fulu(t = 5,) dy,

where p(x,y) is the transition probability density for Brownian motion.

ProOF. Statement (i) implies that Z¢ = u (¢t — s, B,) — [5f.(u(t —
r, B,)) dr is a bounded martingale, so Z§ = EZ; and (ii) follows from Fubini’s
theorem. To prove the converse, we begin by observing that if (ii) holds, then
u (t, x) has the necessary derivatives and Z? is a martingale, so (i) follows
from Itd’s formula.

To get (i) we will use the integration by parts formula. Let S; be the
semigroup for the stirred particle system and T be the semigroup for pure
stirring. The integration by parts formula implies that for nice functions ¢ we
have

1l

(2.22) S{(8) = Trw(e) + [ "ds Sp_ LTEw (),

where L is the generator for the particle system with no stirring. We use
(2.22) with ¢, (¢) = 1if £(x) = @ and 0 otherwise. Now, for this choice of ¢,

(2.23) TSy, o(€) = Lpi(2,9)¥y o(£)
y

where p:(x,y) is the transition probability of a random walk that jumps from
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y to z at rate £72/2 if |ly — zll; = &. Now if cy(y, &) = h(&(y + €yo),- ..,
&(y + eyy)), then

N
Lwy,a == Ehbo(a’ bl’ ceey bN)'lly,a ].:.[1(/’y+eyj,bj
(2.24) ° ’

.N
+ Zha(bo, bl’ ceey bN)wy,bO l—!-lpy+gyj,bj’
b J=

where the sums are over b, ..., by €{0,1,..., k — 1}. Substituting (2.23) and
(2.24) into (2.22) gives

P(&(x) =a) = X pi(%,5)8,(y)

+ [(ds L pi(x,)
0y

(2.25) N
XE{ - %hbo(a’ bly L) bN)(/’y,a(gte—s)JI;[lwy-tsyj,bj(gts—s)

N
+ Xb:ha(bo’ by b)Yy b (€6-s) I-Il¢y+syj,b,(ff—s) .
j=

The local central limit theorem implies

(2.26) le?py(%,y) — pi(x,5)| = 0
y

as ¢ — 0. As we observed at the end of subsection (d),

N N
Etby’%(ff_s) q¢y+syj,cj(§;—s) - l-.!)ucj(t - S,y),
J= J=

and this convergence occurs uniformly on compact sets. Using (2.25), (2.26)
and the dominated convergence theorem gives

u (¢, x) = /pt(x’y)ga(y) dy + '/:dS/dyps(x,y)
N
(2.27) X { - zb:hbo(a, by, by)ug(t — s’y)JIlub’(t —5,%)

N
+ Zha(bo’bl’“-’bN)ubo(t - s,y) .]'—'[lubj(t - s,y) .
b J=

The term in braces is
- Z <cb(0’ §)1(§(0)=a)>u(t—s,y) + <ca(0’ §)>u(t—s,y)
(2.28) b*a
= a(u(t - s,y))-
Combining this with (2.21) gives the conclusion of Theorem 1. O
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3. Existence of nontrivial stationary distributions. In this section
we will prove (I) and (II) for our five examples. The proof of (I) is simple and
very general.

LeEmMa 3.1. limsup, ,, p.(8) < po(B).

ProoF. Since our systems are attractive, ¢ — E&f(x) is decreasing. If we fix
t, Theorem 1 implies that as ¢ » 0, E¢f(x) — u(t, x), where u(¢, x) solves
(1.3) with (0, x) = 1 w(¢, x) = v(¢) and v(¢)| p,, the largest root of f(u) =0
in [0, 1]. If 6 > 0 and we pick ¢ large and then ¢ small,

po+ 28 = v(t) + 8 = E&(x) = EE:(x)

and the proof is complete. O

The proof of (II) requires much more work. The first step is the following
input from p.d.e.’s.

LeEMMA 3.2. There are constants p; < p,, L and T, so that if u(0, x) > p,
on[-L + 1, L — 1]%, then u(T, x) > p, on [-8L,3L]%

For Examples 1 and 2 we use the following result of Aronson and
Weinberger [(1978), page 41].

TuEOREM 3.1. Suppose f(0) =0, f(u) >0 for u € (0, @) with a > 0, and

lin})f(u)/u“z/d > 0.
u—

If u > 0 is a solution of (1.3) with u # 0, then for any compact set K

liminf inf u(¢,x) > a.
t—owo xeK

For Examples 3 and 4, Lemma 3.2 follows from Proposition 1. Example 5
can be treated by using Theorem 1 in the region with one root and Proposition
1 in the region with two.

Once we have the conclusion of Lemma 3.2., the rest of the proof of (II) only
relies on results in the proof of the mean field limit theorem and hence is
independent of the process under consideration. The plan is simple: Let
8 < (py — p1)/10. Lemma 3.2 shows that if we start the p.d.e. with density at
least p; in [—L + 1, L — 1]¢, then at time T we will have density at least p,
in 2Le; + [-L,L)® and in —2Le; + [-L, L]®. Theorem 1, when supple-
mented by a second moment computation, will show that if ¢ is small, then the
particle system will do this with high probability. The existence of a nontrivial
stationary distribution will then follow by comparison with a mildly dependent
oriented percolation process.
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To begin carrying out this outline, we need to say what it means for the
particle system to have density at least o. Let

Di(x) = (s/a)* X ()
y:0<y,—x;<a,
be the empirical density of particles in the cube x + [0, a,)?. We say that £¢
has density at least o in A if D{(x) > o for all points x € a,Z% N A. We will
pick a_, — 0 in the proof of Lemma 3.3. [See (3.5).] To make our little cubes fit
neatly into the larger cubes I, that we will define in a moment, we will
suppose that 1/a, and L (to be defined later) are integers.

To achieve a finite range of dependence in the construction that we will use
to prove (II), we have to restrict our attention to sites whose dual processes
do not move too far. We say that y is reasonable at time ¢ if I>°'(s) Cy +
(=(M - 3)L,(M — 3)L)? for all s < T + 1. Since T is fixed it is clear that if
we pick M large, then the probability that a site is reasonable is at least 1 — 3.
Let £5(y) = 1if ¢5(y) = 1 and y is reasonable at time ¢, and let

Di(x) =(e/a)’ X £().

y:0<y;—x;<a,

We say that £ has a nice density of at least o in A if D(x) > o for all points
x€a,Z°NA. Let I, = 2Lke, + [-L, L)°.

LEmMA 3.3. Let b, = a'®. If ¢ has density at least p, + 28 in I, and ¢ is
small, then with high probability &1, will have a nice density of at least
py,—48inl andinl_,.

To prove Lemma 3.3, we will first show the following.

LemMmA 3.4. Suppose £§(x) are independent with P(£5(x) = 1) = ¢(x) and
d(x)=p, +6 forx €[—L +1,L — 1)% If ¢ is small, then with high proba-
bility ¢5 will have a nice density of at least p, — 36 in I, and in I _;.

Proor. We will prove this result by computing the mean and variance and
then using Chebyshev’s inequality. Lemma 3.2 and the definition of reasonable
imply that

(8.1) ED5(x) 2 py, — 28 forxe 2, =a,2%n1,.
It follows from the remark after (2.12) that, as ¢ — 0,
(3.2) cov, = sup Cov(f%(x), f;(y)) - 0.

x+y

Now D:(x) is the average of (a,/s)? random variables that take values in
{0, 1} and hence have variance < 1/4, so

(3.3) Var(ﬁ%(x)) < cov,

e

t(a,/e)"
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Using (3.1) and Chebyshev’s inequality now gives
P(D5(x) < p, — 38 for some x € ;)

(3.4) .
< (2L/a,)*{e%/4a? + cov,} /8.

If we let @, — 0 so that
(3.5) e/a?—> 0 and cov,/a? - 0,

then the right-hand side of (3.4) goes to 0 and the desired conclusion follows.
0O

Proor orF LEMMA 3.3. There are three steps in the proof. The first step is
to show the following:

(a) Starting from a fixed configuration at time 0 is almost the same as
starting from a product measure at time b,.

We begin by describing the product measure. For each x € 7%, let S*(¢) be
an independent continuous time random walk that starts at S*(0) = x and
jumps from z to each point z + y with |lyll; = ¢ at rate e72/2. Let {.(x) =
£5(S7(b,)). It is easy to see that the random variables {,(x) are independent.
(Note: For this it is important that the initial configuration is nonrandom.)
Consider a modified dual process that evolves according to the usual rules up
to time T and then uses S? to move any particle at y at time T. The answer
to the question “Is x occupied at time T + 4,?” obtained from the modified
dual process is obviously the same as the answer when we start with the
configuration {,(y) at time b,.

To prove (a), we will now show that the modified dual process is almost the
same as the dual process. To do this we need to show that during [T, T + b,]
the particles in the dual behave like independent random walks. This happens
when five good events called G,...,G5 occur. We will use Fi,..., F; to
denote their complements. Let 8, = a%% and

G, = (Hp_g, <K},

where %, is the number of particles in the dual at time ¢. Inequality (2.10)
implies that
(3.6) P(F,) <K 'exp(»T).
Let

G, = {nobirth occursin [T - B,, T + b,]}.
It is easy to see that
(3.7 P(G, N F,) < Kc*(B, +b,) < KCa?.
Now B, = a%® > %3 for small ¢, by (3.5), so well known results for random
walk imply that for ¢ > B,,

(3.8) sup P(SZ(¢) =y) < C(B,s72)~ "~
Yy
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(The local central limit theorem gives the result for ¢ = 8, and the Markov
property extends it to £ > B,.) Let

Gy = {lIY/(T) — YX(T)|.. 2 ad? forall j <k < K},

where the Y* are the independent random walks defined in Section 2. Inequal-
ity (3.8) implies

(3.9) P(F,) < K?*(2a%% -1) CB; /% = K2Ca%%?
since B, = a%®. Let

= {|XX(T) - Y(T)|. < 2¢°° for all k < K}.
Inequality (2.8) implies that
(3.10) P(F,) < KCe**T'? exp(vT).

After time T, the particles in the dual will behave like independent random
walks until the first time two particles collide (i.e., occupy adjacent sites) but
this is unlikely to occur by time T + b,. Let S ’(t) denote the zth component
of S2(¢). Kolmogorov’s inequality 1mp11es

¥ J(ater2)".

It is well known that in the case of simple random walk, the central limit
theorem can be strengthened to conclude that if #¢~2 — «, then

(3.11) E[S%i(t) /t2[" - Ex>,
1.9

where y has the standard normal distribution, so recalling b, = a;

P(Omaig 15%i(2)| > ag~9/2) < CE|S%
<t<b,

we have
0,i 2p [ 0.9 ,6)\2P 0.1p
E|S%i(b,)] /(ae /2)" < Cal'P.

Now if we let

G = {all of the coordinates of the first K particles change
by less than a%/3 in [T, T + b,1}

and take p = 6, it follows that
(3.12) P(F,) < CKa’' < CKa®*.

On N?Z_,G; the dual particles behave like independent random walks during
[T,T + 0., soif {7, gives the state of the process at time T + b, starting
from {,(x) at time b,, then adding the bounds on the P(F;) and noticing that
the sum of the bounds in (3.12), (3.9) and (3.7) is smaller than K2Ca% gives

| P(£145(x) = 1) = P(¢12n(%) = 1))
<K 'exp(vT) + K2Ca®® + KCe°*T'/? exp(vT).

The last inequality generalizes easily to show that if we are interested in the
joint distribution of the values at x and y, then the difference of the probabili-
ties in ¢ and ¢ is bounded by 2 times the right-hand side of (3.13).

(3.13)
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Let ¢(x) = P(£5(SZ(b,)) = 1). The second step is to show the following:

(b) If ¢§ has density p; + 28 in[—L, L) and ¢ is small, then ¢(x) > p, + &
when x € [-L + 1, L — 1]¢.

To simplify computations we will remove the extra particles from the initial
configuration: Let £5 < £5 have no particles outside [— L, L)¢ and have exactly
[(p; + 26)a,/e)?] + 1 particles in y + [0,a,)? for all y € a, 7% N [—L, L)%
To bound ¢(x), we write

P(Se"(bg) =y) =m(x,y) +me(x,y),

where m(x,y) is constant for y € Q(2) =z +[0,a,)? for each z € a,Z9,
mo(x,y) > 0 and 7, is chosen as large as possible. Let

ga(x) = Z‘”’z(x,y)-
y

We have chosen b, > al® > £%%, so £¢72b, — «. The local central limit theo-
rem tells us that P(S*(b,) = y) will be almost constant on cubes of side
0(b1?) = 0(a®%®) so

(3.14) supgq(x) > 0 ase — 0.

x

Let

ql(x’z) = Z 11-l(x’y)'
yeQ(2)

To calculate P({,(x) = 1), we will generate random variables {/(x) =, {.(x) in
a special way. We first flip a coin with probability g,(x) of tails and 1 — g4(x)
of heads. When tails comes up we pick a site y, according to the distribution
mo(%,y)/q5(x) and set {/(x) = 1 if that site is occupied, = 0 otherwise. When
heads comes up, we pick z, according to the distribution ¢,(x, 2)/(1 — g4(x)),
and let w, = 1if z, €[—L, L)? and = 0 otherwise. The random variable z,
tells us the cube Q(z) that S lands in. Now the definition of m,(x, y) implies
that the conditional distribution given y € Q(z) is uniform, and we have
supposed that there are exactly [(p; + 26)(a,/£)?] + 1 particles in Q(z) when
z €[-L, L)% so we let v, be an independent random variable that is 1 with
probability p, + 23, 0 otherwise, and let {/(x) = w,v,. From the definitions
above it should be clear that

(3.15) P(5i(x) = 1) = {P(S7(b,) € [-L, L)*) - g5(x) }(p; + 26).
Relation (3.12) implies that, as ¢ — 0,

(3.16) inf P(8#(b,) € [-L,L)?) - 1,
xe[-L+1,L-1]¢

so using (3.14) we see that, for small &,
(3.17) é(x) =P({(x)=1)=p, +8 foralzxe[-L+1,L-1]%
completing the proof of (b).
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To complete the proof of Lemma 3.3, we will now compute the mean and
variance and use Chebyshev’s inequality. Let S = T + b,. Statements (3.13),
(b) and (8.1) imply that if ¢ is small, then

(8.18) EDg(x) = p,— 86 forxe 2, =a,7%N1,.

To bound the covariance we observe that the remark after (3.13) and (3.2)
imply that

(3.19) cov, = sup Cov(£5(x),£5(y)) = 0

x*y
With (3.18) and (3.19) established, the rest of the proof is almost identical to
the proof of Lemma 3.4, so the details are omitted. O

Proor oF (II). With Lemma 3.3 established, (II) will follow from a compar-
ison with a mildly dependent oriented percolation. To prepare for the proof of
(ITI) and future applications, we will state a general result.

COMPARISON ASSUMPTIONS. We suppose the following ingredients to be
given: a process £7: eZ¢ — {0,1, ...« — 1} that is constructed from a graphical
representation (i.e., a family of independent Poisson processes), a real number
L that is an integer multiple of &, and a collection H of good configurations &:
eZ¢N[-L,L)% - {0,1,...k — 1} with the following property: If ¢ € H, then
there is an event G, measurable with respect to the graphical representation
in [-ML, ML]* x [0, MT] and with P(Gy) = (1 — 0) so that if the restriction
of £&5 to[—L, L]¢ is ¢, then on G, the restrlctlons of & to 2Le, + [—L, L]¢
and to —2Le, + [~ L, L]? lie in (the appropriate translates of) H.

The parenthetical phrase refers to the fact that the restriction of &% to
2Le, +[-L, L]? is a function from £Z N 2Le, +[-L, L1¥ to{0,1,...,k — 1}
but H is by definition a collection of functions from ¢Z N[—L, L]® to
{0,1,...,k — 1}. We will ignore this small point in other definitions below.

Our goal is to show that when the comparison assumptions hold our process
dominates an M dependent oriented percolation process on .Z= {(x, m) € 7%
x + m is even} with density at least 1 — 6. Our first step is to describe the
percolation process. Given random variables w(x, n), (x,n) € .#, that indicate
whether the sites are open (1) or closed (0), we say that (y, n) can be reached
from (x, m) and write (x, m) — (y,n) if there is a sequence of points x =
Xppy-oosX, =¥ s0 that |x, —x,_;| =1 for m <k <n and w(x,, k) =1 for
m < k < n. Up to this point the w(x, n) could be arbitrary random variables.
The phrase ‘“M dependent with density at least 1 — 6’ means that if (x;,n;),
1 <i <1, is a sequence with |x; —x;/ > M or |n; — n;| = M whenever i # j,
then

(3.20) P(w(x;,n;) =0forl<i<I) <6l

To compare with oriented percolation, we will say that (x,n) € £ is
occupied if { = the restriction of &, to 2xLe; + [—L, L]? is in H and let
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V, ={x: (x,n) is occupied}. To define the random variables w(x,n) for
(x,n) € . with n > 0 we consider two cases. If (x,n) is occupied, we let
w(x,n) =1 if the graphical representation in (2xLe, + [—-ML, ML]?) X
[nT,(n + M)T] lies in the corresponding G,, and 0 otherwise. If (x,n) is
vacant, we define w(x,n) by flipping an independent coin with probability
1 — 0 of heads and probability 6 of tails. Let W, = V, and W, = {y: (x,0) —
(y,n) for some x € W;}. From the comparison assumptions and induction it
follows easily that V, > W,. We prove (3.20) by induction on I. The conclusion
for I = 1 is an immediate consequence of the definition. To do the induction
step, suppose without loss of generality that n; is the largest value of n; and
let % be the information contained in the graphical representation up to time
n,T or in one of the boxes (2x;Le, + [—-ML, ML]%) X [n,T,(n; + M)T] with
1 < i < I. The comparison assumptions imply that

P(w(x;,n;) =01F) <6.

Integrating the last inequality over {w(x;,n;) =0, 1 <i < I} and using the
induction hypothesis gives (3.20).

The next result is a straightforward extension of the arguments in Section
10 of Durrett (1984).

LEMMA 3.5. Suppose W, = 27. If § < 6 4CM-D’ then
P(0 & W,,) < 6 + 1620/“@M-1%,

Proor. We say that (x, m) can be reached from (y, n) by a dual path [and
write (y,n) —,(x, m) if there is a sequence of points x = x,,,...,%, =y so
that |x, —x,_;| = 1for m <k <n and w(x,, k) = 1for m <k < n. It should
be clear from the definition that (x, m) — (y, n) if and only if (y, n) —,(x, m),
so {0 e W,,} = {(0,2n) —,(-,0)}, where (-, 0) is short for {(x,0): x € 27}. To
estimate the probability of (0,2n) »,(-,0) we observe that this happens if
(0,2n) is closed, which has probability at most 6, and this gives the first term
on the right-hand side. When (0, 2n) is open and (0,2n) +»,(-, 0) occurs, we
can let C, = {z: (0,2n) —,z} and define a contour associated with C, exactly
as on page 1026 of Durrett (1984). As in the source cited, (i) for a contour of
length m to exist there must be m /4 closed sites, (ii) we can find a subset of
size at least m/4(2M — 1)? that satisfies the hypotheses of (3.20), (iii) there
areat most 3™ contours of length m and (iv) the shortest contour has length
4, so

P((0,2n) is open, (0,2n) + ,(+,0)) < Y, 3mgm/4@M-D* £ 9. g4gl/@M-1)?

m=4

since 301/4@M-1* < 1 /9 [

With Lemma 3.5 in hand the rest is a standard argument. We start our
system with all sites occupied so £; has density > p, + & in all the cubes
2xLe, + [—L, L1®. As noted in the introduction, P(£:(x) = 1) is a decreasing
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function of ¢, and & converges weakly to a limit that is a stationary distribu-
tion £2. To check that the limit is nontrivial we note that when 0 € V,,, &5 ¢
has density at least p, — 48 in [—L, L]?, so

1 -
WE(xE[E’L)dgan(x)) = (p2 B 46)P(0 & V2n)

Using translation invariance and our comparison it follows that

P(&,5(x) = 1) 2 (py — 48)P(0 € Wy,).

Using Lemma 3.5 now and recalling that 8 and 6 are arbitrary completes the
proof of (II). O

4. Nonexistence of nontrivial stationary distributions. In this sec-
tion we will do the first half of the proof of (III). Let a, = ¢* with « = 0.1/d,
and as in Section 3, let b, = a!® and B, = a%5. Let y = @ /80 = 1/(800d), and
let T = (y/v)log(1/¢), where v = ¢*N is the constant defined in (2.3), so that
exp(vT) =¢7". Let w = —r/2 > 0, where r < 0 is the wave speed described in
the introduction. Let u (¢, x) be the solution of (1.3) with initial condition
u(0,x) = ¢;(x), where ¢;(x) =p,/2 for |x|l. <L — 1 and 1 otherwise. Let
S =T +b,. Taking n = —r/4 in Proposition 2 it follows that if L > L, and
T > T,, then there are constants 0 < A, C < » so that, for small ¢,

(4.1) u (T,x) <Ce* forxe[-L-wS,L+wSl%

Note that we have used L instead of L — 1 and S instead of T but b, < 1 so
this can be done for T > T,. To simplify computations below we can and will
suppose that A < y. As in Section 3, we let

Di(x) = (e/a,)® L &)
y:0<y;,—x;<a,

and say that £° has density at most o in A if Df(x) < o forall x € a,Z% N A,
We will eventually set L = Clog(1/¢). Our first goal is to establish the
following.

LEmMa 4.1.  If ¢ has density at most p,/3 in [—L, L)%, where Ly <L <
£=0005/d thon

P(£5(x) =1) <Ce* forxe[-L—-wS,L+ wS1%.
Proor. Let SZ(¢) be the independent random walks defined in the proof of
(a) in Section 3, let ¢ (x) = £5(SF(b,)) and let {7, be the state at time T' + b,

starting from the product measure {,(y) at time b,. Taking K = ¢ 2" in (3. 13)
and recalling exp(vT') = ¢~ gives

| P(£545(%) = 1) = P({5.4(%) = 1)
< &¥ + Ce~4r+06e 4 004~ 3710g/?(1/e) < Ce”

(4.2)
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since a« = 0.1/d and y = 1/(800d). From the proof of (3.17) one concludes
easily that

(4.3) P(L(y) =1) <pi/3 +qy(y) + P(S2(b,) & [-L, L1?) < p,/2

for all y € [-L + 1, L — 1]¢ when ¢ is small.

Let {7, be the state at time T + b, when we start at time b, from a
product measure with P({;(x) = 1) = ¢;(x). Inequality (4.3) and attractive-
ness imply ’

(4.4) P(£5,5(x) = 1) < P(&p(2) = 1)),

To bound P({%,,(x) = 1) we will show that the dual process I +%(¢), t < T,
is close to a branching Brownian motion. Taking ¢ = T and K = ¢~ 2" in (2.10)
gives

(4.5) P(Hp>e ?)<e.

When %7 < e~2 it follows from (2.11) that the probability of a collision is
smaller than [recall exp(vT') = £~ "]

(4.6) Cel 37 1log'/%(1/¢),
and (2.19) implies that, for small &,

P( max | X*(s) — Z*(s)||. > 4£°° for some & < K)

0<s<T+b,

(4.7)
< Ce%437 logl/2(1/¢).

When (| X*(s) — Z*(s)|l. < 4¢°2 for all %, we can have a “¢-error,” that is,
¢ (XHT)) # ¢,(Z*(T)), only if Z*(T) lands in J, the set of points within a
distance 4¢%3 of {—L + 1, L — 1]%. To estimate the probability that Z*(T) e
J, we note that if our branching random walk starts at x, then the mean
number of particles in J at time T

(4.8) mp(x,J) =e"TP(Bp € dJ)
< e'T(2wT) ~%?2d(8£%%)(2L)% " < C£%2%~

since T' > 1 and we have supposed L < ¢~9005/4,

When no collisions occur, the family structure of the dual process is the
same as that of the branching Brownian motion, and when no ¢-error occurs,
we can suppose that the coin flips that determine the occupancy or vacancy of
the site where the kth particle lands are the same as in the two processes.
Now if we run a branching Brownian motion starting with one particle at x
until time T, attach independent uniforms to the birth events as in subsection
(d) of Section 2, flip a coin with probability ¢;(Z*(T)) of heads to determine if
the kth site is occupied and compute as we do for the dual process, then the
probability that x is occupied is u (T, x). Combining the last observation with
(4.5)-(4.8) and observing that (4.6) is smaller than the right-hand side of (4.7)
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shows

|P(£540(x) = 1) = uy(T, x)|
<g”+ 080.4—37 logl/Z(l/e) + 080.295—7

Combining (4.2), (4.4), (4.9) and (4.1) now and recalling A <y = 1/(800d)
gives

(4.9)

(4.10)  P(¢5,,(x) =1) <Ce* forxe[-L - wS,L + wS]?,
which is the desired conclusion. O

To prepare for the next step, we need a preliminary result about .%;, the
number of births by time ¢. The proof is a straightforward generalization of
the well known special case r = 2 and can be skipped without loss.

LeEmMMA 4.2. Ifr > 1 is an integer, then

Ex < C(EX,)".

Proor. The result is trivial for » = 1. To prove it for r > 2 we will use
induetion. We will first prove the result for integer ¢. To do this, we observe
that Z, = %, is a discrete time branching process in which the offspring
distribution has mean 6 = exp(v) > 1. Corollary 1 on page 111 of Athreya and
Ney (1972) implies that E%,” < « for any ¢, so the rth moment of the
offspring distribution is finite. For concreteness we suppose Z, is constructed
from iid. £ by

Z,
Zyi1= Z 'finﬂ,
i=1
with Z, ;= 0if Z, = 0. It is well known that if we let &, = o(¢": m < n),
then X, = Z,/6" is a martingale. Written in terms of X,, what we want to
show is EX, < C,. To compute EX, we will look at

E(X£+1|‘gr-z) = 0—(n+1)rE

(S @-ol)

i=1

/

Ifwelet S, = ¢t + -+ +£7+1 — k0, then on (Z, = k} the right-hand side is

r

e—<n+l>rE( Y (g)(ok)""s,g

(9’;)
q=0

=0""E Y, (;)o-qkr-qu,g.
q=0

Now ES,, = 0 and the reasoning that leads to (3.11) shows |ES{| < B, k?/?, so
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substituting Z, for £ we have

(X[l %) = X+ ¥ 07B,( 5 )20 /0
q=2

<X'+A X',

where A, = Z;=20“7Bq(;). Taking expected values and using the result for
r — 1 gives
EX’ <EX]+A,C._,07".
Since EX] = 1 it follows that
EX' ., <1+A.C,_,/(1-1/0).

This proves the result for integer ¢. To extend the result to general ¢ we
observe that since there are no deaths in %},

EX] < EXfn,

where [¢] is the largest integer less than or equal to . O

Lemma 4.1 gives an estimate for the probability that a site is occupied. To
get a large region in which the density is low we will apply the next result
several times.

LEMMA 4.3. Let S =T + b,. If £5 has density at most p,/3 in [—L, L)?,
where Ly < L < £7%%%/4 then with probability at least 1 — £%%%, ¢& has
density at most p,/3 in [-L — wS, L + wS)“.

Proor. Without loss of generality we can suppose that there are exactly
[(p,/3Xa,/e)] + 1 particles in each cube y + [0, a,)? with y € a,Z% that lies
in [—L, L)? and that all sites outside [— L, L) are occupied. Let D:(x) be the
density defined at the beginning of the section, let n, = (a,/e)? and let ¢ be
an even integer.

(4.11) E(Dg(x)?) < n;q(cqng—l + ZE1:[§§(yi)),

where the sum is over distinct y,,...,y, € x + [0, a,)?, since there are at most
C,n?"" terms in which two y,’s are equal and £5(y;) € {0, 1}. To bound the
terms in the second sum, we begin by observing that if we replaced the duals
by independent branching Brownian motions and the initial configuration by
coin flips with probability ¢;(y) of heads that occur at time b,, then we would
get independent random variables ¢, with means u (T, y). Let ¢, = £5(y). To
bound the expectation of the product we will construct the ¢, and ¢, on the
same space so that

§y={y+A1y+A§"
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where {, + A}, € {0, 1}, and the (£,, A)) are independent. Hence
E[T¢, < E{]:[(gyl )} + (20 - 1) maxP(42, # 0).
Now the (¢, Aly) are independent and E{, = u (S, y), so
ETT(4, +43) = TIE(4, + &) < (max(uy(T,5) + P(aL, # 0)})’

and it follows that

(4.12) Ll ) < (mf‘x{uL(T,y) + P4, # 0)})q

+(27 - 1) max P(4A% # 0),
y

where the maxima are taken over y € x + [0, a ).

To estimate the difference between ¢, and ¢,, we observe that the dual
process and the branching Brownian motion compute the same result when
the following good events happen:

W) #r<K;
(i) max0<ssTHXk(s) - Z*(8)ll < 26°3 for all k < K;
(iii) no collision occurs during [0, T'];
(iv) no birth occurs in [T — 8, T + b_];
W 1ZUT) = ZHT)llw = a%° for all j <k < K;
(vi) none of the X* moves by more than a% 9/3 in[T,T +0,];
(vi)) ¢ (XXT)) = qsL(Zk(T)) forl1 <k <K.

We begin with the three that concern the branching Brownian motion zk
and hence are independent for different sites. Markov’s inequality says that for
any X > 0 and r > 0 one has

P(X=>x) <EX"/x".

Using this estimate and Lemma 4.2 it follows that

P(%7:>K) <K E(X7) <K "C,exp(vTr).
Setting K = exp(2vT') = ¢~ 2'gives
(4.13) P(#%p>K)<CK /2 =_Cg™.
Turning to the two troublesome estimates we observe that (3.7) implies
(4.14) P(H¥p_, <K, abirthoccursin [T — g,,T + b.]) < KCa?¥,
while repeating the proof of (3.9) gives
(4.15) P(|Z(T) — Z¥(T)||.. < a®? for some j < k < K) < K*Ca%%4,
Combining (4.13)—(4.15) and noticing that if r is large all of the upper bounds
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are smaller than K2Ca%5 gives
(4.16) P(A} # 0) < K*Cal% = Cg%0 47 = 055

since vy = «/80.

Turning to the other error events, we note that when there are at most K
births in each dual, it follows from (2.12) that the probability of a collision in
one dual or between the two duals before time T is smaller than

(4.17) KCeT'? exp(vT) < Ce' ™37 1og'/%(1/¢)
since K = exp(2vT) = £~ 2". Inequality (2.19) implies that in each dual

(4.18) P(Orsnsaé(T | X*(s) — BE(s)|., > 4¢°? for some k < K)

< KCe®*T'? exp(vT) < Ce®*737 log!/2(1/¢).

Relation (4.8) implies that when the event in (4.18) does not occur, the
probability of a ¢-error is at most

(4.19) Ce02%57,
Finally, (3.12) implies
P(one of the K particles moves by more than a%°/3in [T, T + b.])

(4.20) < KCa®'»,
Combining (4.17)-(4.20), taking p large and recalling y = 1/(800d) gives
(4.21) P(A% # 0) < Ce%2%,

Plugging (4.1), (4.17) and (4.21) into (4.12) gives
Enfyi < C{(e" + el.ld)q + 50.293}'

Now a = 0.1/d so if ¢ is large, it follows from (4.11) that
E(Dg(x))" < C{(e/a,)? + %3} < Ce%28,

and using Markov’s inequality gives

(4.22) P(Dg(x) > p,/3) < Ce®293,

For the conclusion of Lemma 4.3, we are concerned with the density in
(CL/a,)? cubes and L < g 0005/d = =005« g4 (CL/a,)? < Ce™ 1054« =
Ce~91% gnd the conclusion follows from (4.22). O

5. Killing off the particles and the process. The next step in the
proof of (III) is to show that once the density of occupied sites is below Ce?, it
will drop to zero. To do this we need an estimate (Lemma 5.2) on the number
of particles that come into a cube from outside. To prove that estimate we
begin with a result about branching random walks.
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LEmMA 5.1.  Let 2(%s, x) denote the number of particles at x at time s in
the branching random walk Y, starting with a single particle at 0. If ¢ < 1,
then

P(2°(t,x) > 0 for somex & (—pt, pt)*) < 2d exp(—(p — v — 1)¢).

REMARK. For a fixed value of ¢ this result and the proof we give below are
well known. We have to give the proof because we need to show that the bound
holds uniformly for ¢ € (0, 1].

Proor oF LEmma 5.1. By considering the coordinates separately, it suffices
to prove the result in d = 1. Let m(¢, x) = E2/°(¢, x). By considering the
effects of the possible transitions, we see that m solves

0 g2
(5.1) gm(t,x) =(w-e)m(tx) + —E—(m(t,x +e)tm(t,x —¢)),

with initial condition m(0,0) = 1, m(0, x) = 0 otherwise. It is easy to check
that the solution of the last equation is given by .
(5.2) m(t,x) = exp(vt) P(Sf = x),

where S; is a random walk on &¢Z that starts at 0 and jumps to a randomly
chosen neighbor at rate £ ~2. To estimate the probability that the random walk
moves by more than p¢ we note that if § > 0, Chebyshev’s inequality implies

(5.3) exp(0pt) Py(S; > pt) < E exp(0S;),
and direct computation gives
* te2)" (% 4+ % \"
Eexp(6S7) = X exp(—te'z)( ,) ( )
ne0 n! 2
L 1 eas +e—08
(5.4) B A
o 02k82k—2)
=exp|t ) ——
( r-1 (2R)!

< exp(t(e’ - 1-0))
when 6 > 0 and 0 < ¢ < 1. Combining (5.2)~(5.4) gives
(5.5) 2 m(t,x) <exp(t{—6p +v+ (e —1— 0)}).

x=pt

Now e < 3 so taking § = 1 and multiplying by 2 to take care of y < —pt gives
the desired result. O

Recall that T' = (y/v)log(1/¢), where y = 1,/(800)d, and S = T + b,, where
b, =a.® and a, = ¢* with « = 0.1/d.
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Lemma 5.2. If we pick A, so that (A; —v — 2)y/v) = 0.1, then, for
small &,
P(I*5(s) ¢ (—A,S, A,S)? forsomes < S) < 4de®1.
Proor. Using this choice of A; in Lemma 5.1 and observing S > T =
(y/v)log(1/¢) gives
P(2°(S,x) > 0 for some x & (—(A; — 1)S, (4, — 1)S)°)
< 2d exp(—(A; —v —2)S) < 2de*.

To extend the last conclusion to the dual processes, note that exp(vT) = &¢~7
and b, < 1, so using (2.10) and (2.8) with K = ¢~ %2 gives

(5.7) P(H#y>K) < Ce27,

(5.6)

(5.8) P(oTaX | X%(s) — Y*(s)|. = 2¢°2 for some 1 < kb < K)

< Ce%%77 log'/%(1/¢).

Combining (5.6)-(5.8) and observing A;S > 2¢%2 for small ¢ gives the desired
result. O

Lemmas 5.1 and 5.2 are valid in general. For the next result we will use the
assumption that f’(0) < 0. The first step is to observe that, by considering
(1.2) with small u, it is easy to see that

N
f'(0) = —a(0,...,0) + 3 b(e;),
j=1

where e; is the jth unit vector in RY. Letting o = a(0,...,0), B = Z _16(e))
and u = a — B = —f'(0), we have the following.

LEmMMA 5.3. Suppose L < £7%%%/4 gnd 0 <o <d. Let n =
min{o/12d, wy/2v}. If there are fewer than £°~% particles in [— L, L% at time
0, then with high probability there are fewer than £°*"~% particles in [—L +
A,S,L — A,S) at time S.

Proor. The restriction on L and Lemma 5.2 imply that with high proba-
bility

1#5(s) c (-L,L)* foralls<S,xe[-L+A,S,L—-AS]"

When no dual escapes from (—L, L)?, the state at time S in[-L + A;S, L —
A,S1¢ agrees with &g, the state at time S when £,(x) = £y(x) for x € (=L, L)?
and £y(x) =0 for x & (L, L)%

To prove the lemma we will show that the number of particles in §t can,
with high probability, almost be dominated by a branching process in which
particles die at rate a and give birth at rate B. Call an arrival in a Poisson
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process in the graphical representation an unusual event if it occurs at a site
with two or more occupied neighbors. Here we consider the site itself to be one
of its neighbors so this definition embraces two possibilities: an arrival at an
occupied site with one other occupied neighbor or at a vacant site with two
occupied neighbors. At unusual events we may have a birth in the particle
system or a death in the branching process that does not occur in the other, so
to get an upper bound we suppose that each unusual event adds a particle to
the branching process which we call an immigrant. To estimate the number of
immigrants, we begin by observing that (2.1) implies that the expected amount
of time two stirred particles spend within distance Me of each other up to time
t is bounded by

CMet'/?, d=1,
(5.9) CM?Z%e?log(te™2), d=2,
CM &2, d=3,

when te2 > 2. Let
T= inf{t: t = S or the number of births in ét > g"‘"—d},

We will estimate the behavior of the process up to time 7 and then show that
7 = S with high probability. To see the reason for restricting our attention to
what happens up to time 7, we observe that (5.9) implies that in d < 2 the
expected number of unusual events up to time 7 is smaller than

(5.10) C(a"_”_d)zsd_" = Cg2o3n-4,

The last estimate in (5.9) is too crude in d > 3, but this is due to overcounting
close encounters at very small times, so we can fix it by refining our bookkeep-
ing. We will imagine that the particles initially present are green for the first
3¢7/? units of time, those born at positive time are green for the first 3¢7/¢
time units of their life and then the particles turn white. Relaxing the earlier
definition, we say that an unusual event occurs if there is a Poisson arrival at a
site with a green particle in its neighborhood or at a site with two white
occupied neighbors. We call the two types of unusual events green and white,
respectively. It is easy to see that the expected number of green unusual events
by time 7 is at most

(5.11) Ceo n—dgo/d,

To estimate the expected number of white unusual events, we first need to
estimate the amount of time two stirred particles spend near each other after
time 3¢°/? using the comparison introduced in part (b) of Section 2. Let V* be
the difference of the locations of two stirred particles and let W? be a random
walk that jumps to a randomly chosen neighbor at rate 2de 2. As noted in
subsection (b) of Section 2, a process with the same distribution as [|V7|l; can
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be made by taking ||W?||; and removing the visits to 0. Writing v™*(s, ¢) = [{r
€ [s,t]: IVEllL < Me}| and we(s,¢) = l{r € s, t]: [WEll; < Me}|, we have
P(v™(3e774,8) = v)

< P(w™(e77%,8) = v) + P(w°(0,36°/%) > 2¢°/%).

To bound EvM*(3¢°/¢, S) we will integrate the last inequality from 0 to S. To
bound the second term we observe that |W?|l; jumps out of 0 at rate 2d¢ 2
and jumps back in at rate at most £~ 2, so a simple large deviations estimate for
exponential random variables shows that there are constants 0 <¢, C <«
independent of & so that

(5.13) SP(w®(0,3£7/%) > 2¢7/%) < SC exp(—ce~2*7/%),

which is incredibly small since o0/d < 1and S < 1 + (y/v)log(1/¢). To bound
the first term in (5.12) we observe that

(5.12)

(5.14) EwMe(c/?,8) < Ce*[* 5 14/ dt

o —2+o/d .
< Ce2ed-2—0(d=2)/Q@d) < Ogdg=0/2,

Combining (5.12)-(5.14), we see that the expected number of white unusual
events before time 7 is smaller than

(5.15) C(s"_"_d)zsd_("/z) = Cgl/2-2m-d,

Adding (5.15) and (5.11) and comparing with (5.10) gives a bound on the
number of unusual events that is valid in any dimension. To combine these
estimates we observe that 7 < 0/(12d) < /12, so

o—31n=30/4 =97, o/d —m =11y, 0/2—-2n=0/3 = 4n.

Hence the expected number of unusual events is always smaller than

(5.16) Ceot4n—d
and Markov’s inequality implies
(5.17) P(more than %"~ unusual events in [0, 7]) < Ce3".

Our next goal is to show that with high probability the number of births in
the branching process plus the number of children of the immigrants does not
exceed ¢~ ""% and hence 7 > S. This is a routine computation for subcritical
branching processes. Let Z, be the number of particles at time 0 plus the
number of immigrants, and suppose that Z, < 267, [(5.17) implies that this
is valid with high probability.] Since each particle gives birth at rate g and dies
at rate a, it has a geometrically distributed number of children with mean
B/a < 1. If we let Z, be the number of particles in generation n, then
EZ, = (B/a)"EZ, and hence

(5.18) EY Z, <Ce 4.
n=0
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Using the last result and Markov’s inequality it follows that 7 > S with high
probability.

Having established that 7 > S with high probability, the rest is routine.
The mean number of particles at time S in the branching process is at most

80‘—de—/.LS < 8¢r+2‘n —d

since 7 < uy/2v. So Markov’s inequality implies that for the branching
process

(5.19) P (more than 367"~ particles at time S) < Ce".

As for the immigrants and their children, (5.16) bounds the expected number
of immigrants and, since the branching process is subcritical, it also bounds
the expected number of children they have at time S. Another use of Markov’s
inequality tells us that for the immigrants and their children

(5.20) P (more than 367"~ particles at time S) < C&®".
Adding (5.19) and (5.20) gives the desired result. O

We are now ready to put the pieces together and prove (II1). Suppose that &5
has density at most p,/3 in [— S, S]%. If ¢ is small, it follows from Lemma 4.1
and Lemma 4.3 that, for any j,

P( JES(x) = 1) < C(g’\ +j80‘005)

(5.21) for x € [-S(1 +jw), S(1 +jw)]”.

From the last result and Chebyshev’s inequality it follows [recall A <y =
1/(8004d)] that if we pick J and then & small, then with high probability

(5.22) ¢5 has < Ce*/27% particles in [~ S(1 + jw), S(1 +jw)]?

forl1 <j<dJ. Nowif o0 > A/2 in Lemma 5.3, then n = 6 > 0. Pick j, so that
(jo — D& > d and then pick J, so that (J,w —j,A;) > 2. Using Lemma 5.3
repeatedly now shows that with high probability

¢5s has no particles in

(5.23) ) . . . d
[-S{1 +jw — (jo— )AL}, S{1 +jw — (jo — 1) A}]

for J, <j < 2J, — 1. Letting
2J,—1 .,
9 = —S{1 +jw —j A, S{1 +jw —j,A
(5.24) jglo[ { J JoAi}, S{ J Jo 1}]

x[JjS,(j+ 1)S]
and using Lemma 5.2 now gives that with high probability
(5.25) ¢; has no particles in .
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T

SL

F1G. 2.

The choice of J, implies that the bottom of 2 contains [—38S, 3819 x {J,S}
and the top contains [—58,5S5]% X {2J,S} [since 2J,w — j,A;) = 2(Jyw —
JoA;) = 4]. See Figure 2 for a picture of the case d = 1.

To prove (III) we will compare with an M dependent oriented percolation
process to show that if there is a large enough vacant region, then with high
probability it will grow linearly and so the process will die out. We will give the
proof first in the simple case d = 1. As in Section 3, to achieve a finite range of
dependence we have to restrict our attention to duals that don’t move too
much. To see that this can be done, we note that all the events of interest in
(5.22)-(5.25) can be determined from dual processes I*“(s), s < S, where

2J,
(x,2) € U [-S( +jw), S(1 +jw)] x {jS}

Jj=1

and that Lemma 5.2 implies that with high probability all these duals will stay
in

2J,
= U[-(1+jw+A)S, (1 +jw+A)S] x[(J-1S,jS].

Jj=1
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To make the comparison with oriented percolation on the lattice =
{(m,n) € Z%: m + n is even} defined in Section 4, we will use the general
setup from the end of Section 3. This time there is only one good configuration
¢ = 0 and the good event G has two parts: All the duals of interest stay in &
and there are no particles in 9. We apply the comparison to the system
starting from an initial configuration with the same distribution as fg, the
state at time S when we start with all sites occupied at time 0. Let L = S,
T =J,S and V, = {(x,n) € £ there are no particles in xL + [—L, L] at time
nT}. If x €V, let W* = {y: (x,0) = (y,n)}, where — is the connectivity
relation defined in Section 3. Let [ = inf W and r) = sup W;. It follows
from the remark after (5.22) that the next lemma holds.

Lemma 5.4. If WP + &, all the sites in [LIZ — 3L, Lr? + 3L] are vacant at
time (n + 1)J,S.

Proor. Let (x,,0),(x,1),...,(x,,n) be an open path from (x, 0) to (77, n).
For 1<k<n-1, |x, —x,_4/ =1 so the top of (Lx,_,,(k — 1)J,S) + 2
intersects the bottom of (Lx,, kJ,S) + & in an interval of length at least 6L.
The union of the (Lx,, kJ,S) + 9 for 0 < k < n gives a region A, of width
greater than or equal to 6L (r is for right) in which there are no particles.
Repeating the construction for [¥ gives another region A; that we know
to be vacant. There are no ‘“spontaneous births” so it follows that there
are no particles inside A, U A,, that is, in the bounded components of
0,(n + 1)J,S) N (A; U A,)°. To see that this contains the indicated interval
note that A, U A, contains [(r7 — 3)L,(rF + 3)L] X {(n + 1)J,S} and
[(1Z —3)L,(IZ + 3L] X {(n + 1)J,S}.

It follows from Lemma 3.5 that if § < 6 42M~1D* then

(5.26) P(WE, + @) > 1 — 0 — 1620%/4CM-17,
To complete the proof of (III) we will show that
(5.27) I > —o, rf->wo as.onQ"={W?=+ Jforall n}

and then show that the last event occurs for some x € V,. To prove (5.27) we
introduce W, = {y: (x,0) = (y,n) for some x < 0} and r, = sup W,". It is easy
to verify that

(5.28) rd=r, on{W?=+ 2}

n

[See (2) on page 1003 in Durrett (1984).] A straightforward modification of the
proof of (2) on page 1030 in Durrett (1984) gives the following.

LEMMA 5.5. If 6 < 67 82M-D° thon P(r, <n)<6-272"
Proor. As indicated in the source cited, (i) there is a contour that starts at

(0, —1) and ends at (r,, + 1,2n), (ii) any possible contour has length 2n +
1 + % for some integer k£ > 0, (iii) for such a contour to exist there must be at
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least (n + k)/4 closed sites, (iv) we can find a subset of size (n + k)/4(2M —
1)? that satisfies the hypotheses of (8.20) and (v) there are at most 3™
contours of length m. So

o 0

P(r2n < n) < Z 32n+1+k0(n+k)/4(2M—1)2 <3- 2—2n Z 12—k. O
k=0 k=0

Lemma 5.5 and the Borel-Cantelli lemma imply that
(5.29) lim inf 7y, /n >1/2 as.

n—oo

Combining the last result with (5.28) and using translation invariance and
symmetry gives (5.27). To complete the proof of Theorem 4, it suffices to show
the following.

LemMmA 5.6, With probability 1 there is an x € V,, with (W} # & for all n}.

Proor. To prove this it is convenient to suppose that the Poisson processes
used in the construction given in Section 2 are defined on [—S, «), so that we
can use the arrivals in [—S,0) to compute the initial state of the particle
system, and then use the other arrivals to compute the evolution. Let

P, = (7%, n > 1), (T5,n > 1), Uz, n = 1))

be the ingredients for the graphical representation associated with the site x.
The indicator function of the event {0 € V} N Q0 is a function ¢ of the
graphical representation &, x € ¢Z. If we translate the graphical representa-
tion by 2xL and apply ¢, then we get the indicator function of the event
{x € Vo} N Q*. The family &, x € ¢Z, is an i.i.d. sequence (taking values in a
rather large but nice space) and hence ergodic: Any event invariant under all
the shifts 6,,;, x € 2Z, is trivial. It is well known that functions of ergodic
sequences are ergodic. [See Breiman (1968), Proposition 6.31 on page 119, or
Durrett (1992), Theorem 1.3 on page 295.] From the last observation and the
ergodic theorem it follows that, as L — o,

L
)y lorevynaoz = P({0€Vy} n Q%) >0 as.
L

2L +1,

This proves the lemma and completes the proof of (III) in d = 1. O

The proof of Lemma 5.4 relies heavily on the fact that we are in d = 1. To
get our vacant region to grow in d > 1 we have to compare with a different
percolation process. Let D = d + 1 and let A be a D X D matrix so that (i) if
%, + ++ +xp = 1, then (Ax); = 1, and (ii) if x and y are orthogonal, then Ax
and Ay are. Let e,...,e;, be the D unit vectors and let v, = Ae;. Let
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Zp ={Az: z € ZP} and make £, into a graph by drawing an oriented arc
from x to x +v; for 1 <i < D.

Let u;, 1 <i <d, be the vectors in R? that consist of the first d compo-
nents of the v,. It is easy to see that there is a constant U so that ||u;ll; = U.
Let By(x,r)={y €R% |ly —xl; <r}and L = S. If (z,n) € £}, we say z is
good at time n and put z € V, if all the sites in B,(zL/U, L) are vacant at
time nS. It is straightforward to define oriented percolation on -#;, and follow
the approach of the proof for d = 1 to show that the wet sites on level W,
satisfy W, c 'V, if W, = V. However, this result is not good enough for the
desired conclusion. Let w;, 1 <i < D(D — 1), be the vectors in R” that have
one +1 component, one —1 component and D — 2 zeros. These are the
vectors in the hyperplane x, + -+ +x, = 0 that are the closest to 0. Let
Y={Aw;: 1 <i <D(D — 1)} and 7= {v;: 1 <i < D}. A little thought reveals
that if (z,n) € £}, and there is an occupied site in B,(zL/U, L) at time nS,
then we can find a sequence (z,,, k,,), 0 < m < m, of points not in W= U ,W,
so that 2z, =z, kg =n, k,, =0, k,, is nonincreasing, z,, — z,,_; € 7" when
k,<k,_and z, —z,_, €W when %k, = k,,_,. If such a path exists we
say that z is exposed at time n. The next result follows easily from the proof of
Lemma 4.3 in Durrett (1992). Here 6 is the probability a site in W is closed.

LEmma 5.7.  If 0 is sufficiently small, there is a ¢ > 0 so that on Q, if n is
large, then there are no sites in By(x, cn) that are exposed at time n.

With this in hand the proof can be completed by generalizing Lemma 5.6 to
d>1

APPENDIX

In this section we will prove Propositions 1 and 2 for a suitable general class
of equations

du 1
(*) 3—[=§Au+f(u)-

We begin by stating our assumptions on f. The function f has a continuous
derivative. There are p, < p; < p, so that f(p,) =0 for i =0,1,2, f(x) >0
for x € (py, py), f(x) <0 for x € (py, py), f'(py) <0 and f'(py) < 0. Under
these assumptions there is, in d = 1, a travelling wave solution u(¢, x) = w(x
— rt) that is a strictly decreasing function from (-, ) onto (p,, p,) and has

(A1) |w'(x)]| < Ke .

[See Fife and McLeod (1977), Section 2 and page 349.] Recall from the
introduction that the sign of r agrees with the sign of [F2f(x)dx. Our first
result assumes more about the initial condition than Proposition 1 does but
easily implies that result and Proposition 2 as well.
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Lemma A.1. Supposer > 0 and let 5 <r. Let n > 0 so that p, — 21 > p,
and f(u) >0 for ue[—27,0). If L > L,, then there are constants 0 < c,
C <« so that, for any initial condition with u(0,x) > p, — n for all x and
u(0,x) > p, — n when |x| < L, we have

inf  u(t,x) >p, — Ce .

x: x| <(r—=8)t

Proor. Our approach is to generalize the proof of Lemma 4.1 in Fife and
McLeod (1977) to dimensions d > 1. Based on that proof, one’s first guess is to
look at w(|x| — r¢ + 7(¢)) — q(¢), but |x| is not smooth at 0 so we need to
modify the solution there. Let

x? - (x%/3), f0<x<1,

h(x) = {x— 1/3, ifx> 1.

To see the reason for this choice note that

p _J2x—x% if0o<x<1,
h(x)_{l, if x > 1;

” _ 2_2x, lfOstl,
h(x)‘{o, ifx>1.

so h is C2. For the future note that
K(x) <1, h(x) <2, K(x)<2x.

Let v(t,x) = w(h(x]) — rt + 7(¢)) — q(¢). To prove our result, we will pick

7(t) = —A + Blog(1 + ¢), q(t) = gge ™™

and show that if we choose A, B and u appropriately, then v(¢, x) is a
subsolution of (), that is,

The definition of v guarantees that if L > L., then
u(0,x) 2v(0,x) =w(h(lxl) —A) — 2n;

so application of a standard comparison theorem shows u(¢, x) > v(¢, x) and
the desired conclusion follows since (A.1) implies that w(x) — p, exponentially
rapidly as x —» —oo,
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The first step in computing Nv is to observe that

d \—1/2
——&(h(x) = &' (h(x) (k) ( L2?) " x,,

2

d L .

278 (h(D) = & () K (1=)*(Ea?) w2 + g/ (h(ie)) (1) Tx2) 2
+ & (R B (= (o) ™t + () ),

)

Taking g(y) = w(y — rt + 7(¢)), writing ¢ for h(lx|) — rt + 7(¢), recalling the
definition of N and then using —w”/2 = ruw’ + f(w), we have

Ag(R(lxl)) = g"(h(lxl)) ' (1x1)* + g’(h(lxl)){h"(lxl) + K (Ixl) dl;I

Nv=(-r+m)uw)-q() - %w”({)h’(lxl)2
d

||

1} ~ F(w(&) — q)
d

- 5O + )

1 ! ! ! 2 4 hl B 1
+F(w(O)H(x)* = f(w(¢) - q) — /()
1 d-1 )
= Ew’({){%’ - h’(IxI)W S ACHRRCACH 1)2r}

+(H () = 1) f(w(0)) + { F(w(2)) — F(w(&) - q)} — q'(t).

Three of the terms are easy to deal with since #'(Jx|) = 1 and R'(lx|) = 0 for
lx] > 1. To begin to deal with the others let

_ [ {f(u—q) —f(w)}/q, ifqg>0,
F(u,q) = {—f’(u), if g =0.

Now F(p,,q) > 0 for 0 < g < g, (since p, — ¢, > py) and F is continuous, so
there are constants u,, ag > 0 (with «, < qo) so that F(u,q) > u, when
0<qg<gqyand p, — @y < u < p,. That is,

(A3) f(u)—f(u—-q)< —poq for0<gq=<q, p,— ay < u < p,.

The last argument also works near 0. Since ¢, = 27, our assumptions imply
F(0,q9) > 0 for 0 < g <q, and F is continuous, so there are constants 1
a; > 0 so that

(A4) f(u) —f(u—-9q) < —uq for0<q<gqy,0<uc<a.
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We will now choose our constants. The reasons for these choices will become
clear as we proceed. Let

(A.5) w < min{uy/2, u, Ar/3}.

To pick B, we begin by observing that w is strictly decreasing and w’ is
continuous (in fact w” exists), so there is a B > 0 so that

(A.6) w'(z) < —B <0 when a; <w(z) <p, — a,.
Let k = sup{f'(2): z € [py — q¢, P21} and note that
(A7) f(w({)) —f(w(¢) —q) <kq forq <gq,.
Pick B large enough so that, for all ¢,
(A.8) B 471 .,

t+1 1+4+rt/3
(A9) _B8 > kgoe M.

2(t+ 1)

Next pick D large enough so that
(A.10) w(—D) = py, — ay,
(A.11) (d +r)Kexp(—AD) < ueyqy/2,

and pick A large enough so that
(A12) 1(¢) = —A+Blog(l+t)< —-1-D+ (rt/3) forallt.

To verify that Nv < 0 we suppose first that x| < 1 + (r¢/3) and note that
h(lx]) < |x| and (A.12) imply

(A.13) {=h(xl) —rt+7(t) < —D — (rt/3),

and hence w({) > p, — @, by the choice of D in (A.10). Since 7 is increasing,
R'(x) < 2, and A (x) < 2x, we have

d-1

||

{27' — B (lx]) — R(lxl) + (K(lxl)® - 1)2r}

(A.14)
> -2(d—-1)—2-2r=—-2d — 2r.

Now A(x) < 1and f(w(¢)) > 0 when w({) > p, — @, > p; (by the choices of
a, and ¢q,), so

(A.15) (R (lx1)® = 1) f(w(£)) < 0.

Combining the last two inequalities with (A.3) and recalling ¢(¢) = goe ™" (so
q' = —nq) converts (A.2) into [recall w'(x) < 0]

(A16) Nv < —(d+r)w'({)+0—-peq+nrg
" < (d+r)Kexp(M(~D - (rt/3)}) — (o — w)goe ™ <0,
by (A.13), (A.1), the choice of u in (A.5) and the choice of D in (A.11).
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The next case to consider is w({) > p, — @y and |x| > 1 + (r£/3). In this
case h"(lx]) = 0 and Z(|x]) = 1, so the upper bound in (A.2) simplifies consid-
erably. To bound what is left recall 7(¢) = —A + B log(1 + t); note that our
choice of B in (A.8) implies
-1 2B d-1 B

> - > >
|| t+1 1+ (rt/3) t+1
so repeating the proof of (A.16) but using (A.17) and w'({) < 0 instead of
(A.14) gives
(A.18) Nv < — (g — 1)gee ™ <0.

Turning to w({) < p, — a,, we recall that |x| <1 + (r£/3) implies
w({) = py — ay, so in this case we must have |x| > 1. When w({) < a;, repeat-
ing the proof of (A.18) but using (A.4) instead of (A.3) shows

(A.19) Nv < —(pq —pn)gee ™ <0,
by the choice of u in (A.5). To deal with the intermediate range a; < w({) <
D2 — @, we note that (A.6), (A.17), (A.7) and ¢'(#) > 0 imply that

B .
B + kg < 0,

d
(A17) 27 — K(lx])

0,

(A.20) Nv < — 2(1—"‘1")
by the choice of B in (A.9). Combining (A.16) and (A.18)—(A.20), we have
shown that Nv < 0 in all cases and this gives the desired result. O

To get Proposition 1 now it suffices to prove the following.

LEmMMA A.2.  Let 1, be a possible choice of m in Lemma A.1. Let B € (p,, py)
and a < p, be such that f(x) > 0 for x € [a, p,). There are constants T and
L, s so that if u(0,x) > a for all x and u(0,x) > B when |x| < Lo,g+L,,
then u(T, X) satisfies the hypotheses of Lemma A.1 with n = n,.

Proor. Our assumption on « implies that the solution of v/(#) = f(v,)
with v,(0) = a has v,(¢) > py — m, for ¢ > T;. Since u(0,x) > v,(0), a stan-
dard comparison argument implies that for ¢ > T, we have u(¢,x) > v (¢) >
Po — Mo-

Our assumption on B implies that the solution of vj(¢) = f(vg) with v,(0) =
B has vg(¢) = py — 1y/2 for ¢ > T,. Let T = max(T,, T,}. Having fixed T we
can now pick L, , large enough so that, for the branching Brownian motion
considered in Section 2, the probability that all the particles stay within L,g
of the starting point up to time T is at least n,/2. It follows from results at
the end of subsection (d) in Section 2 that when |x| < L, , we have u(T, x) >
Ug(T) — mo/2 = py — my, by the choice of T, and the proof of the lemma is
complete.

O

To prove Proposition 2 we let @(¢, x) = —u(t,x) and f(x) = —f(—x), so
w_1
(%) =S A +f(@).
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Letting p, = —p,_, it is easy to check that f satisfies our assumptions.
Having multiplied f by —1, there is a travelling wave solution w(x + rt) of
(* %) that moves at rate —r, and the desired result follows from our two
lemmas.
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