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SURVIVAL OF ONE-DIMENSIONAL CELLULAR AUTOMATA
UNDER RANDOM PERTURBATIONS

By MaURY Bramson! anD CLAUDIA NEUHAUSER?

University of Wisconsin and University of Southern California

Cellular automata have been the subject of considerable recent study in
the statistical physics literature, where they provide examples of easily
accessible nonlinear phenomena. We investigate a class of nearest neighbor
cellular automata taking values {0,1} on Z. In the deterministic setting,
this class includes rules which yield fractal-like patterns when starting
from a single occupied site. We are interested here in the asymptotic
behavior of systems subjected to small random perturbations. In this
context, one wishes to ascertain under which conditions such systems
survive with positive probability. We show here that, except in trivial cases,
these systems in fact always survive, and they possess densities which
remain bounded away from 0.

1. Introduction. In this paper, we consider discrete time Markov pro-
cesses for which the state at time n (¢,) is a subset of Z, the set of integers.
We write £,(x) = 1 for x € £,, in which case we say that there is a particle at
x or that x is occupied; otherwise we say the site is vacant and write
£,(x) = 0. The values of ¢, are assumed to be updated simultaneously at each
time step according to local rules which satisfy the following:

@) P(x €¢,,.,1€,) = f(E(x — 1), £,(x), £,(x + 1)), that is, the value of
£,+1 at x depends on just £, at x + 1, x and x — 1.

(i) Given &,, the events {x € ¢, .}, x € Z, are independent.

We let f(-) denote a function from {0,1}® — {0,1 — &} with 0 <& < 1. The
processes &, are examples of discrete time interacting particle systems. In the
statistical physics literature the designation cellular automata is used; we
employ this latter terminology here.

For & = 0, the cellular automaton is deterministic: Given the initial config-
uration ¢,, £, is determined for all n. It is easy to check that there are
28 = 256 possible cellular automata whose local rules satisfy (i) and (ii). If
e > 0, we say that the cellular automaton is randomly perturbed. We will first
look at the deterministic case and define the class of models we want to
investigate. This class consists of the one-dimensional cellular automata which
were systematically studied and classified in two important papers by Wolfram
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(1983, 1984). The first paper includes a short history of cellular automata and
an extensive list of references. Wolfram (1983) imposed the following restric-
tions on the possible rules:

(a) States consisting solely of vacant sites remain unchanged. That is, the
empty set is a trap.

(b) Rules are reflection symmetric. That is, interchanging the values at the
right and left neighbor of a given site does not change the value of that site in
the next time step.

These two restrictions leave 32 cellular automata satisfying (i) and (ii), which
Wolfram (1983) called “legal rules.”

In the paper cited above, Wolfram used a labelling scheme for these rules,
which we now describe. Let «; €{0,1} for i =0,1,...,7, and let B, € {0, 1}
for j = 0, 1, 2. The value at site x at time n + 1 depends only on the values at
sites x — 1, x and x +1 at time n. Set B, = ¢, (x + 1), By = £,(x) and
By =¢&,(x— 1), and set a; = f(By, By, By) for i=3X%_,B8,2*. The integer
Y!_,a;2' then defines the “number” of the rule. For instance, consider the
following rule where the transitions are given by

111 110 101 100 011 010 001 000

(1.1) 0 1 0 1 1 0 1 0

Each triple in the first line is the binary expansion of some i € {0,1,...,7}.
The value on the second line is the corresponding «; (with a, on the left and
a, on the right). Since 01011010 is the binary expansion of 90, we call this
transition rule 90. (Rule 90 is one of the most studied among the 32 rules
mentioned above, and we will refer to it several times below.)

Having defined Wolfram’s legal rules, we now specify which of these rules
we wish to investigate. The only further restriction we impose on the deter-
ministic rules is:

(¢) a; (and, by symmetry, a,) is equal to 1. That is, f(0,0,1) = 1 (and
f(1,0,0) = 1).

This leaves us with 16 rules. (For the convenience of the reader, these 16 rules
are listed in Table 1.) Condition (c) assures us that 1’s can propagate when
starting from a finite set. The other 16 rules which violate (c) are not very
interesting since components of ¢, which are separated by at least two
consecutive vacant sites cannot interact with each other. That is, 1’s emanat-
ing from any given component cannot propagate into neighboring components
since a; and a, are both 0.

It is easy to implement these deterministic rules on a computer. Wolfram
(1983) investigated two different types of initial configurations: one being the
state with only a single occupied site and every other site vacant, the other
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TABLE 1
Rule 111 110 101 100 011 010 001 000
18 0 0 0 1 0 0 1 0
22 0 0 0 1 0 1 1 0
50 0 0 1 1 0 0 1 0
54 0 0 1 1 0 1 1 0
90 0 1 0 1 1 0 1 0
94 0 1 0 1 1 1 1 0
122 0 1 1 1 1 0 1 0
126 0 1 1 1 1 1 1 0
146 1 0 0 1 0 0 1 0
150 1 0 0 1 0 1 1 0
178 1 0 1 1 0 0 1 0
182 1 0 1 1 0 1 1 0
218 1 1 0 1 1 0 1 0
222 1 1 0 1 1 1 1 0
250 1 1 1 1 1 0 1 0
254 1 1 1 1 1 1 1 0

being product measure. A number of the rules yield a nontrivial pattern when
starting from a configuration with only one occupied site (i.e., rules 18, 22, 90,
126, 146, 150 and 218). More precisely, the resulting space-time picture on the
computer screen is self-similar and exhibits fractal behavior. That is, certain
geometrical shapes can be found on all length scales and the configuration of
1’s is of a lower dimension than the space it is embedded in. An introduction to
fractals and self-similarity can be found in Mandelbrot (1977). Wolfram (1983)
observed that, when started from product measure, the rules which exhibit
this fractal-like behavior generate correlations between far apart sites. This
phenomenon manifests itself in the appearance of open ‘““triangles” on all
length scales in the space-time evolution. By this we mean the following: The
rules are such that certain configurations of 1’s and 0’s result in all 0’s in the
next time step. [For instance, a sequence of consecutive 1’s in rule 90 exhibits
this behavior since f(1,1,1) = 0.] Therefore, during the time evolution of
these rules, we encounter stretches of 0’s. These stretches appear on all length
scales. Because of condition (c), the length of these stretches is reduced by 1 on
either side in each time step. This creates the triangular structure, in which
the initial stretch of 0’s forms the base of the triangle.

The motivation for this paper comes from the rules which exhibit the fractal
behavior mentioned above, although our analysis works for all 16 rules. For
concreteness, we focus our attention for the moment on rule 90, whose
dynamics were given in (1.1). It is easy to check that, when starting from only
one occupied site, triangles of all sizes are generated. Furthermore, when
starting from a single occupied site, the Cesaro average in time over the
“region of occupied sites’’ tends to zero. This region spreads out linearly and
covers an interval of length 2n + 1 at time n. More precisely, if ¢° denotes the
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set of occupied sites at time n when starting from £3 = {0}, then

IR F
(1.2) 5 =

—,2n +1

-0

as N - o, (|£0] denotes the number of elements in ¢2.) This observation
prompted Kinzel (1985) to conjecture for rule 90 that ‘“the ordered state. . .is
not dense enough to support a transition away from the deterministic limit.”
Kinzel’s conjecture was based on a crude extrapolation from finite size scaling.
He conjectured that, for any ¢ > 0, rule 90 would die out locally starting from
any initial configuration, and thus (1.2) would still hold for the randomly
perturbed system. [For pictures of the space-time evolution of rule 90 in both
the deterministic and randomly perturbed case, see Durrett (1988), page 116.]

We study the behavior of the above 16 rules under small random perturba-
tions. In the randomly perturbed system, the function f(-) defined in (i) takes
on the two values 0 and 1 — ¢, for some 0 < ¢ < 1. That is, 0’s are written
down as in the deterministic system, but when a 1 appears in the deterministic
system, a coin with probability 1 — ¢ of heads is tossed in the randomly
perturbed system—if heads appears, we write down a 1, otherwise a 0. We will
be interested in the survival properties of the randomly perturbed rules. It is
easy to see that if ¢ is too large, then the system dies out locally with
probability 1. This follows from comparison with a branching process. Each
particle at time n can give rise to at most three particles at time n + 1. If
l¢,| =k, then El£,, || <3k(1 —¢). So if &> 2, then E(l¢,,,|1£,)/1£,] <
3(1 — £) < 1 and the system will eventually die out.

The behavior of the rules is quite different for small positive . We need
some notation before we can formulate the asymptotic behavior in this case.
Let £¢ denote the deterministic process (i.e., when ¢ = 0) at time n with
&5 = {. To exclude initial configurations which result in the empty set at time
1, we define the following set of initial configurations: For I an interval in Z,
set

(1.3) A1) ={L:EnT+a)

Note that on account of condition (¢), { € A(Z) for |{| < ». It is also easy to
see that any product measure with density in (0, 1) is almost surely in ~(Z).

Observe that the processes ¢4, with { = {0}, exhibit distinct behavior de-
pending on whether or not f(0,1,0) = 0. For all eight rules satisfying
f(0,1,0) = 0, such as rule 90, it is easy to check that

(1.4) g coz, &,.,C27+1,;

we designate these rules as type (I). For the other eight rules, odd sites can be
occupied at even times and vice versa; we designate them as type (II).

For a configuration ¢, & .#(Z), one already has £, = O, and hence ¢, = &,
n > 1, for all 0 < ¢ < 1. On the other hand, for £, € #(Z) and small ¢, ¢ + &
with high probability. The following theorem, the main result of the paper,
implies that the process £, has positive probability of surviving for all time.
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THEOREM. For each type (I) rule and each e > 0 sufficiently small, there
exist p = p(e) > 0 and y = y(g) > 0 so that, for every initial configuration
£ € AD),

(1.5a) liminf min P({,(x) =1loré,(x+1) =1)>p.

n—o |x|<yn
For each type (II) rule,
(1.5b) liminf min P(£,(x) =1)>p

n—o  |x|<yn

holds under the same conditions.

Note that, for any translation-invariant measure £, with P(¢, € ~(2)) > 0,
(1.6) liminf P(¢,(x) = 1) >/,

p' > 0, for rules of either type. It will follow from the proof of the Theorem
that when starting from a finite set, the set of occupied sites will grow linearly
in time whenever the process survives. One can also choose y(¢) so that
v(e) = 1 as € — 0, although the method employed here gives poor bounds for
p(e). The statements in (1.5) imply that Kinzel’s conjecture is wrong. (The
space-time pictures of the randomly perturbed systems in fact look ‘‘thicker”’
than the ones of the deterministic systems exhibiting fractal behavior.)

By considering the Cesaro average of the distributions of &,,, 1 <m <n,
for any of the rules and taking the limit over an appropriate subsequence, one
obtains an equilibrium v. [This standard construction can be found in, e.g.,
Proposition 1.8 of Liggett (1985).] The Theorem implies that, for £ > 0 chosen
small enough, v has density bounded away from 0. An interesting question in
this context is whether there is exactly one nonzero equilibrium for the
process. A more difficult problem is to prove a convergence theorem for ¢,.
Some results in this spirit have been obtained for rule 90 when £ = 0.
Rigorous treatment for this deterministic case is facilitated by the fact that the
rule is additive in the sense that ¢, (x) = (£,(x — 1) + £,(x + 1)) mod 2,
which permits exact calculations with the aid of generating functions and
ergodic theory. Miyamoto (1979) and, independently, Lind (1984) followed this
approach to obtain rigorous results. It is easy to see that v, ,, the product
measure with density 1/2, and §,, the point mass at the all empty configura-
tion, are equilibria. Miyamoto and Lind showed that starting from product
measure with density 6, the distribution converges weakly only if 8 € {0, 3, 1}.
The Cesaro averages over time, however, converge to v, ,, when starting from
product measure with density 6 € (0, 1). Miyamoto showed that v, , and &,
are the only equilibria in the class of measures that are translation invariant
and mixing. It is not known whether there are any other equilibria or what
happens when starting from measures other than product measures. [See also
Durrett (1988), Section 5d for a discussion of rule 90.] Similar questions can of
course be studied for the other 15 rules considered here, in both the determin-
istic and the randomly perturbed settings.
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The Theorem implies that each of the rules considered here has a nontrivial
phase transition. That is, for some value of & > 0, there is at least one
nontrivial equilibrium. (Recall that, for ¢ > £, §,, is the only equilibrium.) As is
typically the case for nonattractive systems, we do not know whether there
exists a unique critical value ¢, > 0 for a given rule, although this is presum-
ably true. (That is, a nontrivial equilibrium exists for 0 < ¢ < ¢,, but not for
g, < & < 1.) We also do not know whether the phase transition is continuous
or discontinuous.

The paper is organized as follows. The proof of the theorem makes use of a
rescaling argument which is laid out in Section 2. Two basic estimates
involving a ‘“tagged particle”’ are required to employ the argument. The first
involves showing that this particle will move into an appropriately chosen
interval within a fixed amount of time; this is done in Section 3. Once the
particle has entered and thus ‘‘populated”’ such an interval, the interval will
typically remain populated for a long period of time. To show this, one needs to
employ explicitly the structure of the different rules; this is shown in Section
4. Both sections use random walk comparisons together with various bounds
on the geometry of ¢,.

2. The rescaling argument. The rescaling technique was developed by
the first author and Durrett, and is reviewed in Durrett (1991). It is by now a
standard technique and has been applied frequently [see, e.g., Bramson (1989),
Bramson and Durrett (1988), Bramson, Ding and Durrett (1991) and Durrett
and Neuhauser (1994)]. The basic idea is to show that for appropriate 8(¢) > 0,
the process under consideration (indexed by ), when viewed on suitable length
and time scales, dominates an oriented site percolation process in which sites
are open with probability 1 — 8(¢). (Sites may be j-dependent; in our case,
J = 2.) One then shows that §(¢) — 0 as ¢ — 0. Since oriented site percolation
percolates for & close enough to 0, this will then imply that for small ¢ the
process survives and has the desired properties.

We proceed to review the above procedure. Define 2-dependent oriented site
percolation with density 1 — & as follows. Let .Z= {(z, k) € Z%: z + k is even}.
The oriented site percolation process is a collection of random variables
{w(z, k): (2, k) € £}, with values in {0, 1}, that indicate whether the sites in .#
are open (1) or closed (0). We say the process is 2-dependent with density 1 — §
if for any sequence (z;, k;), 1 <j <, satisfying |z; — 2,/ > 4 whenever both
i #j and k; = k;, then

P(w(z;,k;) =0for1 <j<1)=25"

By an open path from (y, 0) to (z, k), we mean a sequence of points z, = (y, 0),
2),2g,...,2, = (2, k) in Z such that, for 0 <j <k -1, 2;,,;, =2, +(1,1) or
2j,1 =2; + (=1,1), and all the z;’s with j > 1 are open.

Let

2.1) WA = {z: there is an open path from (1, 0) to (z, k) for some y € A
k
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and
(2.2) 92, = N (WO =z}
k=0

We think of W2 as the set of wet sites at time . connected to the source A at
time 0. If Q_ occurs, that is, if there is an infinite open path starting at (0, 0),
we say percolation occurs. The following is, for 2-dependent percolation, the
analog of results on 1-dependent percolation given in Durrett and Neuhauser
[(1991), pages 204-205]; the proofs are the same. [A detailed exposition on
independent oriented site percolation can be found in Durrett (1984).]

LEMMA 2.3. Let {w(z, k): (2, k) € £} be a 2-dependent oriented site perco-
lation process with density 1 — 8, 8 < 6719, Then P(Q.) > 0, and there exist
p >0 and y > 0 so that

(2.4) liminf min P(z € W) > p.
koo lzl<yk
(z,k)e.f

Although we do not make use of it here, we note that the bound
liin inf | W |/k >0 as.onQ,

also holds as in Durrett and Neuhauser (1991).

To compare the process ¢, with oriented site percolation, we let L =
10le~3/2Jand T = 4 L. [One needs L to be sandwiched in between £~ ! log(1 /¢)
and ¢~ 2, with the upper bound needed for inequalities (3.7) and (8.11), and the
lower bound for the inequalities starting with (4.15). Here |y] denotes the
integer part of y; for later purposes we want L to be divisible by 10.] Also, set

¢(z,k) = (22L,kT) for(z,k) € 2,
B =[-2L,2L) x(0,T],

B(z,k) = ¢(2,k) + B for(z,k) €.2,
I=[-L,L), I,=2zL+1,
I'=[-L,0), I'=2zL + 1,
I"=[0,L), I'=2zL+1".

The sets B(z, k), (2, k) €2, are T X T squares in space-time “centered’ at
¢(z, k) which partition Z X Z*, and I, I! and I7 are the “full,” “left” and
“right” intervals “centered” at 2zL. Note that I/, X {(¢ + DT} and I/, X
{(k + 1)T} are contained in the left quarter and right quarter, respectively, of
the upper boundary of B(z, k).

Sections 3 and 4 of the paper are devoted to showing Proposition 2.6, which
states that if £,, is “admissible” in I,, then with probability close to 1 the
same is true for £, 1,y in both I]_; and I !, .. For all rules except rule 22, the
condition ¢, € A(1,) suffices. As will be explained shortly, for rule 22, it does

(2.5)
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not. In this case, we employ the condition ¢,, € A4%(1,), where
A = {6 P(eEn1=02) <A},

The parameter A > 0 will be a small number depending on ¢ and will be
specified later. We say that { is admissible in I if { € #(I) for rules other
than rule 22, and ¢ € #(I) for rule 22. Note that ./(I) = .#X(I). [One could
as well use .4%(I) in defining admissible for all the rules. We prefer to employ
the concrete . (1) when possible, i.e., except for rule 22, so as not to obscure
the construction.]

ProprosITION 2.6. Let & > 0 and assume that ¢ = &(8) > 0 is sufficiently
small. For (z, k) € .2, if &1 is admissible in I, then, with probability at least
1 =8, é441yr is admissible in both I]_; and I, .

If £+ 1yr is admissible in both I]_; and I}, for (2, k) € .Z, we say that (2, k)
is occupied. Since &, , )y will be admissible with probability at least 1 — & if
either (z—1,k—1) or (z+ 1,k — 1) is occupied, repeated application of
Proposition 2.6 will enable us to show that the set of occupied sites ‘“‘tends to
spread” as k increases. We require that ¢,, be admissible in I, in the
hypothesis so that ¢,p,, NI, # D (&7, NI, # & for rule 22) with high
probability; it turns out that there is afterwards enough randomness in the
system to ensure that (z, £) will be occupied with high probability.

We now explain the first of these two statements. (The set of occupied sites
““tends to spread.”) Introduce the random variables w(z, k), (2, k) € .2, with
w(z, k) = 0 or 1, as follows. If £,, is admissible in I,, choose

(2.7) {w(z,k) =1} c{(z, k) is occupied},

with P(w(z, k) = 1) = 1 — §, so that the occupied sites are ‘“‘trimmed” inde-
pendently of everything else. That is, an occupied site remains open [i.e.,
w(z, k) = 1] with probability 1 — §; this is possible because of Proposition 2.6.
If ¢, is not admissible in I,, set w(z, k) = 1 with probability 1 — § indepen-
dently of everything else. Clearly,

(2.8) P(w(z,k) = 1l&47) = P(w(2, k) =1) =1 -5 for(z,k) €2

One can also check that {w(z, k): (2, k) € £’} is 2-dependent. [Conditioned on
&1, 1t is clear that {w(z, k): (2, k) € £’} is 2-dependent, since the evolution of
the rules given by (i) in Section 1 is determined by nearest-neighbor interac-
tions, and so sites more than 8 L = 2T apart cannot both depend on the same
elementary event within the last 7' units of time. Since the conditional
probabilities in (2.8) do not depend on ¢,;, 2-dependence without conditioning
follows.] So {w(z, k): (2, k) €7} is a 2-dependent oriented site percolation
process.

Let G = {z: ¢, € A(1,)} for a given configuration ¢,. Rather than use G
directly in the comparison with oriented percolation, it is more natural to work
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with the random set
A = {z: £y € A(1,) and £ is admissible in I]_; and I, }

as the source. One can show with a little work that P(A # &) > n,, where
Mo > 0 does not depend on G for G # & this follows from condition (c) of
Section 1, with the reasoning being analogous to that leading up to (2.14). [The
substitution of A for G is used to preserve the even—odd structure of the
underlying lattice. Something like this is also necessary for the process corre-
sponding to rule 22: The periodic configurations of the form ...100100100...
are in A(Z), yet, starting from this state, éz = . The corresponding process
&, will survive because of the existence of ‘“double errors’ at neighboring sites
at time 1. However, these will occur only with probability 2 and therefore
typically not in [—2L, 2L), which has only 40~ 3/2 sites. So in this case, 7,
will indeed be small. For all the other rules, one can employ a variation of
Proposition 2.6 to conclude that P(A # @) > 1 — 6 for G # &.]

Now let W be defined as in (2.1). By induction one can show that W;* only
depends on the value of w(z, k'), k' <k, at sites (z, k') for which £/, is
admissible in I,. [Whether or not (z, k') is open is not relevant if (z — 1, 2" — 1)
and (z + 1,2 — 1) are not occupied.] Because of the containment given by
(2.7) when ¢, is admissible in I, it follows that, for § > 0 and for sufficiently
small &,

(2.9) WA c {z: (2, k) is occupied} .

Employing (2.9) together with Lemma 2.3 (and the attractiveness and transla-
tion invariance of oriented site percolation), one obtains the following proposi-
tion.

ProposITION 2.10. For sufficiently small e, there exist p, = p(e) > 0 and
Yo = vole) > 0 so that, for G + &,

(2.11) liminf min P((z, k) is occupied) > p,.
koo |zl<yk
(z,k)e.f

By assuming Proposition 2.6, we have obtained (2.11), which is almost the
statement in (1.5) of the Theorem. Having shown that any (z, k), |z| < y,&, is
with probability p, occupied, we need only extend the statement to all sites in
B(z, k). The Theorem then follows, with y = y,/2. First of all, by (2.11), for
Yo < ¥o, for large enough % and for |z| < vk, &, ;) is admissible in I},
[= 2zL + [L,2L)] with probability at least p,. Therefore, for some site x; €
Izl +1

P(¢n(%y) = 1) > pl,

for some pj, > 0 not depending on (z, k), where N = (k — 1)T + 1. The proba-
bility that any site takes the value 0 at some given time is at least ¢
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(independently of everything else). So, in fact,

(2.12) P(én(xy) =1, 6n(x; + 1) = En(x +2) =0) > py,

for some p; > 0. The analog of (2.12) holds for x,, x; — 1 and x; — 2.
By condition (c) of Section 1, £(1,0,0) =f(0,0,1) =1 — ¢. It therefore
follows that, for some p, € (0, p,],

(2.13) P(éyia(x1+ 1) = 1, énpa(xy + 2) = énia(2 + 3) = 0) > py.

Iterating in this manner for up to 27T steps, shifting either to the left or right
at each time step as desired, one can ensure that each x in 2zL + [-2L,2L)
will eventually ‘“‘always’ be occupied or adjacent to an occupied site. One
obtains that

(214) P(gn(x) =1lor gn(x + 1) = 1) > Per =P

for any (x,n) € B(z, k), with (z, k) subject to |z| < yyk. The bound p will be
very small for ¢ small, but depends on nothing else. This implies (1.5a) of the
Theorem. To obtain (1.5b) for type (II) rules, note that a configuration with

gn’(x - 1) =0, gn’(x) =1, gn’(x + 1) =0

has at least probability 2 of occurring at the time n’ when x is first occupied.
Since f(0,1,0) = 1 — ¢ here, one can iterate as above, but this time specifying
that the triple of sites remains centered at x up to time n. This implies (1.5b)
of the Theorem.

We still need to demonstrate Proposition 2.6. To simplify notation, we set
z = k = 0; because of the translation invariance of the dynamics of ¢,, this
suffices. Given that ¢, is admissible in I, we will show that, with probability
close to 1, ¢, will be admissible in I! = [L,2L). Because of symmetry, the
same estimate holds for I7 ;. This implies Proposition 2.6. The estimate will be
derived in two steps. In the first step we will show that if &, is admissible in
I,,, then with probability close to 1 the interval [7L /5, 8L /5) will not be empty
for some n €[1,T + 1] (n €[2,T + 2] for rule 22). This will be done in
Section 3. We will then show that [7L /5, 8L /5) continues to contain particles
for at least T' more units of time with probability close to 1. This will be shown
in Section 4.

3. Populating the target interval. In this section we define tagged
particles and study their motion. This will allow us to conclude that, with
probability close to 1, the target interval [7L/5,8L/5) is populated (.e.,
contains particles) at some time n € [1,T + 1] (n € [2, T + 2] for rule 22), if
¢, is admissible in I,. We first make the simplifying assumption that there are
no particles to the right of 7L /5 initially. To justify this, consider the case
where [7L /5,8 L /5) is empty at time 1 (2 for rule 22); otherwise we are done.
Starting at time 1 (2), as long as [7L/5,8L/5) is empty, the evolution of the
process to the left of [7L/5,8L/5) is independent of the evolution of the
process to the right. All we need to show is that, with probability close to 1,
particles will enter [7L/5,8L /5) from at least one side. If no particles enter
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from the right by time T + 1 (T + 2), the evolution of the process to the left of
[7L/5,8L/5) will be the same as if there were at time 1 (2) no particles to the
right of 7L /5. Translating time by 1 (2) units, the problem is reduced to that
with no particles to the right of 7L /5 initially, and where one has T units of
time to populate [7L /5, 8 L /5). Note that with probability £ (A for rule 22), the
initial state may not intersect with I.

For all n < T, we let R, denote the position of the rightmost particle at
time n. (If ¢, = &, set R, = —x.) We call this the fagged particle and think
of it as moving over time. On account of the nearest-neighbor property of ¢,,
R,.. — R, <1, although no corresponding lower bound holds. We wish to
show in this section that the tagged particle will be, with probability close to 1,
in the target interval [7L /5,8 L /5) at some time n < T'. Since the farthest left
it might start is at —L, this will occur if the tagged particle moves at least
12L /5 units to the right. Proposition 3.1 shows that, for small ¢, this occurs
with probability close to 1. Because of translation invariance, we can assume
that R, = —L.

ProprosiTION 3.1. Let n > 0, and assume that R, = — L and that there are
no particles to the right of —L. For ¢ > 0 sufficiently small,
(3.2) P(R,<TL/5 foralln <T) <n.

The proof of Proposition 3.1 requires several definitions and a better
understanding of how the tagged particle moves. As we noted above, R, may
decrease by large amounts depending on the configuration to its left. [This may
occur, for instance, in rule 90 if ¢,(x) =1 for x €[R,, — M, R,], with M
large, and ¢,,.(R,) =¢,,(R,+ 1) =0.] To control the amount R, de-
creases, we define, for n > 0,

(3.3) L,=max{x <R,:é»(x) =1}. (IfR,= —o,set L, = —.)

The quantity L, is obtained by running the process ¢, up until time n and
then setting ¢ = 0 at n for the additional unit of time. Observe that L, is the
first site to the left of R, + 1 which might be occupied at time n + 1 given ¢,,.
[Automatically, &§+(R, + 1) = 1.] Note that all the sites L, + 1,L, +

2,..., R, must be vacant at time n + 1. We call this stretch of vacant sites a
gap. The size of the gap is given by
(3.4) Y,=R,-L, (IfR,=—-w,setY,=0.)

To control the movement of R,, there are two cases we need to consider:
(1) The gap [L,, + 1, R, ] is small, in which case we can rely on either side of
the gap to give birth. (2) The gap is large at time n. Then, only if R, + 1 is
occupied at time n + 1 will we be able to control the movement of the
rightmost tagged particle. We will see that (2) will not occur too often.
Neglecting the exceptional behavior exhibited in (2), we will be able to compare
R, with a random walk with positive mean. Since the random walk will drift
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off to the right at a positive rate, the same will be true for R, off a set of small
probability. Proposition 3.1 will then follow.

We first show that in most realizations of the process, there will be a birth
occurring at at least one side of the gap for all n < T. That is, either
iR, + D =1or¢, (L, =1 (“double errors” will not occur). Set

(35) Hn = {§n+1(Rn + 1) = §n+1(Ln) = 0}’

for n > 0, and

T-1

n=0
H is the exceptional event we wish to avoid. [To avoid having to consider
L, = — at this point, we set ¢,(—x) = 1.] Since P(H,) < ¢? for all n, it
follows that

(3.7) P(H) < &®T = 40e?|e7%/2| < 40&'/%;

this approaches 0 as ¢ — 0.
The variable R, is well behaved on H; in the sense that

(3.8) R,.,>R,-Y, and P(R,,,+R,+1;HS) <e¢.

We wish to show that Y, is for most n not too large, that is, Y, < ¢~3/4. It will
follow that the probability that a disaster occurs for any n < T, that is,
Y,>e %% and ¢,,(R,+ 1) =0, is small. Together with (3.8), this will
enable us to compare R, with a random walk with positive drift as mentioned
above.

We define a sequence of stopping times S,, £ > 1, that mark those times at
which disasters may occur based on the configuration at time n:

S, =inf{n > 0: Y, > ¢34}

(3.9)
S, =inf{n > 8,_;1Y, >34} fork>2.

The following lemma states that Y, cannot be large very often.

LemMa 8.10. If ég,.(Rg, + 1) =1 for given k > 1, then, on HF,

1.-3/4
Sk+1—Sk>§8 /.

Proor. We abbreviate S, by N. By assumption, R, + 1 is occupied by a
particle at time N + 1. By definition, there are no particles at Ly + 1, Ly +
2,..., Ry at time N + 1. Because of the nearest-neighbor property, the length
of this gap can decrease by at most 1 on each side over each unit of time.
Therefore, there will not be any particles at Ly + m, Ly + m + 1,..., Ry —
m + 1 at time N + m, and it takes more than 3¢ 3/ units of time to close the
gap. It follows that the “offspring” of the particle located at R, + 1 at time
N + 1, which lie within J,, = [R5y — m + 2, Ry + m] at times N + m, are
separated from all other particles for m < &34,
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Assume now that J,, is not empty for m < ¢34 Then Ry, €dJ,,, and
so Ly,,, +1€d,. Thus Yy,,, <2m <& 3% that is, S,,, > N + 36 3/4,
which is the desired result. To see that oJ,, is in fact not empty, assume by
induction that o,,_; is not. Then Ry, , ;+1€d, and Ly,, ,€J,.
However, on HY,, _;, one or the other must be occupied. O

It follows immediately from Lemma 38.10 that the probability of a disaster is
small: The number of times n up until T' = 40| ~3/2] at which a disaster has a
chance of occurring (given ¢,) is bounded by T/(3¢73/4) + 1. At each such
time, the probability of a disaster is & since £,, (R, + 1) = 0 must occur.
Therefore,

(3.11) P(some disaster occurs on [0,7T)) < e(2T&%/* + 1) < 90&1/4;
this approaches 0 as ¢ — 0. We let
(3.12) K = H U {some disaster occurs on [0, T')}.

Then K is the “bad set” on which we have little control over the behavior of
R,,. On account of (3,7) and (3.11),

(3.13) P(K) -0 ase— 0.

Here and in Section 4, we will need two elementary random walk estimates.
Let X,,...,X,,... be iid. random variables with P(X, =1)=1—¢ and
P(X, = —e7%*) = ¢. Then EX, = 1 — ¢'/* — ¢, which is close to 1 for small
e. Set V, = L}_,X,, with V, = 0.

LeEmMA 3.14, For small ¢ > 0 and v;,C; > 0,i=1,2,
(3.15) P(V, <12L/5 foralln < T) < C, exp{—y,e~3/?}
and

(3.16) P(V, < —L/5 forsomen < T) < Cy exp{—y,e3/4}.

Proor. One has
(3.17) P(V,<12L/5foralln < T) < P(V,, < 12L/5).
For small &,
E(X,) >4/5,
so the large deviation bound
P(V,, <12L/5) < Cie "L

holds for appropriate y;, C; > 0, which gives (3.15). To estimate (3.16), we do
not have to worry about V, for n < N = Le®* /5 since V, cannot reach —L /5
before N, even if it always jumps ¢ ~3/* to the left. So another large deviation
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estimate gives

P(V,< —L/5forsomen <T) < Y, Cie 7" < Cye 72N,
n>=N

for appropriate vy,, C;,Cy > 0. Since N > ¢~ 3/ for small ¢, (3.16) follows. O

Expressions (3.13) and (3.15) give us enough control over R, to demon-
strate Proposition 3.1.

Proor oF ProposITION 3.1. We want to show that R, will typically move
to the right of 7L /5 by time T'. For this, compare R, w1th the random walk
Vn = —-L+ X} X, n>0, where X, =1 if §k+1(Rk +1 =1, and X, =

e~ 3/* otherwise. One has P(X, = 1) =1 -¢and P(X, = —¢ 3/4) e. One
can check that since V, = R, = —L,

(3.18) V,<R, onK?¢,

for n < T, where K is given in (3.12). By (3.13), P(K) - 0 as ¢ = 0. S0 (3.2)
follows from (3.15). O

4. The repositioning algorithm. In Section 3 we showed how to popu-
late the target interval [7L/5,8L/5) with high probability at some random
time in [1, T + 1] (2, T + 2] for rule 22). In this section, we will perform the
second step of our construction, that is, we will show that if at time at least 1
(2), [7L/5,8L/5) is populated. Then with probability close to 1, £, will be
admissible in [L,2L). We will again define tagged particles, which we now
wish to remain inside [ L, 2L). The setup is given by a repositioning algorithm
whose basic outline is related to the one defined in Bramson, Ding and Durrett
(1991). Roughly speaking, the repositioning algorithm will attempt to keep
[7L /5,8 L /5) populated; if the interval becomes empty at some time, one can
then choose a tagged particle in [L,2L) which, with probability close to 1,
reaches [7L /5, 8 L /5) without leaving [ L, 2L). This procedure will be repeated
until time T + 1 (T + 2) is reached or until it fails. We will find it convenient
to subdivide [L,2L) into five intervals of equal length, which we label from
left to right by D,, D, ..., Ds. That is,

(4.1) Dy =[L +2(k - 1)[e 22|, L + 2k|e~%2]) fork=1,2,...,5.

Note that D, is our target interval; it has midpoint 3L /2.

We now specify the repositioning algorithm. Let 7 be the first time greater
than or equal to 1 (> 2 for rule 22) for which D, is populated. Let o, be the
next time at which D, is empty, with R{ denoting the position of the
rightmost particle in D, if ¢, N D, # &, and the position of the leftmost
particle in D, if D, is empty but o, ﬂ D, # &. If both D, and D, are empty,
we say that the algorlthm has failed. Tag the particle at R}. If R} € D,, let
R} denote the position of the rightmost particle at time n + o, in [L 3L/2 —
1) until time 7,, when the set J = {3L/2 — 1,3L/2} is next populated. [For
R} € D,, define R} symmetrically, using [3L/2 + 1,2L) and J.] We also say
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the algorithm has failed if [L,3L/2 — 1) is ever empty over (oy,7;) (and
similarly, for R} € D,). Repeat the procedure inductively up to time T + 1
(T + 2), defining R} as the position of the tagged particle in D, (or D,) closest
to J at the next time o, at which D, is empty, R as the position of the
corresponding tagged particle and 7; as the succeeding time at which J is
populated. Note that the tagged particle R, n € [0, 7, — 0;), evolves according
to the same law as R, of Section 3. We denote by E, the event that the
algorithm fails over (o;, 7;). Let F denote the event that the repositioning step
of the algorithm ever fails (i.e., D, U D, is empty at some time o). It is easy to
check that this repositioning need only be employed at most 40 times. If
R} € D, (or D,), then D, is empty, and R} is separated from any particles on
its right by at least L/5 + 1. Since this distance decreases by at most 2 over
each time step, it will take at least time L /10 = T'/40 for J to be populated
again. We set E = U E,.

On the event (E U F)°, [L,2L) remains populated. Proposition 4.2 states
that E U F is unlikely to occur.

ProPOSITION 4.2. For any m > 0, ¢ > 0 can be chosen sufficiently small so
that, with probability at least 1 — n, the algorithm will not fail forn < T + 1
(n < T+ 2 for rule 22).

Proposition 2.6 (with z = £ = 0) follows from Propositions 3.1 and 4.2. As
explained at the beginning of Section 3, if ¢, is admissible in I, then off a set
A of probability at most & (A for rule 22), £, (&,) can be compared with a
configuration which is restricted to the left of D;. Employing Proposition 3.1,
one obtains that, except for further probability n, D; will be populated at
some time 7 in [1, T + 1] ([2, T + 2]. This starts the above algorithm, which
by Proposition 4.2 continues through T + 1 (T + 2) except on another set of
probability 1. Off these exceptional sets, I/ is populated at time T + 1 (T + 2).
For all rules except 22, this implies that ¢, € #(I}). Consequently, for ¢,
admissible in I,

(4.3) P(¢p is admissiblein If) > 1 — & — 2.

Since n — 0 as ¢ = 0, for fixed 6 > 0 and sufficiently small ¢ > 0, ¢ + 27 <
8/2. Together with the analog for I”,, (4.3) implies Proposition 2.6 for all
rules except 22.

The derivation for rule 22 requires a little more work. For { any configura-
tion, set

(44) g(§) = P(&0 11 - 2).
Note that ¢ € A2(I}) if and only if g({) < A. By the above bounds,
(4.5) Elg(ér); ] < 21.

So far in the paper, A has been left unspecified; we now set A = ﬁ . Applying



SURVIVAL OF CELLULAR AUTOMATA 259

Markov’s inequality to (4.5), we obtain that

(4.6) P({er e A1)} 0 A°) < 2y/n .
Since P(A) < y/n, it follows that for £, admissible in I,
(4.7) P(ép is admissible in I{) > 1 — 3y/n .

For fixed > 0 and small £ > 0, 3y/n < /2. Together with its analog for I” |,
(4.7) implies Proposition 2.6 for rule 22.

To demonstrate Proposition 4.2, we first show that P(E) is small. Referring
back to Section 3, E; is easy to investigate. Apply the strong Markov property
to compare R! with the random walk V, = v, + £7_, X, as in (3.18); here
v, = R.. One has R} € D, U D,, with the tagged particle able to ““fall back”
at least distance L /5 and still remain in [ L, 2L). By (3.16),

(4.8) P(E;NK¢) < Cyexp{—y,e~3/%} forall i,

where K, is the analog of K in (3.12). On account of (3.13), P(K,) — 0 as
e — 0, and so P(E;) — 0. Summing over i € [1,40], one obtains

(4.9) P(E) >0 ase— 0.

In order for F to occur, D, U D3 U D, must be empty at some time
n+1e[2,T+ 1]1(3,T + 2] for rule 22), even though D, is populated at time
n. Denote these events by F,. Proposition 4.10 provides a bound for P(F)
which, together with the previous paragraph, implies Proposition 4.2.

ProroOSITION 4.10. Forany n > 0, € > 0 can be chosen sufficiently small so
that, forn > 1(n > 2 for rule 22), P(F,) <n/T.

We note that as explained in Section 2, the restriction n > 2 is in fact
necessary for rule 22.

The remainder of the paper is devoted to demonstrating Proposition 4.10.
The following elementary lemma will be used. Here @ denotes the set of
configurations for which the proportion of vacant sites over the interval
[0, L /5) is less than &, > 0, where &, will be specified later, and @2 denotes
those configurations with no pairs of adjacent vacant sites over [0, L /5) (i.e.,
all vacant sites are isolated).

LEMMA 4.11. For small ¢ > 0 and any {,
P(fﬁ EQRN QZ) < exp{—ﬁle_l/z}
forany n > 1.
Proor. Label the vacant sites of &8 in [0, L/5) from left to right by

1,2,..., K, and let N,(k) denote the position of the kth vacant site at time n.
Then

(412)  P(N,(k + 1) = Ny(k) + 1lg,_1, Ny(I) for L < k) > &.
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Let M =|8,L/5], let G, denote the set on which K > k&, and let
A, ={N,(k+1) #N,(k) + 1}.

Elementary decomposition implies that

M-1
P(A; N NAy_ 1 NGylé, 1) = k]:]1 P(A,NGylA 0 - NA,_1,&,_1)
M-1
< ’}_I P(AJA N - NA,_1 NGy, ¢, )

=1
<(1 —E)M_l.

Since Q° < Gy, it follows that, for small &,

P(ffl €Q°n Qz) <(1- 8)511,/5_2

3/2

<(1-¢)
Since log(1 — &) < —¢, this is

< exp{—8,62). o

Proor orF ProprosiTION 4.10. The proof varies, depending on the rule under
consideration. We break the argument into four cases, which are presented in
order of increasing difficulty. Case (i) consists of rule 18, (ii) of those rules with
a; = 1, (iii) of all the remaining rules except for rule 22 and (iv) of this last
pesky rule. For notational simplicity, we set n = 1 for all cases except (iv),
where we set n = 2. We show that for any choice of 7 > 0 and any initial
configuration ¢,

(4.13) P(F,) < ne*/?
in cases (i)-(iii), and
(4.14) P(F,) < ne®?

in case (iv), where FA} is the event that ¢ N Dy # @ and ¢, , N (Dy U Dy U
D,) = &. The proposition then follows immediately from (4.13) and (4.14).

(i) Rule 18. This rule is characterized by a; = a, = 1 with all other «,’s
equal to 0. The key ingredient for rule 18 is to observe that it is impossible to
get three occupied sites in a row at time 1. To see this, note that in order to get
two occupied sites in a row, say at x = 1 and x = 2 at time 1, it is necessary
for { to have the configuration 1001 on [0, 3]. Since only a; = a, = 1 and all
other a,’s are equal to 0, it follows immediately that ¢,(0) = £,(3) = 0. There-
fore, ¢, is always empty at 1/3 — 8, or more of the sites in both D, and D,,
where 6, is small since L is large. For §; <1/3 — §,, Lemma 4.11 implies
that with probability at least 1 — 2exp{—48,6~/%}, &, contains pairs of adja-
cent vacant sites in both D, and D,. Let p; (pg) denote the position of the



SURVIVAL OF CELLULAR AUTOMATA 261

leftmost (rightmost) particle in ¢ N D,. (Set p;, = ® and pp = —xif & N D,
= @.) It follows that under ¢ N Dy +# &, D,=[6L/5 p.] and D, =
[pr,9L/5) typically each possess at least one pair of such sites adjacent to an
occupied site. Since @, = a, = 1, with probability at least 1 — &2, one of these
triples will produce a particle at time 2. Therefore,

P(FAI) < 2exp{-—61.9_1/2} + &2

(4.15)

2
’

< 7783/
for small enough ¢ > 0. This gives (4.13) for rule 18.

(ii) Rules with a, = 1. As in rule 18, we consider the density of vacant sites
in D, and D, at time 1. Here, however, the density of vacant sites may be
small. If the density of vacant sites in both intervals is at least 1/7 at time 1,
we can then apply Lemma 4.11 and (4.15) as above. Otherwise, we use the
following fact: In an interval of length L /5 in which the density of vacant sites
is less than 1/7, the number of triples for which all three sites are occupied is
at least L/10. (A margin of error is included for sites on the boundary.) Since
a,; = 1, each of these triples may produce a particle at time 2. The probability
that all of them fail is at most £2/!°. Combining the two cases, one obtains
that
16 P(F,) < 2exp{—e~/2/T} + &2 + gL/10

< ned/2,

(iii) Rules with a5z =1 or ag=ag =1, but a, = 0. As in cases (i) and (ii),
we consider the density of empty sites in D, and D, at time 1; here, we do the
computations for the two parts separately. If the density of empty sites in D,
is at least 3 at time 1, we can then employ Lemma 4.11 as before to deduce the
presence of a pair of adjacent vacant sites next to an occupied site except for
probability exp{ —&~1/2/3}. If, on the other hand, the density of empty sites in
D, is less than %, then pairs of adjacent occupied sites will be present. Also,
except on a set of probability at most (1 — &)X/~ ! <exp{—&71/%, & N
(6L/5,7L/5) has at least one vacant site. One can therefore check that under
¢, N Dy + @, D, must contain a triple of the form (1) 001 or 101 and (2) 001,
011, or 110. We apply (1) for rules with a; =1 and (2) for rules with
@y = ag = 1. So we see that without any assumptions on the density of empty
sites at time 1, the probability that no site in D, has a chance of producing a 1
at time 2 is small:

P(§1 ND, +@,nDy= @) < exp{—&e~1/2/3} + exp{ —&~ /%
< 2exp{—&~1/2/3}.

The analog of (4.17) with D, substituted for D, also holds. On {£{* N D, + &,
k = 2,4}, the probability that a 1 is produced on neither side is at most % It
follows that

(4.17)

(4.18) P(ﬁl) < 4exp{e~1/2/3} + &2
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< ne¥/2,

(iv) Rule 22. The rule is characterized by a; = a, = @, = 1 with all other
a;’s equal to 0. We will show that ¢, typically contains pairs of adjacent vacant
sites in both D, and D,; as in (i), this implies that D, and D, each possess at
least one pair of such sites adjacent to an occupied site, which will enable us to
demonstrate (4.14). As in (iii)), we do the computations for the two parts
separately.

Subdivide D, into | L/35] disjoint intervals J(k), £ = 1,2,..., of length 7.
A configuration ¢’ is said to be periodic over J(k) if every third site in J(&) is
occupied with the others being vacant, one being able to start at any point in
the cycle. For example, 0100100 is included. It is easy to check that if {’ is not
periodic over J(k), then &{ restricted to J(%) must include at least one vacant
site. The set U will consist of those configurations which are periodic over at
least L/75 of the intervals J(k). We divide the initial configurations ¢ into
two cases, depending on whether or not él = éf € U. (Recall that é{ is not
random.)

First note that if §Al is periodic over J(k), then there is one occupied site in
J(k) which must have a pair of vacant sites as immediate neighbors on each
side. That is, one has the five-tuple 00100. Call this site the interior 1 of J(k);
for £, € U, the configuration includes at least L /75 interior 1’s. Let G be the
event that £,(x) = 1 at all interior 1’s. For £, € U and small & > 0,

(4.19) P(G)) < (1 —¢)"™ < exp{—s~1/2/8).

But on GY, &lp, (¢, restricted to D,) includes five vacant adjacent sites
somewhere, which implies that £,|p, contains a pair of (actually three) vacant
adjacent sites.

Suppose now that 5’\1 ¢ U. Then él is not periodic over more than L/75
intervals J(%). Each such interval will become periodic for ¢, with probability
at most 7, which is at most § for ¢ < 5. (One can check that the first
probability is in fact at most & for ¢ < 1.) Let G, denote the event that at least
L /150 such changes occur over D,. It is a simple large deviation estimate that

(4.20) P(G,) < exp{ —7sL) < exp{—yae~%/%),

for some y; > 0. On G§, ¢; is not periodic over more than L /150 intervals
J(k); recall that ¢, restricted to such a J(%) must include at least one vacant
site. So on G§, the proportion of vacant sites in D, for ¢, is at least 5. Set

G;=Gsn {&, € Q%
From Lemma 4.11,
(4.21) P(G,) < exp{—&~1/2/30}.

On (G, U Gy)°, &,lp, contains a pair of vacant adjacent sites.

On account of (4.19)-(4.21), the probability that ¢&,|p, does not contain a
pair of vacant adjacent sites is, for all £, at most 2 exp{—&~1/2/30}. The same
statement holds as well for &,lp,. If £, N D3 # & and both D, and D, contain
pairs of vacant adjacent sites, the probability that a 1 is produced on neither
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side is at most &2. It follows that

(4.22) P(Fz) < 4dexp{—&e12/30} + &*

< "qsg/z. 0O

We have demonstrated Proposition 4.10, which implies Proposition 4.2, and
hence Proposition 2.6. This completes the proof of the theorem.
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