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LARGE DEVIATIONS, MODERATE DEVIATIONS AND LIL
FOR EMPIRICAL PROCESSES'

By Liming WU

Wuhan University

Let (X,), »1 be a sequence of ii.d. r.v.’s with values in a measurable
space (E,&) of law u, and consider the empirical process L,(f) =
(1/n)X}_; f(X,) with f varying in a class of bounded functions &. Using a
recent isoperimetric inequality of Talagrand, we obtain the necessary and
sufficient conditions for the large deviation estimations, the moderate
deviation estimations and the LIL of L ,(-) in the Banach space of bounded
functionals /(). The extension to the unbounded functionals is also
discussed.

1. Introduction and main results. Let (X),),., be a sequence of i.i.d.
r.v.’s defined on a probability space (Q, &, P) with values in a measurable
space (E, &), of law u. Consider the empirical measures

_—ZSX n>1
n 4 ’
k=1

which are random elements of M,(E), the space of probability measures on
(E,&). The well-known Sanov theorem tells us that P(L, € -) satisfies, as
n — o, the large deviation principle (LDP) on M,(E) equipped with the
7-topology o(M,(E), b&) [where b& denotes the space of bounded and measur-
able real functions on (E, &)], with speed 1/n and with the rate function given
by
dv ) dv du. i
(L h(viu) = fEd,u ogd w, ifv<u,
+ oo, otherwise,

which is the relative entropy of v w.r.t. u.
Now let (A(n)),, .1 be an increasing sequence of positive numbers so that

A(n)
Vn

It is a simple consequence of the Cramér method, as we showed in [8], Section
4.1, that
e

A( n)

(1.2) A(n) - o and - 0.
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18 L. WU

satisfies the LDP on M,(E), the space of signed measures of finite variation on
(E, &) equipped with the r-topology, with speed A~2(n) and with the rate
function given by

1 dV 2 e .
(1.3) I(») = 5/ E dw, if v <puwith v(E) =0,

+ o otherwise,

where v € M,(E). This is the so-called moderate deviation (MD).
By the contraction principle in LD theory, for every £ = (f,..., f,): E —
R¢, with f, € b&,

1 =r
(Ln =)0 = [fd(L, ) = = ¥ £(X,)

also satisfies the LD and MD estimations. However, in nonparametric statis-
tics, we need the uniform estimations of (L, — u)(f) over a class of functions
&. This is the objective of this article.

More precisely, given a class of functions F c b&, let Z(&) be the space of
all bounded real functions on § with sup norm||F|lg = sup rex IFCF)I. This is
a nonseparable Banach space if § is infinite. Every v € M,(E) corresponds to
an element v% in /(&) given by v3(f) = v(f) == [fdv for all fe . Our aim
is then to establish the LD and MD estimations of (L, — )% in Z(§).

If § is finite, these estimations follow from the two results recalled above.
However, if § is infinite, neither the two results above nor the Cramér
theorem about LD and the recent result of Ledoux [4] about MD can be applied
directly to the present setting because of the nonseparability of Z(§).

Throughout this paper we assume that ¥ is countable or, instead that the
processes {(L,, — uXf); f€ &)} are separable, to avoid various measurability
problems (see Dudley [2] for the treatments of such questions in the general
case). We work actually in the following setting:

(H1) 0<f<1 forall fin .

Let (¢,),.; be a sequence of iid. r.v.’s defined still on (£, ,P) with
P(e, = +1) = 1/2, independent of (X,), . ;. Introduce the following quanti-
ties:

(1.4) H(n)=E iskf(Xk) ;

E=1 5
(15) H(n) = €| & £(X,) - nu( )] ;
8 E—1 &
(1.6) H(n,n)=E i e F(X)

k=1 Sn
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where

' 1/2
8y = {f—g; f,.g €T and dy(f,g) = (f(f—g)zdu) Sn}-

Using the finite approximation and a recent isoperimetric inequality of
Talagrand, we shall establish the following theorem.

THEOREM 1. Under (H1), the following properties are equivalent:
(@) P(L8 € -) as n > +x satisfies the LDP on /(&) with speed 1/n and
with the rate function given by
(1.7) h(F) = inf{h(v;u)lv € My(E) and v = Fon §};
(i) (¥, d,) is totally bounded and

H(n,n) _

(1.8) lim lim sup 0;

-0 ;50

(iii) (§, d,) is totally bounded and (L, — u)® = 0 in probability in Z(F).

THEOREM 2. Assume (H1). Let (AM(n); n = 1) be as in (1.2). The following
properties are equivalent:

G) PVn /ML, — w)¥ € ) satisfies LDP on /(&) with speed A~%(n)
and with the rate function given by

(1.9) I4(F) = inf{I(v)lv € M,(E) and v® = Fon &};
(i) (¥, d,) is totally bounded and
H(n,n)
1.10 lim li —— =
(1.10) 120 et V()
(i) (§, dy) is totally bounded and [Vn /A(n)I(L, — w)® — 0 in probability
in Z(%).

0;

From Theorem 2, we can derive the following:

CoroLLARY 3. Assume (H1). The compact LIL of Strassen holds for
(L, — wX-) in £(F) G.e., K:=[I5 <1/2] is compact in Z(F) and with
probability 1, the limit set of the sequence [Vn /Mn)I(L, — w)3 is exactly K), if
and only if one of the equivalent properties in Theorem 2 holds for

Mn) = y2loglogn.

REMARKS.

(i) When E = Rand § = {(—,t], ¢ € R}, Theorem 1 was shown in [8] as a
direct consequence of the Sanov theorem for the 7-topology.
«(ii) If & is a Donsker class, then (§, d,) is totally bounded and

lim lim sup M =
"I"’O n-—o \/7; ’
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by Ledoux and Talagrand ([6], Theorem 14.6, page 405). Then the three results
above hold.

(iii) Corollary 3 (even improved versions) was obtamed by Ledoux and
Talagrand [5] and Yurich [10].

(iv) The extension of Theorems 1 and 2 to the unbounded case w111 be given
in Section 3.

2. Proofs of the main results. Our main tool will be the following
isoperimetric bound established recently by Talagrand [7], Theorem 3.5.

LEMMA 1 (Talagrand) Assume (H1). Set o = sup; g [(f — p(f)? du)/?
and S = no? + H(n), where H(n) is given in (1.4). Then for some universal
constant L > 0, we have

(2.1) Yt=LH(n): P( > t) < exp(—¢y, s(%)),
&

S F(X) - na(f)
k=1

where the function ¢, s(t) for t > 0 is given by

2

t
et 1/2
(2.2) by 5(t) = (log ; s) . ift>LS.

We also require the following lemma.

LEmMMA 2. Let (£,),.; be a sequence of i.i.d. r.v.’s with values in a
Banach space (B,|l-|) (not necessarily separable) defined on a complete
probability space (Q,F,P), and let (a,) be a sequence of positive numbers
increasing to infinity. Assume that there is a countable subset D of the unit ball
of B’ such that || x|l = sup; ., f(x) for all x in B.

If S,/a, = 0 in probability and a,PEmax, _,l&,I” — 0, then a,PE|S,II”
tends to 0, where p € (0, +x).

Proor (Following the proof of Lemma 7.2 in [6]). By Proposition 6.8 of [6],
page 156,
Emax|[S,/I” < 2 - 4PEmax||£,]1” + 2 - (48,)”,
k<n k<n '
where ¢, = t,(n) = inf{¢t > 0; P(max, _,[IS,ll > ¢) < (2-47)"1. Now by the
QOttaviani inequality we have

P(IS,.Il > ¢)
1 —max, _, P(IIS,ll > s)’

P(I}:laxIISkII >+t <
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Taking s =t = ea, in this inequality, were ¢ is arbitrary, we see clearly that
to(n) < ea, for all n large enough. Hence the desired convergence follows. O

We turn now to the following:

PrOOF OF THEOREM 1. We begin with the implication (i) = (iii). It is well
known that the total boundedness of (§, d,) follows from the relative inf-com-
pactness of Iy on /(&). We show now that the relative inf-compactness of |
on /() follows that of Ay (assumed by the definition of LDP). In fact, for
every a > ¢ > 0, let

A, .= {veMy(E);I(v) <aandv*(E) A v (E) > ¢},
and set 7= (v*(E))"! - v*; we have [v|(E) < 2Va and
h(77) +h,(77) <2I(v) < 2a.

Then Ai‘f = {¥8; v € A, }is relatively compact in Z(). Now observe that as
e—>0 the dlstance between A‘f€ and [I < a]? tends to zero. Consequently this
last set is also relatively compact showing the claim above and then the total

boundedness of (F, d,).
From the assumed LDP and the Borel-Cantelli lemma, we have

(L,—)* >0 as. in (%),

which yields (iii).
(iii) = (ii). By Lemma 2, (iii) implies

B 1Ly - w )l —o.

By the symmetrization inequality (see Lemma 6.3 in [5], page 152),

H(n)
2

(2.3) <H(n) < 2H(n).
Now (ii) follows from the obvious fact that H(n,n) < 2H(n).

It remains to prove the key part, (ii) = (i). If & is finite, this is a direct
consequence of Sanov’s theorem as noted at the beginning of this paper. In
general we have only to establish that

) N
(2.4) lin% lim sup ;logP(”Ln(-) —u()lg, =8)=—»,¥5>0.
n- n—o

In fact, assume (2.4). For each n > 0, we can take a finite n-net 7 of § [i.e.,
FcFandV feF, I g F" so that dy(f, g) <nl, and we can apply the
comparison technique to show the LDP. Far example let us show the upper
bound in the LDP of this theorem under (2.4).
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For this purpose note first that [k 3 < a], @ > 0,-are compact in Z (%) by the
total boundedness of (, d,) and the Arzela—Ascoli theorem. Next let C be an
arbitrary closed set in Z(%) and set b := inf, . hx(F). We need to show

limsup%logP(L,? € C) < —b.
If b = 0, there is nothing to be shown. Assume then 5 > 0.

For any 0 < a < b, let K denote the level set [hy < a], let A" denote the
rate function corresponding to 7 defined by (1.7) and let p, (F) denote the
restriction of F to §". Set K” = [A" < a]. We obviously have K" = pn(K).
Thus for every 6 > 0, there is > 0 such that for all F € (%), if

p,(F) € K7(5)
and
sup{| F(f) —~F(g)|; f,g €& and dy(f,g) <n) <5 then FeK(35),

where K(e) [resp. K"(¢)] is the e-neighborhood of K in (%) [resp., of K" in
Z(FM)]. Now take 6 > 0 so that C N K(38) = & (possible since K is compact).
Then for all n small enough, we have, by the claim above and the finite case,

P(L3 € C) < P(L} ¢ K(38)) < P(L3" & K"(8)) + P(IIL,(f)lls, = 8)
<exp[—na + o(n)] + exp[—L(n) - n],
where L(n) » +» as n — 0 by (2.4). As a (< b) is arbitrary, we get the
desired upper bound. The lower bound based on (2.4) can be established in a
similar way (easier!).
We turn now to prove the key estimation (2.4) by applying Lemma 1 of

Talagrand. For this purpose set &, = {(f+ 1)/2; f € §,}, which satisfies the
assumption of Lemma 1. Setting H'(n,n) = ElZ}_ ¢, f(X})llg,, we have

iek <Vn.

k=1

(2.5) |2H'(n,m) — H(n,n)| <E

Consequently né/2 > L - H'(n, n)if 7 is sufficiently small and n large enough,
by our assumption (1.8) in (ii), where L is the universal constant in Lemma 1.
Applying Lemma 1 to §’, we get

P(1La(-) = n() s, = 8) = P(IL,(-) — u(-) Iz, = 8/2)
= exp(—¢L,S(n‘8/2)),

where S =nn?/2 + H'(n,n). We see clearly that ¢, 3(n6/2) is given by
expression (2.2) if n is small enough; hence

lim lim n™', ¢(nd/2) » +oo.

n—->0n—-oowo

Consequently (2.4) follows. O
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Proor oF THEOREM 2. (i) = (iii). The total boundedness follows from the
inf-compactness of Iy on £(%). The LDP implies convergence a.s. in (iii).

(iii) = (ii). A direct consequence of Lemma 2 as in the proof of Theorem 1.

(i) = (). As in the proof of Theorem 1, we have only to establish

1 n
(2.6) hm0 lim sup 2( ) og[P’( T k§1f(Xk) - n,u.(f)”&7 > 6) - —

n-—o

for all § > 0. As in the proof of Theorem 1, applying Lemma 1 to &/, we get

i )

—nu(f)

4

> 5/2)

Az

= exp( —¢r, s(‘/’z’\( n)6/2)),

where S =nn?%+ H'(n, n). It can be seen that Vn A(n)5/2 > L - H'(n,n) for
7 small enough and n large enough, by our condition (1.10) in (ii) and the fact
(2.5). Since ¢, s(Vn A(n)d/2) is given now by expression (2.2), we have

lim lim A~%(n)¢;, g(nd/2) - +oo.

n—->0n-ow

Consequently (2.6) follows. O
~ Since Corollary 3 is known, we are content simply to point out that the MD
~ estimation obtained in Theorem 2 gives us the crucial estimation required by

the classical proof of LIL (i.e., the Borel-Cantelli lemma plus blocking tech-
nique; see the proof of Theorem 8.2 in [6] pages 198-203).

3. Extension to the unbounded case. Let § be a class of real measur-
able functions on E so that || f(x)|| < +o for every x € E. Since the isoperi-
metric inequality of Talagrand in Lemma 1 depends strictly on assumption
(H1) (but it is very sharp, perhaps foo sharp for our purpose), in the un-
bounded case we should find other tools.

3.1. Large deviation estimations.

THEOREM 4. Suppose that & is a class of functions in L%(E, u) such that
(3.1) h(A) = f exp Al f(x)|g du(x) < +x forall A > 0.
. \

Then the equivalence of (i), (ii) and (iii) in Theorem 1 is valid.
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Proor. The implications (i) = (iii) = (ii) can be done in the same way as
in the proof of Theorem 1 in the bounded cases. Notice also that (iii) follows
easily from (ii). Thus it remains to prove (iii) = (i).

For this, we shall apply the comparison technique. For every N > 0, con-
sider the class Fny={fy =(fV(=N)AN,; fegF As d,(fy, &xn) <
d,(f, g), this new class is again totally bounded in L%(E, u). We claim now
that &, satisfies also

- 0.
3N

In fact, by Lemma 2 and the symmetrization inequality (2.3), the convergence
in probability in (iii) is equivalent to

H(n)

n

Y #(X,) - nu(e)

3.2 1}7 llE
(3.2) o N(n)-—; R

(3.3)

0.

Next, by the comparison theorem ([6], Theorem 4.12, page 112),
Hy(n) =E <2H(n),
&
where the desired convergence (3.2) follows by (3.3) and the inequality (2.3).
Consequently Theorem 1 can be applied to F, for each N > 0. By the
comparison technique, as in the proof of Theorem 1, to prove the LDP in (i), it
will suffice to establish

Z e [n(Xy)
k=1

1
(3.4) Am limsup —logP(|L,(f = fy) = u(f = fw)ly = 8) = -,

n—o n

vVé>0.
To this end we have, by the Markov inequality,

PIL.(f~fx) — u(f—fx)llz = 8)
< exp(—n 1) - Eexp(nA| L (f— fy) = n(f = fx)5)

<exp(-non) - ([ Al f = fu = wlF = i) lndn)

which implies immediately (3.4) by the dominated convergence theorem and
our integrability condition (3.1). O

REMaRks. If § is finite, the integrability condition (3.1) can be relaxed to
(3.1) f exp Al| f(x) |z du(x) < + for some A > 0,
E
(Condition (3.1) is also necessary to the LDP in (i). See [8], Section 4.1, for
detailed comments). However, in the infinite case, (3.1) cannot be weakened in

general, in the sense that one can find examples which do satisfy (3.1) but not
the LDP. This was indicated by de Acosta [1] and Gao [3] (see [8], Section 4.1,
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for the presentation of his result). Notice finally that in the setting of separa-
ble Banach spaces, the integrability condition (38.1) is the same as that of the
well-known Cramér theorem due to Donsker—Varadhan.

3.2. MD estimations. For LD estimation above we use the truncation
method where the truncation error is controlled easily by (3.1). For MD
estimation, Ledoux developed the truncation method in a finer way, based on
an isoperimetric inequality (i.e., Theorem 6.18 in [6]). We present his crucial
estimation (see (8) in [4]) in the nonseparable setting.

LeEMmMA 3 (Ledoux [4]). Let (¢,), ., be a sequence of i.i.d. r.v.’s defined on
a complete probability space (Q, §,P), with values in a Banach space (B, || - ||)
(not necessarily separable), satisfying the following: There is a countable
subset D of the unit ball of B' such that ||x|| = sup,c plf(x)| for all x in B.
Assume that {f(¢))% f <€ D} is uniformly integrable. Let (AM(n)), ., be an
increasing sequence of positive numbers satisfying (1.2) and the auxiliary
condition

(3.5) M nk) < AR7°"12)\(n) for some & > 0.

lin other words, (M(n)) cannot be too near Vn ]
If the following two conditions are fulfilled:

@ (MnWn)~1S, —> 0 in probability;
(ii) there is M > 0 such that, for all u > 0,

(3.6) lim supA~2(n)log(nP(ll¢ll > v)) < —u?/M;

n-—oo

‘then there exists some constant C,, depending only on M and A, § in (3.5) (and
not on &) such that

(3.7 lim supA ~2(n)logP(IIS, Il > A(n)Vn ) < —

n-—o

where 0% = 0%(£) = sup; < p E f(£))2

The estimation (3.7) is essential (and the difficult part of [4]) for the
characterization of the moderate deviations in a separable Banach space in [4].
The proof of (3.7) given by Ledoux works in the nonseparable setting (the
separability in [4] serves only for the existence of a finite-dimensional approxi-
mation).

Having this crucial estimation, we can easily prove the following theorem.

TI;EOREM 5. Suppose that & is a class of functions in L%(E, w), and A(n) is
as in Lemma 3. Then P(Wn /A(n)XL, — w)® € *) satisfies LDP on Z(F) with
speed A~*(n) and with the rate function I given by (1.9), if and only if the
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following three conditions are fulfilled:

() (&, d,) is totally bounded;
(i) Vn /Mn)IL, — w)® — 0 in probability in Z({);
(iii) there exists M > 0 such that, for all u > 0,

limsupA'z(n)log(n;L(Ilfllg >u)) < —u?/M.

n—o

Proor (Following closely Ledoux [4]). The necessity of (i) and (ii) can be
shown in the same way as in the bounded case, and that of .(iii) can be
established in the same way as in [4].

For the sufficiency part, notice first that if & is finite, this is done in [4]. For
& infinite, we have only to establish (2.6) by the discussion in Section 2, and
(2.6) is a direct consequence of (3.7) if one identifies B = /(% ,) and notes that
o? in (8.7) is smaller than n. O

ReEMaRks. For some usual sequences of A(n) such as A(n) = n!/?, with
p > 2, or M(n) = 2loglog n, Ledoux [4] translated condition (3.7) into the
integrability condition of | fll5.

CONCLUDING REMARKS.

(1) For the MD estimation, Lemma 3 of Ledoux is of course applicable to
the bounded case, but with the auxiliary condition (3.5) about A(n). It seems
that the isoperimetric inequality used by Ledoux is difficult to adapt to the LD
estimation. Anyway this paper speaks against the power of the isoperimetric
ideas.

(ii) In this paper we reduce the LD or MD estimations to the corresponding
convergence in probability. In the theory of empirical processes one can
establish this last property by means of metric entropy of (&, d,) [or of %
equipped with another metric] or by means of majorizing measure (see [2] and
[6]). For example, one can obtain easily interesting sufficient conditions of the
types of Theorems 19 and 20 of [5] from Theorem 18 of [5].

(iii) Of course Theorems 4 and 5 can be applied to the partial sums of a
sequence of i.i.d. r.v.’s (¢,),, . ; with values in a Banach space B (not necessar-
ily separable) satisfying ||x|l = sup, . plf(x)| for some fixed countable subset D
of the unit ball of B’. In fact, it suffices to put E = B and & = D, and notice
that Z(%) is isometric to (B, || - ).
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