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CONVERGENCE IN DISTRIBUTION OF
CONDITIONAL EXPECTATIONS!

By EIMEAR M. GOGGIN

Iowa State University

Suppose the random variables (XY, Y¥) on the probability space (¥,
FN, PN) converge in distribution to the pair (X,Y) on (Q, F,P), as N — oo.
This paper seeks conditions which imply convergence in distribution of the
conditional expectations EP"{F(XN) | YN} to EP{F(X) | Y}, for all bounded
continuous functions F. An absolutely continuous change of probability mea-
sure is made from PV to a measure Q¥ under which X and Y¥ are inde-
pendent. The Radon-Nikodym derivative dP¥ / dQ@V is denoted by LN Sim-
ilarly, an absolutely continuous change of measure from P to @ is made, with
Radon-Nikodym derivative dP/dQ = L. If the @Y -distribution of (XN, YV,
LV) converges weakly to the @-distribution of (X, Y, L), convergence in distri-
bution of EP N{F(XN )| YV} (under the original distributions) to EP{F(X) | Y}
follows. Conditions of a uniform equicontinuity nature on the LY are pre-
sented which imply the required convergence. Finally, an example is given,
where convergence of the conditional expectations can be shown quite easily.

1. Introduction. The problem considered here is to find conditions un-
der which convergence in distribution of a pair of random variables (XV,Y¥)
to (X,Y) implies weak convergence of the conditional distributions—that is,
convergence in distribution of the conditional expectations E{F(XV)| Y™} (or

E{FXM)| G"YN}) to E{F(X)|Y}, for all bounded continuous functions F.

That this question is nontrivial is shown by the following example.

Let XN =X for all N, and let YV = (1/N)X. Then XV, YV) = (X,Y) = (X, 0).
However, E{F(XV)| YN} = FXY) = F(X), while E{F(X)|Y} = E{F(X)}, so that
the conditional expectations do not converge [unless F(X) is degenerate]. The
well-known martingale convergence theorem can be interpreted as a positive re-
sult of the type in which we are interested. Here XY = X and YV = (Z1,...,ZV),
so that the o-algebras on which we are conditioning are increasing.

Another special case is when the conditioning o-algebras are identical, that
is, YV =Y.In [6] it was stated that if X!, X?,... are positive integrable random
variables and if XV converges to X almost surely, then E{X" | Y} converges to
E{X|Y?} almost surely if and only if the X" are uniformly integrable. In fact,
this is not true—a counterexample was produced in [7]—but convergence in
distribution of the conditional expectations does follow.
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1098 E. M. GOGGIN

The study of convergence in distribution of conditional expectations has ap-
plications in communications theory, where the estimation of a transmitted
signal which has been corrupted by additive random noise is a common prob-
lem. An observation is made, from which it is desired to “filter” the noise, thus
obtaining the best possible estimate of the original signal. The conditional ex-
pectation of the signal given the observation is the optimal estimate, in the
sense of minimum mean square error. Computation of these conditional expec-
tations is, in general, extremely difficult.

One approach to this problem uses an absolutely continuous change of prob-
ability measure. If it is possible to find a new measure @, with respect to which
the original probability measure P is absolutely continuous, and under which
the signal and observation are independent, then the conditional expectation
(under the original measure) can be written explicitly in a comparatively simple
form. However, in practice, this optimal estimate is still difficult or impossible
to calculate, and it is natural to seek approximations. We hope that, if the signal
and observation are approximated, this will lead to a conditional expectation
that is close to the true conditional expectation of the actual signal given the
observation. We present easily verifiable conditions under which this is true.

For suitable metric spaces S; and S, the first component of the S; x S,-
valued random variable (X,Y) can be considered as the signal, and the second
as the observation. In Section 2, it is assumed that a sequence {(X", YV)}, where
(XN, YV) is defined on the probability space (¥, N, PN), converges in distri-
bution to (X,Y), defined on (Q2, ¥, P), and that for each N there is a probability
measure @~ such that PY is absolutely continuous with respect to @" and such
that, under @V, XV and Y¥ are independent. Let LN(XN,Y™) be the Radon—
Nikodym derivative, or likelihood ratio, dP"/d@" . Similarly it is assumed that
there is a probability measure @ under which X and Y are independent.

The main result, Theorem 2.1, states that if there exists a function L(X,Y)
with EQ{L(X,Y)} = 1, such that the @"-distribution of (XV,YVN 6 LN(XN YN))
converges weakly to the @-distribution of (X,Y, L(X,Y)), then the conditional
expectations EP" {F(X"V) | YN} converge in distribution (under the original mea-
sures) to EF{F(X) | Y}, for every bounded continuous function F. In this section
it is also shown that, in order to obtain the convergence of the conditional ex-
pectations, it is sufficient to show that the estimation errors converge, that is,

EP”{ [Py - B {F(xY) | 7V)] 2} — B[ [F00) - BF(FCD) | ¥))?)

as N — oo, for every bounded continuous function F.

In Theorem 3.1, conditions of a uniform-equicontinuity nature on the den-
sities LV are presented which, it is shown, imply the required convergence.
Section 4 considers, as an example, a convergence result (by di Masi and Rung-
galdier [2]) which follows as an application of these theorems, and mentions
some further developments investigated elsewhere [4].
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2. The main result. In this section, conditions are presented under which
convergence in distribution of (X¥,Y%) to (X,Y) implies convergence in distri-
bution of E{F(XV)|Y"} to E{F(X)|Y?} for all bounded continuous functions
F. We assume that S; and S, are complete, separable metric spaces and that
XM, YN),N=1,2,...,and (X,Y) are S; x Sy-valued random variables defined
on the probablhty spaces @V, 3N PN)and (Q, 7, P), respectively. Suppose that
{XN,YN)} converges in distribution to (X,Y), and that PY <« Q¥ on o(XN,YN),
with dPV/dQYN = LN(XY,YV). Assume that, under @V, X~ and YV are inde-
pendent, with marginal distributions 4" and vV, and assume that yV x vV
converges weakly to u x v. Let @ be a probability measure on 2 under which
p X v is the distribution of (X, Y). Under all these circumstances, the following
theorem gives the result we want.

THEOREM 2.1. Suppose that the Q-distribution of (XN, YN, LN(XN YN))
converges weakly to the Q-distribution of X,Y,L(X,Y)), where E{L(X,Y)} = 1.
Then the following hold:

(i) P Qon o(X,Y)and dP/dQ = L(X,Y);
(ii) For every bounded continuous function F:S; — R, EP {F(XN )| YN} con-
verges in distribution to EF{F(X)|Y} as N — oo.

Proor. (i) Let H:S; x Se — R be any bounded, continuous function. Since

|H (XN, YY)LN (XN, YV)| < |H||lLN (XN, YV),
HXN, YN)IN (XN YY) = HX,Y)LX,Y),
|H|| oL (XN, YY) = ||H||LX, V),
EQ{|H|looL” (XN, Y™) } — EY{||Hoo |LX, D)},

then, by a version of the dominated convergence theorem [3],

EX{HY, YV (xV, YY)} - EYHX, V)LE,Y)}.
However,
E{H XY, YV)IN (X, ¥V)} = EF{HEXY,YV)},
— EF{HX,Y)},

so that E®{H(X,Y)L(X,Y)} = EF{H(X,Y)} for all bounded continuous H. Thus
P < Qono(X,Y), with dP/dQ = LX,Y).

(ii) This part of the proof is done in several steps.

Step 1. Let B(S) be the Borel setsin Sy, and let py( -, - ): B(S1)xSs — [0, 1] be
a regular conditional probability distribution for X given YV. Define \V(4) =
AN(A,w) := py(A, YV (w)) on B(S;). We show that the sequence {\¥} of measure-
valued random variables is relatively compact. Since XV converges in distri-
bution to X, for each £ and &, > 0, there exists a compact set K}, such that
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PN{XN € K3} > 1— & for all N. Then
1-8 < PV{XV e K} = EF" NV (Kp)}

= / W (KX gy > 1-1/8y PV + / N Rx pwagy < 1-178y APV

1\ 1.4 1
S<1_;>+;P {)\ (Kk)>1—73’}

Pick ¢ > 0. Choose &, = ¢/k2*. Then PY)DV(K}) > 1 — 1/k} > 1 —¢/2*, and so
PYONK,)>1-1/kVE} >1—e.

Let K. = {probability measures n:n(K;) > 1 — 1/k V k}. Then X, is compact.
Since

PN e X.) =PN{AN(Kk) >1-— % Vk} >1-—c¢,

by the Prohorov theorem, {\} is relatively compact.

We next use the fact that, in order to prove that the conditional expecta-
tions converge in distribution, it is enough to show that the estimation errors
converge, that is,

s {reen -5 {rn )]} - {[poo - ro )

for every bounded continuous function F. Since this result is true in a more
general context than that employed here, it is presented as Lemma 2.2 at the
end of this section.

Step 2. It remains to be shown that the errors converge, or equivalently that

| [ {ree) i)'} - ey,

EQ”{ [EP” {F(XN) | YN}] N (XN, YY) } - EQ{ [EP {FX)| Y}] "Lx , Y)}.

Thus we need to show that

NTN (! N( 71"\ ]2
/ / [fF;zlz’I(Jx/@;)zI)f(Ldgx )] LN (@, ) (dx)w N (dy)

- JF (9"')14(36’,y)u(dx')}2 .
/ / [ J L=, y)p(dx") L(x,y)u(dx)(dy) as N — oo,

for all bounded continuous functions F. We can assume W.l.o.g. that 0 < F < 1.

Pick £ > 0. There exists a bounded, continuous function L, w.l.o.g. strictly
positive, such that

IL - ||, = / / ILx, ) — Lo, )| id)w(dy) < 6,
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where § > 0 will be chosen later. Notice that

/ / [ JF(x)L(x',y)p(dx")
J L', y)p(dx")
B / / [ JFGOIN (x', y)uM (dx')
JLN (', y)uN (dx')
_ / / [ J FGL(', y)uldx")
B J L', y)u(dx")
. / / [ [ F@))Lx', y)u(dx) ] 2 [ JFaOL!,y)u(dx’)
J L&', y)uldx") [L(x',y)u(dx)
fF(x’)Z(x’,y)u(dx')ri
= ,yuldx)v(d
+ / / [ Tyl (x, y)uldx)v(dy)
_ / / [ [ F&)L(, )N (dx)
[ L(x',y)uN(dx')
. / / [ fF(x')z(x’,y)uN(dx’)J 2 [ JF&LN (', y)puN (dx') } 2
J LG, y)uN (dx') JLN G y)p (dee')
x L(x,y)uN (dx)w N (dy)

2
] Lix, y)u(dx)(dy)

2
] LV, )N (dx)v N (dy)

2 ~
] [Lx,5) — L, )] uldeydy)

2
} ]L(x, Pulde)(dy)

2
] Lx,y)N dx)v N (dy)

.,.// [ [FGLN (!, y)pu (dx’

N7
JLV G, y)uN(dx') J [LGe,y) = LG, ) i (v (dy)

<z L,
.\ / / JFGLG y)ulda’) fF(x’)i(x’,y)u(dx’)!
J L', y)u(dx') ffz(x',y),u(dx')
JF@LG  yyuldx') [ Fa L', y)uldx) |~
= L(x,y)u(dx)v(d,
TL D ud) [T pytdary |- @)

fF(xf)E(xf,ym(dxf)J 2 i
— , dx)v(d
' <// [ [ Lty | CHPHEN@)

[F@L!, y)p (dx’)] Zi N N
_ ol , d. d
//l: fL(x’,y),uN(dx’) (o, )™ (dx)v ™ ( y)

. / / JFOLE y)puN(dx') [ FaOLV (!, y)p (dx')

[La,yuNdx)  JLN@,y)uN(dx))
JFGOLG& )N de') | [FaLY@ yu¥dx) =, wooo
x R TLN G,y @) L(x,y)u (dx)v™ (dy)

+ L =L,y
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where || f||1, v means [[ | f(x,3)|uN (dx)vN (dy). N
The first term is smaller than 6, by the choice of L. The second term is
bounded by

2
/ / J L(x',y)u(dx’) [ L/, y)u(dx")
/ FL(x', y)u(dx") / L, y)u(dx’)

X

- / F)LG! y)ulde) / L& y)u(ds)| L e,y u(d)v(dy)

=2/ m / FO)LG! ,y)uda’) / [z(x',y)—L(x’,y)]u(dx’)

+ / L&', y)u(dx) / F(x’)[L(x’,y) - Z(x’,y)] w(dx") | v(dy)

< 4||L _z||1

< 46, as above.

The third term is bounded by

J F(x’)i(x’,y)u(dx')ri de)ud
‘ / / [ | Lanmay)

fF(x/)i(x’,y)de')rz N N
- — (x,y)u” (dx)v™ (dy)
// [ Lo,y (d’) yH Y

fF(x’)i(x’,y)u(dx')r~
< = L(x, y)u(dx)v(dy)
|// [ [ L yyulde) PHEEY

INT (el NS
B / / [ [ FeOLG! y)u(de )] L,y (dz)w (dy)
J L', y)p(dx")

ey
J L', y)u(dx')

fF(x/)ﬂx/,y)uN(dx')r ~
- ~ L(x, dx)N(d
[ T ) (e, )i (dx) N (dy)

The function

INT (w N2
JF&")L(x', y)u(dx )] Lxy)

Gx,y) = [ ~
wY J Lo ypudac)

is a bounded continuous function of (x,y) and ¥ x vV converges weakly to
u X v, so, for N large enough, the first difference here is less than 6. The
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second difference,

/ / “ fF(x’)i(x’,y)u(dx’)] 2 [ JFGOLE ,y)u (dx')
[ L&', y)p(dx’) [ L', y)uN(dx')

is bounded by

bl

2
] ]L(x,y)uN (dx)vN(dy)

2 =4 ~
—_— F IL I’ d / /L ,’ Nd ,
/ S LG/, y)u(dx’) / @OL(', y)u(dx’) | Lix',y)u (dx')

_ / FGOLG!, y ) (dx') / L&, y)uda) v (dy)

<2 / U / L,y (da) - / i(x’,y)n(dx’)!

+ / FGL(x',y)u (dx') - / F(")L(x',y)u(da’) } v (dy).
We can write
/ ( / L', y)uMdx') — / L&', y)ulda)| vV (dy)
-/ ( [ E @~ [Tyt
. /K c / Lo, y)Nda') - / L yutdx))|v N (dy),

where K is compact and, by tightness of {v"}, is chosen large enough so that
vN(K®) < §/||L||s for all N. On K,

/ L(x,y)u¥ (dx) — / L(x,y)u(dx)| — 0
uniformly; so, for N large enough,
/ e, y)u(dx) — / Llx,yuidn)| <5 ¥yeKk.
Thus
/ ( / L,y dx) - / L, y)udo)|vV (dy) < 36.

Since [ | [ F(x)L(x,y)uN(dx) — J F@L(x,y)u(dx)|v"(dy) can be dealt with simi-
larly, for N large enough, the entire third term is less than 136.

By work similar to that done for the second term, the fourth term can be
shown to be bounded above by

4| - LV, , = 4//|i(x,y) — LN e, )| i (e N dy).
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Now
JE - 27, =B e v) - e v )
=E6{\z(;zw, ) _zwy}

[using a Skorohod representation, where {(X¥,Y¥ ZV)} and (X,Y,Z) are de-
fined on a probability space (Q, F,Q); for each N, (X¥, YN ZN) has the same
distribution as XV, YN, LVN(XV, YY) under QV; (X,Y,Z) has the same distri-
bution as (X,Y,L(X,Y)) under Q; and XN, ¥V ZV) - (X,Y,Z) Q-a.s.]. Note
that

BR{|L(x", YY) - 2V|} < BO{IL@Y,7") - L&.Y)|} +E¥{|L(X.7) - 2|}
+E5{|2—2N|}.

Now {XVN,YV)} — (X,Y)Q-a.s., and L is bounded and continuous; so for N large
enough the first expectation is less than §. The second term is |L —f,|| 1 which, by
assumption, is less than 6. Since Z¥N — Z Q-a.s., and J ZNdQ — [Zd@ (since
all the integrals are identically 1), [ |2N -Z | d@ — 0; for N large enough, this
last expectation is also less than é.

Thus ||L — LV||;, 5 < 36, and the fourth term is less than 125.

The fifth term is less than 34, as above.

Now take § < £/33. We have shown that, given ¢ > 0, we can find Ny such
that N > Ny implies that

EQ{ [EP{F(X) | Y}] 2L(X,Y)} _EQ"{ [EPN{F(XN) |YN}] 2LN(XN, YN)}|

< 336 < ¢,

and thus EP'{F(XV)| YN} converges in distribution to EP{F(X)|Y}, as
required. O

Next we present the result employed in Step 2.

LEMMA 2.2. Suppose that the random variables XV ,Y") are defined on the
probability space (N, F N ,PN) and take values in S1 x Sg, where S1 and Sy are
complete, separable metric spaces, and that the pair (X,Y) is defined on (Q, ¥, P)
and also takes values in Sy x So. If (XN, YN) converges in distribution to (X,Y)
and if, for a bounded continuous function F,

EPN{ [F(XN) B EPN{ F(xY) |YN}]2} 5 EP{ [F(X) — EP{F(X)| Y}]2}
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as N — oo then EP N{F(XN )| YN} converges in distribution to EF{F(X)|Y}.

Proor. Let B(S;)be the Borel setsin Sy, and let py( -, - ): B(S1) xSy — [0, 1]
be a regular conditional probability distribution for XV given Y7,

Define \¥(K) := py(K,Y") on B(S1). The sequence {\V} is relatively compact
(as in Theorem 2.1), and {(XV,Y™)} converges in distribution to (X,Y), so that
{XN, YN, \V)} is also relatively compact. Suppose a subsequence {(XV',YV',
AV )} converges in distribution to (X,Y,\*) where \* is, w.l.o.g., defined on
©,3,P). Let G be any bounded contipuogs function of Y and A*. For conve-
nience, relabel the sequence {(X™, YV, \¥')} by {(X¥, YV, \N)}. Then

EP{FCOGY, 3} = lim B {F(X")G(Y™, )}
T PV) PV N\ | vN N \N
= lim E {E {F&™) | YV }G(¥Y,x )}
= Jim EP”{ / FN(dn)G(YY, )\N)}
- EP{ / FOXd0G(Y, \*) }
Thus EP{F(X) | (Y, ")} = [ F(x)A*(dx), and EP{F(X) | Y} = EP{ [ Fx)\*(dx) | Y}.

As above, let p(-,-): B(S1) x S3 — [0, 1] be a regular conditional probability
distribution for X given Y, and define MK) := p(K,Y). Next, we show that

2
EP{[ / FOoMdx) — / F(x)A*(dx)] }=0:

2
EP{ [ / FGoA(dx) — / F(x)/\*(dx)] }

_ 2
=EP{ EP{ / F(x)X‘(dx)‘Y} _ / F(x)/\*(dx)] } (by above)

=EP{ -/F(x))\*(dx)r - [EP{ /F(x)A*(dx)‘Y}r}

) 2
= EP { / F(x)/\*(dx)] — [EP{F (X)|Y}]2}

= EF{ [FX) - EF{F(0) | Y}]"}

2
- lim EPN{ [F(XN) - B {F(x™) | YV }] }
Thus, convergence of the estimation errors implies [ F(x)A(dx) = [ F(x)\*(dx)
P-a.s., and thus we have convergence in distribution of the estimates limy_,,
EP"{F(XN)| YN} to EP{F(X)|Y}. O
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3. Conditions for convergence of the Radon-Nikodym derivatives.
Here we give conditions of a uniform equicontinuity nature on the densities
LY which ensure the required convergence of the conditional expectations.
Theorem 3.1 presents a very general convergence result, which may be applied,
specifically, in the filtering context. The background here is that (S,d) is a
complete, separable metric space and that X is an S-valued random variable,
defined on the probability space (Q, , P), with distribution p. Also X¥ is an SN-
valued random variable defined on (O, 5V, PN) with distribution pV, where
SV is asymptotically dense in S [i.e., S¥ c S and for each x € S, 3xV € SV,
N=1,2,...,suchthatdx",x) » 0as N — oo]. It is assumed that P’ < @" on
o(X™N), with dPV /dQYN = LN¥(XV), and that v¥ is the distribution of X under
QY. Further, ;¥ converges weakly to u; vV converges weakly to v; and @ is a
probability measure on (2, ) under which v is the distribution of X.

THEOREM 3.1. Suppose that for each compact K C S there exists a real-
valued function wg on [0, 00), continuous at 0 and with wg(0) = 0,;and a sequence
{eX}, with e > 0and e} — 0as N — oo, such that

(3.1) |LN(x) - LN(x’)| < wg (dx,x)) + ey,

for x, x' € K NSN. Suppose further that {LN(w")} is bounded along some con-
vergent sequence {w"'}.

Then P < Q on o(X), and if L(X) = dP/dQ, then the @"-distribution of
LN(XN) converges weakly to the Q-distribution of L(X).

Proor. Let E = {w;} be a countable dense subset of S. The proof now
involves the following six steps:

(i) DefineL onE. ~
(ii) Extend the definition of L to all of S.
(iii) Show L is continuous.
(iv) Show [Ldv=1.
(v) Show L' (X"') under Q' converges weakly to L(X) under Q.
(vi) Show P « @ on 0¢(X) and dP/dQ = L(X) = L(X).

(i) (Define L on E.) For each w; € E, use the asymptotic denseness of SV in
S to obtain a sequence {w'} converging to w;, where w¥ € S¥. Since {L"} is
bounded along some sequence, we can use condition (3.1) to conclude that it is
bounded along any convergent sequence. Then an Arzela—Ascoli diagonaliza-
tion argument demonstrates the existence of a subsequence {N'} such that, for
each i, {LV'(w!')} converges, as N’ — oo, to some limit, denoted by Lw;).

Furthermore, if {x} is any other sequence converging to w;, with x € SV,
then, for the same subsequence {N'}, LV ' (N ') also converges to L(w;). (This
follows by considering the compact set K; := {w;} U {x¥ "} U {w'}; the uniform
equicontinuity condition implies

[V (@) = IV @) | < s (A w0 ) + <R
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which converges to 0 as N — 00.)

(ii) (Extend the definition of L to all of S.) Fix x € S. Since E is dense in
S, 3{x;} C E > d(x;,x) — 0 as i — oo. Then, for each i, take any sequence
{x]N} converging to x;, with x¥ € SV, and take N; > N;_; such that dx}N,x) <
1/i V.N > N;. Define K to be the set consisting of x, the sequence {x;} and,
for each i, the portion of the subsequence {xiN '} for N’ > N;; K is sequentially

compact and hence compact; and LY (x¥') — L(x;) for each i.

We show that E(xi) is Cauchy and thus has a limit, as i — oo; L(x) is defined
to be this limit. Pick ¢ > 0. Then, for any i and j,

L) - L] = Jim |EN@N) - V().

Wecanfindé > 050 <a <8 = wgla) < /2. Take i an/dj large enough/ so that
d(x;,x) < 6/3, and take N’ large enough so that d(x;, xV') < 6/3, d(x;,x)') < 6/3
and f <e/2 andx? and x¥" are in K, so that
‘LN'(xiN') - LN'(xjN')\ <wg (d(xiN',xJN')) +ef.

Thus |E(x,~) - f(xj)| < g, as required. Again, the uniform equicontinuity condi-
tion can be used to show that if {x;} and {y;} are two sequences from E both
converging to x, then L converges to the same limit along both sequences.

(iii) (Show L is continuous.) Now this is obvious, from how L is defined.

(iv) (Show [Ldv = 1.) Pick € > 0. Pick M > 0. Let o = ¢/3. Choose a

compact subset K of S such that vN(&° N SY) < a/M V N. Then LAMisa
bounded continuous function, and

/EAMdu=/EAMdy-/EAMduN+/ZAMdyN
<a+ / LAMdvY  [for N = N(M) large enough]

<a+/ [EAM—LNAM|duN+/ LN AMdvY
KNSy KNSV

+/ LAMdvN

KenSN

<2a+/ |E—LN[duN+1.
KnNSN

Now choose N from the sequence {N'} of part (i). The key element of this proof,
which will be used again later in this part, and also in part (vi), is that, for any
compact K C S,

sup [i(x)—LN/(x)[—>O as N’ — .
xEKNSN
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If not, for some § > 0, 3 {N”} c {N'} and {y""} with y¥' € KnSY", 5
IL(yN") — LN"(yN ") > 6 VyN" . There is a further subsequence {y~ ”'} which
converges, say, to y, and L¥"'(yN"') converges to L(y). Then

E(y)_L //l(le//) ,

’i(lel/) _ L 11 (yNIII) +

S ’E(me) —E(y)

and the right-hand side converges to 0 as N’/ — oo since Lis continuous, which
provides a contradiction. Thus

/ L-IN|dN < sup |t — LV @)
KNSy xeKNSV

<a for N'=N'(M,K)large enough
and

/EAMdu<1+3a=1+e.

Letting M — oo and then ¢ — 0 allows us to conclude that [ Ldv<1.
Next, pick € > 0 and let o = /3. Choose K C S compact > uN(K*nSN) <

aV N; L is bounded on K, say, by M. Then
/idu > /E AMdv

/E AMdv— [ EaMar™y + [ DA™y
sV S

>—a+ | LAMd/"Y [for N’ = N'(M) large enough]
s’

> —a+/ LAMdvY
KNSy’

= —a+/ LdvV
KnSN'

= —a+ / E—IVYd + N (K SY)
KNSV

>—2a+1+/ (E—LN/)dUNI
KNSy

>1-3a
[for N = N'(M, K) large enough, as in the first half of the proof]
=1-e.

Letting ¢ — 0, we see that [ Ldv > 1; combining the two results, f Ldv=1.
(v) [Show LN(XN ) = L(X).] We do this by showing that, for any ¢ > 0,
vN{x € S¥':|LN'(x) — L(x)| > €} — 0 as N’ — oo. Pick 6§ > 0. Use tightness of
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{v"} to choose a compact set K such that vV(K°) < §/2V N. Then
vV x € SV |LV6) - Liw)| > e}

1
<= € L~
€ /KnsN' X{x: LN (x)—L(x)| >€}

<1 / B — I¥ @)™ () + 2.
€ Jknsv 2

N 6
v (dx) + )

As in part (iv), N’ can be chosen large enough so that the integral is smaller
than 6¢/2, which gives the required result, since vV is the distribution of X'
(under @), LX) — IV'(XN') = 0 and LXM') = L(X), so LV (XV') = L(X).

(vi) [Show P < @ on 0(X), and dP/dQ = L(X).] The proof is similar to that of
part (iv). Pick € > 0, and let a = /4. Pick M > 0, and choose a compact K C S
such that vV (K¢ N SY) < a/(||F|loM) V N, where we first suppose that F is a
nonnegative, bounded, continuous, real-valued function on S:

/F(EAM)dI/:/F(i/\M)du—/ F(ZAM)dyN’+/ F(L AM)dvY
SN’ SN

<a +/ F(LAM)dvY +/ F(LAM)dvY
KNSV Ken SN
[for N’ = N'(M) large enough]
< 2a+/ FILAM —IN' AM|dv™
KNSy

+/ FIN AM)dN
KNSy

<20+ |Flw / L-I¥|aN + [ FIN @™
KnSN' SN’

<8a+ | FLN' 4V
SN’

[as in (iv), for N’ = N'(M, K) large enough]

=3a+ | Fdu
SN’

<e+ / Fdy (for N’ even larger, if necessary).
Letting M — oo and then € — 0, we see that fFidu < [Fdp.

To get the reverse inequality (again with F' > 0, bounded and continuous),
choose € > 0, take o = ¢/4 and let K C S be a compact set > uV(K° N SY) <
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a/||F|leo VN L is bounded on K, say, by M. Then

/FiduZ/F(f/\M)du—/ F(E/\M)duN’+/ F(LAM)dvY
SN/ SN/

> —a+/ F(E AM) v’ [for N’ = N'(M) large enough]
KNSN'

= —a+/ FLdvN
KNSy

= —a+/ F(E—LN’)duN’+/ Fdu
KNSy KNSV

> —a - ||Flloo / L —LN'|dv™ + / FduV' — / FduN
KNSy SN’ Ken SN’

> —3a+ FduN [for N' = N'(M,K) large enough]
SN

> —4da+ / Fdy (for N’ even larger, if necessary.)

Letting ¢ — 0, we get [ FLdv > [ Fdy; combining the two parts of the proof,

we see that [ FLdv = [ Fdy, for F bounded, continuous and nonnegative. Then
for a general bounded, continuous F,

/ FLdv = / (F + |Flloo)Ldv — | Flloo / Ldv

_ / (F+ |Flloo) dit — | Fllco

= /qu,

as required, and this section is completed: 4 < v anddy/dv=Land so P < Q
on o(X), with dP/dQ = L(X). Finally, the restriction to the subsequence {N'} is
unnecessary. Since we can first take any subsequence of {N}, there is a further
subsequence along which {L¥(X")} converges, and the limit is always dP/d@,
so that LN(XV) converges in distribution to L(X) := dP/dQ, and the proof is
complete. O

Next, we apply these results to the filtering situation of Section 2; X repre-
sents the signal and Y the observation, on (Q,%,P). These are approximated
by (XN, YV) on (¥, FN,PN), and it is assumed that PV is absolutely continu-
ous with respect to @V on o(XV,YV), with dPV /dQY = LN(XN,YV), where XN
and YV are independent under @”. In order to apply Theorem 2.1 to conclude
convergence of the conditional expectations EF"{F(XN) | YV} to EP{F(X) | Y}, we
need first to use Theorem 3.1 to obtain convergence under @~ of the LN (XV,YV).
It may not be easy to apply the uniform equicontinuity condition directly to
LN(x,y). Instead, we assume we can write LN(XV,YV) = LY(XN,YV,Z"), for
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ZN a Borel-measurable function of X and Y¥, and that the uniform equicon-
tinuity condition may be applied to LY (x,y,2). [In Section 4, we take Z¥(¢) to
be a stochastic integral of the form fg c(X™(s))dY"(s) which appears in the ex-
ponent of LN(XY YV) and which is convenient for us to isolate.] Furthermore,
we assume that the PV-distribution of (XV,Y",ZN) converges weakly to the
P-distribution of (X,Y,Z), where Z is a Borel-measurable function of X and
Y, that the @"-distribution of (X, YV, Z") converges weakly and that @ is a
probability measure under which the distribution of (X,Y,Z) is this limiting
distribution. (It is important to know that the limit Z is a measurable function
of X and Y; this is not always the case, and it is this fact that is the key to the
situations when the conditional expectations do not converge [4]).

Now Theorem 3.1 implies P « Q on 0(X,Y,Z) = ¢(X,Y); if dP/dQ = Ly(X, Y,
Z) =: L(X,Y), then the @-distribution of LY(XN, YN, ZV) [= LN(XN,YN)] con-
verges weakly to the @-distribution of Ly(X,Y,Z) [= L(X,Y)]. Finally, we can
now forget about Z¥ and Z, and apply Theorem 2.1 directly. Since the PV-
distribution of (X¥, YV) converges weakly to the P-distribution of (X,Y) and the
QV-distribution of (XY, Y¥ LN(XN, YV)) converges weakly to the @-distribution
of (X,Y,L(X,Y)), then for every bounded, continuous function F we have

EP”{F(XN) Vel } = EP{F(X)|Y}.
This result is stated formally now.

THEOREM 3.2. Let S;i=1,2,3, be complete separable metric spaces, and let
X,Y,Z)on(Q, T, P)takevaluesin (S1xS9xS3,d), where Z is a Borel-measurable
function of X and Y. Let Sfl" X 312\7 X Sg’ be asymptotically dense in S; x S X S3,
and let XN, YN, ZV) on (N, FN  PYN) take values in SJI" X SIZv X Sg’, where ZN is
a measurable function of XN and YV.

Assume that the PN -distribution of (XN, YV ,Z") converges weakly to the P-
distribution of X,Y,Z), and that PY <« Q¥ on o(XN,YN), where X¥ and YN
are independent under QY. Furthermore, assume that the Q"-distribution of
(XN YN,ZN) converges weakly and that Q is a probability measure on (Q,F)
under which the distribution of (X,Y,Z) is this limiting distribution. Finally,
assume that the densities LY satisfy the conditions of Theorem 3.1, that is, for
each compact set K C S = S; x Sg x S, there exist a function wg on [0, co],
continuous at 0 and with wg(0) = 0, and a sequence {e} with e} > 0 and
sllg — 0as N — oo, such that

ILNw) - LN w")] < wg (dw,w") +&F,

forw [= (x,y,2)],w’ € KN SY, and that {LN (w™ )} is bounded along some conver-
gent sequence {w™}. Let F be any bounded, continuous, real-valued function on

S1. Then EF N{F(XN )| YN} converges in distribution to EP{F(X)|Y} as N — oo.

4. Application. The results above are used to obtain a filtering result of
de Masi and Runggaldier [2]. A signal X and an observation Y are represented
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on (9, ¥, P) by the pair of stochastic differential equations

dX(t) = a(X (@) dt + b(X(®)) dW(2),
dY() = ¢(X(®) dt +dV®) +dN(@®), 0<t<T.

Here N is a Poisson process with rate A > m > 0;a, b, ¢ and A are bounded, con-
tinuous functions; V and W are standard Brownian motions; V is independent
of X, of W and of N, and Y¢ := Y — N. Let F be any bounded, continuous function.

The authors are interested in approximating the optimal filter EP{FX@®))|
H‘tY }, 0 <t < T. They employ an absolutely continuous change of measure, as
above, from P to a probability measure @ on (2, ¥) under which X is independent
of Y and which is defined by

dP T . 1 (T,
20 = exp [/0 c(X(s)) dY*(s) - 5/0 c?(X(s)) ds

i /OTIHA (X(6) dNGs) + /OT (1—/\(X(s)))ds].

Then P <« @ on IT%{ v IT%' and, for ¢ € [0,T], the conditional expectation
EP{FX@®))| FY} can be written V,(Y,F)/V(Y, 1), where

(4.1)

t t
V«(Y,F)=E® {F(X(t)) exp[/ c(X(s))dY*(s) — —;— / c*(X(s))ds
0 0

N /Otln M(X(8))dN(s) + /0 t (1-A(X(s)))ds]

?}’}.

The diffusion X is approximated by a sequence of weakly convergent finite-
state Markov chains XV on (£, %); the observations Y are not approximated.
The conditional expectation is approximated by VN(Y,F)/ VN(Y, 1), where

t t
VN(Y,F)=E® {F(XN ®)) exp[ / c(XN(9))dY*(s) — —;— / c*(XN(s))ds
0 0
¢
¥ / In A(X¥(s))dN(s)
0

+/0t (1—/\(XN(s)))ds] i?ty}.

Note that VN(Y,F)/VN(Y,1) is itself a conditional expectation under an “ap-
proximating” probability measure PV on (2, ), that is,

VN(Y,F)

- gP" N Y
VD " F F(XV@) |57},
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where P¥ is defined by
N T T
aP” _ exp / (XN (s))dY*(s) — 1 / c?(XN(s))ds
dQ 0 2 0

(4.2)
T T

N N .

+/0 In\(X (s))dN(s)+/0 (l—A(X (s)))ds],

however, this observation is not used to prove the convergence of VN(Y,F)/
VN(Y, 1) to EP{F(X()) | 5} }.

Now we put the problem into our framework. The random variables X and
Y of the previous sections are stochastic processes X(-) and Y(:) on (Q,F,P)
taking values in Dg[0, T]—that is, the metric spaces S; and S, are Dg[0, T,
equipped with the Skorohod metric. Under the probability measure Q deﬁned
by (4.1), the processes X(-) and Y(-) are independent; Y* is an {F5 v F7}-
standard Brownian motion and N is standard Poisson; and the restrlctlons of
P and Q to ?X t € [0,T1, are the same [2]. Further, P < @ on FT \% FT , and we
will write LT(X Y) for dP/d@Q as given by (4.1).

The sequence of Markov chains {X™(:)} on (Q, F) converges in dlstrlbutlon to
X0, (N, V)= (Q,F)and YN = Y,N =1,2,.... Under the probability measure
PY defined by (4.2), the distribution of XV(-) is the same as under ; and (again
by [2]) Y(-) admits the representation

(4.3) dY () = ¢(XV(®)) dt + dV(¢) + AN (@),

where Vis (PV, I}'%{N Vv 5¥)-standard Wiener and N is Poisson with rate A(XN(.)).
Further, under @, X¥(.) and Y(-) can be assumed to be independent, and the

restrictions of P and @ to H'tXN, t € [0, T], are the same—so that X" has the same

distribution under PV, P and Q. Thus PY « @ on 5“¥N Y 3‘%, the probability
measures QY of the previous sections are identically equal to @ and we will
write LY (XN, Y) for dPV /dQ as defined by (4.2).

We can conclude that EP{F(XN ()| FY¥} converges to ERF(X(®))|FY}, t €
[0, T by checking the following two conditions.

1. The PV-distribution of (XV(.),Y(-)) converges weakly to the P-distribution
of (X(-),Y()).

This is true because the distribution of XV is the same under PV and under P,
and XV is chosen to converge in distribution to X under P and because of the
representation of Y in (4.3).

2. The Q-distribution of (XV(.),Y(-), L¥(XM,Y)) converges weakly to the Q-
distribution of (X(-), Y(.),Lp(X,Y)).

The first component is taken care of as above since X”(-) has the same distribu-
tion under P¥, P and Q; the second component obviously presents no problems;
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and convergence of the random variables LY(XV,Y) to Ly(X,Y) hinges on con-
vergence of the exponents

to

T T T
/ (XN (©)dY(s) - } / (XN (s))ds + / In (X ())dN(s)
0 0 0

+ /0 ! (1-2xY6))ds

T T T
/ ¢(X(s))dY*(s) — 1 / ¢ (X(s))ds + / In A (X(s))dN(s)
0 0 0

+/0T (1 - /\(X(s)))ds.

This can be shown easily with a Skorohod argument under which XN L X
Q-a.s. ’

In fact we get convergence in distribution of the process EP {F(XV(.)) | 57}
to EP{F(X(-))|F¥} on [0, T'.

In [4] a related problem is discussed in which both X and Y are approximated
by the solutions XV and YV of stochastic difference equations, and V and W
are approximated by sums of properly normalized i.i.d. random variables. Con-
vergence of the conditional expectations is here shown to depend on how W is
approximated, with the required result following if and only if the i.i.d. random
variables used are Gaussian. A theorem about convergence of stochastic inte-
grals from [5] is the key to the convergence of densities LY (X", Y") to L1(X,Y).

(1]
[2]
(3]
[4]
(5]
(6]
(7
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