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A LAW OF THE LOGARITHM FOR KERNEL QUANTILE
DENSITY ESTIMATORS!

By X1A0JING XIANG

University of Oregon and University of Chicago

In this article we derive a law of the logarithm for the maximal de-
viation between two kernel-type quantile density estimators and the true
underlying quantile density function in the randomly right-censored case.
Extensions to higher derivatives are included. The results are applied to get
optimal bandwidths with respect to almost sure uniform convergence.

1. Introduction. Let X7, X,,..., X,, be independent and identically dis-
tributed random variables with common distribution function F(x). Let f(x) =
F'(x) be the density function of X;. A very popular estimator of f(x) is the kernel
estimator defined by

1 t—x

where F, is the empirical distribution function of the sample Xj, ..., X,, {h,}
is a sequence of bandwidths with A, | 0 and K(x) is an appropriate kernel func-
tion. Let

- 1 t—x
(1.2) P =Ef® = - / K(h—n) dF ().

Stute (1982b) proved a law of the logarithm for kernel density estimator. For
eache > 0and I = (a,b) witha < b, put I, = (a +¢,b — ¢). Assume that K is of
bounded variation with K(x) = 0 outside some finite interval [r, s). Then if f(x)
is uniformly continuous on I with 0 < § < f(x) < M < oo for all x € I, Stute
showed that [Theorem 1.3 in Stute (1982b)]
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Stute’s result gives the best uniform convergence rate of f,(t) to £,(¢) on I. and
can be applied to get the optimal bandwidths with respect to almost sure uni-
form convergence of f,(t) to f(¢). For instance, if f?(¢) is continuous on I, the
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corresponding optimal bandwidth given in Stute (1982b) is

W [ K2wdu logn) v

hn ~ ( 2 2
10sup, ¢, (/2@ /)] (f K@urdu)® "

and with this optimal bandwidth,

LO-® _ (m)z/s
VI@) n
uniformly on I..

Let Q@) = inf{x: F(x) > ¢},0 < ¢ < 1, be the quantile function of F(x) and
q(¢) = Q'(¢) be the quantile density function. The quantile density function plays
an important role in the statistical data modeling [see Parzen (1979)], reliability
and medical studies. Parzen (1979) first introduced a kernel quantile density
estimator. One version of the kernel quantile density estimator is

x—t
hn

11
Skl - /
(1.5) G0= 1 /0 FlK ( )dx,
where F,;l(x) = inf{u:F,(u) > x}. Falk (1986) established the asymptotic
normality of g;(#) and obtained optimal bandwidths by minimizing the mean
squared error. Sheather and Marron (1990) got a similar result. Yang (1985)
introduced a new kernel quantile estimator defined by

(1.6) Qu(t) = — ZK(i/"‘t)Xa),
i=1

nh, hy,

where X),..., X are the order statistics of the sample Xj,...,X,.
Equation (1.6) suggests an alternative kernel quantile density estimator:

(L.7) a0=——L Sk (=t
. qnlt) = nh,% 2 ki )+

This estimator is easier to calculate than g (z).

In this paper, we assume that the data come from a randomly right-censored
model, that is, associated with each X;, there is an independent censoring time
Y;andYy,...,Y, are assumed to be i.i.d. random variables with common distri-
bution function G(x). The distribution function F(x) of X; is called the survival
time distribution. The observations in this model are the pairs (T}, §;), where
T; = min(X;,Y;) and 6; = Iix,<vy, ¢ = 1,2,...,n. Clearly, the T; are i.i.d with
common distribution function H(x) = 1 — (1 — F(x))(1 — G(x)), and the uncen-
sored model is the special case of the censored model with G = 0. Based on such
right-censored data, we want to estimate the quantile density function ¢(¢) by
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using kernel-type estimators constructed from the Kaplan—Meier estimator.
The Kaplan—-Meier estimator is defined by

1 H ( n—i )6@) T
= - — ] > t <1y,
Fn(t) = Ty <t n—i+l
1, t2> T(n)a
where Tq) < T(g) < --- < Ty, are the order statistics of the T; and 6y, ..., 6w

are the corresponding §;. Let s; denote the jump of f‘n(t) at T, that is,

. F.(Tw), ji=1
=y - ~
Fn(T(j)) —Fn(T(j—l)), Jj=2,...,n,

Let f‘; Yx) = inf{u:f‘n(u) > x}. Corresponding to the kernel quantile density
estimators defined by (1.5) and (1.7), in the censored model, our estimators are

~ 1 [y —t
(1.8) q;:(t)=_E/o F,:l(x)K'(xh—n)dx
and

Fo.(Tw) - t) .

. 1 ¢
(1.9) @) =—75 > T(,-)siK’( :
ni=1 n

The estimator in (1.9) is motivated from Padgett’s estimator of the quantile
function [see Padgett (1986)]. Xiang (1992) established a Bahadur representa-
tion and a law of the iterated logarithm for the kernel quantile estimator and
its derivatives for each fixed ¢ € (0, F(T'y)), where Ty = inf{¢: H(¢) = 1}.

The main contribution of this article is to derive a law of the logarithm for
g;(@) and g,(t) in Stute’s sense when the data come from the random right-
censorship model. These results are applied to get optimal bandwidths with
respect to almost sure uniform convergence.

For the kernel K(x) in this paper, we require that K(x) is symmetric and, for
a positive integer [,

(1.10) K(x) € C'(—00,00), K(x)has compact support [-1,1],
where
C'(—00,00) = {f:f? is continuous on (—co, 00)}

and, for some integer m > 2,

]
e

1
/ K(x)dx
-1

I
2

1
(1.11) / ¥ K(x)dx j=1....m-1,
-1

1
/ xmK(x)dx = oy # 0.
-1
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We note that (1.10) implies K?(x), i = 1,...,I, have compact support [—1, 1].
The kernel with properties (1.10) and (1.11) was investigated by Gasser and
Miiller (1984).

For the sequence of bandwidths {4, }, we require that the following hold:

logh;!

logh;! .
nhy,

(1.12) (@) nhy, T 00; (i) loglogn

— 0; (iii)

These conditions are necessary in Stute (1982a) to obtain local estimates for
the empirical distribution function.

We use the notation a, ~ b, if and only ifa, /b, — 1, as n — oo.

The present paper is organized in the following manner. The main results
are given in Section 2. The estimation of higher derivatives of quantile function
is given in Section 3.

2. Main results. Let B(¢) be a Brownian bridge and let A(x) be a function
defined on an interval I C [0, 1] with 0 < A(x) < 1 and a uniformly continuous
derivative a(x),a(x) > § > 0 on I. We claim that the results in Stute (1982a)
for o, (¢) and 3,(¢) also hold for B(¢) and B(A(2)), respectively. For example, from
Shorack and Wellner [(1986), page 532], we have

(2.1) lim sup IB(t) — B(u)|

n—00 o, Stfu_:zs thn /2(t _ u) logh,fl

where 0 < ¢ < ¢ < oo are fixed numbers. Equation (2.1) is similar to Theo-
rem 2.10 in Stute (1982a) and the analogue of Theorem 2.13 in Stute (1982a) is

=1 a.s.

=1 a.s.

(2.2) lim  sup _IPA®) —BAw)|
N—00 chy <t—u<Thy \/2(t — u)a(xu’t) logh;l

tuel

where x,; is any point between v and £. Let

1 t—
2.3) Lo(®)= 5 / K(h—nx>dB(A(x)).

LetJ, = [c —e,d +¢€] C (0, 1) for some € > 0 and J = [¢,d] with ¢ < d. Thus, with
a similar argument to Stute (1982b), we have the following lemma.

LEMMA 2.1. Suppose that a(x) = A'(x)is continuouson J. with0 < § < a(x) <

M < o for all x € J.. Let K(x) be any kernel function of bounded variation with
K(x) = 0 outside [—1, 1]. Then, with probability 1,

. [ h, |Ln(®)| ( /1 . )1/2
2.4 1 =(2 | K:x)dx) .
@4) e loghy? tey Va® -1 () dx
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Now assume J, C (0,F(Ty)). Let

_ 1 /! [ x—1t
(2.5) g, = > /0 QK (—E)dx.
Our main result is the following.

THEOREM 2.2. Assume that q(t) is continuous on J. with 0 < § < q(t)
<M< o forall t € J.. Let (1.10) hold for I = 1, let K'(x) be Lipschitz of
order 1 and let G(x) be Lipschitz of order on [Q(c — &), Q(d + ¢)]. Then if

10g2n
(2.6) — 0,
(nh3logh;t)"*
\/1-G(Q®)|g5(@®) —g,®) 1/2
(2.7 lim - sup )fa %) ( / Kz(x)dx>
n—00 ogh ted q(®

[n \/ (QW) |g.®) —7,@® 1 1/2
(2.8) lim L Gla®)la %0 (2 / Kz(x)dx> )
logh teJ -1

n—oo Q(t)
Our approach is based on a strong embedding result of Major and Rejto
(1988). Let
H*#)=P(Ty <t,6 =1) and H(t)=P(Ty <t,6,=0).

Major and Rejto (1988) showed that, for ¢ < T,

2.9) Fu-FO =1 2:, Gi(®) + 7al®)
and
~ 1
(2.10) F,¢t)-F@¢) = ﬁW(t) + (1),
where
t Ig<y —H(y) Iip,<t .61 — H“@)
;&)= (1 —F() { —(—l——— dH*(y) + —==

_/t I(Tify»aﬁl) _Hu( y)dH( y)}
o (1-H(p)”
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and W(¢) is a Gaussian process defined by

t u _ N = (]
W) = (1—F(t)){ /_ N i (y()l)_ ;f;))zH(y))

B(H®) [ B(H“(y))
=) [ 2 Yy .
"1-H® /_oo (1-H(y)? H(y)}

dH"(y)
(2.12)

The remainder terms in (2.9) and (2.10) satisfy, with probability 1,

(2.13) sup | ()| = o(l"ﬂ>, T <Ty
t<T n
and
2C —AA%
(2.14) P( sup |ny(@)| > ="logn +x | < 2ke ,
t<T A

for all x > 0, where 0 < A < 1 — H(T) and C,k and X\ are some positive
universal constants.

PROOF OF THEOREM 2.2. We first prove (2.7). Write G,(x,t) = [y K'((s —
t)/hn)ds. Then from the change of variables theorem [Billingsley (1986),
page 219],

20— 70 = —hl% /_  5d(Go(Fye),1) - Gu (F,0)
- h_l,% /_  (CuFu,1) = G (Fw), 1)
1 [ (Fo@) — £1/hn
-1 / ( / K’(u)du)dx
bn J oo \ JiFew) - a1/hs
= Iln(t) +I2n(t),
where
1 [®  (Fx)—t\ (Fx) - F&)
o ned [T (R) (B R,
and
o Fo@) — t1/hn _
(2.16) I2n(t)=l/ / K’(u)—K’(F(x) t) du | dx.
hn J_oo \ JiFG) - t1/ha hn
From (2.10),

Iln(t) = rln(t) + rzn(t)
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with

1 [ Flx) -t
rin@) = —— Tz /_ K( . )W(x)dx

and

ron(t) = hl2 / K(F (’;l) _t)'yn(x)dx.

To make use of Lemma 2.1, we note that

1 t+h,

" o Q“’)K'( CRE

@.17) b o
o s
Let
B(H*(Q))
Wi (Q®) = l—ém,
Q(t)B u ¢
Wa(@w) = -0 [ H (y()l) H((yl)) HO) gruy,
Q) u
W3(Q®) = —(1—1) / EH—?% dH(y).
H(y

Then, from (2.12),

3
W(Q®) =) Wi(Qw).
i=1

Let
wi(h) = sup IWL (Q(t)) - Wi (Q(u)) |) i= la 2a 3,

lu—t| <huted

be the oscillation modulus of W;(Q(¢)). Thus as & | 0, Lévy’s theorem [cf. Shorack
and Wellner (1986), page 534] and the smoothness conditions imposed on G(¢)
and F(¢) imply that, with probability 1,

wi(h) = O(hl/z(logh‘l)l/z) and w;(h) = O(h), i=2,3.
Hence, it follows that

rin®) ~ ———Q®) “h"K(v_t)dW (QW)
1n \/r_lhn t_hn hn 1

B 1 Q’(t) t+hy v—t
T T=G@®) Jin, K( o )dB(A(v)),
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with A(¢) = H*(Q(?)). By
Bw= [ (1-60)dFw)
we obtain
at)=A't)=1-G(Q®).
Hence, by using Lemma 2.1, with probability 1,

,/1 GQ®) |r1n(® : 12
2.18) lim 1/ e Q) runc®) (2 / Kz(x)dx) .
log hx, -1

n—oo q(t)

To complete the proof of (2.7), it remains to show

_ logh;1\ Y2
and
logh 1\ /2
(2.20) fle,l}} |I2.(®)] = 0 ((W) )

For small enough k,, we have Q( + h,u) € (—o0,Ty] for some Ty < Ty and
t+h,ucd, forallt € J and u € [-1,1]. Let a, = (llogh; '1/nh,)'/2. Then, for
any n > 0, there exist positive constants Cy, Cy, Cs, such that

Coanhnn )
I |K G| dx
< 2kexp{—AA%(Cianh,n — Cylogn)}.

P(sup |y 1rea(8)] > 77) < P( sup | ()| >
(2 21) ted t<Ty

Hence, (2.19) follows easily from (2.6) and the Borel-Cantelli lemma.
To prove (2.20), for an € > O with 1+& < (1—¢t)/h, (thisholdsifn islarge), write

l+e Fo(Q(t +2hp)) — 81 /by
Ln®= [ Q+hw /
—1-¢

(K'(u) — K'(x)) dudx

1 =t)/hn [Fr(Q(t +xhy)) —t1/hp
+ / Q¢+ hox) / (K'(w) - K'(x)) dudx
1 x

+e

—1-¢ (F(QGt +xhy)) — 8] /hin
+ / Q'(t + hyx) / (K’(u) - K’(x)) dudx
—t/h, x

= S1a(t) + Saa(2) + S3,(2).



1086 X, XIANG

We have

A —t)/hn ~ ~
|Szn(t)| < / |Q/(t + hnx)|I(Fn (Q(t +hxhn)) t < 1)
l+e n

dx

/mn(Q(t +xhn))—t]/hn
X

(K'(u) — K'(x)) du

x

1 —2)/hn
< / Q¢ + )
1

+e

~

) I<Fn(Q(t+(1 +s)h,;l)) — (t+ 1 +o)hy) < _E)

dx.

/[ﬁ,,@(t +xhy) — 81k,
X

(K'(w) — K'(x)) du

x

Hence, if h, tends to zero slower than ([log, n]/n)1/2, Corollary 1 of Féldes and
Rejto (1981) implies, with probability 1, sup, ¢ ; |S2,(#)| = 0 for large . Similarly,
sup; ¢ g |Ssa(t)| = 0 for large n. To estimate S1,(2), it follows again from Corollary
1 of Féldes and Rejt6 (1981) and (2.6) that
2
/)

F (Q +hyuw) — ¢
hn

sup |S1.(®)| = 0( sup -
ted ted, ju|<l+e

—1\ 1/2
- o((%) )
nhy,
Hence (2.20) follows.

To prove (2.8), we write

—~ 1 1’\_1 x—t
Qn(t)——EA Fn (x)Kn(W)dx

and introduce

Galt) = —— /0 1 QWK, (xh—_nt)dx,

R,
where K, is defined by
x—t ,i/n—t i—1 i .
R = <— = e o
K,,( hn) K( " ) — <x<~,  i=0,%142,
It is easy to check that
K,(u)=0, if|u|21+nhn

and

sup  |Kn(w) - K'@)| = O( 1 ):

—oo<u<oo nhn
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Thus
qn(t) — Gn(t) = 5Z(t) - an(t) +qn(t) — <7n(t)
[Fn(x) t]/hn
+ — / / (Kn(w) — K'(w)) dudx.
[F(x) —t1/hy
To complete the proof, it suffices to show
- logh 1\ /2
(2.22) sup [7.(8) —g,@®)| = o (( AL )
ted nhy,
and
[Fn(x) tl/hn
sup | (Ko(w) — K'(w)) du|dx
(2.23) tes h (F )~/ P

o ( sy Y 2) |
nh,
Equation (2.22) follows easily from

sup Ian(t) - (jn(t)l
ted

1
< sup — (t + uh,)|| K, (w) — K'(u)| du
(2.24) tE}I) hn |u| <1+1/nhn IQ H l

_of L logh; 1\ /2
O(nhz) 0<< nhy, ) )

To prove (2.23), we have for a given € > 1/nh,,
[Fp(x)—t1/hy
/ (Kn(w) — K'(w)) du|dx

o0
/Q(t +hy +2hpe) | J[F(x)—t1/h,

< / I(E"Sﬁ)___z <1+ 5)
Q(t+hp+2hy€) hn

[Fn(x)—2]/hn
/ (Ku(w) - K'w)) du| dx

X
[F(x)—t]/hn
s/ I(Fn(Q(t+hn+2hna)) _t<1+a)
Q(t+hy +2hpe) han
[Fn(x) —t]1/hn
x / (Ko@) — K'(w)) du| dx
[F(x) —t1/hn
. /oo I (Fn (Q(t + hp + 2hye)) — (& + hy + 2hpe) < _E)
QUt+hy+2hne) h"
[Fn(x) —t1/hn
X / (Kn(w) — K'(w)) du| dx
[F(x)—t]/hn

1087
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Hence, with probability 1,

00 [Fy(x) — 1 /hn
Sup / / (K,(w) — K'(w)) du|dx =0 for nlarge.
ted JQt+hn+2hne) | JIFG) - 81/h
Similarly,
Q(t — hp — 2hne) [Fr(x) —t1/hn
sup / / (Kn(w) — K'(w)) du|dx = 0 for n large.
ted J— [F(x) —t]/hn

These together with (2.6) imply

sup — /
ted Pn

(2.25) = 0( sup sup |Fo() — F(x)|>

) — £/
/ (Kn(u) - K'(u)) du|dx
[F&) — £1/hn

Nh2 {€d Qt — hy— 2hne) <TKQUE +hy + 2hn)
Y logh;1\ 2
B nh, ’
The proof is complete. O

REMARK. If Q(¢) is twice differentiable in J,, Major and Rejto (1988) and
Lo and Singh (1986) imply

L wiew) +B.o,

o
2.26) Fo-Qw=-—

where W(t) is defined by (2.10) and

3/4
(2.27) sup |,()] = O (<logn> )
ted n

Based on this representation, we can prove (2.7) and (2.8) under weaker
conditions on kernel function K(x) and bandwidth %,. We give this result with-
out proof.

THEOREM 2.3. Assume that Q(t) is twice differentiable in J. with 0 < § <
q(t) <M < oo forall t € J.. Let (1.10) hold for | = 1, and let G(x) be Lipschitz of
order % on [Q(c — ), Q(d + €)). Then if

(logn)?
nh2(logh; )2

\/1-G(QW)|g:@) —q,®) 1 1/2
(2.29) hm 7 Sup @ [q I ’ (2 / Kz(x)dx>
v o -1

1 gh‘ ted q()

(2.28) —0 asn— oo,
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and
\/ G(Q®)|g.®) —g,®)| 1/2
(2.30) lim d ( / () dx) .
n— oo logh teJ q(®)

To apply Theorem 2.2 to get optimal bandwidths, we further assume that
q™(t) is continuous in J,, with m > 2, and that K(x) satisfies (1.11). From
Theorem 2.2 and

hm
7,(8) — q®) = g™ D +olh]),

the optimal bandwidth is obtained by minimizing the term

,/ G(R®W)|g™®)|
/ |K(u)u’" |du
-1

(2.31) m! tGJ q(t)
1 1/2
+ (21°gh / Kz(u)du) .

For m = 2, the asymptotically optimal bandwidth is

hn

(2.32) < f_lle(u)du logn> 1/5
10sup, c ; [lgPO2(1 — GQW)/¢*®)] ([, Kwu2du)? ™

and, with probability 1,

q:@) —q(@® <logn)2/ 5
In 2 _of (=22
q(t) n

G — q®) <logn)2/ 5
mel 2 -0 ,
q@®) n

3. Estimation of higher derivatives of the quantile function. As-
sume that (1.10) holds for = r > 1 and K™ is Lipschitz of order 1. Define
estimators

P~ (=1r — r
3.1) 800 = 1 / Pl )K()( - )dx

and

uniformly on oJ.
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and

(3.2) g0 = (hzﬂ ZTQ) LK®<MQ_).
Let

(3.3) gl @ = (h_1)1 /0 lQ(t)K")<xh_nt>dx.

If q(¢) = @'(¢) and G(x) satisfy the assumptions of Theorem 2.2, we get

,/ G(QW)|g: P — g )|
Oghn teJ

(3.4) = q(®)
- (z / K"~ V()] dx)
and
lim A1 \/_ \/W @) -7y
(3.5) n=50"" | loghy? fey 7@

- (2 /_ 1 [K("D(x)]2dx> "

Furthermore, if, for some m > 2, Q"*™(¢) is continuous on J. forJ. C (0, F(Ty)),
the optimal 4, is of order ((logn)/n)Y/2r+m+1l and, with probability 1,

;@) — ¢"@) <log n ) m/2r+m)+1)
in 7 Y0
q(®) n

qo@) — q) Jog n\ ™/ 2r+m+1l
9.0 —9 W _ _)
q(® < n

and

uniformly on J.
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