The Annals of Probability
1994, Vol. 22, No. 2, 978-994

ISOPERIMETRIC INEQUALITIES FOR DISTRIBUTIONS OF
EXPONENTIAL TYPE

By S. G. BoBkov
Syktyvkar State University

An isoperimetric property of exponential distributions with respect to
the supremum distance in R” is proved and applied to stochastic processes
linearly generated by i.i.d. positive random values.

1. Introduction. We consider an isoperimetric problem for probability
product measures i, = p X - - - X p on the n-dimensional space R". The problem
consists of finding or estimating the value of

1.1) inf p, (A"),

where the infimum is taken over all sets A, with measure p,(A) = p, which
belong to some family U of measurable subsets in R*, and A" denotes the h-
neighborhood of A C R”".

In the case when the marginal distribution y is the standard normal on the
real line, the problem (1.1) was solved by Sudakov and Cirel’son (1974) and
Borell (1975) in the class U of all measurable subsets of R": extremal sets at
which p,(A") attains its minimum are just the half-spaces of measure p. This
can be written as the inequality

(1.2) pin(A*) > p((=00, a +hl),

where real a is chosen so that p,(A) = u((—oo,al). Thus the extremal sets do not
depend on A, that is, Gaussian measure possesses the isoperimetric property.
The Bernoulli marginal distribution x was studied by Talagrand (1988): an
estimate obtained for (1.1) in the class U of all convex sets of R” does not depend
on the dimension n as in the Gaussian case. It was also pointed out that the
extremal sets in U may depend on A.

It should be emphasized that the metric is meant to be Euclidian in the above-
mentioned results, and therefore the h-neighborhood A” is the Minkowski sum
of A and l,-ball By. Recently Talagrand (1989) proved an isoperimetric inequal-
ity for two-sided exponential distribution x, with density exp(—|x|)/2, investi-
gating a special kind of enlargement. For arbitrary measurable A C R", he
considered in (1.1) the sets A + W(k) (instead of A"*) involving the mixture
W(h) = h'/2By + hB; of l5- and l;-balls. The inequality states that, for any
h >0,

(1.3) pin (A + W(h)) > p((—o0, a + h/K)),
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ISOPERIMETRIC INEQUALITIES 979

where K is a universal constant, and real a is chosen so that p,(A) = u((—o0, al).

We study the one-sided exponential distribution E, = E; x --- x E; with
marginal distribution function E;(x) = 1 — exp(—x), x > 0, and we are inter-
ested in the values of E, on the sets A C R} = [0,+00)" which satisfy the
following condition:

ifx=(x1,...,%0) €A, y=(y1,--.,yn) €ER}, y; < x; for all i, theny € A.

Considering R" as a lattice in the sense of the theory of ordered spaces, such
sets A will be called ideals in R}. In Bobkov (1989), the following statement
was made for the class U of all ideals: for each fixed p € (0, 1), the infimum in
(1.1) is attained at the standard cube A = [0,a]” of measure E,(4) = p [hence,
a = —log(1 — p'/™)] if A* denotes the h-neighborhood of A with respect to the
uniform metric in R*: A* = A + h[—1, 1]*. In other words,

n
(1.4) E,(4%) > [e"p!/+ (1- )"
Thus, choosing the appropriate metric and the class U, we have that the ex-
tremal sets do not depend on k. It is in this sense that we write about the
isoperimetric property of the exponential law. The present paper proves this
property [Section 2; here we also consider an infinite-dimensional variant of
(1.4)]. In addition, (1.4) is applied to a certain family ¥ of marginal distribu-
tions p of “exponential type” (Section 3) and then to stochastic processes linearly
generated by independent variables with a common law from F (Sections 4 and
5). Inequalities (1.3)—(1.5) are independent and have applications where they
are preferable to existing results. Some relations between (1.4) and (1.2)~(1.3)
are discussed in Sections 6 and 7.

2. Isoperimetric property of the exponential distribution. Clearly,
all the ideals in R? are Lebesgue measurable and, moreover, their boundaries
are sets of measure 0. For each ideal A in R? we consider its 2" — 1 projections
in the coordinate subspaces of R, namely,

A ={xc R*:3y € Asuch thatVs=1,...,k, x, =y, }
for any integers 1 <i; <---<ip <n.Forfixedk=1,..., n set
ap(A) = ka(Ail...ik)> brA) = ZEk(Ail...ik)a

where summing is performed over all possible 1 <i; < --- <i; <n, and Vi is
the k-dimensional Lebesgue measure on R*. For & = 0 we set ag(4) = by(4) = 1.
Let A be an arbitrary nonempty ideal in R}, and let D,, = [0, 1] be the unit cube
in R}.

LEMMA 2.1. Forall € > 0,

2.1) Va(A+eDy) =) an_pA).
k=0 -
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LEMMA 2.2. Forall h > 0,
n
2.2) E,(A+RD,) =e™™ > b, 4(A)*,
k=0

where e =e" — 1.

Expansions in powers of € such as (2.1) are well known in the theory of convex
sets, where such identities are treated for Lebesgue measure V,, and for convex
A. In the following it will be essential that (2.1) also holds for nonconvex sets.

Proofs of both Lemma 1 and Lemma 2 are quite similar, so we just prove Lemma
2.

PROOF OF LEMMA 2. In the integral

E.(A+kD,) = /~~-/exp{—-(x1 +o )} dxy - dixy
A+hD,

let us make the change of variables y; = x; — h. As result, the set A + hRn maps
onto the set

= {(al—hl,...,a,, —h,,):(al,...,an)eA, 0 Sh, _<_h}

For any 7 C {1,...,n}, define A* as follows. If 7 = {i,...,i;}, 1 <i; < - <
iy > n,we set

= {x € R (x,,...,%;,) €A, and for allj #i;, —h <x; < 0}.

In the case m = @, A% = [-h,0)". Then we have the decomposition A’ = U, A,
Since A% NA% =@ for my # 7,

E.(A +hD,) =exp(—nh)/~--/exp(—y1—~-—yn) dyy - -dyn
=eXP(—nh)Z/-~-/exp(—y1 — = Yn)dy1---dyn.
oA

It remains to note that for 7 = {iy,...,is},

/ /exp( y1—---—¥n)dy

=(e —1) _k/.../exp(_yik_...._.yik)dyil...dyik

Ay iy
=" B (A )
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Combining the lemmas, we obtain the following theorem,

THEOREM 2.3.  For any nonempty ideal A C R’} there exists an ideal B C D,
such that, for all h > 0,

(2.3) E.(A + hD,) = exp(-nh)V, (B + eD,),
where e =e* — 1.
Proor, It is sufficient to take
B={(1-exp(—-a),...,1—exp(—a,)): (a1,...,an) €A}.
Then, for each set of integers 1 <i; < --- < i} <n,
E(A4;,..i,) = Va(Bi,..1,);
consequently, b,(A) = ar(A) for k=0,...,n. O

In view of (2.3), now we can apply the well-known Brunn-Minkowski in-
equality, according to which for all nonempty measurable sets B, B’ c R” (such
that B + B’ is measurable too),

(2.4) Y™B+B') > VI™B) + VY™(B).
Taking B’ = €D, in (2.4), we have the following theorem from (2.3).

THEOREM 2.4. For any nonempty ideal A C RY, for the standard cube B with
E.(B) = E,(A) and for all h > 0, the following inequality is valid:

E.(A+hD,) > E,(B+hD,),
or in other words,

(2.5) E,(A+hD,) > [ "E/"A) + (1—e7H)]".

If n increases and E,(A) = p is constant, the right-hand side of (2.5) de-
creases and tends to the double exponential distribution function of & with a
shift parameter:

(2.6) E,.(A +hD,) > exp(—e*log(1/p)).

This inequality does not depend on the dimension n, so it permits a formulation
in the infinite-dimensional space R* with the product measure E,, = E; x E; x
---. Again, R{° is considered as a lattice with the same notion of ideal. For a
nonempty set A and A& > 0, denote

A"=A+ED, A"={acA:{a}+hDCA)},
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where D = [0,1]%° = [0,1] x [0,1] X - -- is the infinite-dimensional unit cube in
R*. Using the inclusion (A~*)* ¢ A,(h > 0), we have the following theorem
from (2.6).

THEOREM 2.5. Let A be an ideal in R® with p = E,(A) > 0. Then, for all
h e R},

2.7 Eo (A*) > exp{—e~"1og(1/p)}, h>0,
(2.8) Eo(A") < exp{—e*log(1/p)}, h<O.

REMARK 2.6. Inequality (2.7) is accurate in the class U of all the ideals of
R, that is,

. h\ _ L« _ _
2.9 Alelﬁ E.(A") =p*, a = exp(—h).
Eoo(A)=p

Indeed, take n-dimensional cubes A, = [0,a,]” x Rl x R! x ... of E,-measure
p, an = —log(1 — p/™). Then E,(A,) tends to p® as n — co. On the other hand,
(2.7) may fail in the class B of all measurable sets of R} even if D is replaced by
B, = [—1, 1]%°. This can be easily shown for one-dimensional sets, for example,
for intervals A = (a, +00).

3. Isoperimetric inequalities for a family of product measures. We
consider distributions x on R which satisfy two conditions:

(i) The distribution function F with measure u, F(x) = p[0,x], is continuous
and strictly increasing on [0, br), where by = sup{x: F(x) < 1}.

1-Fx+h)

>ii) lim sup =0.

h — +00 0<x<br 1 —F(x)

Let F denote the family of such distributions. It follows from (i) and (ii) that,
for all F € ¥, the following hold.

PROPERTY A. The equality

1-F(x+y)
1-F*(y)= sup ——2"
Y osxgbp 1-F(x)

determines a continuous distribution function F* which is strictly increasing
on [0,bF) = [0, b ).

PROPERTY B. The function Tr(x) = F~1(1 — e~*) from [0, +00) onto [0, br),
mapping the measure E; to y, generates a modulus of continuity T, that is,
for allx > 0,

w(x) = sup (Tr(x +y) — Tr(y)) < +o0.
y20
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(Here F~1is inverse of F restricted to [0, bz).)
NotE 3.1. Provided (i) holds, Property B is equivalent to (ii).

NoTE 3.2. The modulus of continuity T} generates a metric on R},

dr(x, y) = T;‘(lx _yl),

which will be used for a description of the law of the maximum of the processes
considered.

ProPERTY C. For allx > 0 and h € [0, bF),

Tix)=h <<= F*(h)=1-¢*

PROPERTY D. There exists a constant C such that, for all x and h large
enough, .

T7(x) < Cx, 1-F*(h) < exp(—h/C).

Consequently, the distributions F and F* have finite exponential moments,

/ exp(ex)dF(x) < / exp(ex)dF*(x) < +oo for € small enough.

For the product measures u, = p x --- x p on R” with marginal law u € &,
there are inequalities analogous to those for E,,.

THEOREM 3.3. For any ideal A C R” with p = pp(A) > 0and h > 0,

3.1 pn (A") > exp{ — (1= F*(h)) log (l_l’) },
1 1

3.2 4 < e { - r—ioe (3}

( ) K ( ) exp 1 —F*(h) Og p

REMARK 3.4. Inequalities (3.1) and (3.2) remain true likewise for n = +oo0 if|
as usual, p is the infinite product of p.

REMARK 8.5. Due to Property C, we may formulate (3.1) and (3.2) with T;(h)
instead of h, and e~* instead of 1 — F*(h).

PROOF OF THEOREM 3.3. Define a map i,: R} — R} as follows:

in(%1,. .., %) = (Tr(xq), ..., Tr(xn)).
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Then i, maps E,, to u,, and the following inclusions are valid:
i71(4%) o (7'@)", A Gl

where x = T4(h). It remains to note that E,(i; 1(A)) = p and to use (2.7), (2.8)
and Remark 3.5. O

It is now possible to apply (3.1) and (3.2) to individual distributions F € F
calculating exactly or estimating the functions F* or T. However, it is useful to
fix some subfamilies of “good” distributions for which F* and T can be explored
in general.

EXAMPLE 1 (The first subfamily of ).  Let denote the set of those dis-
tribution functions F that satisfy conditions (i) and
(iii) for all x,y >0, 1-Flx+y) < (1-F@)(1-F(y)).

For such functions F* = F, T} = Ty. Hence 1 — F*(h) in (3.1) and 3.2) may be
replaced by 1 — F(h) In partlcular, if F is representable as

F(x)=1—exp( — ux)),

where u is a convex, continuous, strictly increasing function on [0,br) with
u(0) = 0, lim,_, u(x) = +oo, then F € Fo. For example, the distribution of |{],
where ¢ € N(0, 1), and the uniform distribution on [0, b] possess this property
and therefore belong to.F.

[

ExXAMPLE 2 (The second subfamily of ). GivenC > 0anda > 0,let F(C,a)
denote the set of those distribution functions F which satisfy conditions (i) and

(iv) F is differentiable on (a, +00), and for its derivative p,

3.3) 1-F(x) <Cp(x) forallx > a.
For example, if F has a density p on (0, +00) of the form
px) = ux) exp(—x/C),

where u is a continuous, nonincreasing function on (0, +c0), then F € F(C,0).
Note also that if L(¢) € F(C,0), then L(¢/C) € F(1,0), where L( ) denotes the
law of a random variable.

LEMMA 3.6. For F € F(C,a)and all h > 0,
3.4) T#(h) < Ch +a.

Proor. If F(a) = 1, then a > by, and (3.4) is obvious. Let F(a) < 1. From
(3.3) we have that, for all ¢, F(a) <t < 1,

(8.5) 1-¢ < Cp(F7'®).
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Next we can assume that the function p is continuous. Then the function Tr(x) =
F~1(1 — exp(—x)) is differentiable on (d,+occ), where d = —log(1 — F(a)), and
its derivative

i _ exp(—x)
Tr® = 511 - exp(=)) = ©

for allx > d. [Here we have made use of (3.5) with ¢ = 1—exp(—x).] Consequently,
forallx >dand h > 0, Tr(x+h) — Tr(x) < Ch.Inthe case 0 <x < d and h > 0,
Tr(x + h) — Tp(x) = (Tr(x + k) — Tr(d)) + (Tr(d) — Tr(x))

< C((x+h)—d) +Tr(d) < Ch + Tp(d) = Ch +a. )
Thus, we may apply Lemma 3.6 for F' € 3(C, a) to estimate the left-hand side

in (3.1)—(3.2): For each ideal A ¢ R} withp = p,(A) > 0and h > 0,

pin(AC+9) > exp{—e~"1og(1/p)},
pin(A=C=%) < exp{—e”log(1/p)}.

4. Applications to the distribution of the maximum. Let (,, n > 1,
be i.i.d. random variables with a common distribution function F € F. Let L},

denote the family of all random variables x representable in the form of a.s.
convergent series

4.1) x= f ann,
n=1

with a, > 0. Because F has some finite exponential moment, the a.s. conver-
gence of (4.1) is equivalent to the convergence of Ya,. Consider the a.s. bounded
stochastic process x(¢), ¢ € T, consisting of variables from L}, and its supremum

& = supx(2).
t

Write a = inf{x € R: F¢(x) > 0} and b = sup{x € R: F¢(x) < 1}, where F¢(x) =
Pr{¢ < x} is the distribution function of ¢.

THEOREM 4.1. Under the above mentioned assumptions, the following hold:

(a) o = sup, Ex(¢) < +o0.

(b) The function F strictly increases on (a,b); hence for each p,0 < p < 1,
there exists a unique quantile my = my(£) of order p.

(c) Forallp,0 <p <1,and h > 0,

(4.2) Pr{¢ -m, <Ch} > exp{ — (1-F*(h)) log (})) }

4.3) Pr{¢—m, < —Ch} < e"P{ T (?1 ) }
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where C = g /E(;.

COROLLARY 4.2. Forall h > 0,

(4.4) Pr{¢—m,>Ch} < <log (%)) (1-F*(h)),
1 .
(4.5) Pr{€—mp < ~Ch} < js(1 - F'(h),

IfF € 3y, 1 — F*(h) may be replaced by 1 — F(h).
IfF € 3(CF,0), 1 — F*(h) may be replaced by exp(—h /Cp).

Proor. It suffices to apply the following inequalities: for any e > 0,1 —¢ <
exp(—¢e) < 1/e. O

COROLLARY 4.3. For arbitrary a > 0, p € (0,1),
o3

(4.6) El¢ — m,(€)|* < A(p, a,F)(s?pEx(t))

where A(p, o, F) = (log(1/p) + 1/1og(1/p)) [x* dF*(x)/(E(y)*.

ProoF. From (4.4) and (4.5) we have that

1 1 .

Inequality (4.6) easily follows from (4.7). O

THEOREM 4.4. Under the assumptions of Theorem 4.1, there exists a Lip-
schitz function f on (R!,dr), with Lipschitz constant less than or equal to C,
that is,forall x,y € R!,

4.8) |f@x) — f()| < Cdp(x, y) = CTx(|x — ),

such that the random variables £ and f(n) are identically distributed, where 7
has the double exponential distribution.

NoTE 4.5. In the Gaussian case [( ~ N(0,1), a, in (4.1) are arbitrary]
there exists an analogous proposition with n ~ N(0,1), d(x,y) = |x — y| and
C = sup, Dx())/2.

LEMMA 4.6. Let the distribution function F¢ of the random variable ¢ be
strictly increasing on (a,b), where a and b are defined as in Theorem 4.1, and let
the distribution function F,, of the random variable 1 be continuous and strictly
increasing on (—oo, +00); £ and 1 are assumed to satisfy the inequality

4.9) Pr{¢ —mp(&) <uh)} > Pr{n—my(n) < h},
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for all h > 0 and p € (0,1), where u is a nonnegative function of h > 0. Then
there exists a function f defined on (—oo, +00) such that, for all x, y € R},

(4.10) [f&) = f)| <u(lx—y]),

and the random variables & and f(n) are identically distributed.

Proor. The functions F, Y(p) = mp(&) and F;X(p) = m,(n) are well defined

on (0, 1) and easily seen to be nondecreasing. (However, F; ! is not strictly in-
creasing if F; is not continuous.) If a > —oco and/or b < +o00, we should extend
Fglz Fgl(O) = a and/or Fgl(l) =b. In view of (4.9), for all A > 0 and p € (0, 1),

(4.11) Fe¢(F;'(p)+u(h)) > F,(F; Y (p) +h)).

Set f(x) = F¢ l(F,,(x)) for all x € R!. Applying Fg ! to both sides of (4.11), we
obtain that

(4.12) f(F;Xp)+ k) <F7'(Fe(F7(p) +u(h)).

Note that, for all z € (a,b), Fg 1(Fg(z)) = z. It will be valid likewise for z = a
andz=bifa > —-ooorb < +00. If b < +o0 and z > b, theanl(Fg(z)) =b<z
In any case Fgl(Fg(z)) < zforallz > a and for z = a ifa > —oo0. Because
z=F; (p) +u(h) > a, it follows from (4.12) that, for all p € (0,1) and & > 0,

(4.13) f(F;'(p)+ k) < F7'(p)+u(h).

Taking p = F,(x) in (4.18), with arbitrary x € R!, we obtain that f(x + k) <
f(x) + h. Thus f satisfies (4.8). It remains to find the law of f(n). Ifa < ¢ < b
and 0 < p < 1, then Fgl(p) < ¢ <= F¢lc) > p; therefore, Pr{f(n) < ¢} =
Pr{Fg 1(F,,(n)) < ¢} = Pr{F,(n) < Fe¢(c)} = Fe(c) because F,(n) is uniformly
distributed on (0,1). If ¢ < @ or ¢ > b, the set {x € R!: f(x) < ¢t = @or
R! and has F,-measure 0 or 1, respectively. Thus the distribution function of
f(n) coincides with F¢(c) at each ¢ € R!, ¢ # a,b, and hence coincides at each
ceRL O

ProOOF OF THEOREM 4.4. We may reformulate (4.2) as follows:
Pr{¢ —m,(€) < CTy(h)} > exp{—e"log(1/p)} = Pr{n — m,(n) < h},

where n has double exponential distribution with quantile m, = —log(log(1/p)),
and apply Lemma 4.6 with u(h) = CTy(h). O

COROLLARY 4.7. There exist constants A = A(p,F) and R = R(a, F), depend-
ingonp € (0,1), a > 0 and F € F only, such that for arbitrary a.s. bounded
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stochastic process x(t), t € T, from Ly,
(4.14) Imp(§) - E£| < AsupEx(@®),
t

(4.15) E|¢ - E¢|* < R(supEs0))
t
where & = sup, x(2).

Proor. The function f(x) = F; }(exp(—e~*)), where F; is the distribution
function of ¢, possesses the following properties: for all real x and a,
(4.16) f&) - f(@) < CTy(1x - al),
(4.17) f@) — f(x) < CTy(|x — al),

where C = sup, Ex(¢)/E(;, and the random variables ¢ and f(n) are identically
distributed if the distribution of 1 coincides with the double exponential law.
In (4.16) and (4.17), setting x = n and a = —log(log(1/p)), and notlcmg that
f(a) = mp(€), we have that

E¢ —m,(&) < CET3(|n - al),
my(€) — En < CET;(In —al).
Therefore, (4.14) holds with
ET;(|n + log (log(1/p)) )

E¢Q

The constant R that satisfies (4.15) may be easily found by combining (4.6)
and (4.14). O

A(paF)=

REMARK 4.8. For a = 2in (4.15), R = R(2, F) also can be found with help of
the identity D¢ = 1E|¢ —¢'|2 = LE|f(n) — f(n)|?, where ¢’ and n’ are independent
copies of ¢ and 7. In view of (4.8), we may set

_1E(Ty(n—n I))
7m0’
In particular, if F € 5y, then T(h) = Tp(h) = F~1(1 — e~"); hence

(4.18)

R=3 [ / 1 oxp( b= 31) "d(exple ) d{expi<)
2 (BG)®
-1(1 - 2 _p_
(4.19) = / / (F'(1—t/s) exz;( t —s)dtds
0<t<s< oo (ECI)

_ /+°° [2/(2 — F(x))2]dF(x)
0 (EG)
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In the case where (; has the standard exponential distribution, Tr(k) = h and,
by (4.18), R = Dy = n2/6, which is not improvable because D max((y,...,(,) =
Y7, 1/k? tends to R. Thus (4.19) may give the best interpretation of R = R(2, F)
in (4.15). In any case, from (4.19) we have for F € JF; that

(sup, Ex(®))
(E¢)*

If F € FCp,0), then Tip(h) < Cgph. Therefore, likewise, by (4.18), R <
Crm? /6(E()2.

D¢ <E¢?

PRrROOF OF THEOREM 4.1. It can be assumed that D¢; = E(; = 1. We need
a lower estimate for m,(x) via Ex. Let x = a1(1 + -+ + @n(s, a1 > 0, and let
Ex=a;+---+a, =1, n > 2. Ifthere exists i € {1,...,n} such that a; > 1, then
mp(x) > mp((1)/2. If all @; < %, then Dx < 1. The function Dx = f(ay,...,a,) =
a? +--- +a? attains its maximum on the set 0 < a; < J,a;+---+a, = lat
those points @ = (ay, . . . ,a,) for which there exist i # j with a; = q; = %, and for
all other &, a; = 0. Hence Dx < % By the Chebyshev inequality, for o € (0, 1),

Pr{x<l-a}= Pr{Ex —x > oEx} < Pr{|x — Ex| > o} < Dx/a? < 1/202.
Seta = 2, p = 3a® = &. Then my(x) > 1 — o = }. In any case, m,(x) > q =
min{}, m,(¢1)/2}. Hence, for all x € L},

mp(x) > qEx, p= g,
and, for all ¢ € T, we have Ex(¢) < m,(x())/q < mp(&)/q. Finally, -
o <mp€)/q < +o0.

In proving (b) and (c), we may suppose that C = ¢ /E(; = 1. Define the function
o from R° to [0, +00] as follows. Given x € R°,

cp(x) = Sl:.p Z an(t) %y,

n=1

where a,(¢) are the coefficients from the expansions for x(¢) in (4.1). Then, for
all ¢ > 0, the set A(c) = {x € R°: p(x) < c} is a nonempty ideal in R{°, and in
addition, p(A(c)) = Pr{¢ < c} = F¢(c). Because for each ¢ € T, Ex() = Ya,(t) <
1,

(4.20) A(c) + hD = A(e)* c A(c +h), A(c—h) CA)™,

for arbitrary A > 0. Making use of (3.1) and (3.2) with n = co (Remark 3.4),
A = A(c) and (4.20), we obtain that

(4.21) Fe(c+h) > exp {—(1 - F*(h))log(ﬁ) },

(4.22) Fe(c —h) < exp {‘ 1- ;*(h)bg (Fgl(C)) }
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In view of (4.21), ifa < ¢ < b, that is, 0 < F¢(c) < 1, then for every 2 > 0,
F¢(c + h) > F¢(c). Consequently, (b) has been proved. Set ¢ = m,(£) +¢, € > 0.
Then F¢(c) > p > 0, hence the right hand-side of (4.21) is not less than that of
(4.2). Letting ¢ — 0, we obtain (4.2). Analogously, setting ¢ = mp(§) — ¢, € > 0,
and letting € — 0, we get (4.3) from (4.22). O

5. On sample behavior of unbounded processes. Let x(¢), ¢t € I, be a
continuous process from Li, F € F(1,0) on I = N or I = [1, +00) such that
Ex(t) <E(; forallt €. Let

@) = max x(s), A(t) = E¢(@1).

THEOREM 5.1. If supx(t) = +o0 a.s., then a.s.

. 1) — A®)| — log(A®)
5.1 lim sup = g @@) =

In particular, lim supx(¢)/A(t) = lim £(2)/A(¢) = 1.

REMARK 5.2. If F € 3(C,0), we may renormalize the basic variables ¢, by
setting ¢/ = ¢,/C and considering the new process y(¢) = x(¢)/C. Then the law
of ¢/ will belong to (1, 0), and Ey(¢) < E(j.

REMARK 5.3. In view of (4.14), the function A = A(f) may be replaced by the
quantiles m,(£(¢)) for any fixed p € (0, 1).

REMARK 5.4. If T = N and x(n) = (, are standard exponential random
variables, then (5.1) turns into an equality. Indeed, in this case the quantile
mp, = my(§) of order p has the asymptotic representation

my, =logn —loglog(1/p) + O(1/n) asn — oo.

On the other hand, applying Corollary 4.3.1 and Theorem 4.3.1 from Galambos
(1978), we have

lim sup |é(n) — logn| — loglogn

R0 logloglogn =1 as

Proor. LetT = [0,+ c0). According to Remark 5.3, we may prove (5.1) with
a(t) = my/(£(t)) instead of A(¢). By (4.4) and (4.5),

Pr{|&() — a(®)] > h} < 2exp(—h) for anyh > 0.

Given 1 < q < ¢’ set h, = logn + ¢'loglogn. Because the function a = a(t)
is continuous and unbounded on T, there exists a sequence ¢, € T such that
a(t,) = n. Clearly,

> Pr{[¢(t) — altn)| > hn} < +oo;
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therefore, by the Borell-Cantelli lemma, with probability 1 for some random
ng and all n > ny,

|€(t2) —a(ta)| < logn +q'loglogn
= log(a(t,)) +q' loglog(a(t,)).
Ifn > ng, t, <t <ty,then

£@) — a(®) < £(tns1) —a(tn)
= (£@tne1) — altnsn) + (altne) — altn))
< 1+1log(altn1)) +q' loglog(a(tas))
< log(a(?)) +gloglog(a(?))

(the last inequality holds for all n large enough). In the same way, a(t) — £(¢) <
log(a(®)) + q loglog(a(t)) for all ¢ large enough. Thus, with probability 1,

1€@) — a(?)| < log(a(®)) + qloglog(a(t)) for ¢ large enough,

where g > 1 is arbitrary, and (5.1) has been proved. To prove (5.1) in the case
T = N, we can extend x(¢) to [1, + 00) in such a way that the following hold: (1)
Ex(t) < E¢ for any ¢ € [1, +00); (2) sup,., x(¢) = max{x(1),...,x(n)} for any
n € N; (3) the function x = x(¢) is continuous on [1, + c0) a.s.

For example, we may set x(¢) = (n+ 1) —)x(n) + (¢ —n)x(n+1),for t € [n,n+1],
and apply (5.1) to x(z). O

6. Comparison with the isoperimetric inequality for Gaussian pro-
cesses. The isoperimetric property of Gaussian measure implies, in particu-
lar, that for the maximum ¢ = sup, x(¢) of a bounded Gaussian process x(¢) with
Dx(2) <1,

(6.1)  Pr{¢—mp®)>h} <Pr{A—-my(\)>h}=1-3(2 (p)+h),

where m,(¢) and m,()\) are quantiles of order p € (0,1) for £ and A\, A is a
standard normally distributed variable with the distribution function ®, 1!
is the inverse of ® and 2 > 0.

Formally, we may not apply the above results to Gaussian processes because
® does not belong to F. However, we may apply them in the following situation.
Let ¢,,n > 1, be independent N(0, 1) random variables. Their linear combina-
tions generate a Gaussian Hilbert space H, and any Gaussian process can be
considered as a subset K of H. Suppose that K possesses the following proper-
ties:

(a) Ifx = Ya,(, € K, y = £b,(, and |b,| < |a,| for all n, theny € K.
(b) Ifx = Yan(, € K, then Y|a,| < 1.
(¢) ¢1€K.

In this case £ = sup, ¢ g ¥ = SUPx,, ¢, ek L|@n| ||, and in addition,

(6.2) supDx= sup Xla,|=1.
x€k Ya,én €K
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For example, the random variable ¢ = max{|(3]|,(|¢1| +|{2|)/2} can be considered
as the maximum of the Gaussian process

K= {Cl,—Cl, C1;C2, G ;Cz, —C12+C2, —C12— Cz},

and (a)-(c) are clearly fulfilled for K. Now, in addition to (6.1), one may apply
(4.4)to ¢ as the supremum of some linear combinations ofi.i.d. random variables
|G|, i > 1. It follows from (a)-(c) that inequality (4.4) is valid for £ with C = 1 and

F(x) =Pr{|\| < x} = 28(x) — 1.
Since F € ¥y, we have that F = F* and, for any p € (0,1) and 4 > 0,
(6.3) Pr{¢ —m, > h} <2(log(1/p))(1 - ®(h)).

If we take p = %, than (6.1) is better then (6.3) because 2log2 > 1; but in the
case p < %, (6.3) is more exact than (6.1) asymptotically as A — oo because
®~1(p) < 0. These observations may show that isoperimetric inequalities for
laws from F, are almost exact. Note, however, that (a)-(c) define a very special
class of Gaussian processes and require, in particular, that two parameters of
the process, the maximal /;-norm o7 and maximal /3-norm o5 of the coefficients,
coincide [provided (c) holds, this is equivalent to (6.2)]. In general, 03 < 01, and
(4.4) becomes useless for large values of 0.

7. Comparison with the isoperimetric inequality for the two-sided
exponential distribution. Denote by x the distribution, on the real line, of
the density exp(—|x|)/2, x € R. The increasing map

~-In(1-4e*), x<0,

T = {x +1n(2), x>0,

from R! to R! transforms p into E, that is, uT~! = E;. Analogously, the map
Too((®)r > 1) = (T(xp))n > 1 from R to R{° transforms p into Es, and we can
rewrite (1.3) for E,: for any measurable A C R*, h > 0,

(7.1) (Eoo). (Too (A + W) ) > u((—o0, a+h/K]),

where (E). denotes the inner measure, W(h) = h'/2B, + hB;,
Bi={x€R°°:2n21|xn|i§1}, i=1,2,

and a is chosen so that u((—oco,al) = o(A). The function T is Lipschitz, with
Lipschitz constant equal to 1, so

Too(A+W(h)) C Too(A) + W(h).
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Note also that if u((—o0,a]) =p, 0 < p < 1, and a = exp(—h), h > 0, then

p/a, if p < a/2,
R(p,a) = p((—o0,a +h]) = { 1-a/dp), ifa/2<p<1/2,
1-a(l-p), ifp>1/2,

Therefore, Talagrand’s (1989) result (7.1) can be applied to E, as follows: for
any measurable A C R$® with E,.(A) =p,

(7.2) (Eoo)s (A + W(KR)) > R(p, ), k>0,
(1.3) (Eoo)«(A+hBg) > R(p, o)), h>1

Obviously, (7.2) implies (7.3) because W(h) C 2hB; for A > 1. On the other hand,
inequality (2.7) can be written as

(7.4) Ew(A +hD) > p©, h >0,

where A is an arbitrary ideal in R° and D = [0, 1]°°. Thus the measure of the
larger set (A + hD D A + hB,) is estimated by a larger value [p® > R(p, /%K),
this inequality can be investigated in an elementary way, but to see this it is
sufficient to know that (7.4) is accurate in the class of ideals of R°].

In order to understand the real difference between (7.2) and (7.4), consider
a sequence (,, n > 1, of independent random variables with common law E;,
and the space L of their linear combinations

(7.5) = anln,

n>1

having for simplicity only finitely many nonzero terms. We are interested in
the distribution of the supremum ¢ = sup, x(¢) of a bounded stochastic process
x(t) consisting of random variables from L. Let

ol = s1t1p Dx(t) = sup ; a,(t)?, Ooo = s1t1p 1”{1;\11( la.(@)|.
n2

If a,(¢), the coefficients of x(¢) from (7.5), are nonnegative for all n > 1 and ¢,
then

= sup Ex(¢) = n(2).
01 = sup Ex(t) = sup 3 _ ax(#)

n>1

Now (7.2) allows us to estimate probabilities of deviations ¢ from its quantiles
m(¢) knowing only the values o3 and 0. In particular, for p = % [my/2(6) =m
is the median of ¢], A > O,

(7.6) Pr{¢ —m > oo(Kh)'/? + 0, Kh} < L exp(-h),
1.7 Pr{¢ —m < —(02(KR)"? + 0ooKR) } < § exp(—h).
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In the second case (and only in this case), when o; serves a basic characteristic
of the process (under the assumption a, > 0), one can apply (7.4); that gives,
forp=1andh >0,

(7.8) Pr{¢ —m > o1k} <1 —27CR < (In2) exp(—h),
(7.9) Pr{¢ - m < —o;h} < 27 e%0®)

or after change of variable A in (7.9),

(7.10) Pr{§ -m< —aﬂn(l + %)} < %exp(—h).

Thus, in order to estimate the probabilities of the right (resp., left) devia-
tions more exactly by (7.6) or by (7.8) [resp., by (7.7) or by (7.10)], we have
to compare the values 09(Kh)/2 + 0, Kh and o1k [resp., 0o(Kh)Y/? + 0, Kh and
o1In(1 + h/1n2)]. The first case seems much more preferable (at least for the
right deviations) in the general situation when oo, < 02 < ¢7..0n the other
hand, let the process x(¢) possess the following properties: (a) a,(¢) > 0 for all ¢
and n > 1; (b) Ex(¢) < 1 for all ¢; (c) x(¢o) = {3 for some ¢y. Then o, = 03 = 01 and
hence, anyway, (7.8) and (7.9) are more accurate for such a special class of the
processes. In addition, (7.9) shows an asymmetric character of the distribution
of ¢ (more exactly, see Theorem 4.4 on the role of the double exponential law).
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