The Annals of Probability
1994, Vol. 22, No. 2, 875-918

LOCALIZATION OF A TWO-DIMENSIONAL RANDOM WALK WITH
AN ATTRACTIVE PATH INTERACTION!

By ERWIN BOLTHAUSEN

Universitit Ziirich

We consider an ordinary, symmetric, continuous-time random walk on
the two-dimensional lattice Z2 . The distribution of the walk is transformed
by a density which discounts exponentially the number of points visited up
to time T'. This introduces a self-attracting interaction of the paths. We study
the asymptotic behavior for T' — oo. It turns out that the displacement is
asymptotically of order 7%/4, The main technique for proving the result is a
refined analysis of large deviation probabilities. A partial discussion is given
also for higher dimensions.

1. Introduction. We consider the following model: Let X;, ¢ > 0, be a
continuous time, symmetric random walk on Z?, d > 2, starting at 0, with
generator

Af@=% Y (fy-fw), xyeZ

yily—=x|=1

(The holding times have expectation 1/d.) If T > 0, let N be the number of
points in Z? which are visited by X; up to ¢ = T. We define

dPp = exp(—Nr7)dP/zp,

where zr = E(exp(—N7p)).

The density exp(—Nr)/z7 favors paths which typically clump together. This
introduces a long-range self-attraction of the paths. We are interested in the
effect of this on the typical displacement of the path up to time T for large 7'

THEOREM 1.1. Letd = 2and g = (\/7)/4, where \is the principal eigenvalue
of —A/2 in the ball of radius 1. Then, for any € > 0,

lim ﬁT((g —e)TV* < sup |X,| < (2g+£)T1/4) =1
T—o0 s<T

Theorem 1.1 is an obvious consequence of the result that, with 13T-probability
converging to 1, the set of points visited by the random walk is close to a spheri-
cal droplet of radius oT"'/4. More precisely, let St C Z2 be the set of points visited
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876 E. BOLTHAUSEN

by the random walk up totime 7'. Ifx € Z¢, r > 0,let D,(r) = {y € Z%: |x —y| < r}.
Our main result is the following theorem.

THEOREM 1.2. Letd =2. For any € > 0,

Jim ﬁT( U {Dx(g(l —e)TY*) € Sy C D, (o(1+ e)T1/4)}> =1
x € Do(T!/4)

The problem is strongly connected with the determination of the asymptotic
behavior of z7. A result which is due to Donsker and Varadhan [8] states that,
for any dimension d,

1.1) Jim T-4/2+D1ogzp = —inf {|supp )| + 1)},
where the infimum is taken over all probability measures on R?, |supp(v)|

denotes the Lebesgue measure of the topological support of v [supp(v) is the
intersection of the closed sets whose complements have v-measure 0] and

Iv) = %/ v

12

; dx
where f = dv/dx and Vf is the gradient. The parameter I(v) is set to oo if
the right-hand side of the above expression does not exist. Equation (1.1) is
proved in [8] for discrete time random walks. For continuous time walks, (1.1)
follows easily from the discrete time result because Ny is also the number of
points visited by the imbedded discrete time chain observed up to a random
time which, however, is independent of the discrete time walk. The variational
problem in (1.1) can be solved. The infimum on the right-hand side is attained
by probability measures v with a density whose square root is the eigenfunction
of the largest eigenvalue of the Laplacian in a disk of radius ¢ with Dirichlet
boundary conditions. Our theorem then follows from the statement that in
dimension 2 the empirical measure

T
/ 67'— 1/4X, ds
0

has a support which with I3T-probability close to 1 is close to the support of one
of those v. Furthermore, one can restrict attention to those which have 0 in their
support. Although this is quite plausible, the proof needs a refinement of the
analysis of Donsker and Varadhan. They proved that after a suitable rescaling
the empirical density satisfies a large deviation principle in the L;-topology,
at least if the random walks live on a torus. This implies that (for a walk on
the torus) the empirical density is in Pr-probability Li-close to the density of
the solutions of the variational problem. This, however, does not immediately
imply that the supports are close to each other, in the sense that the distance
between the boundaries is near 0.
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The paper is organized as follows. In Section 2 we derive an improved lower
bound for z7, and in Section 3 we discuss slightly improved upper bounds
(and some related results). In Section 4 we show that there is, with large 137--
probability, a disc of radius approximately ¢ which is completely covered by
the empirical measure. This still does not imply that there is no mass outside.
The main difficulty is the exclusion of excursions from the optimal droplet (it
is actually not unique). To see the point, look at excursions of order T'/* from
the disc. Such an excursion contributes at least 71/4 to Ny, which, however, is
negligible compared with N7 itself. It is easy to see that, under the free mea-
sure of the random walk, the probability that such an excursion occurs is at
least exp(—const. T/4), which is very large compared with the probability that
the free walk stays inside such a droplet. It is therefore clear that excursions
cannot be excluded on the basis of an asymptotic result of type (1.1). The results
of Section 3 here, however, show that there cannot be too much mass outside
the droplet. Unfortunately, the estimates of Section 3 are not sharp enough to
exclude the possibility of excursions. Such excursions, however, would essen-
tially be independent of what is going on inside the disc, so one can manage to
exclude them by a suitable conditioning argument. This is done in Section 5.
Some estimates are postponed to two appendices.

The main open problem is what happens in higher dimensions. I have no
doubts that the result is true in any dimension. More precisely, we have the
following conjecture.

CONJECTURE 1.3. There is a constant gz > 0 (specified in Section 2) such
that, for any € > 0,

lim 131‘( U {Dx(g(l—E)Tl/(2+d)) cSrc Dx(g(1+E)Tl/(2+d))}) =1

T—oo x € Do(gg T/ @+d)

We actually give a partial proof of this by giving a full proof that Lemma 3.1
and Proposition 4.1 imply the conjecture. Lemma 3.1 is crucial. Its proof de-
pends on the fact that a set A of volume 1 in R? whose surface is close to that of
the unit ball is in fact close (in a certain sense) to a ball. This is easy for d = 2.
The truth for d > 3 must depend on the specification of what “close to a ball”
means, because the set can have thin spines which do not contribute much to
the surface and the volume. Anyway, to my knowledge, such results do not exist
in the literature on isoperimetric problems, except for convex sets A which are
useless for our purpose. I also have no doubts that Proposition 4.1 is true, but
its proof eludes me, too.

REMARK. A similar confinement property for two-dimensional Brownian
motion among Poissonian obstacles has been obtained by Sznitman [13] using
different methods.
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2. Alower bound forzy. Weusec,cy,co,c, ... as generic constants which
are assumed to be greater than 0 and not necessarily the same at different
places. They may depend on the dimension d but on nothing else except when
stated explicitly. Whenever we write an inequality, we tacitly require this to
hold only for large enough T'. The quantity T' will always be the time parameter
in our main result.

The right-hand side of (1.1) equals

L _d+2[2n YA+ oo

Xd - 2 d wd 1)
where )4 is the principal eigenvalue of —A/2 in the ball of radius 1 (see [5],
Chapter 4.3), and wy is the volume of the unit ball.

PROPOSITION 2.1.

liminf T—(d—l)/(d+2)(long+Xde/(2+d)) > —00.

T—o0

Here and later on it is convenient to rescale the random walk. Let Ly =
T-1/d+27d and let ni> = T-YE@*DX, 0 0.5, t < TH/2+D; 1D is a jump process
on Ly with generator

@.1) Arf@) =1 S T2+ (£y) - f),

y~x

where we write y ~ x if y is a nearest neighbor of x on Ly. For notational
convenience, we usually drop the index T'in nﬁT), Lr and Ap, but the dependence
on T should always be kept in mind.

Let us first look a little bit closer at the solution of the variational problem
in (1.1). For a careful discussion of the analytical problems, see [5]. If G is
a connected bounded open subset of R?, then \g = inf{I(v):supp(v) C G} is
the principal (i.e., smallest) eigenvalue of —A/2 on G with Dirichlet boundary
conditions. By the Faber-Krahn theorem inf{|G| + A¢} is attained when G is a
ball D(r) = {x: |x| < r}. Of course, any translation of D(r) is a minimum, too,
but otherwise the solution of the variational problem is unique. In order to
determine r, one observes that Apy = Apa)/7¢ = A\g/r?. Therefore, one has to
minimize \g/r? + wgr?, which is x4. The minimizing r is

_ 2y 1/(d+2)
Qd_ dUJd .

We write ¢ for the eigenfunction on D(g,), which we take to be normalized, that
is, [ @(x)?dx = 1 and positive on D(gg). It is well known that p(x) = aJdo(b|x)),
where J is the Bessel function of the first kind and a,b > 0 are chosen such
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that JJo(br), 7 > 0 has its first zero at r = g5 and [, @(x)?dx = 1. We extend ¢

to R? by setting it equal to 0 outside D(gg).

We use results on discretization of the Laplacian by Weinberger and others.
Let Dy = D(gq) NLLr, and define the discrete Laplacian A} with Dirchlet bound-
ary conditions on the set of functions f: Dy — R by settmg A7f(x) = Apf(x) if
x € Dy, wheref is extended to L1 by setting f = 0 outside Dr; —A7 is positive def-
inite and symmetric, and we denote the principal (i.e., smallest) eigenvalue by
7. We note that )7 is a simple eigenvalue and the eigenfunction ¢: Dy — R can
be chosen such that ¥(x) > 0 forx € DrNintD(gy) and ¥, ¢ p, p(x)2T~4/2+d = 1,

LEMMA 2.1.

(@) [Mp— Aa/02| = O(T-V@+d),
(b) sup, ¢, [Y(x) — px)| = O(T-V/@+d),

Proor. Part (a)is proved in [14].

Part (b) is proved in [4]. Actually, the latter paper discusses a finite difference
operator which is adjusted at the boundary in order to get a faster convergence.
If the mesh size is & (in our case h = T~1/2+d) Bramble and Hubbard obtain
estimates for the difference of the eigenvalues and the sup-norm of the differ-
ence of the eigenfunctions which are of order 42, Without the adjustment at the
boundary (i.e., in the case we are considering here), Weinberger proved that
the differences of the eigenvalues are O(h), but he did not discuss the eigen-
functions. It is, however, straightforward that the discussion in Bramble and
Hubbard also covers the (easier) nonadjusted case with an error of order O(h),
that is, our claim (b). O

With Lemma 2.1, we can now easily prove Proposition 2.1. We transform the
law of nfT) by transforming the generator Ar:

)
Arfe) =5 ZTW o (F0) = )

when x € Dr. For S > 0, we denote by Ps the law of nﬁT), t < S, on the space of
right-continuous functions with values in L and by Pg that of the Markov j jump

process with starting point 0 and generator AT We can calculate dPg /dPs on
the set of paths which do not leave Dy. In fact, for such a path 7,,s < S, 75 =0,
we have

dPs O [ [Ara) N _ @
B "= Ve (/0 V) d")‘wms)e"p( ).

For a proof of this see, for example, [12], IV (22.8). Since (0)/¥(ns) > ¢ > 0 by
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Lemma 2.1(a),
dPg
——=(n) > cexp( —XS),
dPs n (=X1S)

E(e-NT) > E(exp(—Nr7); n, € Dy foru < Td/(2+d))
(2.2) > exp(—#Dp)P(n, € Dy for u < T4/ @+d)
> cexp(—#Dr)exp(— )\;Td/(2 +d))
X T)Td/(2+d) (’17,, € Dy foru < Td/(2+d))
= cexp(—#Dr)exp(— )\;Td/@ +d)) )

where #D7 denotes the number of lattice points in Dy. Obviously
(2.3) #Dp = OJde/(2 +d)Qd/(2 +d) O(Tv(d -1/ +2)) .
Relations (2.2) and (2.3) and Lemma 2.1 prove Proposition 2.1.

REMARK. It is tempting to conjecture that

lim T~@~V/@+d(1ogzy + xgT4/2+D)

T—o00

exists and is not 0. This would seem to be rather delicate.

3. Upper bounds. The main result of this section is proved here only for
d = 2. The difficulty of extending the analysis to higher dimensions is a purely
analytical one: I am able to show Lemma 3.1 only for d = 2. However, if the
statement of the lemma is correct for any d, then Proposition 3.1 also is correct
for this d. In order to present the results as generally as possible, we give this
derivation for arbitrary d.
Let R = 109, and set K = [RT'/@+2)], We define the random walk X%, ¢ > 0,
on the finite set (Zx)? by setting
X

iy =Xj,: mod K

for each of the d components X; ;, 1 < j < d, of the random walk X;, where
Zg ={0,1,...,K — 1}. We again rescale this and set

(T,R) _ m—1/2+d)y(K
Mt =T Ve )X:T;/(Z*'d)

for 0 < t < T4/2+9), which lives on the discrete torus L = T-1/2+d(z)d,
We usually drop the indices R and sometimes also T for notational conve-
nience. Let

Td/(2+d)

Ir(x) = / 1,(n)ds, x€l,
0
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where 1, is the indicator function of x. We use the following notation. If p: L — R,
we write

/ px)dx = T~HE+D N " (),

x€l

We also write (f,g) for [ f(x)g(x)dx.

We call a function ¢: L — [0, 00) a density if [ p(x)dx = 1. Note that I7 is a
random density.

Our random walk 7 is defined for all £ > 0 and is for fixed T', R just a random
walk on the finite state space ]L(f) with the generator Ar given in (2.1). The
Donsker—Varadhan entropy of a density f is

1) = - [ V@ Arvwds = 4142440 3 (F) - V)
y~x

In Section 2, we introduced the eigenfunction 1 of the difference operator
A} on Dr with Dirichlet boundary conditions (there on T-1/@+d74d) Because

R > 2¢4, 1 is defined on our torus ]L(}?) as well.

We consider now the translates if ¢: of § € L we set 15(x) = ¥(x — ) and F :=
{4§:0 € L}. Note that I(3) = A}, which by Lemma 2.1 is A\g/02 + O(T~1/@+)),
Ifg:L — R, we write

le — 7l = it [ |g6) - i) ds.
LEMMA 3.1. Ifd =2, then
60 inf{ [Lgs o de eI - Flaza) 2 v ea®,

for T~Y8 < a < 1 and large enough T.

The proof of this analytical result is given in Appendix A. For the rest of this
section, we set 7 = T4/@+d),

Our main result of the section states that for our transformed measure (now
o? the torus ]L(f)) the empirical density /7 is polynomially close to an element
of F.

ProposITION 3.1.  Let d € N and assume that (3.1) is true with an arbitrary
exponent for a on the r.h.s. Then there exists s > 0 such that

lim E(e™7; |l — F|ly > T~*) /zr = 0,
T—o0
where z7 is E(e~N1), Ny being here the number of points visited by nﬁT’R) up to

time 7 (as remarked, we usually drop R in the notation). We also use the notation
EX; A) for E(X1,).
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Proor. Ifh:[0,00) — [0, 1] satisfies h(0) = 0, then

Nr=r1 / X0, o0) (Ir(%)) dxx > 7 / h(lr(x)) dx.
We choose
3.2) h(x) = A9 D(x) = min(T'%, 1),

where q > 0 will be specified later on. We usually drop the indices g and T' in
h@T) and write

N® =7 / h(Ir()) dx.

Let p:(x,y) be the transition densities of our random walk 7; on L, where the
density is taken with respect to the normalized counting measure so that, with
our counting notation,

/ pelx,y)dy = 1.

(In the limit T — oo, p; approaches the transition densities of a Brownian
motion on a d-dimensional flat torus.)
If p:L — Rand 0 < §/d < 1/(2 +d), then we set

?o(x) = (Pressa-2/erap) () = /pyvza/d—z/(2+d)(x,y)cp(y) dy.
L
(Note that as ps(x,-) is essentially a normal density with standard deviation

V/# and the lattice spacing is T-/@*+% 7° is essentially just an average over a
range of T many points.) If a > s and T is so large that T~ < T~*/2, we get

E(exp(—Nr); |lr — Fll1 > T™°)
< E(exp( ~ND); lir = Fly > T, |ir 18|, < T_a)
(3.9) +P(|r -], 2 77)

< exp(T9 °7)E (exp(—r/h(iﬁ(x))dx); (= ?)

+P(|er -1, = 7).

We will estimate the two summands appearing on the right-hand side of this
inequality.

LeEMMA 3.2. Ifa and § > 0 are small enough, then

1 . .
lim ~1ogP(|lir ~Uf, 2 T°) = —co.
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(Remember that T = T4/@2+d) )

To estimate the first summand in (3.3), note that 4 defined in (3.2) contains
a parameter ¢ > 0 which we still can choose to our liking.

LEMMA 3.3. For given €,a,6 > 0, we can choose s < a and q > 0 such that,
with h = K@D,

E(exp <—’T /h(iﬁ(x))dx); i - 7|, > ?) < exp(— xqr — 7T7°)

for large enough T.

Clearly Lemma 3.2, Lemma 3.3 together with (3.3) and Proposition 2.1 prove
Proposition 3.1. O

Proor oF LEMMA 3.2. No attempt is made to derive the best possible § and
a. We use the same type of arguments as in [3]:

iz — 12|, = ujﬁlp (Ir — Poly,8) = sup (lr,g — P,g),
& :

oS &: oS

where o = T?6/d-2/2+d) We abbreviate g — P,g by g and set G = {g: ||g]lo <

1}. We can choose a finite set H of bounded functions defined on L such that
sups e g infy e 3 || f — hllo < T7?/4 which has [H| < exp(c(a, §)7log T') elements,
where c(a, ) > 0 does not depend on T'. (Note that ||f|l« < 2 for f € G.) For
each h € H, we choose a g with ||g|| < 1 satisfying ||h — g||c < T~%/4 if such

a g exists. Collecting all these functions g, we obtain a finite set G, satisfying

(3.4) |Go| < exp(cla, 6)rlogT),
(3.5) Supy .. <1 infyeg || 7 ~ &ll,, < T-¢/2.

We therefore obtain

P(|jir—1§||,>T) < P((lr,8) > T™/2
(ler =24l 2 7<) < 160l _sup_ P(0r,8) 2 7/2)

(3.6) -
< exp(—%er‘“)|g0| sup E(exp(z / §(ns)ds)),
llgllo <1 0

by the Markov inequality, where z > 0 will be chosen later on.

We now estimate E(exp( foT h(ns) ds)) for a bounded function ~. By Lemma 2.2
of [7], we get, for ¢ > 0,

t
3.7 E(exp(/0 h(m)ds)) < Cexp(2||h||°°)exp[tsup((u,h) —IT(u))],
M
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where the supremum is taken over the probability measure u on L; C is a
constant greater than 0 which does not depend on ¢ and 7. The situation here
is slightly different from that in [7], as 7, = nﬁT’R) depends on T. However, by
the obvious estimate

sup ‘logpf,T’R)(x, y)l <) < oo,

zy,T

for all ¢ > 0, the proof of Lemma 2.2 in [7] can be taken literally.
We write

or(h) = sup ((p, k) — I7(p)), 7(2)= sup or(zg).
w llgllco<1

By (3.4), (3.6) and (3.7), we get
3.8  P(|ir~Uf|l, > T=) < exp(c[rlogT +2 + 15)] — $2rT~").

We take now z = T* with a < k < d/(d +2). (We did not yet fix a.) Then, in the
exponent on the right-hand side of (3.8), z is dominated by 71log T, which itself
is negligible when looking at the negative summand %zTT‘“. If we show that

(3.9) F(2) < c2T~ %,

then for large T we get
P(|lir =], 2 T™) < exp(~}rT~**)

and we have proved the lemma.
We show now that we can choose § > 0 and 0 < a < d/(d + 2) such that (3.9)
is true:

(z) < sup {z(u,8):Ir(p) < 2, lIglleo < 1}

(3.10)
<zsup {||u — Blo: Ir(w) < 2},

where || ||, denotes total variation norm,;

lu—llo = o — pPslls (remember o = T'26/d~2/C2+d)

< /875, () < VBoz

if I7(u) < z. Here JJ is the discrete time Donsker—Varadhan entropy: If K is a
Markov kernel on L and v a probability measure on L, then Jk(v) = sup [(g —
log K(e®)) d+y, the supremum being taken over bounded measurable functions g.
The first inequality in (3.11) is by Lemma 4.1 of [6] and the second by Lemma 3.1
in the same paper. Using (3.11) and (3.10) it follows that (3.9) is true for small
enough a,§ > 0 and appropriately chosen %, a < k < d/(d+2), therefore proving
Lemma 3.2. O

(3.11)
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PRrOOF OF LEMMA 3.3. A direct estimation of the expression does not seem
to be possible, the main difficulty being that { f € L;: || f—F||; > ¢} isnot convex.
We therefore cut the space of probability densities on L into small pieces. Given
b >0,letfy,...,[n, be afinite collection of probability densities on L such that,
for any probability density f,

(3.12) min /‘,3 _76‘ dx <T°.

1<j<mr

Ifs < b, h = K9 where g > 0, then

<exp<—7'/h ) |t - 7|, > T s/z>

< stupE(exp<—T/h(Zﬁ)dx); 12— £, < T—b)’

(3.13)
jed

where JJ is the set of indices j with || fj — F||; > T~%/4. The above éxpression is
then less than or equal to

mr exp(rT9~?) sup [exp(—T / h(,g(x))dx>P(||Z£ —fll, < T"’)l .

JjeJ
To proceed, we have to estimate my and P(||l{ —f||, < T~%)for || f—F|; > T—*/4.
LEMMA 3.4. Ifdb < 6, we can find a set {f1,...,[m,} with
my < exp(c(b, 5)rT%°log T).

LEMMA 3.5. There exists C > 0 such that, for any € > 0,
P(|lir —fll1 <€) < Cexp( — (1 — Drg(f, 2))
where kr(f,e) = inf{I7W): |v — f|l; < €}

We postpone the proof of these two lemmas and proceed with the proof of
Lemma 3.3. If b < a, we get

319) P(|th -], <T*) < P(ltr il < 27-) + P(|ir ~ 7f]], > 7).
Using Lemma 3.5 we get
exp(—T/h(ﬁ(x)) dx)P(||lT —fili <2T7%)

(3.15)
<cexp (-—7- h(fi(x)) dx — Trr(f;, 4T‘b)).
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Ifj € J, then
/ h(£@) dx + kp (£, AT?)

(3.16)
2 inf{ [ h(fw)ds+IntPr1 - Flh > 77/8} - T,

LEMMA 3.6. For any q,¢ > 0 there exists ¢ > 0 with

inf(| [ A(FG)dr+ (PRI = Fll 2 1) 2 x4 T

Postponing the proof of this lemma, the proof of Lemma 3.3 can easily be
completed. From (3.13), (3.15), (3.16) and Lemma 3.4, we get

(exp(—r/h ); |if - F, = T's/2))

< exp(c(b,tS)’rT‘ + TTq_b)P(“lT —if), > T_a)
+c eXP(C(b, 8)rT=? "‘clTTq_b)

* exp( [If = .7"||1>T-—s/8 (/h (x) dx+IT(f)>)

where 0 <6 < 6 — db
We take now b = 1 min(g, §/d), g = b/2, & = (6 — db). We apply Lemma 3.6.
If we take € < m1n(6 b — q) and choose s < €’ and s < b (which was required

above), then
E (exp (_T / h(i;)dx) s #-F), = T—s/z)

< exp(—2xq47) + exp( — xar — c7T™°)

and in fact, by choosing s > 0 small enough, we can have £ > 0 as small as we
like, proving Lemma 3.3. O

It remains to prove Lemmas 3.4-3.6.

PROOF OF LEMMA 3.4. We first divide L into cubes of side length g =
oT-?./7, where a > 0 will be chosen later (remember that g = T'26/2-2/Z+d)),

containing therefore approximately 7°~9° points. We define f F8(x) for x in such
a cube B by (1/|B)) [z f*(y)dy. Then

3.17) / |78 — Po0)| da < / sup [poly +2) — po(y)| dy.

|2|<cB
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We have

ce
(3.18) /su (y+2) —ps(y)|dy < —,
|lepelpa y po()|dy 7
for ¢ > 0. By a straightforward computation, this is true for the transition
probabilities of Brownian motion, and a standard application of the local central
limit theorem (see [10], Theorem 1.2.1), (3.18) follows.
Using this, we get from (3.17)

N -5
619 |7 =7l < ear < T2

if @ is small enough. By choosing functions which are constant on our cubes, we
find density functions fi,. .., fn, with

mr < (ch/(2+d)+b)crerb—5 < exp (261(% + b) TTdb—O'logT)

and sup||f”1=1 minl S‘]SmTllfa - f}”l < T_b/4 (note that ”?6”00 < CTd/(2+d)).
Together with (3.19), this proves Lemma 3.4. O

Proor oF LEMMA 3.5. We keep T fixed for the moment; n;, s > 0, is a
process on the finite state space Ly. If x € L, we write P* for the law of the
random walk 7, starting in x. Ifx € L, ¢ > 0, let

T

_ t
T =~ / xe(n)ds.
t Jo

Remember that 7 = T'%/2+d)_ We have by definition Iy = ,.
Let

Xt,e) = min P* (|G - f]], < ).

As the set of probability distributions {v: ||[v — f||; < €} is convex, one sees that
At +5,€) > ¢, €)A(s, €), and from this we get \(¢,¢) < exp(—tkr(f,€)), where

.1 = .
rr(f,€) = - lim = logP(Illt ~fl, < e) =inf{Irw):[lv - fll1 < €}.
The second equality follows from the fact that, for fixed T, 7,, s > 0 satisfies a

uniform large deviation principle with rate function I (the state space being
finite). Since

Pl =flh <€) < 3 pateyP ([l Al 24 2),
y

7 2
PX(llir = flls < €) 2 ;pﬁx,y)Py(lllT_l ~flly<e~ ;),
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where p;(x,y) is the transition probability of the random walk on Ly we have

P(ltr - Flh <€) < Cexp(-w- 1)&T(ﬂ6+$>),

where by a simple computation

max, pi(x,y)

C=stp min, p;(x,y)

[ps(x,y), of course, depends on T'.] O

PROOF OF LEMMA 3.6. We reduce the lemma to the statement of Lemma 3.1
(which itself is proved in Appendix A for d = 2).

If f is a density, we put f = (,/f — T-9/?) v 0)2 (¢ > 0 was used in the
definition of &). An elementary calculation gives

I =Flly < eT™e/2.

We put f = f/|fll1, which then satisfies ||f f||1 < T2 as well. If ¢’ < q/2,

then, for large enough T, ||f — Fl|l, > T~¢ implies || f — F||; > T~ /2. For any
such f, we also have

[rr@)an= [15, dx and D)= @ - eI/

Using this, the statement of Lemma 3.6 immediately follows from that of
Lemma 3.1. O

We will need several refinements of Proposition 3.1 which in the end lead
to a proof of our main theorem. Our steps are always of the following type:
We consider events which depend on x € L, T > 0 (and maybe some other
parameters), say, A, r, and we already know that

137' ( UAx,T) -1
X
for T — oo; we want to show that, for some other family of events B, 7, we have

13T<U (A, 7 me,T)) - 1.

x

For this conclusion, it suffices to show that

timy o0 B(e7% U, (A0 B ) ) fon

<ec 11m TsupE( -Nr, A, r ﬂB;YT)/zT =0.

—)m x
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If the last equality is true, we write
A~ B,

where A is a shorthand for the collection {A, r:x € L, T > 0}. We also use the
notation

=A for IlggoPT<LxJA"’T> =1.
Note that for proving
A~BnC,
where BNC = {B, 7N C, r:x € L, T > 0}, it suffices to have A ~» Band A ~ C.
Obviously A ~ B and B ~ C imply A ~ C.
If D is a subset of L, we write N7(D) for the number of points in D visited by

the random walk up to time 7 (= T'%/2+9), For x,y € L, we use d(x, y) as the
Euclidean distance on the flat torus.

PROPOSITION 3.2. If's > 0, then there exists € > 0 such that
{lir = 2 < T~} ~ {NT( (0a(1 T~ 6))) < TT-E}.

We slightly abuse the above notation. The dots in 12 and D. indicate families
of events which depend on x € L when replacing the dots with x; for example,
D.(r)={y e L:d(x,y) <r}.

Proor or ProposITION 3.2. Ifa,8,s > 0,8 < 1/(d+1),a < min(3,s —20),
then we claim that Ny > 7wy0% + 7T~%/2 on the event

{lir =21, <770, We (D (ea1 - 7)) > 712,

To prove this, we compare v, which is the eigenfunction of the discrete Lapla-
cian, with that of the continuous one, ¢, introduced in Section 2. (We can, of
course, take x = 0.) We have

¢2cT™? on F=D(0s(1-T))

and using 8 < 1/(1 +d) and Lemma 2.1, ¢ > ¢T#, too. From this, the above
claim follows by a straightforward counting argument. Now

E(exp(—Na)s iz = 2, < T, Na(F) > 77
< exp(-wagir - §r7~*)P(|lir - vZ], < T~)

<c exp( — waddT — 3T~ — Trp (Y2, 2T'3)) ,
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by Lemma 3.5. Proposition 3.2 then immediately follows from the following
lemma. O

LEMMA 3.7. Ifs > 0, there exists a > 0 such that
inf{Ir(F) || f = 2], T~} = hp -T2
(A7 is A} from Section 2. We drop the asterisk.)

ProOF. The centering x plays no role, so we set x = 0 and write 1 for .
Let D = D(gy) on the lattice L and

d{x e L\D:3y € Dwith |x —y| = T'l/(2+d)}.
The function v satisfies Ary = —Ar except possibly on 8D. We write
(3.20) A= —Apip + 6. o
Using Lemma 2.1, we have

(3.21) sup |6(x)| < cTY @D,
x

We consider the “dual torus”

. 2n 27 2r ¢
L —{O;ITTWZITTW“"(KT_]-)E"} )

where Rp = T-V@dDK, Kp= [RTY2+d)],
For the sake of notational convenience, we assume that RT/?*? is an integer
and so Ry = R. The Fourier transform of a function f: L — C is defined by

fla) = / @02 f(x) do,
L

where a € L*.
If g:L — R satisfies [; g2dx = 1, then

—d
(3.22) @) =" Y ar@lg@p,
a€l*

where gr(a) = 254, T/ @D(1 — cos(T~V*Dy)), a = (eu, ..., ag). We have the
elementary estimate

(3.23) c1la)? < qr(@) < eslaf?,

where |o| is the Euclidean distance from 0 to o on the flat torus. [We consider
L* as a subset of the flat torus [0, RT/@+d)d ]
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Using (3.22), we obtain for any g: L — R with ||g||2 = 1, and for any ! > 0,

—d .
() = 1ra?) = 5 S are (i - 50

—d N
(3.29) <5 Y a@[Fe)f e s ar@ly - gl
2 alal>l alal<l
< Bl S @ + e — gl
2 a:la|>l

the last inequality by (3.23).
In order to estimate 1, we use (3.20), which gives

—gr(a)p(a) = —App(a) + 8(a),

and therefore

' |5(oz)|
3.25 =
(3.25) [ = e
if gr(c) # Ar. We claim that, for any [ > 0,
(3.26) 3 5@’ <el.
ala|<l

Postponing the proof of (3.26) for the moment, we immediately get from
(3.24)—(3.26)

Lr(y?) — IT(g2)<c(R)[ + P — gllz]

for large enough I. Choosing I = || — g, 1 3 we get
Ir(y?) - Ir(g%) < cR)llv - glly < 4e@®)||v? - 2(1}/%,

which proves the claim.

It remains to prove (3.26). We can write § as a fixed finite sum of functions
¢’ which have the property that there is one component of x = (x;,...,x4) € L,
say x;, such that for every value of the other components, the number of x;’s
with 6'(x) # 0 is bounded above. We assume i = d and write x’ = (xy,...,%4_1),
x" = x4. For a € L*, we do the same splitting a = (¢/, o’). Using (3.21), we see
that the partial transform

£’ o) = T/ @) Zei(“""‘ll)é’(x’,x")
xll
is bounded above, uniformly in x’, o”. Using the Parseval equality, we see that

3\/(01/, a) 2
2|

al
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is bounded in o, and therefore

Y F@f<s Y F@)| <el

a:|a|<l ala!|<1

This proves (3.26). O

4. A disc is completely filled. The space L is still our lattice torus ]I.,ff).

Ifg:L — [0, 00), we define

s(g) = {y € L:g(y) > 0}.
We also use € > 0 as a generic small constant, not necessarily the same at dif-
ferent occurrences. All inequalities are required to hold only for large enough T'.

We have shown so far that there exists with large Pr-probability some trans-
late f; = ¥2 € F such that I7 is L;-close to f;. We show in this section that with
f’T-probability close to 1 every point in s(f;) is visited, except possibly those
near the boundary.

The analysis here is only for d = 2 and is actually based on some rather crude
arguments which could not work for d > 3. So, we consider only to d = 2 where
the distance on L between points is 7-1/4 and time for our rescaled random
walk 7, runs up to 7 = VT. We set o = g5.

PROPOSITION 4.1. For any s > 0, there exists . > 0, such that we have
{llir = £lls < T~} ~ {sr) > D.(e(1 - T74) }

ProOOF. We write A,(:) for the event {s(I1) D D,(o(1 — T~*))}.
We have already remarked in Section 3 that on {||l7 — f;|l1 < T~°} we have
Ny > 7102T/2 — T1/2-¢ for large T'. So
E(exp(—N7); iy — felly < T7%, AL(Y)
< exp(—m@®TY2 + TV*)P(|llr — fills < T, A(0)Y).

We can assume that x = 0 by changing the starting point of the random walk
to x’ = —x. Our analysis will not depend on this starting point.

For a strictly positive 1: L — (0, 0co) we define the law P of a random walk on
L by the generator

(4.1)

~ 1 1;(3')
=>VTYy == - )
Ag(x) 3 70 (g(y) — gx))

y~x
Then
P (llip = flls < T~ Ao(uF)

(4.2) - T (el VT o
=E* ~1,b(x) exp </ Mds); llr = Flla S T7%, Aole) ).
Y(n,5) 0 Y(ns)
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Essentially, we want to take ) ~ 1, the latter being, however, not strictly
positive and not smooth enough.

We start with the eigenfunction ¢ of the principal eigenvalue of the continu-
ous Laplacian ;A in D(g) = {x € R%: |x| < o} with Dirichlet boundery conditions
and set

¥ = px) +T*,

for some (small) number « > 0 and 9(x) = T-*/2if |x| > p+ 1. Forp<x < p+1,
we put (x) = h(|x|), where h: [g, 0+1] — [%T"‘, T~—*] is a smooth monotonically
decreasing convex function whose derivative at 1 + ¢ is 0 and at g equals that
of the radial derivative ¢ at the boundary of D,. We can achieve this with

d2
sup ——<h(x) <cT".
xE[g,gg] dx?

We then restrict ¢ to T-1/4Z2 and then to the lattice torus L, which is no
problem, because we assume R = 10p. If x € LND(p) has all its neighbors inside
D(p), we have by Lemma 2.1

AT‘Z(.’C) =App(x) = —dgp(x) + O(T‘ 1/4) ’
where ¢ is also restricted to L. Therefore

Arp(x) = Do) + O(T ") ifk <

and we get
4.3) ATY®) | | <o
Plx)
for x € D(p(1 — T~*")), and of course
(4.4) ATV _
P(x)
everywhere.

On ||lr - f|l1 £ T~¢ we have

/\/T A{J(Ws)ds = \/T<I4L,\:J; > + 0(T1/2+N—s)
0 ’w(ns) ) ’
= VT + O(TY?-¢),

by using (4.2) and (4.3), choosing 0 < ' < k < s. Taking this ¢ in our transfor-
mation, we get

P (lliy — fll1 < T™%; Ao(t)’) < exp(— AVT) exp(T2~*)P* (Ao(1)).
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We claim now that for a given § > 0 we may choose ¢ small enough such that
(4.5) P¥(A()) < exp( - TY279).
Having (4.5) and using (4.1), we see that

E(exp(—Np); ||lir — fells < T~°, A:(F) < exp( - 2VmAVT) exp( — TV/2~¢),

which with Proposition 2.1 proves Proposition 4.1.
Ify € L, we define 7, = inf{s > 0:7n; = y}. We prove (4.5) by showing that if
¢ > 0 is small, then there exists [ > 0 such that, for large T,

infP*(r, <1) > cT".

(4.6) inf
y€ED(o(1-T~+)) z€L

This implies (4.5). In fact, in the standard way, one proves

1~’(73, > fT_) <1 =T YWD < exp( —¢/TY27*)
and .
f’(ry > VT for some y € D, (o(1 — T“))) < cVT exp( - T2,

The first entrance time into D(g/2) has a bounded expectation uniformly in
z € L, T and, therefore, it suffices to prove (4.6) with the inf over z restricted
to z € D(g/2).

Observe now that for paths of fixed length which stay inside D = D(p(1 —
%T"L)), the density of P with respect to P remains within c[T~¢,T"] if . is
small enough.

IfA CL,let os =inf{t > 0:7; € A} and 7 = 03 It suffices to prove that

4.7) Pi(r, <1, 7> 1) > (DT,

for z € D(g/2), y € D(o(1 — T~*)), where c(l) does not depend on z,y, T. We first
prove that, for 0 <r < g,a > 0,

(4.8) P*(1y < ay/r, opg) > 70) > cla)logrT)™?,

for z € D(2r/3), where c(l) > 0. We write the Lh.s. in terms of the random walk
7s which is 7, but killed when leaving D(r). The corresponding hitting time of
0 is denoted by 7o. Then

IF r
Ez(/ 1o(ﬁs)ds) < Pz(;o < l\/;)EO(/ lo(ﬁs)ds>
0 0

ING IT
Pi(7<lvf) > [ PG =0)ds / PO, = 0)ds
0 0

IVF Ivr
> [ PG, = 0)ds / PO(s, = 0)ds;
0 0

PZ(;,‘S = 0) = Pz(’l’]s =0)PZ(O‘D(,.) > 8 | Ns = O)
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However, P*(opyy > s | ns = 0) > ¢(l) > 0 for z € D(2r/3), s < I\/r, and therefore

I\T T
P37y < I\/r) > cl) PZ(n; = 0)ds // Py, = 0)ds
> cl(l)/ log(rT) v 1).

This proves (4.8). Relation (4.7) is an easy consequence of (4.8). Applying (4.8)
tor = 3p/4 and a+/r = 1/2, we see that it suffices to prove (4.7) for z = 0. Starting
at 0, we see that

PO(O'D(M) < l) >c() > 0,

uniformly in T and y € D(p). However, with probability > ¢T'~¢, the first exit
place from D(|y|) is within distance 17— from y. If 7' = 7p,(T~*/4), we there-
fore have

(4.9) P <1, 7' <@ > )T

Using (4.8) again, we see that with probability > ¢(l)/log T the random walk,
starting from a boundary point of Dy(%T“), hits y in time less than or equal to
[ before exiting Dy(%T“). Combining this with (4.9) proves (4.7). O

5. Exclusion of excursions and proof of Theorem 1.2. We have proved
so far that in dimension d = 2 with Pp-probability close to 1, there exists a disc
D of radius slightly less than g such that all points in DN ]L(TR) are visited by 7
at least once. More precisely, for . > 0, let

Alz, = {sr) 5 D,w), #(sr) Do) < TH @D, 1 (Do) < TH @D~

where bx(l,) = D,(o(1 — T~*)). We usually drop ¢+ and just write l~)x
Propositions 3.2 and 4.1 imply that for some « > 0 we have, for d = 2,

(5.1) =\

Let 8l~)x be the set of poigts in l~)x which have at least one neighbor which
belongs to the complement D5.

We prove in this section that there are actually, with IST-probability close to
1, no excursions from the disc. In fact, we will prove that, for any r > o,

(5.2) A’~ B,

where B, r = {D,(r) D s(I7)}. This easily proves Theorem 1.2 (see the lines
following the statement of Proposition 5.1). Although (5.1) is proved only for
dimension d = 2, we prove (5.2) here in any dimension. A full proof of the
localization in any dimension therefore depends only on Lemma 3.1 and Propo-
sition 4.1.
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At some places it is convenient to switch to a discrete time random walk.

Let & = 0,&1,&,... be an ordinary symmetric nearest neighborhood ran-
dom walk on ]L(;?), and let (1, (s,... be i.i.d. exponentially distributed random
variables with mean (1/d)T~2/@*® which are independent of the ¢ variables. If
t>0,let

o(t) = sup {m: Z(j < t}.
j=1

We may assume that n; = €.
IfneN/xel,let

Mn@) = 1o(&).

k=0

By standard estimates for sums of i.i.d. random variables, we know that, for
O0<e< %, .

P(lo — dT| > T'/?*¢) < exp(—cT?),
for some ¢ > 0, where o = o(T9/2*), So we see that if
Air,=Alr, N {lo-dT| <T'},
then, for small enough ¢ > 0,
(5.3) A"~ AL

If r > p, we denote by d.(r) the total number of discrete time points spent
outside D.(r),

d.(r) = Ao (D:(r)).
One easily gets
(5.4) Al {d. (61 -T™) < Tl"/2}.

To see this, let g = (1 — T*)p. If one conditions on ¢ = k,dT(1 - T7*) < k <
2T(1+T"), and the ¢ path, then (1, (s, ..., &, T — SE ¢, where 7 = T4/, are
just the spacings of the order statistics of £ uniformly chosen random variables
on [0, 7]. Fixing o and the ¢ path fixes Ny, s(I7) and d(p). If d(3) > T'~*/2, the
conditional probability (given o = £ and &) of the event {I7(D,(9)°) < 7T~} is
just the probability that d(p) fixed spacings sum up to a length less than or
equal to 77~*. That is easily seen to be O(T—™) for any m. This implies (5.4).

Let A, 7 =Ai’,_,‘ N {d«(8) < T'~%/2} and B, 1 = {D.(r) D s(r)}.

Summarizing these simple considerations, we have obtained

A" A,
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and together with (5.1) we have, for d = 2 and small enough ¢,
SA.

Here (A, r,,) is the collection of events with which we start now with the most
delicate part of the argument, namely, proving that no excursions from the
droplet can occur (in the limit T — oo, of course). Let us repeat what kind
of an event A, 7, is: A path (on our discrete rescaled torus) is in A, r , if a
ball with center x and radius slightly less than g, is completely covered and
outside this ball, both the total time spent and the number of points visited are
smaller than 7%/?* by a factor of at least T—*, where T%/*® is the value for
the free random walk. Furthermore, the same type of inequalities is true for
the imbedded discrete time walk.
The hard task is to prove the following proposition.

PROPOSITION 5.1.

(a) If r > o, then for sufficiently small . > 0, A ~ B.
(b) For d = 2 and sufficiently small 1, we have A N B.

Part (b) follows from (5.1), (5.3), (5.4) and part (a). The main task of this
section is to prove (a).

Everything up to now was done on a torus ]L(f) for a fixed R > 0 (R=10p).
However, having proved Proposition 5.1, it is fairly obvious that one has proved
the main theorem.

PrOOF OF THEOREM 1.2. One has to check that if Proposition 5.1 holds for
one R, then it holds true for R = oo, that is, for the random walk on L$® =

T-1/@+d7d Ty see this, note that

E® (e—NT; U Awrn{D:(» > S(lT)})

xEL,@
= E(T?O) (e_NT; U A, TN {Dx(r) > s(lT)}> ,
xeL(Too)

where E(T}.” denotes expectation for the random walk on ]L(TI.”. Using this together

with the obvious inequality
EP () 2 BRE™),
the theorem follows. O

We now switch back to the situation on the torus (with R = 10p) and start with
the proof of Proposition 5.1(a), which will follow from a number of intermediate
results (Propositions 5.2-5.5).
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Let us introduce some notation:

We use D,(:) for D,(o(1 — T—*)) and often just write D,. An excursion from D,
is a portion &y, &us1, - - - €v—1,& Of our discrete time random walk &, &1,...,&
with £,,1, .. ,&, 1€ D, (& € 8D, or u = 0) and & € 8D, or v = o). We say that
the excursion is on the interval [u,v]; [u + 1,v — 1] is called the interior of the
interval. The excursion might have an endpoint not in 8D, but in DS, but only
if the excursion starts at 0 or ends at 0. We also speak just of an excursion if it
is clear which x is considered. We call v — u the length of the excursion. We say
that the excursion reaches r > g if for somej € [u,v] = {u,u+1,...,v—1,v} one
has & & D.(r).

Our main method for proving the proposition is to compare the probability
for certain types of excursion with the probability that the path would stay
completely inside D,.

If y1,2 € Dyym € N, let gnm(y1,y2) be the conditional probability that a
path &,...,&y stays inside D, given that & = y; and &, = y2. We need this
only if the probability of the latter is not 0. Similarly g,,(y) is defined just as
P(¢q,...,Em € Dy|€& = y). The probability ¢,,(1,y2) may be small either because
m is large or because TY/®@*%|y, — y;| is small compared with \/m. It is, of
course, also small because the endpoints y; and y; may be on the boundary, but
this effect will be negligible (only of polynomial order in m). Let pn,(y1,y2) =
P& = y2 | & = y1). In order to avoid repetitions of trivial assumptions, we
tacitly always make the following assumptions: We will consider quantities
like pm(y1,¥2) and g, ((y1,y2) only when y; and y; are in or close to D.(o), say,
inside D,(30/2). We will consider them only if there is a path of length m joining
y1 and y, which stays inside D,(30/2). For such y;,y, we calculate y; — y2 by
identifying LY with a subset of T-1/**®7z? C R putting x at 0 in this lattice.

Let A:R% — [0, 0] be the entropy function of our nearest neighbor random
walk:

d
h(x) = sup [()\,x) —log (Ell— Z COSh(Aj))} ;

AER? j=1
h(x) is finite if and only if ¥|x;| < 1 and is C* in the interior. We use standard
saddle point approximations for p,,(y1,y2) and g, (y1,y2). The following results
are sufficient for our purpose.

LEMMA 5.1. There exists ¢ > 0 such that, for some o > 0,

1/(2+d) _
onexp (- (0 )

m
TV @+ (g, — y2)>>

< pm(y1,y2) < exp (—mh( =

[of course, only if pm(y1,y2) # 0, which we tacitly assumel.
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LEMMA 5.2. There exist k € N and constants c1,cy > 0 such that, for m € N,
we have

-k 2/(2+d)) ,

gm(y1,y2) > cym ™" exp(—com T~

for all y1,ys € Dy(r), 0/2 <1 < 30/2.

We will prove these two lemmas in Appendix B.

Let n.(r) be the total number of excursions which reach r, and ifa € R, n3 (r a)
[n£(r,a)] is the number of excursions which reach r and have length less than
or equal to 7 [length greater than or equal to 7¢]. We first show that no short
excursions occur.

PRrROPOSITION 5.2. Ifr > pand ag < 2/(2 +d), then
AM {n.s(ra aO) = 0}

Proor. We split the event A, N {nxs(r, ag) # 0} into disjoint pieces. Let U be
a nonvoid collection of intervals [u,v] in Ny with 1 < v — u < T9% and disjoint
interiors.

Let m(U) = min{u: [u,v] € U}, m(U) = max{v: [u,v] € U}. We denote by C,(U)
the event that o > m(U) and that the excursions to r of length less than equal
to T occur exactly on these intervals.

Let Nr(U) be the number of points visited by the ¢-path for time points
outside the interiors of the intervals of U (up to time o). Obviously

(5.1) N7(U) < Nrp.

We denote by S7(U) the set of points visited by the walk &, for % ¢ int(U), where
int(U) is the union of the interiors of intervals in U.

Let
A, = {Sp(U) > D,} n {o > m(U)}.
Clearly
(5.2) A, NC,(U) C A, N CAL),

where C(U) is the event that on all the intervals in U there is an excursion
which reaches r and is of length less than or equal to 7% (but there may be
others).

Let F(U) be the o-field generated by all the ¢ variables, by o(¢) N {0 > m(U)}
for £ ¢ int(U) U {m(U)} and by o(¢zw)) N {o > m(U)}.

By (5.5) and (5.6) we have

(5.3) E(e™1; A, N C,(U)) < E(e™ M WP(CAU) | F(U)); A).

We assume for the moment that m(U) # 0 or m(U)=0and 0 61~)x.
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We estimate the conditional probability. On CY(U) we have &,,¢, € 8D, for
[u,v] € U except possibly on m(U) = o, where &, for the last interval may belong
to DE.

Let [z, 7] be the last interval in U, and let U; = U \ {[%,v]}. Set

LI(U) = {0’ > m(U)} N [ ﬂ {&u,éu € aﬁx}]a

[u,v]l€U
Ly(U) = {oc=mU)} N [ ﬂ {&,8 € 8f)x} N {&e 61.~)x}}.
[u, v]€Uy
Note that L;(U) and Lo(U) belong to F(U);
P(CU) | F(U))
(5.4) _ _ _
<1, H qy—(&u, &) + 1,0 H Qy—y (Eu,éu)qv_y(éi),

[u, v]l€U [u, v]€U;

where, for y1,y2 € 813x UI};,

m—1
am(ylay2) =P(£la~ c3€m—1 & Dx, U {5] ¢Dx(r)}

J=1

50 =yla§m =y2>a

o =y1>.

LEMMA 5.3. Ifag <2/(2+d), then there exists § > 0 such that for r > g there
are constants c1,ce > 0 such that, for y1,ys € 0D,,m < T,

m-1
a(yl)=P(€1v"-,£m—1 ¢ Dy, U {é) ¢Dx(r)}

J=1

(a) Tn(y1, ¥2) < crexp(—coT°),
and, forally € aD,,

(b) Tm(y) < c1exp(—caT?).

Lemma 5.3 is a straightforward consequence of Lemma 5.1 by using the
trivial estimate

m
am(ylv y2) g Z me'(yl,z)Pm—m'(Z, yz)/pm(yl, yz),
2@D,(r) m’'=1

and similarly for g, (). _
We denote by C*(U) the event that & € D, for all j € intU. Using (5.8),
Lemma 5.2 and Lemma 5.3 for comparing g,, with g,,, we obtain

P(CAV) | FU)) < ¥ exp(—co|U|T®)P(C(U) | F(1)),
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for some c1,¢g,6 > 0. Using the fact that Np(U) = Ny on A, N C*(U), we obtain
(5.9) E(exp(~Np); A, N C(U)) < ¢l exp(—c,|U|T?)21.

Up to now we have assumed that 0 # mQLI ) or 0 € &D,. The argument needs a
slight modification for m(U) =0 and 0 ¢ D,.

Let v be the endpoint of the interval of U with starting point 0. The estimate
(5.8) remains correct with two small modifications. In the definition of L; and
L, we only intersect with {& € 8D, } for the first interval of U. Also, the factors
for the first interval in U on the right-hand side of (5.8) have to be replaced by
q_a(O, &ﬁ)

We consider

E(e™; A,nCUN{& =y})

and then sum over all y € 8D,. This summation will give an additional factor of
order T'@-1/@*2) Of course, we cannot compare g,,(0, y) with g,,(0, ) because
the latter is 0 when is not a nearest neighbor of D,. However, we can compare
3,,(0, y) with gn(y, ), the latter being of polynomial order in m. Using the
translation invariance of the problem, we get (5.9), too, with an additional factor
T(@-1/@+2) which is harmless if we decrease § > 0 slightly. Now, summing (5.9)
over all possible choices of U, we get the result. O

Proposition 5.2 is proved by a rather crude argument. We have excluded some
types of excursions without taking into account their contribution to N7. This
was possible because these excursions themselves (under the measure P) were
sufficiently improbable. It is clear that part of the way of proving Proposition 5.1
must depend on finer arguments. The next two propositions, however, can still
be proved in the same crude way as Proposition 5.2. We will not give the proofs
of these two propositions, which can be taken nearly word for word from that
of Proposition 5.2 by using Lemmas 5.4 and 5.5 stated below. To state the first
proposition, we consider two numbers s > s’ > p. We say that an excursion
&u,&usts - - -, & which reaches s has an a-quick return to s’,a € R, if for some i, j
withu <i<j<v,j—i<T% wehave & & D.(s'), & € Di(s).

PropPosITION 5.3. Ifa < 2/(2 +d), then there exists b > 2/(2 + d) such that
for all s > s’ > pone has

A~ there are no excursions of length less than or equal to T®
which reach s and have an a-quick return tos'.

To formulate the lemma which is needed instead of Lemma 5.3, we consider
for y1, yo € 8D,, m € N, the probability q/,(y1, y2) that a path &,...,&, stays
strictly outside f)x, reaches s and has an a-quick return to s’ conditioned on the
event that & =y1, &n =y2. For ¢/,(y1), one fixes only the starting point y;.
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LEMMA 5.4. Ifa < 2/(2 +d), there exists § > 0 such that, forall s’ > s > p
there exist constants cy,co > 0 with

(a) gu(y1, ¥2) < ¢1 exp(—coT®) for all yy, y2 € 8D,, m < 3T,
(b) ¢.,(y) < c1exp(—coT?) for all y € 8D,, m < 3T.

For the proof of (a), we use the obvious estimate
am(y1, y2)

Z 1<mi<my<m ZzlgD,,(s') ZzzEDx(s) X pm1(y1azl)pm2—m1(zla y2)pm—mz(z2a ¥2)

my—m <T°¢

<
- Pm(y1, y2)

and apply Lemma 5.1, and similarly for (b).

As noted above, the proof of Proposition 5.3 is the same as that for Propo-
sition 5.2 with the obvious modification in defining C.(U) and by using Lem-
mas 5.2 and 5.4.

PROPOSITION 5.4. Given by > 2/(2 + d) there exists ro > o such that

A~ an excursion of length greater than or equal to T®
spends at least half of the time in D,(ro)°.

Let g}, (1, y2) be the conditional probability given £ = y1 and &, = yo of the
event that a random walk &, . .., &, stays outside D, and stays inside D,(r) for
at most m /2 time points j,1 <j < m — 1; q;,(y) is defined analogously.

LEMMA 5.5. For any K > 0 and any by > 2/(2 + d) there exists ry > p such
that the following hold:
(a) For any y1, y; € 0D, T% <m,

q(y1, ¥2) < exp(~KmT =Dy for large T.

(b) Foranyy € 81.~)x, Tbo < m,

g (y) < cexp(—KmT~%@ym*  for large T.

The lemma is fairly obvious. We give a sketch of the proof. As p,,(y1, ¥2) is of
order m~9/2, one needs to prove only (b). If we drop the condition that the walk

stays outside D, all the time, this gives an upper bound. So we have to estimate
the probability that a random walk (on our torus) of length m spends at least
m /2 time points in D,(ro) \ D,. By the usual rough large deviation estimates,
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this is (logarithmically) equivalent to

exp( - -Tz/%gga(ro)),

where a(rg) = inf{I(u): p(Dy(ro) \ Dyx(gq)) > %}. However, obviously a(rg) — oo as
rolod.

Using this, the proof of Proposition 5.4 again is an easy modification of that of
Proposition 5.2 by using the above lemma together with Lemma 5.2(a) and (b).

The point is, of course, that we may take K as large as we like by choosing
ro > o small. So the ¢/, are much smaller than the g, even for large m.

To proceed further we need some information on how many points in ]L(T’.” are
visited by independent random walks.

Let £1,...,¢" be n independent discrete time random walks on ]L(TI?) which
start at x;,...,%, and have lengths /3, ...,1,. Let N(¢1,.. ., £") be the number of
points visited by all these walks.

LEMMA 5.6. Letf < 1. Thenifa < 2/(2 +d) is sufficiently close to 2/(2 + d),
one has for any € > 0

E(exp(—N(gl, .. .,&"))) < exp (—T“‘(Z li>d/(2+d))

ifl; > T®, 5;1; < T, for all x; and for large enough T.

The proof of this will be given in Appendix B.
We define

(510) Ax,T(LyryaOaaybysyslybOer)

to be A, r,, intersected with the right-hand sides in the pseudoimplications in
Propositions 5.2-5.4. We specify now the bunch of parameters depending on
t>0.

We take f =1—:/4in Lemma 5.6 and choose a < 2/(2 +d) at least as close to
2/(2 +d) to be sufficiently close in the sense of this lemma. We choose ¢, 6,k > 0
(close to 0), a,ag,a; < 2/(2+d)and b = by > 2/(2 +d) [close to 2/(2 + d)] with
the following requirements: for 7%t < m < 2T we have

(5.11) inf _ pm(y1, y2) > exp(—cT?) (use Lemma 5.1);
¥1,y2€0D,

2
(5.12) d+a< G+d’

¢t 2+d)e+6) @2+da,
(5.13) 1—~§+ 3 < R
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for any o € [0,d/(2 +d) — ¢/4],

2 d
(5.14) b—m+a<—6+m(a—n+a),
4
(515) K+2a < m,
(5.16) a >max(aa ——-2———-i-)
: 0 “hoyd 16/

We select ry > o according to Proposition 5.4. We are still free to choose r, s’ and
s in (1), which are restricted by requiring

(5.17) o<r=s <s<r.

The outcome of these specifications is a set A which depends on x, T, s',s and ¢
and is denoted by A,(s’, s) (as usual, we drop the dependence on T and ¢). From
Propositions 5.2-5.4 we get

(5.18) A~ A, s).

We denote by v,(r) the number of excursions to r of our discrete time random
walk. Note that on A,(s/,s) each excursion to s’ has length greater than or
equal to 7% and as the time spent outside D, is at most T1-4/2 [see (5.4) and
the definition of A just above], we get the following on A,(s’,s) [by (5.16)]:

(5.19) v (s') < T/ (@+2—e/4,

PROPOSITION 5.5. If0 < a <d/(2 +d) — 1/4, then with the parameters from
above

A(s',5)N {n.(s) < T} ~ {.(s) < T ).

Proposition 5.5 clearly implies Proposition 5.1(a). In fact, we just select o =
2/(2+d)—b/4> ai>ag > >ap-1>0> OtkWithOzj—Olj_l <K 1<j<k,
and for any r > ¢ choose o0 < 59 < 81 < -++ < s =r Arg (ro as specified above).
Then from Proposition 5.5 and (5.18) we recursively get

A~ A(sj—l,sj) n {I/.(Sj) < Taj},
which particularly for j = £ gives
A~ A(sp_1,5) N {v.(r) = 0},

which proves Proposition 5.1.



SELF-ATTRACTING TWO-DIMENSIONAL RANDOM WALK 905

We now start the proof of Proposition 5.5 by introducing some notation. If
&ur&usl, - - -, & 18 an excursion to s, let

o1 = mm{n > u:én, ng(S)},
1= min{n >01:&, € Dx(s,)}a
o9 = min{n > Tlifn 9? Dx(s)} and so on.

We call the pieces &,,,&,,+1, - - -, &7, the returns of the excursion.

We introduce events analogously to C(U) in Proposition 5.2 which essentially
specify the places of excursions to s, to s and the returns of the latters.

Let U’, U and V be nonvoid sets of intervals with disjoint interiors. We assume
the following:

1. U’ > U; each U € U’ of length greater than or equal to 7? is contained in U.

2. For each V € V there exists U € U with V c U, and for each U € U there
exists Ve VwithV C U.

3. The length of the intervals in U’ is greater than or equal to 7%,

4. If U € U has length greater than or equal to 7%, then the total length of the
intervals in V contained in U is greater than or equal to |U|/2.

5. If the length of U € U is < T®, then all intervals in V which are contained
in U have length greater than or equal to T°.

Given such a triple, we consider the event C,(U’,U, V) specified by the fol-
lowing conditions:

(a) o >m(U").

(b) The excursions to s’ occur exactly in the intervals of U, and those to s in
U.

(c) The returns of the excursions to s occur exactly in the intervals in V.

Let A, r(s’,s) be the disjoint union of its intersection with the C,(U’, U, V).

We also consider CA(U’, U, V), where we change (b) and (c) by requiring that,
in the intervals in U’, U and V, excursions and returns of the prescribed type
occur; that is, we drop the word “exactly.” (The C? are no longer disjoint.)

Before proceeding further, let me explain why this somewhat complicated
procedure appears to be necessary. The main aim is, of course, to exclude the
possibility that excursions occur. Furthermore, it is clear that we must use the
fact that such excursions contribute to Ny. One might start to look at what
happens when the excursions, say, to r > p, are switched inside D, but it is
difficult to control how much Nr is decreased in this way, because there might
be many excursions which just fail to reach s. To handle this problem one looks
at two radii s’ < s and at what happens when all excursions to s’ are switched
inside. Then Ny decreases at least by the contribution of the excursions to s
inside the shell D,(s)\ D,(s’) or at least by the returns. The contribution of such
returns can be estimated if they are not too short. We have already excluded the
possibility of short returns on relatively short excursions (length less than or
equal to 7). Long excursions have already been shown to stay outside s quite
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long (Proposition 5.4); so if there are no long returns, then there must be very
many quick ones, which again is highly improbable. By taking all these effects
into account one gets an estimate of the number of excursions to s in terms of
the ones to s’, which is exactly the content of Proposition 5.5.

We define N1(U’) as in the proof of Proposition 5.2 and N7, as the number of
points visited by the returns of length greater than or equal to 7¢. Clearly

(5.20) Ny > Np(U') + Np.
We now split the expression
E(e™; A6, )N {(s) < T°} 1 {1(s) > T277})

into its restriction to C(U’, U, V), where the triples satisfy the conditions above
and [U’| < T?, U] > max(T**,0). Let A, be the set of these triples. Then we
get, by (5.20),

E(e7Vr; Al(s',9) 0 {() < T2} 1 {1sls) > T})
5.21 , ,
G2 v E(17,4, VW E (e~ CUU, U, V) | FW)),
U',U,V)EA,

where A,(U’) is the event that m(U’) < o and the path outside the interiors of
the intervals of U’ completely fills D,.

We divide V into two subsets V; and Vg, where V; contains the intervals
of length greater than or equal to 7% and V; those of length less than T*. Let
ni = |Vq|, ng = [Vg|, let the length of the intervals in V; be l3,15,...,1,, and let
those in Vy, I3, ... ,Z,,z. Then we get, by summing over all possible choices of the
positions of the path at the left endpoints of the intervals in V,

E(eNr; CYU, U, V) | F(U)

-1
(5.22) < exp (c(ny + na)logT) LLIU N ;:g; 5P (yl,yz)}
X xlmaxx;‘l E (exp [—N({l'x‘, e ,§""""1)]> X ng w(|V]).
Here
m(m) = inf p?(én € Dals").
Furthermore, £1:%1, ..., "% are independent random walks starting at x; and

having length ;. Applying Lemma 5.6 we get

d/(2+d)
(5.23) mng(exp[ - N(gl, . ,gnx)D < exp (—cT—E (Zl") ) .
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The 7(m) can easily been estimated by Lemma 5.1, and we get the following for
some constant ¢ > 0 (depending on s,s’ and also on a, which is fixed): for large
enough T and m < T°,

(5.24) m(m) < exp(—cT%*dm-1).,
By (5.12), we have
-1
(5.25) [ H inf p[U[(yl,yg)J < exp(c/(n1 + ng)T5).
UeU ¥1,Y2€0D,
By (5.12) and (5.13) and n1T® < T'~*/2 one gets, for ny +ny > 1,
na 1 ny d/(d+2)
(5.26) (n1+n)T’ =0 (Z T @] e (Zl ) )
i=1

as T — oo.
Combining (5.22)—(5.26) gives, for some ¢ > 0,

E (exp(-Np); CU, U, V) | F@W))

(5.27) s . n d/2+d)
<exp| —c Z T @] L e (Zl ) .
i=1

Assuming m(U’) # 0or 0 € 5,;, we get from Lemma 5.2, for some ¢/,
(5.28) P(C (U | FUN) > exp(—c/(UUNT~2/ D 4 |U'| log T)),

where [(U’) is the total length of the intervals in U'. Combining (5.21), (5.27),
and (5.28) with the fact that NT(U’ )=NronA,U)N Cr(U"), we get

(eXp(—NT); Ax(s',8) N {1a(s) < T} N {vals) > T“"‘})

529) Ser D, exp (T~ ®DU) + [U'|log T)

T wUves
ny \ 4/2+d)
[ (£2))
i=1

By the same slight modification as in the proof of Proposition 5.2, we get this
estimate for m(U’) = 0 and 0 ¢ D,, too.

We will now show that for a suitable constant ¢y > 0 the right-hand side of
(5.29) is less than or equal to z7 exp(—T*0) for large T.
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Let A2 be the total length of the intervals in V of length greater than or equal
to 7@ which are inside intervals U € U of length greater than or equal to T?,
and let A< be the total length of those intervals in V of length less than 7.
Since

ny
Z Zi =A< )
i=1

n: n -1
(5.30) 7d/(2+d) 22:2,—1 > d/@+d) 22: AT\ S ey <2
=a i \"2/

i=1
Furthermore,
ny
(5.31) > 5 > nST® + A2,
i=1

where n<(U) is the number of intervals in U of length less than or equal to 7°.
Combining (5.26), (5.30) and (5.31), the right-hand side of (5.29) is less than
or equal to

27 Z exp (c’ (T~4/@+ DY’y + |U'| 1og T
w,u,v)

—c [T2/(2+d))\<T—2a +T-=(\ + nS(U)T“)d/(z +d)] ) .
The total number of summands is dominated by
|Aa| < exp(c(lVl logT + |U'| logT));

|V|log T' is dominated by T%(n, + ng). Therefore our last task is to show that

T-2/@DU) + [U'|log T

(5.32)
= o(T2/@+ NP2 + T (32 + <))V * ")

as T — oo, uniformly on A, . We abbreviate the expression o( - ) on the right-hand
side by X.
We consider two cases:

@ 0| > iT-by ).

Then T-2/@+dY(U’) < 2T? ~2/@+D || and we will dominate the right-hand side
of this, which dominates |U’|log T', so we need not take the latter into account.
As |U| > T** on A, we have

(Ia) nS(U) > ATo"
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or
(Ib) n>(U) > 17"

where n>(U) is the number of intervals in U of length greater than 7°. If (Ia)
holds, then X > Te/2-r/2+a/2-¢ g4 (5.32) follows from (5.14).
In case (Ib) we have

e < p>@U) <POUT < 1(A<+22)T78,

where [>(U) is the total length of the intervals in U of length greater than T°.
Therefore

max (A<, \%) > JT*-~

and

X> T—e()‘z)d/@ﬂi) + \<T2/@+d)—2a

> min (_\/l_de(a—n+b)/(d+2)—e, % Ta—n,+b+2/(2+d)—2a),
and (5.32) follows by (5.14) and (5.15).
It remains to discuss the case
an U'| < 3T-bL(U).
Here, we have
ISWHT® < nSU') < LiUHT-?,

where [S(U’) is the length of the intervals in U’ of length less than or equal to
T®. This implies

P ) > L,

but > (U") = [~ (U) < I(U). So (), I(U"), I7(U) and I~ (U’) essentially coincide.
Having this, the left-hand side of (5.32) is dominated by

T—2(2+d)l>(U) < %T—2/(2+d) ()\< + )\2)
= 0(Td/(2+d)/\<T—2a + (AZ)d/@"’d)) = O(X),

so we proved (5.32) in this case, too, and therefore Proposition 5.5.
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APPENDIX A

Proor oF LEMMA 3.1. It is convenient to reduce the problem to one in a
continuous situation. Let I be a two-dimensional flat torus with circumference
R = 10p;. We identify II with [0,R)%. As in Section 2, ¢ is eigenfunction of
the principal eigenvalue A of —%A in Dy(pz) with Dirichlet boundary condition,
which is normalized by [ p2dx = 1, ¢ > 0, and is extended to R? by setting it
equal to 0 outside Dy(g3). We can interpret ¢ as a mapping II — [0, 00). Ifx € II,
we write ¢, for the translate of p: p,(y) = p(y — x).

LEMMA A.1. Ifg € C®(1l) satisfiesg > 0, [g*dx = 1, and if

e =infllg — ¢sllz > 0

is small enough, then

g >0} +1 / Vgl2dx > 2v/ah + 15,

Proor. Of course, we may assume
(A1) [{g > 0} <3vmr, 1 / |Vg|2dx < 3V
By the Sobolev inequality (see [1], Lemma 5.10), we have, for 2 <r < oo,

lel? <) [ (¢ + Vil)ds

<c'(r).

(A.2)

Let § = max,g(x), S; = {x € II: Vg(x) = 0}. According to Sard’s theorem
8(Sg) is of Lebesgue measure 0. We define J = J; = (0,81 \ g(Sp). If y > 0, let
A(y) = {x € Il:gx) > y}. If y € J, then the boundary AA(y) is a C*® curve.
We set I(y) equal to the length of 0A(y) and A(y) = I(y) — 24/7|A(y)|. The
symmetrization g*: R2 — [0, 0o) of g is defined by

g"(x) =inf {y > 0:| A(y)|/m < |x|*}.

By (A.1), we may assume that g* is defined on II.

If I*(y) is the length of 0A*(y) = 9{x:g*(x) > y}, that is, I*(y) = 24/7|A(y)),
and 6*(y) is the constant value of |Vg*| on 8A*(y), then by Jensen’s inequality,
ify ed,

/ V@) dz > 2()6*(5)/1*(),
OA(y)
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the integral being taken with respect to Lebesgue measure on A(y). Therefore,
Jrwatas- [wgpac= [ay( [ aevewi-sorm)
J BA(y)

2(y)
A3 —I* *
(A3 > [a(55 15

> /J dy A(y)5*(y).

Assume for the moment that

A4) Az forye ((0,6%)nd),

then
/|Vg|2dx-/|Vg*|2dx
9 15 dy |7}
>e 5 (y)dy > € {/ ___}
/Jn(O,e3] Y Jn,e8] 6*(¥)
= e {|A(0)| - iA(a3)l}"1 > el5 > cel®
IV N
Therefore,

(A.5) |{g > 0} +%/|Vg}2dx > |{g* > 0}| +%/1Vg*|2dx > 2V7h +ce®s.

It remains to investigate the case, where (A.4) is not true. By (A.1), we have
(A.6) A(y)| >c>0 forye (0%,

for ¢ small enough. If (A.4) is false, then there exists y, € (0, 3] with A(y,) < €°.
We claim that there exists » = r(g) > 0, ¢ = £(g) € 11 satisfying

(A7) 0<c<r(g
(A.8) |A(y0) ADe(r)| < c€°,

where A, here, denotes the symmetric difference.

By (A.6), (A.7) follows if (A.8) is satisfied. Inequality (A.8) is implied by the
Bonnesen inequality (see, e.g., Theorem 1 of [11]) as follows: Set A = A(y,), and
ifx e [0,R), A, ={y € [0,R):(x, y) € A}. Then

l{x:Ax # ¢}l < I{x |Ax| =R}I + I{x:Ax #0, A, # [O,R)}!
< -[—%l+l(yo)<R,
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by (A.1) and the fact that A(y) < °. Therefore, there exists x with A, = @.

Similarly, one can cut the torus without touching A in the other coordinate,
and therefore we can assume that A is a subset of R2. By the isoperimetric
inequality, there exists a connected component B of A such that |A A B| = O(e28),
|I(y0) — |8B| | = O(?), where B is the complement of the unbounded component
of B¢. Therefore, we may assume that A is simply connected in R2, and (A.8) is
an immediate consequence of the Bonnesen inequality.

Let h be a C* function: IT — [0, 1], which is 0 outside D¢(r + &%), 1 on D¢(r)
and

(A.9) |Vh(x)| < ce3, x eIl
We set

~ N _ h(g —yo)*

89 = g —yorTs

llg —h(g —y0)ll2 < llg — (g —y0)*ll2+[|(1 —h)g —yo)f”z
< 063, by (A.8) and (A.2).

Therefore, (g —g|2 < ce? < /2, for small enough ¢, and so

el o /o,
(A.10) nf I - eelle > </2

Furthermore, for some § > 0,
/|V§|2dx <(1+ 0(53)){/h2|V((g —yo)+)|2dx+ / ((g —y0)+)2|Vh|2dx}
< /lVgl2 dx +ce**d,

by (A.8), (A.9), (A.2) and the Hélder inequality.
Let ¢ be the normalized eigenfunction in D¢(r + £3), that is,

Pe®) = ¢ (& L &8 §)g> 2

r+ed Jr+ed’

for |x — £| < r+ &% and 0 elsewhere. Then
e >0} +} [ 1Vglds > 1AGyo)| + } [ VB2 dx - e
> ]Dg(r+s3)| + %/ Vg% dx — c1e2*¢
(A.11)
> |De(r+e)| +§ [ |Ve[ s

+.;.[ [1vgPas- [ |V¢§|2dx] o,
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(A.12) |Dg(r+63)|+%/|V<’ﬁ§|2dx22\/)?+C2|r+e3—g|2‘

The second summand on the r.h.s. of (A.11) is estimated in the following way. Let
6(r) be the difference of the first and the second eigenvalues of %A in De(r + €%)
with Dirichlet boundary condition.

From (A.7), one gets §(r(y)) > ¢ > 0, and therefore

1 ~ 1 - ~ o~
3 [ Ve dy = 5 [ |96el'dn 2 8] - ol

2
(A.13) >c [(-;— = llpe = @st) v 0}

2
2c[(-§——c’|r+s3—g]> VO] .

The sum of the expressions on the Lh.s. of (A.12) and (A.13) is therefore greater
than or equal to 2v7\ + ce?, and therefore, if (A.4) does not hold, we have
from (A.11)

g >0}/ +1 / Vgl > 2V +ce?,
for small € > 0. This prove Lemma A.1. O

Let f be a probability density on the discrete lattice L satisfying || f — F||; > a,
a > T7Y8 If Foone is {2: x € I}, ¢, and I are as introduced before Lemma A.1,
we get from Lemma 2.1

”-7: - fcont”l < CT_1/4-

Let us agree that when writing || g — &||;, where g is defined on the continuous
torus and A on the discrete, we understand this by extending 4, making it
constant on the squares. _

We define a function f by interpolating f first linearly in the “c-direction”,
that is, on {(x,£T-%4):0 < x < R} and then also linearly in the other. It is
easily checked that

(A.14) 3 / |VF|*dx < Ir(f),

the Lh.s. being an ordinary integral, and
If =7l < T4 VI P
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Of course, we may assume that Ir(f) < 100, and therefore we see that if 7 =

/Ifll,
-~ a
”f_fcontnl > ‘é‘

If we write f = g%, we have
inf|g — xfl2 > a/4.

Lemma 3.1 now obviously follows from Lemma A.1 and (A.14). O

APPENDIX B

Proofs of the technical lemmas in Section 5. Let (X,),cn, be an or-
dinary symmetric discrete time random walk on Z¢, satisfying X, = 0. For
notational reasons, we formulate everything in terms of (X,).

Let F = {x = (x1,...,%q) € R%: ¥|x;| < 1} and F, be the set of extreme points
of this set: F, = {x € Z%: ¥|x;| = 1}. ~

The following facts are well known from elementary large deviation theory
(see, e.g., [9]). If a € F, then there exists a unique probability distribution g,
and F, satisfying

(B.1) ha)= > qo(x)logga(x) —log2d,
x€F;
(B2) Y %gax) = a;
x€F,

q. is actually minimizing the r.h.s. of (B.1) among probability measures satis-
fying (B.2). Furthermore, if x € Z%, @ =x/n € F, one has

(B.3) P(X, =x) =e ™ @P (X, =x),

where P is the law of a random walk having one jump distribution g¢,. Using
a standard local central limit theorem (Bhattacharya and Rao [2], Corollary
22.3), one has

(B.4) P (X, =x) > cn~9/2

uniformly in x for x having the same parity as n (which we tacitly always assume
in such statements) and x/n € F. [For x/n on the boundary of F, the covariance

matrix of q, becomes degenerate and f’a(Xn = x) is actually of order n=%/2 for
some d’ < d].

PROOF OF LEMMA 5.1. We tacitly assumed that T%/@*d(y; — y,) has the
same parity as m, and |y; — yz| < 3g4/2. Then
P(Xpn = TY®D(y; — yy))
< Pm(y1,52) < P(Xm = TV D(yy — y3)) + P(|Xn| > 04T ®).
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Using (B.3), (B.4) and the estimate
1/(2+d)
P(1Xm| > 304T/*¥) < cexp (—mh <@‘-i-1:n—))

from Cramér’s theorem, the statement follows. O

PrOOF OF LEMMA 5.2. We write P, for the law of the walk starting at x. If
n<m,let X m ={Xj:n < j<m}.

Let K be the intersection of Z¢ with a centered ball in R? of radius rT/@+d),
where g4/2 < r < 2¢4. Lemma 5.2 claims that

_ m
(B.5) P, (Xio,m) CK | X =y) > c1m k exp (—sz)

for some c1,¢3 > 0, £ > 0, uniformly in x, y € K and r. Of course, as remarked
before, we tacitly assume that m has the correct parity and is large enough for
P,(X,,=y)>0.

We first treat the case where m < T'%/?*d and where we can incorporate the
exponential factor on the r.h.s. into ¢;. The claim is probably true with & = 1,
but as there is no need for this here, we leave k unspecified. Let a = x/m. By
the bound we obtained in Lemma 5.1, it suffices to prove

(B.6) P2 (Xio,m) C K, X =) > cm™*.
If0<r<m,z=x+r/m)y—x), we have
P (Xio,m C K, X =y)
(B.7) > P2(X0,n CK, X, =2)P¢ (Xio,m—r} C K, Xpn—r =)
= P¢(Xp,1 C K, X, = 2)P;*(Xio,m—r) C K, Xy =2).

Of course, z has to be adjusted slightly in order to be in Z¢ with the correct parity.
We omit mentioning such trivial corrections. By (B.7) it suffices to consider the
case where

(B.8) (x—y,3)>0.

It should be noted here that the proof of the bound is nontrivial only for x near
the boundary of the ball. The lemma is actually only needed in this case.

Let %, be the covariance matrix of q,, B, = vX,Do(1) [Do(1) is the unit
Euclidean disc] and |x|, = inf{¢ > 0:x € ¢B,}

Let ¢ € R? satisfying |¢|, = 1 and

(—x,&) = max{(—x, m:(nle = 1}'

An elementary geometric argument using (B.8) reveals that for some § > 0,
which depends on the dimension d only,

F®)NZ8cK forl<k<m,
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Fy@)=x+ka+ \/ kim — k) k)§+t\/ kim — k) k)Ba.
m m

Ifl<u<v<m,let

where

Gu,u(8) = | Fr(6).

k=u

For notational convenience, we pretend that m is divisible by 3 and write m = 3n.
Then

P2 (Xio,m C K, Xm =)

> ﬁ: (Xlo,n] - GO,n(é), Xn € Fn ('g‘)a

5 |
Xip ) © G208, Xan € P § ) Xin, 1 © Ganm®), X =)
B9 5
> P¢ (X © Goa®), X, < Fi3)

= 6
X Py—a (X[O,n] C Gzn,m(tS), Xn € an (§>)

x inf {f’z (Xio,n1 C G, 20(6), X = v):u € Fy (g) v € Py, (g) }

By Donsker’s invariance principle, we have that there exists o > 0 (depend-
ing only on the dimension d and §, the latter depending also only on d) such
that, for all/ € N,

P2 (Xy € Fu(8), Xy, o0 C Gra®) | X1 =2) > a
for z € Fy(6). If 2°~! < n < 2¢, this implies by iteration
P2 (X, € Fu(8), Xio,n C Go,n(6)) > o > cm™*,

The same estimate applies to the second factor on the r.h.s. of (B.9). The last
factor is easily estimated by the local central limit theorem and Donsker’s the-
orem. By the central limit theorem we have

P2(X, =v) > cn~9/2
(see [2], Corollary 22.3) and Donsker’s for a tied-down random walk gives

ﬁ:(X[O,n] C Gp,2n(8) | X =v) > ¢ > 0.
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Implementing these estimates in (B.9) proves (B.6).
Treating (B.5) for m > T?/@*? ig now easy: If x € K/2

K —Ccom
Px(XIO,m] CK, X, € E) > CleXP(WTé@>

is just a rough lower bound of standard large deviation estimates (see Section
2 for a much finer analysis), and this can then be combined with the estimates
for m < T?/@*d i a straightforward way to give the desired estimate also for
x, ¥ near or at the boundary of K. O

ProoF oF LEMMA 5.6. The statement is probably true without the factor
T-¢. With it, a rather crude argument suffices. We chose ¢ < 2/(2 +d) such that

a > 2f/(2+d). Let
1/(2+d)
m= !T_E/zd (Z l,)

By a trivial adjustment, we may assume that m divides K = [RTY/2*9], and
therefore there is a natural projection

ng) = T-1/(2+d) (ZK)d _, T-1/@+d) (Zm)d =1

We denote the images of the walks & by €. Obviously, the §~‘ are simple random
walks on L and

NE,....8) <N(EL,....e7.
IfA C L, we denote by A;(A) the event that §~‘ does not visit A. Then

E(exp(—N(&l, ... ,5”))) < E(exp(—N(gl, ... ,En)))
< exp(—%md) + ZﬁP(Aj(A)),

A j=1

(B.10)

where the summation over A extends over those sets containing at least m?/2
points. The first summand on the r.h.s. of (B.10) is of the desired order, so we

only have to cope with the second. There are at most om’ A’ so it suffices to
show that, for large m,

(B.11) [1P(Aj4) < exp(-Bm?),
j=1

with arbitrary large 3, uniformly in A with | A| > m?/2. The local central limit
theorem implies that for some constant a > 0 we have

P61 #A EudA)<1-a
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uniformly in the starting point of the walk £ and in A if |A| > m?/2. Note now
that our condition a > 2f/(2 + d) ensures that all our /; are greater than or
equal to m2. Therefore, we get

HP(Aj(A)) < exp (—c Z n%) ,

Jj=1 Jj=1

which is more than enough for (B.11). O
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