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ERGODIC THEOREMS FOR INFINITE SYSTEMS OF LOCALLY
INTERACTING DIFFUSIONS

J. T. Cox! AND ANDREAS GREVEN?

Syracuse University and Universitdit Gottingen

Let x(£) = {x;(£), i € Z%} be the solution of the system of stochastic
differential equations

dx;(t) = (Za(i, Jae(®) — x,-(t)) dt + /28 () dw(®), i€z’
jezd

Here g:10, 1] — R* satisfies g > 0 on (0, 1), g(0) = g(1) = 0, g is Lipschitz,
a(i,j) is an irreducible random walk kernel on Z¢ and {w;(t), i € Z%} is a
family of standard, independent Brownian motions on R;x(¢) is a Markov
processon X = [0, 1%, This class of processes was studied by Notohara and
Shiga; the special case g(v) = v(1 —v) has been studied extensively by Shiga.

We show that the long term behavior of x(f) depends only on 4(i,j) =
(a(i,)) + a(j,1))/2 and is universal for the entire class of g considered. If4(i, j)
is transient, then there exists a family {vy, 8 € [0, 1]} of extremal, transla-
tion invariant equilibria. Each vy is mixing and has density 6 = fxg dvg. If
4(i,)), is recurrent, then the set of extremal translation invariant equilibria
consists of the point masses {6y, 6;}. The process starting in a translation
invariant, shift ergodic measure y on X with fx dp = 6 converges weakly as
t — oo to v if 4(i,)) is transient, and to (1 — 6)§; + 66, if 4, j) is recurrent.
(Our results in the recurrent case remove a mild assumption on g imposed
by Notohara and Shiga.) For the case (i, j) transient we use methods devel-
oped for infinite particle systems by Liggett and Spitzer. For the case a(, j),
recurrent we use a duality comparison argument.

1. Introduction and main results. The objective of this paper is to study
the ergodic theory of a class of interacting diffusions with countably many com-
ponents. This class was first studied by Notohara and Shiga in [15]; related
processes have been considered by many others. See [5] and [19] for some re-
cent results and references to the literature. Although the processes we consider
are not explicitly “solvable,” we are able to determine the set of extremal invari-
ant measures and their domains of attraction among the class of translation
invariant measures. Let us begin by defining our model.

The Model. LetX = [0,1] 2 be endowed with the product topology. We define
a process x(¢) = {x;(¢), i € Z%} taking values in X through a system of (It5)
stochastic differential equations. The basic ingredients of the model are a ma-
trixa(, j), i,j € Z% and a functiong on I = [0, 1]. The matrix a(i, j) is irreducible
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and satisfies

(LD aG,)N>0, aG)=a0,j-0) Vi jeZ Y a0, j)=1.
J

The function g satisfies

12 g>0 on(0,1), g(0)=g(1)=0, supw < o0
udo U=
Throughout the paper, unrestricted sums are taken over all of Z%.
For a probability measure 1 on X define the process x(¢) with initial distri-
bution yx by

(1.3) dx,@) = (Za(i, Pxie) —xi(t))dt+ V28 (@) dwit), ieZ?,
J

and L(x(0)) = pu, where {(w;(t)), i € Z%} is a family of standard, independent
Brownian motions on R, and £ denotes law. It was shown by Shiga and Shimizu
([20], Theorem 3.2) that the system (1.1)~(1.3) has a unique, X-valued strong
solution x(z).

In the proofs of our results we will have occasion to use the following addi-
tional facts (see [20]), especially Remark 3.2): x(¢) is a continuous, strong Markov
process with Feller semigroup U(¢) and generator & which acts on C? functions
f on X which depend on finitely many coordinates according to

0? .. .. 5}

(14) &fl)= Xi:g(xi)é;?f(x) + zl: (21: [aG, 5) — 6G, J)]xj> ]

where 6(, j) = 1 if i = j and is zero otherwise. We note that if 4 = £(x(0)) is
translation invariant, then so is pU(t) = L(x(¢)).

Motivation. The process x(¢) can be viewed as a diffusion limit type model
for the evolution of gene frequencies. In this interpretation individuals have
genotype A or B, there is a colony of individuals at each site i € Z¢ and x;(¢)
denotes the frequency of genotype A at colony i at time ¢. Changes occur in gene
frequencies for two reasons: fluctuation within a colony (described by g) and
migration between colonies [described by a(Z, j)]. Notohara and Shiga consider
a more general model than ours in [15], but impose additional assumptions on
g. The special case g(v) = v(1 — v) results in a version of the stepping stone
model, which is of great interest in mathematical genetics. This case has been
studied extensively by Shiga and others (see [10] and [17]-[21]). Another ex-
ample of interest in this context is the Kimura—Ohta model (see [9]), given by
g(v) =v3(1 —v?).

There are several additional reasons for our interest in the class of models
defined by (1.1)—(1.3). First, the analysis of the case g(v) = v(1 — v) is based on
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a duality theory that does not seem to be available for other choices of g. This
duality is similar to the duality theory for the voter model (see [6] and [12])
and is an extremely powerful tool. However, a natural question to consider is
whether or not the behavior of x(¢) is universal in the class of functions g which
satisfy (1.2); that is, is duality essential or merely convenient? We note that if
Z? is replaced by a hierarchical structure and a mean field limit is taken, it
turns out that the function g(v) = v(1 — v) does indeed play a rather special role
and is related to a fixed point property of the evolution under a renormalization
scheme. This is discussed by Dawson and Greven in [3] and [4].

Second, we have been interested in the long term behavior of systems with
a large but finite number of interacting components. A general framework for
such systems was developed by Cox and Greven in [1] and [2] and was extended
by Dawson and Greven in [3]. We hope eventually to show that the entire class
of models described by (1.1)-(1.3) fits into this framework. The first step in
doing so is to establish the basic ergodic theory of the infinite systems, which
we do here.

Results. We have found that for every g there are two qualitatively different
types of behavior possible for x(¢), stability and clustering. This is exactly what
happens in the case g(v) = v(1 — v). The two types of behavior are determined
by the kernel

aG, j)= a(i, j) ; a(j,i)

and not the function g. To describe our results we need some additional notation.
Let 7 be the set of translation invariant measures on X, and let Z be the set
of measures which are invariant for x(¢) (measures are probability measures).
For 6 € [0,1] let My consist of all 4 € 7 which are shift ergodic and have
density 6 = [xodpu. Let 6o be the measure on X which assigns mass 1 to the
point x € X, x; = 6. Let = denote weak convergence, and for a convex set I let
I, denote the set of extreme point of T,
Our first result concerns the stable case.

THEOREM 1. Let a(i, j) be transient.
(a) For 0 € [0,1], if L(x(0)) = b4, the weak limit
(1.5) Vg = tllglo L(x())

exists. Each vy is translation invariant, associated, mixing and has density
0= f X0 dl/g.

(b) For 8 € [0,1], if L(x(0)) € My, then
(1.6) L(x@®) =>vs ast— oo

© @TNT)={rs, 0<O<1}.
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The situation is quite different if a(i,j) is recurrent, which is the case of
clustering.

THEOREM 2. Let a(i, j) be recurrent.
(a) For 6 € [0, 1], if L(x(0)) € My, then

1.7 L(x(@) = (1 —0)6 + 0661 ast — oco.
(b) Z. = {60, 61}

REMARKS. The techniques we use to prove Theorems 1 and 2 do not require
any special properties of Z%; any countable abelian group will do. Thus our
results can be applied to the hierarchical model considered in [3]. We also obtain
convergence results which are somewhat stronger than Theorems 1 and 2 (see
Theorems 3 and 4, given in Section 4). Notohara and Shiga (see [15]) concentrate
primarily on the case @(i,j) recurrent. They obtain the convergence in (1.7)
subject to a mild regularity condition on g.

The dichotomy between stability and clustering was first proved by Shiga [17]
for the function g(v) = v(1 —v) using duality arguments. It does not appear that
duality is available for general g. However, in the case of clustering, we are
able to make a duality comparison argument work which allows us to prove
Theorem 2.

As a replacement for duality in the stable (@(i, j) transient) case we are
able to make use of a beautiful coupling technique for infinite particle systems
introduced by Liggett and Spitzer in [13] and used by Greven in [8] (see [5] for
some related ideas). We believe this technique can be applied to other classes
of interacting diffusions. For instance, consider the model in which the interval
I = [0,1] is replaced by [0,00) and the function g satisfies g(0) = 0, g(u) is
bounded away from 0 as u — oo and g(u) < cu, u € (0, 00) for some positive
finite constant c¢. This model is similar in spirit to critical branching random
walk (which is well understood), and one expects that versions of Theorems 1
and 2 will hold for this model. Another possibility is to replace I with (—oo, +00)
and assume that ¢; < g < ¢y on (—o0,+00) for some finite positive constants c;
and c,. In this case one expects a version of Theorem 1 to hold, which is behavior
characteristic of the critical Ornstein—Uhlenbeck process (see [5]). The main
differences between the analysis of these models and the one we consider here
are the complications caused by unbounded coordinates.

The rest of the paper is organized as follows. In Section 2 we study the be-
havior of moments and mixing properties under the evolution. In Section 3 we
construct a coupling modelled on the one in [13], and in Section 4 we complete
the proofs of Theorems 1 and 2.

2. Moment equations and density preservation. In order to use the
coupling technique of [18] and our duality comparison argument, we need in-
formation on the evolution of the correlations of the components of x(¢); this
will allow us to establish, later on, preservation of density in the limit £ — oo
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in the transient case. The first task is to derive some facts concerning Ex;(¢)
and Ex;(¢)x;(t). We need the following ingredients. Using the matrices a(i,j) and
a(i,j) define continuous time kernels

N AT o
at(l,J)=E e a @ 5, at(l,J)=§ e’ —a @, ).
! — !

n=0

Note that @y (i, j) = $ra:(, k)as(j, k). Let us write P# and E* for probability and
expectation if £(x(0)) = », and P* and E* in the case x € X and p({x}) = 1.

LEMMA 1. ForxeX,t>0,andi, jcZ¢
(2.1) E*x(t) = ) aii, k),
3

and
E*x(e0i(e) = 3 arli, Ba(j, Dy
k,l

2.2) t |
" /0 S sl B, Vg (54(5)) .
k

Proor. We start by deriving systems of differential equations for the mo-
ments Ex;(t) and Ex;(t)x;(t) which we then solve in terms of random walk sys-
tems. By (1.4) applied to f(x) = x;,

d

ZEx® =) (ali, ) - 6G, ))Ex(0).

J

Since a(i, j) — 6(i, j) is the generator of a;(Z, j), (2.1) follows.
Next, an application of (1.4) with f(x) = x;x;, gives

%E"xi(t)xj(t) = E*g(x:(8)) 58, j)

2.3) +3 (al, k) — 86, ) E*x()x;)
k

+3° (@G, D) - 6, D) E*xi(t)(2).
l

We solve this system of equations by viewing it as a system of random walk
equations. Consider the operator 2 acting on bounded functions A:Z¢ x Z¢ —
R defined by

ARG, ) = 3 (aG, k) — 6G, D) Ak, )+ (ali,D) — 6(j, D)RG, D).
k l

If Z! and Z? are independent random walks, each with transition function
a:(i, j), then A is the generator for Z; = (Z}, Z?). With functions F; and H; defined
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on Z¢ x 2% by F,G, j) = E*x,(t)x;(¢) and HyG, j) = E*gx;(t))8G, j), (2.3) can be
rewritten in the form

d
EFt = Q[Ft +Ht.
By Theorem 1.2.15 of [12],
t
2.4) F, = S®OF, + / St — $)H, ds,

where S(¢) is the semigroup generated by 2(. However, (2.4) is the same as (2.2),
since S(h(, j) = X 0.0, k)a:(j,Dh(E,1). The conclusion of Theorem I1.2.15 of
[12] applies because 2 is a bounded operator. O

We shall make use of the following consequences of Lemma 1. If 4 is a trans-
lation invariant measure on X with [xodu = 6, then

(2.5) Efx;(t) =60 forallt>0

and

Erx(0xi(®) = Y aili, ka(j, DEx(0)x,(0)
k,

2.6) t
. /0 Bote—siy JEPg (xo(s)) ds.

The next step is to define a set of measures which is preserved under the
semigroup U(¢). For 6 € [0, 1] let Ry be the collection of all u € 7 which satisfy
() [xodu = 6 and (ii) T a:G, k)as(j, 1) [xp2;dp — 6%as t — co. It is easy to see
that if 4 € Ry, then, for all i € Z¢,

2.7 > ai, k), — 6 in Ly(u) as ¢ — oo.
k

Furthermore, if 4 € 7 and (2.7) holds for some Z, then u € Ry. This is because
bounded harmonic functions of a(i, j) are constant (Choquet-Deny), and a suc-
cessful coupling exists. See Section II.1 of [12] for more on this. We will omit
the proof of the following fact.

REMARK. My C Ry.

Our next result, which parallels Lemma 5.3 of [13], shows that U(¢) preserves
the class Ry, even under weak limits.
LEMMA 2. Assume p € Ry.

(a) uS@) € Ry for all t € [0, 0).
(b) Assume a(i, j) is transient, t, — co and uS(t,) = peo. Then poo € Ry.
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Proor. Let fi(i,j) = E*x;(t)x;t). For (a), in view of (2.5), it suffices to
check that

(2.8) > asi, Bas(, Dfe(k, 1) — 6% as s — oo
k,l

By (2.6), the left-hand side above equals

t
Z as+t(i, k)as+t(j’ l)fo(k, l) + / a2(t—u+s)(i, J)E“g(xo(u)) du.
k] 0

Since p1 € Ry, the first term in this expression converges to 62 as s — co. The
second term in the expression is nonnegative and bounded above by

‘. .. lell 2o . . o~
||g||/ Aa(t-u+s)(i, J)du = =B / a,(i, j)dv < t||g|| sup @G, j) — 0
0 2s v>2s8

as s — 0o, where ||g|| denotes the sup norm of g. This proves (a).
For (b) let f(Z, j) = E¥x;x;. The problem now is to show that

(2.9) > a5, Ras(, Dok, 1) — 62 as s — co.
k,l

Letting A,G, j) = [2a,(, j)ds, (2.6) implies
> arli, B)axj, DE*2,,(0)x,(0)
Y <
< Yp 4G, B)ay(j, DEF2,(0)x,(0) + 3| g]| AgeG, J)-
Since 1 € Ry and fo(Z, j) = lim, o f;,(, J), it follows that
(2.10) 6% < fooliy ) < 62 + 1||g|| Ao, J).

So (2.9) holds provided that ¥ ;as@, k)as(j, lﬁoo(k, l) > 0 as s — oo. However,
this is a consequence of the assumption that a(i, j) is transient:

> a4t D, DAk, = [ GG, v 0 2 5 co. g
R\ $

3. The coupling. In this section we compare two versions of x(¢) which
start in different initial states. We will do this by constructing a bivariate pro-
cessx(t) = (x1(),x%(¢)) on X = X xX (i.e., a coupling) such that the marginals x!(¢)
and x2(¢) are versions of x(¢), x1(0) and x2(0) have specified distributions and
the distribution of the bivariate process is concentrated as closely as possible
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on the diagonal. The main result of the section is a criterion which guarantees
that the coupling is successful, which means that P(jx}(¢) — x2(¢)| > ) — 0 as
¢t — oo for all i € Z¢ and € > 0. We will construct such a coupling by using the
same collection of Brownian motions for each of the two coordinate processes.

LEMMA 3. Let u,v € T, and consider the system of stochastic differential
equations for %(t) = (x1(¢), x*(¢)):

dxl(t) = ( PN HOR x}(t)) dt + 1/2g (x}()) dw;(®),
J

3.1 dx2(t) = ( " al, ) - xf(n) dt + /28 (x2(0) dw;(®),
J

L(x(0)) = v x p.

System (3.1) has a unique, X-valued strong solution X(t) such that x(t) and x*(t)
are both versions of x(t), L(xX(0)) = pu, L(x2(0)) = v and if Ai(t) = x}() — x2(@2),
then )

(2 LE|AW]= -2 al, DB {sgn(A0) #sen(8/0)}A0)).
J

Hence E|x!(t) — xX(t)| is decreasing in t for all i € Z°.

PrOOF. Theorem 3.2 of [20] implies that there is a unique, X-valued strong
solution X(¢) to (3.1). We want to show that E|x}(¢) — x2(¢)| is a Liapounov func-
tion. This requires calculating dE|x}(¢) — x%(¢)|/d¢. In order to do so we would
like to apply It6’s formula to the function |x} — x?|. Although |x} — 2| is not
everywhere smooth, we may proceed as in [22], obtaining

d .
(3.3) S EIA®| =E (sgn(Ai(t)) ; ai, J)Aj(t)> — E|A®)|,

where sgn(u) = —1 if u < 0 and equals 1 if # > 0. Another derivation can be
based on the elegant use of local time by Le Gall [11]. Since A;(¢) is a continuous
semimartingale, we can write (see Section IV.43 of [16])

t
(3.3 A,0)] - |50 = [ senAMA©+E,
0

where [{ is the local time of A;(¢) at 0. Since g is Lipschitz, by Lemma 1.0 of [11]
(see also Proposition V.39.3 in [16]), ? is identically zero. Equation (3.3) is now
a simple consequence of this fact and (3.3).

In order to exploit (3.3), we note that the evolution preserves translation
invariance. Since y and v are translation invariant,

E|A®| =E|A®] YE>0,i,j€z
With this equality, some rearrangement of terms in (3.3) yields (3.2). O
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The next result is the main step in the analysis of the stable case. It shows
that the coupling is successful if (i, j) is transient.

LEMMA 4. Assume that a(i, j) is transient, u,v € Ry and x(t) = (x1(t),x2(t))
is the bivariate process defined in (3.1). Then, for all i € 72,

(3.4) tEIgo E|x}(t) — x2@t)| = 0,
that is, the coupling is successful.
ProOOF. Fixi € Z¢ and define [recall (3.2)]

h®) =2 aG, DE{1(sen(A:(1)) # sen(ay®)|A0)]}.
J

The function A(¢) has the following properties:

(i) A >0;
(i) 0< [Ph@®dt<1;
(iii) A is differentiable, and |4’| is bounded.

The first property is obvious, and the second follows from integrating (3.2):
t
E|Ad8)| - E|A0)] = — / h(s)ds.
0

The proof of the third property is elementary but somewhat tedious. One calcu-
lates h'(t) and observes that since x; € [0, 1] and ¥;a(Z, j) = 1, all terms involved
are bounded, and (iii) follows. We omit the details.

From these properties it follows that A(t) — 0 as ¢ — oo. Thus, for € > 0 and
i,j such that a(i, j) > 0,

35)  Jlim P({A0) < —&, A(®) > e} U{A®) > &, A(t) < —¢}) = 0.
We must strengthen this to

a6 lim P({Ad®) < =2, A®) > ¢}

U{A) > &, Aj) < —s}) =0 Vijeze

To do this we rely on the following fact.
LEMMA 5. LetX € X and i,j,k € 79 satisfy A; < 0, Aj=0and Ap > 0. Then

PE(H t* € [0, 1] such that A;(t*) < 0, Aj(t*) # 0, Ax(t*) > 0) > 0.

The conclusion of Lemma 5 is intuitive, but the proof is somewhat lengthy
and will be given in the Appendix. (This is one place where the analogous facts
in [13] and [7] seem to be easier to prove than here.)
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Using Lemma 5, we can prove (3.6) by contradiction. Suppose that (3.5) holds
for the pair i,j, a(j,k) > 0, but (3.5) fails for the pair i,k. Then there exist
go > 0, 8 > 0 and ¢, — oo such that, for all n,

37 P({Ailta) < —20, Maltn) > €0} U {Ailtn) > 0, Aulta) < —zo}) 2 bo.

Since X is compact, by passing to a further subsequence we may assume that
L(x(¢,)) = X for some measure ) on X. The measure A must satisfy

X({AJ <0’ Ak>0}U{Aj>O, Ak <0}) =0,
X({Ai <0, A >0} U{A; >0, A <0}) > 0.

Suppose that X(A; < 0, Ag > 0) > 0, the case MA; > 0, A < 0) > 0 being
similar. Then 0 < X(A; < 0, A > 0)=X(A; <0, Aj =0, A > 0),and thus by
Lemma 5,

PX(3¢* € [0, 1] such that A(f") < 0, Aj(t*) #0, Ax(t*) > 0) > 0.
By path continuity there must exist T' € [0, 1] and € > 0 such that
PM(AUT) < —¢, |A(D)] > &, A(T) > ) > 0.
By the Markov property, and the fact that X(¢) is Feller, we have

iminf P(Ait, +T) < —e, |Aftn + T)| > &, Aptn +T) 2 €) > 0.

This contradicts (3.5) for the pair i, j, or the pair j, £, and so (3.7) must fail. Since
a(i, j) is irreducible, it follows from an induction argument that (3.5) must hold
for all i, j. Thus (3.6) is established.

Let us now complete the proof of Lemma 3. Suppose £, — oo and L(x(¢,)) = 2
asn — oo. Let

Xo = {2} e Xix} <a?Vie 2} u {2 e X:xl >x2Viez?}.

Observe that (3.6) implies A(X) = 1. Furthermore, if Aland )2 are the marginals
of X, then by Lemma 2, A1, A2 € Ry. (It is here that the assumption that a(i, j)
is transient is critical.) Finally, note that X is translation invariant. Using the
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last three facts we can compute

Lt =atdx = [ | -at| a5
X Xo
- /_ 3" i, jlxt — 2| dX
Xo j

> adi, ) — ) |dX
o

<k

D dx

P — e’d,\2.

'j)xj—e‘d)\1+/
X

Both terms on the right-hand side above tend to zero ast — oo since A1, A2 € R,.
This shows that X concentrates on the diagonal of X.

It is now easy to obtain (3.4). Suppose ¢, — oo with Elx}!(¢,) — xz(tn)| — 6
as n — oo. By passing to a further subsequence if necessary, we can assume
that £(x(¢,)) = X as n — oo for some measure X on X. Thus, by what we have
just shown,

6= lim Elx}(t,) — x2(t,)| = /_ |x} —x?|dX = 0. o
n—oo X
4. Proofs of Theorems 1 and 2.

Proor or THEOREM 1. Fix# € [0, 1] and let x(0) have distribution 5. Choose
t, — oo such that £(x(¢,)) converges weakly as n — oo. Let v denote the limit,

4.1) Vg = nlim 6oU(2,).

Our first step is to prove that vy is invariant. To do so, fix sy > 0 and let
= 8U(so) and v = &y. Since v € Ry, Lemma 2 implies 1 € Ry. So by (4.1) and
Lemma 4,

pU(,) = ve.
Since U(¢) is Feller, it follows that
pU(t,) = 6oU(so)U(t,) = 8pU(,)U(sg) = vpU(sy).
Thus vy = 1yU(sy), that is, vy is invariant.
The next step is to prove convergence to vy. By Lemma 2, vy € Ry, and so if

i € Ry and we set v = vy and apply Lemma 4, the invariance of vy implies

4.2) uwU@) = vy ast— oo.
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This proves (1.6) and that vy is indeed given by the limit in (1.5).

We turn now to the question of extreme points. The first step is to show that
each vy € (ZNT),. To do this, suppose that vy = cu+(1 —c)v, where p,v € INT
and 0 < ¢ < 1. Then

[ (Tt j)(xj—é’))zdl/o - [ (e j)(xj—e))zdv

2
+(1—c)/ (Zat(i, j)(xj—e)) dp.
J

However, since vy € Ry, the left-hand side above tends to zero as ¢ — oo, and
hence each term on the right-hand side must also tend to zero. Since ; and v are
translation invariant, Lemma 2 implies that u,v € Ry. But now (4.2) implies
that uU() = vy and vU(t) = vy as t — oo. Since p and v are invariant, we
obtain u = v = vy; consequently vy must be an extreme point of ZN 7.

To show (ZNT), C {vy, 0 < 6§ < 1}, suppose . € T and D is the Ly(u)
limit of 3};a,(0, j)x; as ¢ — oo. (The existence of D follows from standard Lo
ergodic theory; see [13], page 459, for more on this.) If « is the law of D, and
pp(-) = p(- | D = p), then p € R, and

1
N=/ Ko dalp).
0

It follows easily then from (4.2) and the Feller property that
1
pU@) = / vpda(p) ast— oo.
0

If p is invariant, then p = fol v, da(p), a mixture of the vy.

It remains to show that each vy is associated and mixing. Association means
that for all bounded functions f;,f; on X which depend on only finitely many
coordinates x;, and which are coordinate-wise increasing,

E”f1(x)f2(x) > E* f1(x)E" f5(x).

To prove that vy is associated we apply a result of Herbst and Pitt [8]. After a
standard approximation argument, Theorem 1.1 (and its extensions) in [8] and
the form of the generator in (1.4) imply that U(¢) preserves associated measures.
Since éy is associated and 6yU(¢) = vy, vy must be associated.

For mixing we use association and a result of Newman and Wright in [14].
Define

Yo = Zijj, Yn = Zdjxj+n,
JEA JEA



ERGODIC THEOREMS FOR INFINITE SYSTEMS 845
where A c Z¢ is finite, and the c¢j and dj, j € A, are positive constants. Then
under vy, Y, and Y, are associated, and by (2.2) of [14], for s, € R,

| Eve ei(sYo+tY,,) —_ Eve eisYo EVve eitY,, < l st|C Ovue (YOa Yn)-

By (2.10),
Cov” (Yo, Y,) = Z cidyp Cov"™’ (xj, %p4n) < 3 Z cjdk”gHK(j,k +n),
Jk€EA JkEA
which tends to zero as n — oo. Thus, Y, and Y,, are asymptotically independent
under vy as n — oo, and vy is mixing. O

The previous argument actually proves a somewhat stronger statement than
Theorem 1.

THEOREM 3. Assume a(i, j) is transient, u € T and « is the distribution of
the Lo(u) limit as t — oo of ;040 j)x;. Then

1
,uU(t)#/ vpdalp) ast— oo.
0

We turn now to the case a(i, j) is recurrent. The argument is this case does
not depend on the coupling defined in Section 3.

We will now state and prove an ergodic theorem for x(¢) starting in fixed initial
states, from which we will derive Theorem 2.

THEOREM 4. Assume a(i, j) is recurrent, and x € X satisfies

(4.3) Jim ;at(i,k)xk =0 VieZzd

If x(0) = x, then
Lx@)=1-0)5+66; ast — oo.

ProOF. By Lemma 1 and (4.3), E*x;(t) — 6 for all i € Z%, and hence it
suffices to prove that

(4.4) E*x(Oi(t) — 6

for all i, j € X?. We do so by using a duality comparison technique.
Consider the Markov chain W; = (W9, W}, W?2) with state space {1, 2} x Z¢ x Z¢
whose evolution is governed by the following transitions:
2,i, ) — (2,k,j) atratea(,k)
— (2,i,1) atratea(j,l)
— (1,i,7)  atrate c¢6(, j)
(1,i,8) — (1,k,k) atratea(i,k).
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Here c is a strictly positive parameter which we shall choose later. The process
W describes the evolution of two random walks which move independently ac-
cording to a:(i, j), but coalesce at rate c whenever they occupy the same site.
The first coordinate W) = 1 if the walks have coalesced by time ¢; W? = 2 oth-
erwise. Note that walks can occupy the same site and then move apart without
coalescing.

We will need the following simple facts concerning W;. First, W} and W? are
each random walks with transition kernel a;(i, j), and hence

(4.5) P@LD(WE = k) = a,G, k).
Second,
(4.6) Jlim P2H2(WP = 2) = 0.

This is a consequence of the recurrence of @;(i, j) and the fact that c is strictly
positive.
Now fix € > 0 and choose ¢ = c(¢) > 0 such that g defined by

gW)=clv—ell—e—v)

satisfiesg < g on [0, 1]. (The basic assumptions on g in (1.2) make this possible.)
Note that g assumes negative values, so we cannot define a process x(¢) using
g in (1.3). Nevertheless, we will use g, W; and a duality comparison argument
to show that

4.7 li;gi.glf E%x;(t)xj(t) > 6 — (1 — ¢).

Since ¢ > 0 is arbitrary and lim sup E*x,(¢)x;(¢) < 6, this proves (4.4).
We begin by observing that

d

(4.8) B @® —¢) = ; (ali, k) — 8(i, k) E* (xx(t) — €)
and d
ZE* (w0 - ) (50) +))
=) (al, k) — 6G,R)E*( (x(t) — &) (x;(8) + €
ws) > VE*((1(®) — &) (10) + )

+3 (@G, D = 6, D)E*( (x:(t) — ) (e + )
l
+ EG (x:0)) 6G, j) + E* (g(xi(t)) - §(xi(t)))6(i, .

We wish to view these equations from the point of view of the process W, and
its generator, so we define functions F; and H; on {1,2} x Z% x Z% by

Fi(1,i,i) = E*@(t) ), FA2,i, j) = B*(1(8) — ) (x(t) + &)
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and
H(1,i,j)=0, H2,i,j)=E* (g(xi(t)) - §(x,~(t)))6(i, .

Observe that H; > 0 by construction.
We can now rewrite the system of equations in (4.8) and (4.9) in the form

d
(4.10) %Ft = BF; + H;,

where B denotes the generator of the process W;. Since B is a bounded operator,
we can again apply Theorem 1.2.15 of [12] to obtain, with V(¢) denoting the
semigroup for W;,

t
Ft = V(t)Fo +/ V(t — s)Hsds > V(t)Fo
0

Thus,
Fi(2,i, j) > V()F(2,i, j)
= E®DFo(W,)
= E®4D(Fo(Wy); WP = 1) + E®4 2 (Fo(W,); WP = 2)
= ) PPRIW =1, W} = k)ay, — &) + E®4 D (Fo(Wy); WP = 2)
k

= ZP(2,i,j)(th =E)xp — ) — ZP(2,i,j)(Wt0 =2, th =k)xp — €)
k k

+ E®H D (Fo(Wy), W) = 2)
> 3" 0y, k) — &) — PEH (WL = 2)
k

— 00—
as t — 0o, by (4.3). This proves
liminf E* ((x(t) — eXayt) + €)) > 0 — ¢

and (4.7) follows. O

PRrROOF OF THEOREM 2. Let u be a measure on X which satisfies

(4.11) zat(i,k)/xk di—0 ast— oo,
k

for all ;. Then, as above,

E*((x:(t) — &) (x(®) +€) ) = / E*((®) — ) (50 + £) ) dpt)
> /Zat(i,k)(xk —e)du(x) — Pz'i‘i(W? =2)
k

— 60—
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Thus, E#x;(t)x;(t) — 0, and if L(x(0)) = p, then
(4.12) L(x(®)) = (1 — )60 + 661.

Finally, to prove that (7)., = {6,681}, suppose u is invariant for x(¢). Then,
fort >0
E*x,(0) = E*x;(8) = ) _ (i, DE*x;(0).
J

This shows that the function i — E*#x;(0) is a bounded harmonic function for
the random walk kernel a;(i, j), and hence, by the Choquet-Deny lemma, must
be constant, say E#x;(0) = 6. In this case (4.11) must hold, and if p is the initial
distribution of x(¢), then (4.12) must hold too. However, since p is invariant,
w=(1—0)5 + 061. This proves Z, = {6y, 61}. O

APPENDIX

We divide the proof of Lemma 5 into a series of steps. In Steps 1-3 we prove
some auxiliary facts [(A.1), (A.3) and (A.6)] concerning the diffusions x(¢) and
%(t). These facts are combined in Step 4 to obtain the proof of Lemma 5. It may
be useful to read Step 4 first.

Step 1. Ifx € X with x; = 0 and x;, > 0, then
(A.1) P*(3t* > 0 such thatx;(t) =0V ¢ € [0,£]) = 0.

PROOF OF (A.1). Writing (ax);(s) for Sya(, Dxy(s), by (1.3),

t t
x(0) = / (@) - 1) ds + | +/2g(x(6)) dui()
0 0

Fix T' > 0 and suppose that x;(¢) = 0 for all ¢ € [0, T, which implies g(x;(#)) = 0
for all ¢ € [0, T]. Then

t t
A2 (s)ds = — 2g(x; dw;(s) =0, t e [0,T].
w2 [@ieds=- [ /2ee)due € 10,T]

From this it follows that (ax);(t) = 0, ¢ € [0,T1], and hence if a(i,/) > 0, then
x;(t) = 0, t € [0, T]. Since the kernel a is irreducible, iteration of this argument
shows thatx,(¢) = 0, ¢ € [0, T']. However, this contradicts the assumption x; > 0.
So for fixed T > 0, P*(x;(t) =0V ¢ € [0,T1]) = 0. This fact and path continuity
imply (A.1). O

SteP 2. If% € X and g(x}) # g(x?), then, for all j,

(A.3) P*(3¢* > 0 such that A(t) =0V ¢ € [0,£*]) = 0.



ERGODIC THEOREMS FOR INFINITE SYSTEMS 849

Proor oF (A.3). Fix T > 0 and suppose that A;(z) = 0 for all ¢ € [0, T1,
which implies g(x}(8)) = g(x?(2)), ¢ € [0, T]. Writing (aA)J(s) for a(j,1)A(s), by
(8.1),

(A.4) /0 t(aA)j(s)ds =— /0 t (v/28(}6) - /28(3(s) ) duwys) =0,

for all ¢ € [0,T]. From this it follows that (e¢A);(t) = 0, t € [0,T], and writing
(aA);(t) as a stochastic integral gives

(A.5) /0 t(azA)j(s)ds=— /0 tZa(j,l)(\/2g(xll(s) V/28(<2(s)) ) ) duwi(s)
l

for ¢ € [0, T]. Now the right-hand side of (A.5) is a continuous martingale with
quadratic variation process

/OtZ(a(j,l)(\/2g(xll(s) \/28(x(6) ))20,3,

while the left-hand side is a process of bounded variation. This implies that
both integrals in (A.5) must be zero. Therefore (a?A)(¢) = 0, ¢ € [0,T], and if
a(j,0) > 0, then g(x}(#)) = g(x?(t)), t € [0, T]. Since the kernel a is irreducible,
iteration of this argument shows that g(xl(t)) g(x2()), t € [0,T]. This contra-
dicts the assumption that g(x}) # g(x?) so P’?(Aj(t) =0Vtel0,T]) =0, and
(A.3) must hold. O

Step 3. IfxeX, i,k e Z¢withA; <0, A > 0and g(x}) = g(x?), then
P%(3¢* € [0, §] such that A;(t*) < 0,

(A.6)
Ap(t*) > 0, g(x}(t*)) #g(xX(¢t*)) >0

PROOF OF (A.6). By assumption, x} < 1andx} > 0. Ifx}! > 0, set ¢y = 0.
Otherwise, by (A.1) and path continuity, there exists ¢, € [0, %] such that

(A7) P*(Ai(to) < 0, Aglto) > 0, 0 <x}(to) < 1) > 0.
We will prove that if ¥ € X satisfies A; < 0, Ay > 0, and 0 < %! < 1, then
P*(3¢" € [0, }] such that A,(t") <0,

Apt*) > 0, g(x1(2")) #g(x?(t*))) > 0.

By the Markov property, (A.7) and (A.8) imply (A.6).

(A.8)
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The idea behind (A.8) is simple, although the details are somewhat tedious.
Since g(x}) # 0, we can use w;(¢) to drive x}(¢) toward zero. Since g(0) = 0 and
x}(¢) and x2(¢) move almost in parallel while g(x}(¢)) = g(x%(t)), at some point
g(x}(?)) and g(x2(¢)) must differ. Here are the details.

Define the martipgales

t
10 = [ \20(l6) duis)
| V/28(x)
t
- 1
My(t) = /O (\ﬁg(xk(s) \/28(6) ) ) dwi(s).
Using [ ] to denote quadratic variation processes, it is easy to see that

t
M) = / 28 (x(s)) ds
2
M) () = /(\/2g 1(s)) — \/2g 2(s)) ) ds,

and [M;, M;](¢) = 0. By Knight’s theorem (see [13], Section IV 34), there are
standard, independent Brownian motions W;(¢) and W, (¢) such that

(A.10) M) = Wi([M;]®),  Mp(®) = Wi ([M]®).

(A.9)

Recall that we are assuming % satisfies A; < 0 Ak > 0and 0 <x! < 1. We
may also assume g(x}) # g(x?), and hence 0 < x} <x? < 1; otherwise we may
set #* = 01in (A.8). Now choose § € (0, &) such that x},x ~2 € [66,1-56],—A; > 56
and A, > 56. Let ¢ € (0,6) be such that g(¢) < mln{g(u): 6§ <u<1-6} Let
c1 =min{g(u): £ <u <1-¢} and let ¢y = 2||g||. In view of (A. 9),

[Mi)@®) <cat,  [Mi]@®) <cgt, >0,

and
[Mi]®)>cit Ytel0o,T) on {x}@®)ele,1-¢€ Vtelo, T}

Fix T € [0,£] and define the events

QO={ min_ Wi(t) < —1, max W) <6, max |Wk(t)|§6}
tel0,c,T] t€[0,coT) t€[0,cT

and
Q1 = {3¢* € [0, T] such that A;(t*) < 0, Ax(t*) > 0, g(x}(t")) #g(x?")}.

Clearly Qg has positive probability. We will prove Qy C 1, thus showing that
P%*(Q,) > 0, establishing (A.8).

Let us deal with A.(¢) first. Since [(@A)(s) — Ax(s)] < 2 and |M,()| =
|Wr([M}] ()| < 6 on Qg, we have

t
Ap() = Ay(0) + / ((@A)(s) — Ay(s)) ds + M) > 55 — 26 — 6 = 26,
0
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for ¢ € [0, T]. That is, on §y,
(A.11) A(t) > 0, t e[0,T].

Next, since on Q

" t
(A.12) x} (@) = x1(0) + / ((axh)i(s) — x{(s)) ds + W; (IM,1(®)),
0
we have
(A.13) x}@)<1-106+6+6=1-86, tel0,TI.

Now define the random times
o=inf{t > 0:x}(®) =¢} and r=inf{t>0: g(x}®) #g(x¥®)}.

We will prove that, on Q,

(A.14) T<o<T
and
(A.15) x2(1) > x}(r) + 46.

By combining (A.11), (A.13) and (A.14), path continuity implies there must exist
t* as required in the definition of Q;, proving Q¢ C Q;.

To finish we must prove (A.14) and (A.15), and we do this by contradiction.
Suppose first that ¢ > T'. In view of (A.13), this certainly implies that

x@ele,1-¢, telo,T]
Then [M;](t) > cit, and thus, on €, there exists x < T such that M;(x) =
Wi([M;1(x)) = —1. But then by (A.12), x}(x) < 1 - 106 +6 — 1 < 0, which is

impossible. So ¢ < T on Q.
Now suppose that 7 > o. For ¢t < 7,

t
A0 = 80+ [ (@l)(s) - M) ds
0
implies that
t
(A16)  x2(2) = 22(0) +x}2) — xX0) - / ((@AX(s) — As)) ds.
0

From this and (A.12) it follows that, for ¢ < o,

X)) <1-56-26—-26=1-6
and
x2(8) > x}(¢) + 56 — 26 > 36,
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or x2(¢) € [6,1—6], t € [0,0]. But then the definition of c; implies that g(x}(0)) =
c1 < g(x2(c)), contradicting 7 > o. This establishes (A.14), and (A.15) follows
easily from (A.16). O

STEP 4 (Proof of Lemma 5). Assume ¥ satisfies A; < 0, Aj =0and A; > 0.
Define ’

To={XeX:A; <0, A #0, A, >0}

and _
I ={xeX:A; <0, glx}) #80x?), A > 0}.

Our goal is to prove
P*(3t* € [0,1] such that %(¢*) € I'p) > 0.

Now by Step 3 there exists T' € [0, 1] such that P*®T) € I'1) > 0. Applying the
Markov property, we have

P*(3t* € [0,1] such that %(¢*) € o)
> / P*(%(T) € dx)P*(3t* € [0, 3] such that x(¢*) € T;).
ry

This integral must be positive since by path continuity and Step 2, for each
xe ry,

P*(3¢* € [0, 1] such that x(t*) € T'y) > 0. ]
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