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Let T’ be the first time a sum S,, of nondegenerate i.i.d. random vectors
in R? leaves the sphere of radius r in some given norm. We characterize, in
terms of the distribution of the individual summands, the following proba-
bilistic behavior: St,/||St, || has no subsequential weak limit supported on
a closed half-space. In one dimension, this result solves a very general form
of the gambler’s ruin problem. We also characterize the existence of degen-
erate limits and obtain analogous results for triangular arrays along any
subsequence r;, — oco. Finally, we compute the limiting joint distribution of

WSz, Il = 7. S7,. /18T, I).

1. Introduction. We investigate distributional properties of the position
at which a d-dimensional random walk first exits a sphere of radius r in some
arbitrary norm. Specific results include an analytic characterization of when
the distribution does not (and does) asymptotically concentrate on a half-space
as the radius approaches co. Specialized to one dimension, this is a gambler’s
ruin problem for general sums of i.i.d. random variables. (The word “analytic”
refers to conditions involving only the distribution of individual summands,
as opposed to probabilistic conditions which may involve the entire sample
path.) Under this condition we go on to compute the limiting distribution of the
overshoot (when it exists).

Let X, X1, X5, ... be a sequence of nondegenerate, independent and identi-
cally distributed R%-valued random vectors and set S, = J'.‘z 1X;. Let || || be

an arbitrary norm on R? and define T, = min{n: ||S,|| > r}. The overshoot
ST, | — r, one of the main objects of study in one-dimensional renewal theory,
is typically studied in two quite distinct cases: the first when EX > 0 and the
second when EX = 0. In trying to extend some of the results in the latter case
to multidimensions, we found [4] that the following condition is of fundamental
importance:

The family S7,/||Sr.|| has no subsequential limit supported

(&) on a closed half-space.
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1430 P. S. GRIFFIN AND T. R. McCONNELL

For example, one proves in classical renewal theory that, for every p > 0, if
X € L?*P and EX = 0, then the overshoot is bounded in L?, that is, sup,. o
E(|St,| —r)P < co. The converse, however, is false. In [4] we showed that in any
dimension and with any norm, L?-boundedness of the overshoot together with
(E) is equivalent to X € L2*? and EX = 0. Our aim in this paper is twofold:
first to give an analytic characterization of condition (¥) and second, under this
condition, to compute the joint limiting distribution of (|Sz,| — r, SISz, [I71)
whenever it exists.
To describe our results we must introduce some notation. For r > 0 set

Gy =P(IXI>r), K@) =rE(IXI% IX]| <7),

M) =rT'E(X; X <r),  h() =GO +K@) +IM@)|.
In the case of one-dimensional random variables, we also introduce
G.(rn=P(X >r), G_(r)=P(-X >r), J(@r)=—-G_(r)+ M)+ G, (r).

To characterize (E) in one dimension, even along a subsequence, it suffices to
characterize (E,) along an arbitrary subsequence r;, where (E,) is the condi-
tion

(E4) P(ST,,k >0)—>1 ask — 0.

This is a very general gambler’s ruin problem. We provide two solutions to this:
one directly in terms of the functions defined above and the other in terms of
Laplace transforms. The former has the advantage of being easier to verify and
of providing, perhaps, more insight into the behavior of the random walk, while
the latter is more concise and is easier to prove.

THEOREM 1.1. We have

(1.1) P(ST,,k > O) -1
if and only if the following two conditions hold:
) G_(Ary)
(1.2a) suplim su =
A>Ig k—+oop h(}"rk)
i s o (Arg) 1
(1.2b) Inflim Inf 7y 2 3
if and only if
(1.3) klim rpo(ry) = 00,

where a(ry) = inf{A > 0: E exp(A(—3rr VX A 3rz)) > 1} and inf(@) = oo.

We would like to emphasize that while the first condition looks more compli-
cated, it is in fact much easier to apply. This is well illustrated by the examples
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given at the end of Section 3. The extension of Theorem 1.1 to triangular arrays
and to multidimensions can be found in Section 3, 4 and 5.

The other main result of this paper yields, under condition (E), the limiting
joint distribution of (|S7,|| — r, S7,|1ST,[I”}). We recall ([4], Theorem 1.3) that,
under (E), tightness of the overshoot distributions already implies that the X;
have mean 0 and finite second moments. Thus we may assume E||X||? < oo and
EX = 0 without loss of generality.

Let w, be the distribution of Sr,[|S7,||~! on 8B; = {x € R% |x|| = 1}. A
standard application of Donsker’s invariance principle (sketched in [4], Lemma
4.1) shows that w, —, w, where w is the exit distribution on 9B of a Brownian
motion process. (w is the standard harmonic measure on dB; if the convariance
matrix of X; is the identity.)

The limiting behavior of the other marginal, |St,|| — r, is more complicated.
Recall from classical renewal theory (see, e.g., Chapter 11 of [3]) that if Z; are
i.i.d. nonnegative, nonlattice random variables with 0 < 4 = E(Z1) < oo, then
ZjT; 1Zj—r converges in distribution as r — oo to arandom variable Z* satisfying

PZ* <x) = l/x(l—F(s))ds
mJo

where F'is the common distribution function of the Z;.

As observed, for example, by Lai [8], this may be extended to nontrivial mean
0 random variables, Z; with finite variance as follows: let L, Ly, Lo, ... be i.i.d.
random variables having the same distribution as the first (strict) ladder height
of S, = EJ’.‘z 1Z;j. Then, by a classical result of Spitzer [12], E(L;) < oco. Letting
T} = min{n: S, > r} and applying the above renewal theory to the ladder
height process, we have

. X 1
for any interval I, where F', is the distribution of L;. A similar result holdsin the
lattice case; if §Z is the minimal lattice supporting X, then, forany 0 <y < 4,

(1.4a) nli_)ngoP(ST:Hy —mé+y)el)=PL* el) = E—(IZS [1-Fi(s)]duls),
where L is again a strict ladder height variable and ©(A) = §| A N §Z|.

Now, as we discuss in greater detail in Section 6, it is possible to choose, for
w-a.e. 6 € dB1, a unique linear functional ¢} satisfying £;(9) = 1 = |£;]. [The
hyperplane {z: £;(z) = 1} is a support plane of B; at 6.] Let L} be a random
variable satisfying (1.4) or (1.4a) for the choice Z; = £;(X}). Then we shall prove
the following result.

THEOREM 1.2. Assume (E). Then (|St, ||—r, St./|IST,|l) converges in the sense
of weak convergence of probability measures on Ry x 0B if and only if EX =
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0, E|X|? < o0 and w(8: £;(X) is lattice) = 0. In that case,

(1.5) rlirr;P(IIST,_II ~redx, ”2 T € dé)) = P(L} € dx)w(d0).

As a corollary we have the following analogue of (1.4).
COROLLARY 1.3. For any interval I C [0, c0), we have

lim P(|Sy,l —rel) = fB w(d@)P(Ly € I).
r— oo 9B,

In the case of the Euclidean norm in dimensions d > 2, £5(X) = (X, 0) is
nonlattice except for at most a countable set of 6, even when X itself is lattice.
(Here (, ) denotes the usual inner product on R?.) Thus the hypothesis w (6: £
(X) is lattice) = 0 is satisfied. In general, this need not be true. For example, in
two dimensions suppose the unit sphere is the square with vertices at (+1, £ 1)
and the distribution of X is supported on the corners. Here the limit in Theorem
1.2 does not exist. This will be discussed further in Remark 6.7.

The plan of the paper is as follows. We give the proof of Theorem 1.1 [except
for (1.3)] and related results in Section 3, after presenting some preliminaries in
Section 2. Section 4 contains the extension of Theorem 1.1 to higher dimensions.
In Section 5 we present the proof of the equivalence of (1.1) and (1.3) and the
analogue of this equivalence in higher dimensions. Section 6 is devoted to the
proof of Theorem 1.2. Finally, in the Appendix we present the proof of an analytic
result which is related to condition (1.2b).

2. Preliminaries. The purpose of this section is to collect notation, defi-
nitions and results which will be used repeatedly in later sections.

We reserve the symbol | ||z for the usual Euclidean norm on R¢ and | || for
a given (arbitrary) norm. The open ball of radius r in norm || || centered at 0
will be denoted by B,, and its boundary by dB,. The Euclidean unit sphere in
R? is S¢~1, All norms on R? are equivalent, so there is a positive constant p
such that

2.1 pHxle < llxll < pllxlle,  x € R

This constant p will appear in many later formulas.
We shall often use a “rounded” version, X of a random vector X, defined by

X, if |X|| < 3r,

(2.2) X = X
3r—m , otherwise.

I1X1
The choice of r > 0 will be clear from the context. Another way to effect such
a rounding is to change the underlying probability measure from P to P. For
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reasons of flexibility and convenience, we shall use both notations. The advan-
tage of using the number 3 (or any number larger than 2) in (2.2) is that T’ has
the same distribution under P as it has under P. The samie is true of the exit
position, St./||St, |, in one dimension; even in higher dimensions this holds in
an approximate sense. (See Lemmas 4.2 and 4.3.)

For maximum generality, and since it involves no extra work, we have formu-
lated many of our results in terms of limits along particular sequences of radii
rr — oo and in terms of “triangular arrays” of random variables; that is; we al-
low the distribution of the summands to vary with %, as well as the radii. Thus,
in the expression P* (ST, > 0), St, represents the position of S, = >"/_; X; at
first exit from [—ry, 1], where (X;)2 ; is an i.i.d. sequence under the proba-
bility measure P* and E* will denote expectation with respect to P¥. We will
use subscripts on E and P to indicate the starting point of the random walk.
For example, under P, we have P,(Sp = a) = 1. If no subscript is given it is
assumed that the random walk starts from the origin.

We will sometimes attach a subscript to the functions defined in Section 1
to indicate their dependence on a random variable X; thus Gy, Kx, and so on.
Also, for 6 € S?~1, we define Gy (resp. Gys) by Go(r) = P(|(X,6)| > r) [resp.
P(£(X,0) > r)], where (, ) denotes the usual Euclidean inner product. The
subscript 6 on the other functions will have a similar meaning. We use G, K,
and so forth as shorthand for Gy, Ky, and so on. Numerical superscripts will
be used for clarity when the P* vary. Thus h*is s computed from the distribution
of X; under P*. In the composite expressions hg, and so on, which will appear
in the characterization of (E) and related phenomena in higher dimensions
(cf. Section 4), it is important to emphasize that rounding is to be done bej:ore
projection; thus hg (r) is computed from the distribution of (X #), where X is
given by (2.2).

We will need a version of Wald’s identity, which we state here for ease of
reference. Let S, = X; + --- + X, be a sum of i.i.d. random vectors satisfy-
ing E|| X1]| < oo. Let (G,)3°_; be an increasing sequence of o-fields such that
(X41,Xs,...,X,) is G,-measurable and X, , ; is independent of G,,. Then, for any
Gn-stopping time T such that ET < oo, we have

(2.3) ESt = (EX1)ET.

(See, e.g., [1], page 137.)

We shall also frequently use the following very useful estimates due to Pruitt
[10]: there is a constant ¢ > 0 depending only on the norm and dimension
such that

L <ET <———C—.

(2.4) ch(r) =T T h()

Also, for any r > 0 and any n € N,

c
(2.5) P(T, >n) < o
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and
(2.6) P(T, <n) <cnh(r).

(Actually, Pruitt’s results are given in terms of the Euclidean norm. The exten-
sion to general norms is relatively straightforward; see Section 2 of [4].) .

The function h satisfies a useful doubling property; there is an absolute con-
stant ¢ > 0 such that

2.7 %h(r) < h(2r) <ch(r).

The same result holds for another useful function, @, defined by
Q) = G(r) + K ().

See [10] and [11] for this and other properties of the functions 4 and Q.
The quantity J(r)/h(r), which appears on the left-hand side of (1.2b), may
now be understood as an estimate for ESt, /r; combine (2.3), (2.4) and (2.7).

REMARK 2.1. On several occasions, and in several different contexts, we
shall use the following straightforward consequence of the strong Markov prop-
erty, whose proof we omit. If 7, ;, denotes the first passage time of S, from
[—er, kr], then

k
P(S.,, > 0) > (1 P(S, < 0)"** V).

In particular, it follows easily from this that, for any A > 0 and sequencer, — oo,
P(St, >0) -1 = P(St, >0)—1
as k — oo.

We shall use £(1), £(2), ... to denote nested subsequences of the natural num-
bers. Thus £(1) will stand for a strictly increasing sequence of integers greater
than or equal to 1 (in place of the more cumbersome ny (1), £(2) denotes a sub-
sequence of £(1) and so forth. The symbol I{ } will denote the indicator function
of a set, and ¢ will stand for an absolute constant which may change from one
use to the next.

3. Condition (E;) and gambler’s ruin. In this section we will give a
necessary and sufficient condition, in terms of the elementary functions G, K
and M, for (E,) to hold in one dimension along any given subsequence (see
Theorem 3.9). Along the way we also prove a triangular array version of this
result. This will be needed in the multidimensional case.

The first two results of this section will be used in the proof of necessity in
Theorem 3.9 and the next four in the proof of sufficiency. We begin by observing
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that essentially the same proof as Proposition 3.1 in [4] shows that, for any
positive Borel function ¢: R¢ — R,

Ep(St,) = /" L BleX 21X ] > 1) U@,

Here dU, is the occupation measure defined by

T, -1
/dU, =E< > IA(Sn)).
A n=0

Our first result is stated in the multidimensional case, since we will need it
in that form later.

PrROPOSITION 3.1. There is a universal constant ¢ > 0, depending only on

dimension, such that, for all r > 0 and all § € S¢~1,
Gy _(2pr)
P((ST,,, 9) < —pr) > c———h—z;i——.

Proor. Let ¢(x) =I{{x,0) < —pr}. Since (X + x,0) < —pr} C {| X + x| >
r}, we have

P((ST,,,Q) < —pr) =/ P((X +x,0) < —pr)dU,(x)

llxll =7
> / P((X,6) < —2pr)dU,(x)
llxll <7

=Gy —(2pr)ETr
CGO—(ZP")
- h(r)

by (2.4). O

PROPOSITION 3.2. There is a universal constant ¢ > 0 such that, for all
r>0,

3.1 P(St, <0)2 7 —c

Proor. Fix A > 2 and let

X = (=a) v X; A ),

- n
Sn = ZXL)

i=1
T, = min {n: |S,| > r}.
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Then T, = T, and {S7, < 0} = {S7, < 0}. By Wald’s identity (2.3),
EX,ET, = E§T,, > rP(g’T,, >0)— A+ 1)rP(§T,. <0)
=r— (A+2)rP(Sz, <0).
Thus, by (2.4) and (2.7),

~ 1 ¢ EX
» _
(57, <0) = == (A + 2)r h(2r)

1 A J(Ar)
T A+2 (A+2)(h(2r)>'

By right continuity we can let A | 2 to obtain (3.1). O

LEMMA 3.3. Thereis a universal constant ¢ > 0 such that, foralle > 0, § > 0
andr > 0,
G_(er)
h(sr)

P(X; < —é¢r forsome i <Ts) <c

Proor. Using (2.3) and (2.4),

TSr
P(X; < —er for some i < Tj,) =P<ZI(Xi < —er) > 1)

i=1

T,\r
5E<ZI(X,~ < —sr))

i=1
= G_(er)ETsy,
- cG_(er) '
h(dr)

By (2.7), it immediately follows that, for all¢ > 0, § > 0 and r > O,
G_(er)

(3.2) P(X; < —er for some i < Ty,) < cpg-1 ———,
h(er)

where c¢.;-1 > 0 depends only on the ratio 5 1.

LEMMA 3.4. Let § > 0 and ¢ € (0,8). Then there exist a universal constant
1> ¢ > 0 and a constant c.s-1, which depends only on the ratio €571, such that,
forallr > 0,

1+ cd(er)/h(er) G_ (er)
(3.3) P(St, > 0) > T — 55_1( o) )

probided J(er) > 0.

Proor. By the homogeneity of (3.3), it suffices to consider the case § = 1.
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Let
Xi = (—er) vV X; A (1),
a=ix
T = min {n: 1S,| > r}.
Then

P(Sz, > 0) = P(Sz, > 0) — P(X; < —er for some i < T})
=I-1I

To estimate I, by Wald’s identity,
EX\ET, = ES;,
=1+ 8)rP(:SV’:;.I. > 0) — rP(g’:;.r <0)
=2+ e)rP(gi,r >0)—r.
We may assume erd (er) = E)?l > 0. Thus

1+ rEX,ET.

PS> 0) > ———
- 1+ ch(sr)/E(r)
- 2+¢)

by (2.4), where

Tz(r) =r7Y —erG_(er) + erM(er) + erG4 (er)| + &2G(er) + 2K (er)
< 2¢(|M(er)| + G(er) + K(er))
= 2¢h(er).

Hence

I~ 1+ cJ(sr)/h(sr).
- 2+4¢)

Combining this with the estimate for I in (3.2) completes the proof. O
LEMMA 3.5. Let Z;, be asymmetric random walk with
P(Zy=1)=1-P(Z;=-1) >,
wheré n > % Let N > 1 be an integer and

oy = min{J: |Z;| = 2N}.
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Then, for any & > 0,

2
and
(3.5) P(Z; hits 2N before —N)>1—a™,

where a = n/(1 —n).

Proor. For N > 1, by Markov’s inequality and Wald’s identity,

< —
T E&@2n—-1)

—n\/ ‘
() = (l_ﬂ) =a”.
n

Then ¢(Z;) is a supermartingale. Hence, by standard arguments (noting that ¢
is decreasing), .
. @(=N) — ¢(0)
P(Z; hits 2N before — N) > ——————
@ )z 9(—N) — p(2N)
- p(=N) — ¢(0)
T e(-N)

Define ¢: Z — R by

which yields (3.5). O

PROPOSITION 3.6. Fix an integer N > 1 and let § = (2N)~L. Fix n > %

Assume that

P(Sz, > 0) > 1.

Then, for every y > 0and & > 0, if y£§71 < 1,
2

S E@n-D

—_ Cy(g—lgN(G_(yr)),

_ N
(3.6) P(ST,‘ > 0) >1—-a h(yr)

where a = n/(1 —n).

Proor. Let
7, = min {n: |S, — So| > ér},

Ziv1 =2+ (00 V (Squs = S5) A or) /Gr),
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where Zy = 0. Thus Z; is asymmetric random walk with

PZy=1)=1-PZ 1 =-1=n.

Let
oN = inf{j: |Z;| = 2N}.

Let y > 0 and £ > 0 be such that y£5~1 < 1. Put
AN = {Z,,N = 2N, Zj > —N allj < O’N},

By = {oy <&N},
Cy = {Sq,, =Sy = —(y +8)rall j <&N).
Then
{St, > 0} 2 AyBnCy.
Thus

P(Sr, > 0) > P(Ay) — P(B;) — P(C%)-

The estimates for the first two terms follow immediately from (3.4) and (3.5).
For the third term we have

P(C%) < ENP(S7,, < —(y +)r)
< &ENP(X; < —yr for some i < T,)
G_(yr)

< ENc,s1 12

h(yr)
by (3.2). O

THEOREM 3.7. Fix a sequence {ry}. Then

3.7 P*(Sr, > 0) > 1
if and only if the following two conditions hold:
G* (ry)
(3.8) sup lim sup ———= =0,
A>I(:)) k— oop hk()"rk)
%
(3.9) inf liminf <7

A0 koo hE(Arg)

Proor. Assume (3.7). Then (cf. Remark 2.1), for every A > 0,
Pk'(STMk >0) > 1.

Hence (3.8) follows from (2.7) and the one-dimensional case of Proposition 3.1,
while (3.9) follows from Proposition 3.2.
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Now assume (3.8) and (3.9). Let ¢ € (0, 1) be a strict lower bound for the
left-hand side of (3.9). Then, for any § > 0, by setting ¢ = soc in (3.3), we have
that, for all sufficiently large &,

Pk(STA,.k > 0) >,

where n = (14 ¢0)/(2 + co) is a constant greater than % Thus in (3.6), by

first choosing § = (2N)~! sufficiently small, then ¢ sufficiently large and y
sufficiently small such that y£5~! < 1 and then finally % sufficiently large, we
can make Pk(ST,,k > 0) as close to 1 as we please. Hence (3.7) holds. O

An astute reader might feel uncomfortable with this proof. That is because
if the infimum in (3.9) happens to fall in the interval (0, 1/4c), where ¢ is the
universal constant appearing in (3.1), then Theorem 3.7 asserts that P* (St,, >

0) — 1, while Proposition 3.2 and Remark 2.1 imply that lim inf P* (St,, <0) >
0. After trying to discover an error in the proof, we concluded that the answer
to our dilemma must be that the infimum cannot lie in this range. In fact, the
following remarkable result is true:

PROPOSITION 3.8. Assume

lim su G* (Ary)
suplimsup ——= =
A>0 k—>oo hk()"rk)

Then the following are equivalent:

G (Ary) + M*(Ary)

lim sup liminf > 0,
AL0 P k— o0 hk()\.rk)
Gk (x M (A
inf lim inf +(ra) + M7 (Ary) > 1
A>0 k—>oo hk()\.rk) 2

The proof of Theorem 3.7 shows that under (3.8), if

1
lim sup lim infP*(Sz, > 0) > =,
510 k— o0 k 2

then liminf, _, ooPk(ST,,k > 0) = 1. Proposition 3.8 is the analytical counterpart
of this discontinuity. In order to avoid a lengthy detour at this stage, we defer its
rather technical proof to the Appendix. However, we will take this opportunity
to reformulate Theorem 3.7 as follows:

THEOREM 3.9. Fixa sequence {ry}. Then

(3.10) P¥(Sr, >0) —> 1
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if and only if the following two conditions hold:

Gk (Arp)
(3.11) sup lim sup —%2 —
ron kool BE )
P LoV N |
312 s e 2 2

One might wonder whether (3.11) and (3.12) can be simplified to G (r;,) /
h*(r1) — 0 and liminfJ* (re)/RE () = 1/2. Easy examples show this is not the
case. However, if we consider the case of a single distribution and let r — oo
through all real numbers, then we easily obtain the following result.

COROLLARY 3.10. P(S7, > 0) — 1lifand only if the following two conditions
hold:

G_(r) _
(3.13) Jim e 0,
.. .dm 1
(3.14) 11,‘1‘,}},}f o) > 3

At the time this work was being carried out, we learned that Harry Kesten
and Ross Maller were working on some related problems. In particular, they
were interested in finding necessary and sufficient conditions for S, — oo in
probability. The condition they found is
J(r)

G_(r)

(under the assumption EX? = o0). It turns out that under this assumption
(3.15) is equivalent to (3.13) and (3.14). For a proof of this and further remarks
on the connection between the two results, see [7].

We conclude this section with several interesting examples. The first is taken
from [4], Example 7.1.

(3.15)

— 400 asr — oo

ExampLE 3.11. Let X be bounded above, have mean 0 and satisfy G_(r) =
1/(r(log r)?) for large r. Then a simple computation (see [4]) shows that M
dominates, that is,

)
rllnc}o h(r)
Hence, by Corollary 3.10, P(St, > 0) — 1.

1.

ExXAMPLE 3.12. Let X have mean 0 and be in the domain of attraction of a
stable law of index o where 1 < o < 2. Then, for some p,q > 0 withp +q =1,
im G0 _ T
r-oo G(r) P r-oo G(r) q

(3.16)
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Furthermore,
im K@) _«
r0 Gr) 2-ao
M(r) o
e G(r) @ _p)cx -1
Thus if p, ¢ > 0, then
.. Gx(r)
h}{‘,}},}f ) > 0.

Therefore (E) holds by applying Theorem 3.9 to X and —X. For the remaining
case p A ¢ = 0, we may assume p = 0 and ¢ = 1. (For example, X could be
bounded above as in the previous example.) Then liminf; , , P(St. < 0) > 0 by
Theorem 3.9, since liminf, _, oo G_(r)/h(r) > 0. To see that liminf,_, . P(St. >
0) > 0, one can check from the above that

J(r)_) 2—«a
h(r) 4o — a2 —2°

which is greater than 0 for 1 < o < 2. Thus (£) holds.

The case @ = 2 can be handled similarly. In this case K dominates, that is,
K(r)/h(r) — 1. Hence again (E) holds by Theorem 3.9. The case « = 1 is much
more delicate; Example 3.11 is of this type. In this situation (3.16) still holds,
and if ¢ > p, then M(r)/h(r) — 1. Hence P(S7, > 0) — 1. If p = q, M may or
may not dominate, and a more detailed study of the specific example is required
to determine the exit behavior.

The previous example may lead one to hope that (E) holds whenever EX = 0
and X € L? for some p > 1. This, however, is not the case.

EXAMPLE 3.13. Letl <o <2 and set u, = 22" and Pk =u;,”. Assume X is
bounded above, has mean 0 and the negative part of X has distribution given
by P(X = —uy) = pg for B > 1. Clearly, X € L” for every p < «. The key to
computing with this example is that, for every 8 > 0,

0 k
(3.17) Y~ Y ()P~ (7P
j=k j=1

Using this, one obtains that, for u, <r < u;,1,

~ —a
G(r) ~u,
l-a

M(,-) ~ ﬁi’l’

Koy~ 2
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Let v, = uﬁ uk+} Then ukvk — 0 and vkukJr1 — 0. Fix a sequence {r;}.
Then for some %; we have Up; <1rj < up41. By choosmg a subsequence of {k;}
if necessary, we may assume r; /vr, > a € [0,00]. If & = 0o we may further
assume r;/ug, 1 — b € [0, 1]. We claim that along this further subsequence (E)
holds, unless both a = oo and b = 0, in which case (£,) holds. To prove this,
first observe that in the latter case

M (Ary) N
h(xry)

for every A > 0. Hence (E) holds by Theorem 3.9. Next, if a € (0, c0),

M(ry) — Aa and G(Mk)
K(arg) K (Ar k)

for every A > 0. Hence (E) holds, this time by applying Theorem 3.9 to X and
—X.Ifa =0, then

K (rk)
h(rk)

Hence (E) holds as above by Theorem 3.9. Finally, ifa = co and b € (0, 1], then

K(2r,/b)

h@rb)

and so again (E) holds by Theorem 3.9.

In concluding this example, let us point out that if we took o = 2, then (E)
would hold along the entire sequence. This is because X would be in the domain
of attraction of a stable law of index 2, a case discussed briefly at the end of the
previous example.

Our final example shows that the constant % in Proposition 3.8 is sharp.

EXAMPLE 3.14. Let u; and p; be as in the previous example, except now
0 <o < 1. Assume X > 0 with P(X = u;) = p; for £ > 1 and the remaining
mass all at 0. Trivially, (E,) holds and so, by Corollary 3.10,

(3.18) limianTr- > %

Let r, = uy,. Then, using (3.17) as above, one can readily verify that

im M) 1 and Lim ZO® _
k— o0 K(I‘k) - k—»ooK(rk)

Thus the lim inf in (3.18) equals %
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4. Condition (E) in multidimensions. Our aim now is to extend the
results of the previous section to multidimensions and also obtain a character-
ization of when S7,||S7,[~! has only nondegenerate subsequential limits. We
begin by introducing, for each § € S?~1, the conditions

(Dy) P*(|(St, 157, 1%, 6)] > e) >0 forall e >0,
(Dy) ﬂ([(sm ISz, 172, 6)] > 8) —0 forall &> 0,
(Hp) P*((Sz, ISz, 17, 6) < —¢) > 0 forall & >0,
(Hy) P((Sr,, IST,, 171, 6) < —¢) >0 forall ¢ > 0.

We will find necessary and sufficient conditions for (Dy) and (Hy) to hold for
each fixed 6. The first step is to reduce this to the problem of (Dy) and (H,).
This is the purpose of the first three lemmas.

It will be convenient to use the following notation. For ¢ € S9! and B> 0,let
L'®, B) = {x: (x,8) > Bllx||}. Thus, in the Euclidean case, I'(9, 8) denotes the open
cone with vertex at the origin and having g as the cosine of the angle between
¢ and any generator of the cone. Also let Ann(0, a, b) = {x € R%: a < llx|l < b}.

LEMMA 4.1. Suppose, for a given € 81, 8>0,0<e <1, r> 0 and
p > 0, we have

P(S; eT'(6, B) NAnn(0, er, r) for some 0 <i < T,) > p.

Then
P(ST,_ € P(@, 8'88)) Zp[l - —p)l/n]n,

8n
where n = [2p/Be] + 1. Here p is the constant in (2.1).

Proor. Let X = I'(¢, ) N Ann(0, er,7), Ly = {x: (x,0) = 1Ber} and Ly =
{x: (x,0) = pr}. Note that if x € X, then (x, 6) > B|lx| > Ber, while if (x, 6) > pr,
then |x|| > p~Yx[g > r. Hence ¥ is contained between hyperplanes L; and L.

Let 4 = min{n > 0: [(S, — Sy, 8)| > %,Bar} and define a sequence of stopping
times o, w1, ... as follows:

4o = min{n: S, € ¥},
Wj=moby +puj—1, j=1

Letn =1[2p/Be] + 1 and
Ey = {uo < T {Suy = S4:6) > 0., (S, — Sy, 6) > 0, 1S, [I* < 4nr},

where [IS||* = maxo<;<¢ |S;|. Note that, on the event E;, the random walk
must hit ¥ before time T’ and then cross Ly before crossing L;. In particular,
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on Ey, (St,,0) > -é—,Ber and ||St,||* < 4nr, so that Eo € {St, € I'(9, B¢/8n)}. By
the strong Markov property,

n
P(Eo) 2 pP([Sus — Sy, 6) > 0. max IS =Syl < 3r)
Ho=J=m1
n
- pP0<(Su, 8)> 0, IS, |* < 3r) .

The idea now is that Py((S,,6) > 0, ||S,|I* < 3r) cannot be too small; oth-
erwise the random walk would either fail to cross L1 or else jump far outside
the ball of radius r, missing ¥ in either case. To make this precise, introduce
stopping times vy, vg, ... by defining vi = p and vy = v1 06, _, +vj_1 forj > 2.
Observe that, on the event

({isw.0) <0} ulisar = ar})
N rjz ({«SV, -S,,_.) 9) < 0} U { vj_rlnsa}exsuj ISk =Sy, Il > 3r}>’

the random walk cannot hit ¥ before time T,. Thus, by the strong Markov
property again,

n
Po({(81,,6) < O} U (IS, II* > 3r}) < 1-p,
so that
Po((S,,,6) > 0, IS, < 3r) = 1= (1 —p)/".
This completes the proof of Lemma 4.1. O

LEMMA 42. Letr>0,0<p<1land0 e S2-1, Then, for any n such that
0 <n <P(Srt,0) > BIST.Il), we have

B2 n N1
P(<ST,-’ 6) > T2_8—r:”ST""> > 5[1 - (1 - 5) ,

where n = [32p/8%] + 1.

Proor. Fix1l > B > 0and > 0 such that P(§T,_ e I'(9, B)) > n. Choose f;
satisfying 0 < B; < %,8. Let 0 < ¢ < (28 — 3B81). We will show that, for a given
6 € S~ and r > 0, at least one of (4.1) and (4.2) below must hold:

4.1) P(S, €T'®, &) N Ann(0, er, r) for some 0 < n < T}) > %

(4.2) P(S1, €T, f0) = 3.
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We begin with some geometry.
CLAIM. Let x,y € R? satisfy ||x|| < 7, |yl = 3r and x +y € I'(9, B). Then
either (y,0) > 3rpy orx € ['(6, &) N Ann(0, er, r).

We show this by contraposition, assuming throughout that ||x|| < r and

lyll = 3r.

Suppose (y, ) < 3rp; and x ¢ ['(0, ) N Ann(0, er, r). Then (x,0) < er. Now
(y+x,0) <3rpr1+er < 3rp1+2pr—3p1r = 2pr < Blly+x|. Thusx+y ¢ I'(9, B),
and the claim is proved.

We will apply the claim below with y = XT andx =St._1(= ST _1). Let

A =(S, el'@,e)NAnn(0, er,r) for some 0 < n < T},
= {S7, €T, 1)},
C = {Xr, €TI0, Bv), S1, €6, B), | X1, || = 3r}.

Observe that on C, since X7, is a multiple of )A(T,,, we have
(Sz,.6) = (Sr,.6) + ((St, — S1,),60) > BIST, I + B1IIST, — ST, > A1lIST, II.
Thus C € B. Next on {St, #§Tr} we have ||}A(T,_]| = 3r. Thus, by the claim above,

{St, €T, B), Sr, #81,} € CU [S1,_1 € (6, £) N Ann(0, 7, 1))}
C BUA.
On the other hand, clearly {§T,, e I'e, B), §T,, = St} € B. Thus {§T,, €
I'®,B)} € AUB. So P(AU B) > n implies either P(A) > n/2 or P(B) > n/2.

Finally, if we take, for example 1 = B8/2, ¢ = /4, then the desired result
follows by combining (4.1), (4.2) and Lemma 4.1. O

LEMMA 43. Let 0 <r <o00,0 < B < 1land 6 € 841 Let n > 0 be any
number satisfying P({St,,0) > BIISt,|) > n. Then we have

~ ~ 1/N
4.3) P((81,.6) > 0.36157,1) = (g) A (1 - (1 - %) )

where N = [600cp2/9n82] + 1, and c is the constant in (2.5).

Before giving the proof we require three elementary geometric lemmas.
Throughout these we assume ||x|| < 7, |ly|| > 3r and we lety = (3r/ly|)y.

LEMMA 4.4. IfxeT(0,0.38)and x+y €9, B), thenx+y € I'(9, 0.38).
This follows at once from the convexity of I'(9, 0.38) and I'(6, 8) < I'(9, 0.38).

LEMMA 4.5. Ifx+y € I'9,B) and x ¢ I'(®, 0.38), then y and y belong to
I'©, B/2).
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Proor. It suffices to prove this for y. Now (x + y,6) > Bllx + |l > Bllyll —
-§-ﬂllxll- Thus (y,0) > Blyll - %ﬂllxll = (x,0) = Bllyll — %ﬁllxll > B/Dlyll. O

LEMMA 4.6. Ify e T'(0, B/2) and (x,0) > —0.38r, then x +y € ['(8, 0.38).

Proor. We have (x +7¥,6) > %,Bll?ll —0.38r = 0.48|y|. The result follows,
since clearly [x + 7] < §lyl. O ’

PROOF OF LEMMA 4.3. Since a + b + ¢ > n, where

a =P(St, €T®, B), S, =Sr,),
b = P(St, e T'®, B), S, +87,, S1,-1 € ['(6, 0.38))

and
¢ = P(Sr, €T, B), St, #Sr,, S1,-1 ¢ T(6,0.38)),

at least one of the following must hold: @ > 1/3, b > n/3 or ¢ > n/3. If either

of the first two possibilities holds, then (4.3) follows easily; if a > /3, (4.3) is

immediate, while if b > /3, apply Lemma 4.4 with x = S7, 1 and y = Xr,.
For the rest of the proof we assume ¢ > /3. Define a stopping time o by

o =min {n: | X,| > 3r and (X,,6) > 381 X,1}.

By Lemma 4.5, P(c = T}) > n/3. Set ¢ = 0.38pL. Then |x|| < er = (x,0) >
—-0.38r.

Now define u; = min{n: |S, —So|| > er} and ur = p106,, , +ur—1. Let Wy =
Sy, Wo =Sy, =Sy, ... and r = min{n: |L}_,W;|| > r}. Then the W; are i.i.d.,
and since |W;| > er we have Ky, () > ¢2. Thus, by (2.5), taking N = [6¢/ns?], we
have P(t > N) < n/6. Since T < u,, this means P(uy < T;) < P(N < 1) <1/6.
Hence, setting ¢ = P(c = T',), we have, by the strong Markov property,

1-22P0>T) 2P0 > uy w2 T) 2P > m) - g =1- ~ &
Thus g > 1 — (1 — n/6)Y¥. Finally, by Lemma 4.6,

P(§T,. el'@, 0.3,8)) >Po =T,.) > [1 _ (1 3 %)1/1\/]'

The proof of Lemma 4.3 is complete. O

As an immediate consequence of Lemmas 4.2 and 4.3, we have the following
result. :

- PrROPOSITION 4.7. Fix a sequence {r;} and 6 € S¢-1. Then

(4.4) (Dy) holds along {ry} if and only if (59) holds along {r},
(4.5) (Hp) holds along {ry} if and only if (ﬁg) holds along {r}.
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In the next result, we denote by T? the first exit time from [—r, 7] of the
one-dimensional random walk with steps given by (X, 8).

LEMMA 4.8. Fix {r;} and assume that ”ST"k ||r,:1 is tight. Then (Dy) is equiv-
alent to

(4.6) PYT¢, <T,)— 0 foralle>0.

ETk

Proor. That (4.6) implies (Dy) follows from (2.1) and
{lisn, Ise,170)| < 0} 2 {12, > 7.

Now assume (4.6) fails. Thus, along some subsequence {£(1)},

Pk(l)(Te <Try) >0>0

ETp(1) —

for some ¢ > 0. By tightness, for some L and all (1),

Pk(1)<"ST, " > er(1)> <a/2.

k(1)

Hence, for each large k(1), either

(4.7) Pk(l) (Tgrk(l) = T’k(l)’ ”ST"k(l) " = er(l)) = 0/4
or
(4.8) PAO(TY < Tn) 2 0/4

If (4.7) holds, then a little geometry shows that
1 -1 -1
PO(|(81,, 151, |7 0)| = e277) = 074
Hence (Dy) fails. If (4.8) holds, then either
PO (Sn e I'(6, &) N Ann(0, ep ™ ryqy, rrqy) for some n < T,,m)> >0/8

holds or the analogous statement with 6 replaced by —6 holds. In either case
we can apply Lemma 4.1 to conclude that (Dy) fails. O

LEMMA 4.9. If

sup lim sup G* ) =
A>0 k> o0 hk(krk)

then, for every e € (0, 1),
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Proor. Foranyr > 0andce¢ € (0, 1),

h(r)y = |M@)|+K(r) + G(r)
< e|M(er)| + 2K (er) + G(r) + 2G(er)
< eh(er) + 3G(er),

and the result follows. O
THEOREM 4.10. Assume that
(4.9) ISz, ||y " is tighe.

Then (Dy) is equivalent to

(4.10) lim sup

PRrROOF. Assume that (4.10) holds. Then, by the doubling property, for any
e >0,

hE(ery)
(4.11) lim sup %2 —
s oe” BE(r)

Now, for any &, by (2.5) and (2.6),

k 3
P (Tﬁrk < hg(grk)) <cé,

Pk<T < 3 ) >1— ch’é”(erk)
" T hkery)) T ERRGR)

Thus, by (4.11),
(4.12) P¥(T? <T,,)— 0.

ery

Hence (Dy) holds by Lemma 4.8. (Note that this part of the proof does not require
the tightness assumption.)
Now assume (4.10) fails. We consider two cases:

. G:(Ary)
A) sup lim sup —2
A>% k—»oop hk()‘rk)

It then follows easily by doubling and the monotonicity of G that, for some
subsequence {k(1)} and some o € (0, 1), either

GSS}) (2,00[7‘k(1)) N

(4.13) FED (@recs)

>0
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or

G0 (2parka))

o> 0.
h D (ary )

(4.14)

Without loss of generality, assume (4.13). Then by Proposition 3.1, for some
universal constant ¢ > 0,

limiank(l)(S 0) > par >>ca.
k(1) —> o0 <T""k<“ )= paruy) 2

In particular, since T, < T, and p > 1,

liminf P*O(TE < T,,,) > co.

k(1) > o0 TR —

By Lemma 4.8 this means (D) fails along {ra)}.

. G%(Ary)
B) sup lim sup —2 =
Sob hseo” HE(ATR)

Since (4.10) fails, along some subsequence {£(1)},

RED (1))

4.15 0 k@ 0.
( ) hk(l)(rk(l)) —&>
Then by (B) and (2.7)

Gy ()

W—_—_)O for all A > 0.
hy 7 (Arey)

Thus, by Lemma 4.9, for any ¢ > 0,

hk(l)
(4.16) lim sup —ki(l-)—(’:ﬂl—))— <e.
k(1) > oo he (srk(l))

Now, for any § > 0, by (2.5) and (2.6),

é é
PHT, <T%,) < P* (Te _.) P(r. __)
( k < erk) S ETp > hlg (rk) + k S hz (rk)

_ chime) | RAw)
= Shk(ery) hE(ry)

Letting k(1) — oo and using (4.15) and (4.16),

limsup P*V (T, < T% ) <ces™' +cs¢t

Tx(1) ETR(1)
k(1) = oo

This can be made less than 1 by appropriate choice of § and ¢. Hence, by Lemma
4.8, (Dy) fails. O :
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Since |I§T,, |r~! is always tight, as an immediate consequence of Proposition
4.7 and Theorem 4.10, we have the following result.

THEOREM 4.11. Fix {ry}). Then (Dy) holding along {r;} is equivalent to

Tk
(4.17) Tim sup 2% _
ksoo h (I‘k)

To illustrate the need for consideringﬁrather than A, we now give an example
showing that the previous result is false if we replace A with 4. In addition,
it shows that Lemma 4.8 and Theorem 4.10 are false without the tightness
assumption.

EXAMPLE 4.12. Letd =2and || || = || |z Set e = k! and uy, = p;* = 2%
Define a random variable X by

P(X = upe™) = ipk fork > 2,

where ¢, = +(7/2+ ;) (i.e., put equal mass at each of the four points), with the
remaining mass at 0. Let rp = uz|cos ¢x|. Thus rp, ~ up/k. Since up 1 <rp <up
if £ is sufficiently large, a simple computation shows that

M(r) =0,
u}%_lpk—l

K(rk) ~ r—2 = O(pk)y
k

G(r) = pe.

Hence
G@rw _ 4

kingo h(ry) -

On the other hand, if we let 6 = (1, 0), then Gy (1) = G(r) for all k sufficiently
large. Since hy < h in this example, this means

- h(ry) - h(ry) - h(ry) N
T he(re) T Go(rr) — G(rp)

Thus (4.17) fails with & replacing k.
On the other hand, (4.17) does hold. To see this, observe that, for large &,

ho(ra) = Ka(ra)
< K(r)
= 0(pe).

Since E(rk) = h(@r) = G(ry) > pg, this means

71:59 (T)
h(re)

— 0.
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To state the next result, we need to introduce the following condition:

(Eo4) Pk((ST»gk, 0) > O) — 1.

PRrROPOSITION 4.13. Fix {r;} and assume IIST,,k ”’7:1 is tight. Then, for each
6 € 8¢-1, (Hy) is equivalent to:

Every subsequence {k(1)} contains a further subsequence {k(2)}

(4.18) along which either (Dg) holds or (Ey,.) holds.

ProoF. Assume (4.18) holds. Then, given any subsequence {£(1)}, there is a
further subsequence {£(2)} along which either (D) holds or (E4,) holds. If (Dy)
holds, then trivially (H,) holds along {£(2)}. If (Ey..) holds, then, by Remark 2.1
for any ¢ > 0,

P*®((S,,,6) hits (prica, o0) before (~o0, —sri) ) — 1.

Clearly, this forces (Hy) to hold along {£(2)} also. Hence (Hjy) holds along the
entire sequence.

Now assume (Hy). Given any subsequence {£(1)}, if there is a further subse-
quence {£(2)} along which (Dy) holds, we are done. Hence we may assume (Dy)
fails along every further subsequence of {£(1)}. Thus we can find a § € (0, 1)
and o < 1 such that

Pk(1)<‘<ST,.k Sz, |7 6)| < 3) <o

for all large k(1). Fix L large and 0 < ¢ < § (¢ will be chosen very small later).
Define stopping times 7, j=0,1,2, ..., by o = 0 and

G+1 =T+ 100,

where t = min{n: ||S, — So|| > rza}. Let
Aj= {((Sfj —STJ—I)"STJ _Sfj—ln—l’e) € (=&, 9); "STJ _STJ—IH = er(l)}

and

Crpy = {(Sn, #) hits (—oo, —2rk(1)) before (argl) , oo)}

We claim that

[5/2£L] 6
Cryy C < ,Q Aj) U {IIS,I —Sy_lll > Lryq) for some j < Egl—;}

- . 8
v {((Srf =Sy ) ISy =Sy l,é) < —¢ for some j < ZZ}
= B; UBy UBj3.
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To see this, first observe that
(Srj - St,-v 9) > —-Ser(l)
on A;. Thus, on (L, 4, m > 1,

(Ss,,0) = —eLmryq,

and
(Sp,0) = —rpay —eL(m — Drpay foralln < .

Now if none of By, By or B3 occur, there is a first j < [§/2¢L] for which A; fails,
say j = m + 1. In that case
(S

Tm+179) (St”,79)+8rk(1)
—eLmrk(l) + (Sr]g(l)
8rk(1)

2

=
=

and
(Sn,0) = —rry — eLmryqy foralln < g1

Thus C,, , fails, proving the claim.
By the strong Markov property,

{8/2¢L)
IS, | < er(l))

1
Th(1) k(1) “ ’ 0) € (_87 (S); "ST"k(])

1 1 [/2¢L]
= P )(< Trpy ||S Topy " > € (—e¢, 5))

o [8/2¢L)

P*O(B,) = P*D (( Sr.

for large k(1). Again, by the strong Markov property,

PHO(By) < Pk<1>(nsT, 1>era))

v |

and
-1
POy = 2 P[5, 15,17 0) < )
Given any M (large), choose L so large that
L
Pk(l)(”‘ST,k ” > er(l)) < W
forall k(1). This is possible by tigﬁtness. Now let ¢ = §/2LM. Then, for large £(1),

1 _
PHD (Cl‘k(l)) =< o™ + M +MPk(1) ((ST%(I) ||ST1'I¢(1) “ 1’ 9) = _8)‘
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Letting £(1) — oo and using (Hj), then letting M — oo, we see that
PD(Cy,y) — 0.
By Remark 2.1 this forces (Ey,) to hold along {£(1)}. O

As an immediate consequence of Propositions 4.7 and 4.13 we have the fol-
lowing result.

THEOREM 4.14. Fix a sequence {ry}. Then (Hy) holds along {r}} if and only
if every subsequence {k(1)} contains a further subsequence {k(2)} along which
either (Dy) holds or (Eq..) holds, that is, either

lim upA (rk(z))

k@) - 00 BE® (re)
or both

G (\r
sup lim sup —%Lﬂz—)—)- 0
2> 0 k(2)— oo h (ATr(2)
and 2(2)
AT, 1
inf 11m1nf—k——-£—k—(2)—) > =
1>0k@ 00 RE® (hryq)) T 2

We are now ready to give necessary and sufficient conditions for (E) to hold.

THEOREM 4.15. Fix a sequence {r;}. Then (E) holds along {ry} if and only if,
for every 6 € S¢-1,

and along every subsequence {k(1)} either

GO (r
llm sup M
kD= oo REATRQ))

0 forsomei >0

or

e
A
lim f—( Thn) <

= oy fOl S e A. 0.
om >
@ ”’ ( )(“; k(l))

5. Condition (E) and Laplace transforms. As mentioned in Section 1,
a more concise necessary and sufficient condition for (E) to hold, at least in one
dimension, can be stated in terms of Laplace transforms. In higher dimensions
a slight variant of the Laplace transform is needed. The key to this approach
is the pair of probability estimates obtained in Propositions 5.1 and 5.2 below.
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Fixr > 0. For x € R? let
% =« (x|l < 3r) + 3rllxl| " (Jlx]| > 3r).

For x € R%, y € R? and r > 0, define
o llxl%
(5.1) G, y)=—d-Dp"—= + & y).

In the results of this section, the quantity Eet&9 will play an important role.
Observe that in one dimension it is simply the Laplace transform of X.

PROPOSITION 5.1. Fix6 € S~ r > 1and B > 0. Assume that t > 0 and
- 2(d — 2
(5.2) E exp({f, <X, 16 — _(_Tl)_p_y_>> >1
r

for all y € R% with |ly|| <r. Then

P(§Tr e I'(o, ﬂ)) > (1 _ e—1+4tﬂr)e_4tp,.'

ProOF. We begin by observing that
(5.3) xgT@,B), r<|x|l <4r = & td) <-1+4¢pr.

If d = 1 this follows since r > 1 and the assumptions in (5.3) force xf to be
negative. If d > 2 we have &.(x,t0) < —1 +tBllx| < -1+ 4pr. Also note that,
by the Cauchy—Schwarz inequality,

(5.4) r<|x| <4r = & (x,t0) <4tpr.
Next, observe that

‘EI‘(’S\nv t9) = Sr(gn—l +}?n’ t9)
Z(d - 1)p2(§n—1a}?n)
r2

2(d — 1>p2§n_1>

= £(Sp_1,20) + &(X,, t6) —
r2

= gr(gn—l, t@) +€r()?n’ 10 —

Since ||§n_1|| <ron {T. > n}, we have, by (5.2),

-~ —_— ZA
E{exp(&(Xn, o — 2d- 1 1r)2,o Sn_l))

where F,_1 = a()?l, ... ,)?n_l). It follows that M,, = e Gnar ) i5 a bounded

Fn- 1] L7, >n = L1 2n)
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submartingale. Hence
1 < Eo(Mo) = E[e¥S-1; Sp, e T (9, B)] + E[e5S79); 81, ¢ T, p)]
< e“"P(Sr, e T(9, B)) +e 14 P(S, ¢ T(0, B)),

where we used (5.4) to estimate the first term and (5.3) to estimate the second.
Thus 1 < e**r P(ST e, B)) + e~ 1t4F which gives the desired result. O

PROPOSITION 5.2. Fix 6 € S~ r > 0 and B > 0. Assume that t > 0 and

Eet&X.10) < 1. Then
1+c¢)

prt

where c is a universal constant depending only on dimension.

P(St, €T, B)) <

>

ProOOF. Observe that there exists a nonnegative constant C, depending only
on dimension and norm, such that

T, .12
- _ 9 ”X}”E Q)
(5.5) EL}Z @t <o <C

[Use Wald’s lemma, (2.42 and (2.7).]
Now, since E[ exp (& X, t0))] < 1,

nAT,

n—exp{ Z(d )2” 2l (te,ﬁnAT,.)}

is a bounded supermartingale. Thus, letting n = P(§TI, e I'(®, B)), we have
1> EoMy, > E[Mr,; St, € T, B)]

L 1%12]. &
> e’"E {exp| — Z(d - l)er—zE ; St, €6, B)

Jj=1
T,
= nE [exp[_ Z(d 12 IIXIIE:I
Jj=1
T, X2 | ~
[— Z(d - 1)p2E(r’2—”E Sr, e (6, ﬂ)“

1
_ T X2 ~
=etfy exp{TlE|: d - l)pzul‘#; St € (0, ﬂ):l}
Jj=1

-1 I 1 X012
tpr 2 2 JIE
>e nexp[—n E{— E p°(d—1)p —

j=1

eI, ﬂ)}

> ety exp{E
Jj=

> etﬂrne—C/n’

where we used (5.5) in the last inequality. Since n > e~1/7, the result follows. O



GAMBLER’S RUIN AND RANDOM WALK 1457
THEOREM 5.3. Fix a sequence ry. Let a(ry) > 0 be the smallest number such
that, forall 6 € S¢-1,
(5.6) t>a(ry) = E'fexp(6,X, t0)]>1.
[Set a(ry) = +00 if there is no such number.] Then

(E) holds along the sequence r, <= supripa(ry) < 0o.
k

ProoF. By Lemmas 4.2 and 4.3, it is equivalent to prove the result with
(E) replaced by (E).
(<) Let t = 2a(rp)p + 2(d — 1)p3/ry. Then, for all |ly|| < ry,
2(d — 1)p% 2(d —1)p®
r,% Tk

“t@ - >p7 Yt = 2a(rp).

Hence (5.2) holds and so, by Proposition 5.1,
pk(gnk eT®,8) = (1- e—1+3/3"k001("k)+8(d—1)Psﬂ)e—3P2"kﬁl("k)—8(d—1)ﬂ4.

Since this is uniformly bounded in 6 away from 0 if g is sufficiently small, this
proves that (E) holds.

(=) Let t = a(rx)/2 and choose 6, € S¢~ ! such that E*[ exp (£-(X, t6p))] < 1.
Then, by Proposition 5.2, for any 8 > 0,
< 2(1+c¢) '

Brro(ry)
By a simple compactness argument, the left-hand side is bounded away from 0

if (E) holds, provided g is sufficiently small (see Lemma 4.1 of [4]). Hence the
result follows. O

P*(Sz,, €T, B))

REMARK 5.4. The | X |2 term in (5.1) cannot be omitted in higher dimen-
sions. Indeed, any random vector whose distribution is symmetric with respect

to the origin satisfies Eet»® > 1 for every y but it is easy to construct such
distributions for which (E) fails. See, for example, [4], Example 7.2.

REMARK 5.5. Let ap(r;) > 0 be the smallest number for which
t>ar) = EEX® >
Clearly, ag(r) < a(rr). Hence, if (E) holds, then
sup sup ripo (re) < oo.
B0
Thus the projections satisfy the one-dimensional condition for (E) uniformly.
However, the converse is false by the above remark. Hypotheses requiring uni-
formity in the behavior of one-dimensional projections have appeared in several

recent studies on sums of i.i.d. random variables in higher dimensions. See, for
example, the work of Hahn and Klass [5] on operator norming.
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6. The limiting exit position. Assume that X; are i.i.d. genuinely d-
dimensional mean 0 random vectors with finite variance and that w(¢: £}(X) is
lattice) = 0. We will first prove the sufficiency part of Theorem 1.2, that is, give
the limiting joint distribution of (| Sz, || — r, S7,/11S7.Il) as r — co.

Before giving the proof we discuss some preliminaries related to the convex
geometry ofthe B, = {x : ||x|| < r}. Letx € 8B;. Recall that a support hyperplane
at x is a set of the form {&: £*(§) = 1}, where the linear functional ¢* satisfies
[|€*]] = €*(x) = 1. Denote the set of such functionals by SH,. Let

. x4tz -1
"(;2) = lim ———.
P 2) ) ¢

The limit exists because the function ¢ — ||x +#z|| is convex. Clearly, |po’(x; 2)| <
llz||. For fixed x, the function z — p’(x; z) is sublinear, that is, p'(x; 21 + 22) <
o' (x; 21) + p’(x; z2), and positively homogeneous. See [6], page 28. We define the
modulus of smoothness at x, Ay, by

. llx + 22| + Jlx — t2|| — 2
A, = lim sup .
t=>0 =1 ¢

(We should remark that this modulus of smoothness is defined somewhat dif-
ferently than the modulus of smoothness of a uniformly smooth Banach space.)
Clearly, A, > 0 (take z = x). It is easy to show, for example, by arguing as in
Lemma 6.1 below, that

(6.1) Ay = sup [p'(x;2) + p'(x; —2)],

lzll =1
so that A, may be viewed as a measure of the departure of the function z —
0'(x; z) from linearity. We also have that (see [6], pages 30 and 31)

A, =0 <& SH, is asingleton, {£*},

in which case £*(z) is equal to p’(x; z). Such an x is called a smooth point. It is easy
to see that A, is an upper-semicontinuous function of x. The set of nonsmooth
points is of first category and has surface measure 0. The latter fact follows
from standard differentiation theory, since the norm is Lipschitz on 39B;. For
the former, see, for example, [6] page 171.

Suppose x € 3B is fixed. Then by convexity, for each z the function ¢, defined
on R, by

| +¢z|| — 1

&) = — p'(x; 2)

is nonnegative, continuous and lim; ¢ &,(¢) = 0.

- LEMMA 6.1. Let ¢(t) = max,; =1¢,(t). Then lim; ¢ e(t) = 0.

Proor. If|z| = |w|l =1, then
tlez () — ew(@®)| < tllz —w| + ¢]p'(x; 2) — o' (x; w)|.
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By sublinearity,
p'(;2) =pw+z—w) < p'w) + o' (x;2 —w)

Z—W
= p'(x; w) + p'{ x; lz —wll.
lz —wll

Hence |p'(x; 2) — p'(x; w)| < ||lz—w], and s0 |&,(t) —€w (#)| < 2|z —w]|. The desired
result now follows by an easy compactness argument. O

LEMMA 6.2. For any n > O thereis a A = A(x, n) > 0 such that, for 0 < § <
A(x, n), we have the following implication:

lyll > 1and €*(y) <1—4§ for some £* € SH, = |y— (1 —3d&x| = i
x TN

ProoF. Letz =y — (1 —é&)x so that £*(z’) < 0. We have

z/
1<yl = (1= x+2] =1 —8) x+mu

[C4l

< (1—6)+p(x;2)+e<m>llz Il

Now, for any ¢* € SH,, we have ¢*(-) < p'(x; -) ([6], Theorem 1.7.F). Hence
—~plx; —2') = —£*(2") = 0. Thus, by (6.1), we have p'(x; 2') < A.[|2']l. Hence

)
2| > :
| A +ellz’ll /(1= 9)

(6.2)

Now let # be such that &(t) < n for ¢ < to, and take A so small that
g <
(A +m(1 —9)

We claim that ||2']| > §/(A. + n). If not, then ||2’|| < §/(Ax + n). Hence ||2'||/(1 —
8) < to. But this leads to a contradiction by (6.2). O

§< A= to.

REMARK 6.3. The following useful fact follows from [6], Theorem 1.7.F, as
in the proof of Lemma 6.2. If £y, ¢3 € SH,, then |£1 — £2]| < A,

LEMMA 6.4. For any y we have

(6.3) lim (|lrx+yl —7) = sup €(y),
r—00 ¢ e SH,

and the convergence is uniform oen compact sets of y.

ProoF. Forany ¢* € SH, andr > 0, wehave |rx +y||—r > *(rx +y)—r =
£*(y). First suppose £*(y) > 0 for at least one £* € SH,. Let ¢ > supy csp,- The
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vector y — cx then satisfies £*(y — cx) < 0 for every ¢* € SH,, and it follows from
the Hahn-Banach theorem that x + #(y — c¢x) € B; for all sufficiently small ¢.
Thus, for large enough r,

1 c 1 c
x+ -yl <-+|x+—-(y—cx)| <-+1
r r r r

Hence lim sup, _, o, Irx + y||—r < c. If £*(y) < 0 for every ¢* € SH,, then choose
a large enough y so that £*(y + yx) = £*(y) + ¥ > 0. Then, by the first part of
the proof,

lim rx+y|| —r=lim |(r—=y)x+y+yx| —(r—y)—vy
r—00 r—00

= sup £ (y+yx)—y = sup £°(y).
¢t*e¢ SH, ¢*e SH,

This shows that (6.3) holds for each y. It follows from the triangle inequality
that the expression on the left-hand side of (6.3) is nonincreasing in r. Thus the
uniformity in y follows from Dini’s theorem. O

PRrOOF OF THEOREM 1.2 Since we work with an arbitrary norm, there is no
loss of generality in assuming that EX{ X3, the covariance matrix of X, is the
identity. Thus w(-) = lim, _, .o P(ST,/|IST,|| € (*)) is ordinary harmonic measure
on 9B;. Itis not difficult to show that B; is a Lipschitz domain and hence admits
a surface area measure o. By Dahlberg’s theorem [2], v < o.

Fora > 0,let G, = {0 € dB1: Ay < a} and let S be the set of smooth points.
Then each G, is open, S C G, for all @ > 0 and w(G¢) = 0 for every a > 0. To
each 6 € 3B, assign a functional ¢} € SHy. [Recall that ||£;|| = 1 and £5(0) = 1.]
Make the arbitrary choice at nonsmooth points in a measurable way. If 5 € S,
then it is easy to check from the definitions that the map 6 — ¢} is continuous
at 6 no matter how ¢} is defined off S. Finally, let L} be a random variable
satisfying (1.4) for the choice Z; = £}(Xj) as described in Section 1 and denote
the set of 6 for which Z; is nonlattice by D.

By the basic theory of weak convergence, it is enough to prove

liminf P{ ||St,| —r €1, St, e > f w(d6)PL} € )
(6.4) r—oo IS, Q

- /  wdOPLE I
QNSND

for each open interval I c (0, oo) and open set Q C 8B; such that w(3Q) = 0.
[Note that P(L} = 0) = 0 for every 6 € D since each L} has an absolutely
continuous distribution.]

For 0 < N < r let oV be the distribution of St,_,/IISt,_y|l. By the strong
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Markov property at time T'_p,

ST,
Pyl IS rel, e
0(” Il — B ) N
65 = /Qwﬁv(de)ueul\}}g.NJP(’*”)"("ST" I=reD "P("ST,‘-N | >r- 5)

s <0 fo o))
- P — e QA e
({ IS, ST, _yll
The last two terms here may be handled by using the tightness of the overshoot
distributions (Theorem 1.3 of [4]) and Lemma 6.5 below, respectively.

LEMMA 6.5. For any € > 0 and Q C dB; open such that w(9QY) = 0, we have

Sr, Sr,
lim sup P = Q}A{ : eQ} €
gl ({ 17, 1Sz, -

for N large enough.

Proor. LetK C Qbe compact. Fixv € [N/2,N] andr > N. Since Q is open,
a little geometry shows that there is a constant o > 0 so that |St, —Sy|| = oron
{So = (r—v)8, S1,/IIST,|| ¢ 2} for all & € K. Thus, on the same event, we have
S%* > or, where 7 is the first passage time of S, to the half-space {z: €}(z) > r},
and S7 is the maximal function defined by S} = sup, ., [S» — Sol. By Theorem
3.1 of [9], we have that, for any 0 < p < 1,

(6.6) E,(S?)P < Cdist(w, H)? +C,

where C is a constant depending only on p, p and the distribution of X;. Thus,
using (6.6) and the strong Markov property at time T',._y, we obtain

N7 Sr, Srt,
limsup P( S ~N, = €K, @
1msup <|| 7w e[ r—= ] ST, I € ||ST I # )

The same then holds with K replaced by Q since K was arbitrary and v (3Q2) =
Since the overshoot distribution is tight, we may fix N so that P|Sz,_,| >
r — N/2) < ¢/2 for all r sufficiently large. Thus

ST_ ST, €
N ! Q —
hi‘iso?pP({ 152, 1 Q}\{usnu < }) 2

Applying this to Q° gives

. ST, —c €
1 P : Q =.
s ({HST T e }> “2
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The desired result now follows, since

Sr,
limsupP| —=% € 3Q ) < w(3Q)) =0.
b (usT,._Nn ) ) o

The idea now is that, for most 6 (i.e., the smooth points) and large r, we may
approximate the curved boundary of B, by a hyperplane {z: ¢;(z) = r — 4}. The
overshoot of the first passage time to this hyperplane may then be analyzed

using classical renewal theory.
LetL,(6) = min{m: 2;"=1£;(Xj) > y}andlet 0 < § < inf{¢t: t € I}AN/2. Then,

for any v € [N/2, N],
Po_vyo(lIST, Il —r 1)

6.7) Ly-»®)
-

Z X+ (r—v)
The following technical result is needed to handle the second term in (6.7).

€I+r) _P(r—v)é'(Lv—tS(e) >T,).

j=1

LEMMA 6.6. For all ¢ > 0 and N and § as above, there exists a constant
A = Ale, N, 8) > 0 such that, for 0 satisfying Ag < X, we have

limsup sup Pu_pe@Lyv—s0)>T;) <e.
r—>o00 pelN/2.N]

PROOF. On the event {L,_3(0) > T,,So = (r — v)8}, we have £;(St, — (r —
v)0) < v — 8 or £5(Sr,/r) <1 —§/r. Applying Lemma 6.2 withy = Sr,/r and §
replaced by §/r, we have that, for any n > 0,

IS, — # —v)8| = |Sr. = r =8| =N -8 = - (N -9),

Ao+
as soon as 8/r < A(9, n). For such r and any v € [N/2, N], we thus have

1)
—IN=98]).
Ao +1 ( 8))

Let 7 denote the first passage time of S,, to the half-space H = {z: £;(z) > r —3d}.
Taking, say, p = % in (6.6) and applying this inequality on the right-hand side
of (6.8), we obtain

(68) P(r—v)0(Lu—6(‘9) > Tr) < P(r—v)@(”‘ST,. - (7‘ - 0)9 " >

CNY24C
1/2
(5/(Ao+n) =N +3)

for any v € [N/2, N] and any n > 0if r is sufficiently large. Hence, letting r — oo
and 7y | 0, ’

Py _vo(Ly-s0)>T;) <

y P Lo s@) > T < (CNV2 + C) A,
imsup su r— _ >T) < ,
r—>0°pue[N/12),N] rmeie=s [6 — NAg + 3Ao]V/2
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which clearly yields the desired result. O

For fixed N and € > 0, let A be asin Lemma 6.6. Then, by (6.7) and Lemma 6.6,

[ ¥, ot | Poovo(iSzl 7<)

L,_56)
= »/Gmgwr ( )UE[}\}}Z,N] j; J+(7‘ v) re €,

once r is sufficiently large.
Fix L > 0 large and A > 0 small. Then, by Lemma 6.4 and Remark 6.3, if r

is sufficiently large, for any ||y|| <L and 0 € G;,
|(ly + 701l — ) — I ()| < 2M0llyll < 2AL.

We apply this withy =Y = Ef;_f(e)Xj — vf. Observe that Y is finite a.s. Then,
L,_,(6)
Z X+ (r—v)o

for sufficiently large r,
—rel )
Jj=1

g
Ly-56)
> P( Z LX) —@w=8el+s Y| <L>,

j=1
where I’ = {t € I dist (¢, I°) > 2AL}.

For fixed §, A and L, let g(v, 0) denote the term on the right-hand side. Also let
f(©) =inf, c v/2. Mg (v, 6). By the classical limit theorems for spent and residual
lifetimes, it is easy to see that, for each § € SN D,

lim lim P(A@,6,n)) =1,

n—0n—>o0

where
L,6)-1 Ly(6)
A(v,@,n)={ Z Z;()Q)<v—n<v+n<ze’(;(Xj)}.
Jj=1 Jj=1

Now fix ¢ > 0. Then by a simple measure-theoretic argument we can find
N = N(¢) and n = n(¢) such that

E, = {0 eSND: inf PA@w —35,6,n) > 1—5}
v>N/2 2

satisfies w(E,;) > 1 — ¢. Next by (6.6) with p = 1/2, if ¢ is sufficiently small
[depénding only on the constants in (6.6)], then

inf  Py,_,0(S* <Ne3)>1-
yeinf o 00 (ST, _,0) = )=

DN ™
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Now since 6 — ¢; is continuous at each point of S N D, we have by some ele-
mentary geometry that, for every v € [N/2,N] and ¢ e SN D,

A(v—&,@,n)ﬂ[

L,_50)
GX)—w-0el +5, Y| < L} N{S;. . <Ne™3)
=1

J
Ly 5

c{ 3 e;,()g)—(v’—a)el’+a,},
Jj=1

once ||¢' — 6| and v’ — v| are sufficiently small. Thus, for each v € [N/2, N] and
¢ € E¢, thereis an L = L(v, 6) > 0 such that, for |’ — 6| < L and |v' —v| < £,
we have

gW,0") >g,0) —e>f(O) —e.

By a simple argument involving compactness of [N /2, N], it then follows that
we can choose L = L(¢g) > 0 such that

o’ —oll <L@©®) = f©O)=f06)—c¢
for all 6 € E,. Let
f©®) =lim inf f(@6"

LiO0Je—0ll<L

be the l.s.c. regularization of f. Then we have shown that f©®) = f(0) — & for
6 € E,. Thus

lim inf f(©)oN (d6) > liminf f f(©) N (d6)
r— oo N r—o0 GA nQ—

> / @) (dd)
[eNal D

> / (F©) — ) (d6)
GL\NOQNE,

> / £©)0 (d8) —
G,NO

Hence if we let r — oo, followed by A — 0 and then L — oo, we obtain

lim inf Gmwﬁ’(d@)y inf | Pu-so(ISz,l-reD

Lv 6(9)
) _inf X)— -8 el+5) 36
= fsm‘zw( ueul\}}2m< Z o(Xj) —(v-8)el+ )

Jj=

Letting N — oo and using the results of classical renewal theory, we obtain

)zf w@)PL: €I +6) —
SnQ

Sr,
lim infP €
r— o0 (' " IS
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The desired result follows, since w(S N Q) = w(f2), § and & were arbitrary and
each L} has an absolutely continuous distribution function. O

We conclude this section by proving the necessity part of Theorem 1.2. The
necessity of the conditions EX = 0 and E| X|? < oo is immediate from [4],
Theorem 1.3. For 6 € 8By, set

= {v € 0B1: ¢, = £;}.

Define an equivalence relation on 3B; by § ~ ¢ if Ay = A, and denote the
equivalence class of Ay by [A,]. Observe that there are at most countably many
equivalence classes [44] for which ¢}, (X) is lattice, say [A;] for i > 1. Note also
that by convexity, the surface measure of dA; is 0 and hence so is its harmonic
measure. Let Ag = 3B\ U}° A;. Then any Borel set B C dB; can be written as a
disjoint union Ug°B;, Where B; = BNA,;. If w(dB) = 0, then the same is true of
w(8B;). Thus, to compute

S
(6.9) lim P(”ST, l-rel, 2l e B),
r—>o0 1S, I
it suffices to do so with B replaced by B;. Now the proof of the sufficiency part
of Theorem 1.2 gives the answer for i = 0. For i > 1 we may assume w(4,,) > 0,
where Ag, = A, else the limit in (6.9) is 0. Let §; > 0 be such that the minimal
lattice which supports €5 (X) is {né;n € Z}. Then the proof of sufficiency above
is easily modified to show that, for0 <y <4,
Lo € B; )
"STVM

- / ©(dO)PLE = ks)
B,
— P(L} = k)0 (B)).

limr—>ooP<"ST,,Al+y " —(né; +y) = ké; —

From this we see that the limit in (1.5) exists if and only if w(A¢) = 1. This
completes the proof of Theorem 1.2. O

REMARK 6.7. If w(Ag) < 1, then the limit along subsequences may exist if
N{8;Z: w(A;) > 0,i > 1} = 6Z for some § > 0 (the only other possibility is that
the intersection is {0}). For example, if 7, = n§ + y where 0 < y < 4, then the
limit along r, can be computed using the above.

APPENDIX
The purpose of this Appendix is to prove Proposition 3.8. We begin by making

a few simple observations. First; for any 0 < A < « we have
(A1) arM(ar) = srM(\r) + E(X; Ar < | X| < ar),
(A2) (ar)?K(ar) = (Ar)2K (A1) + E(X?; ar < | X| < ar).
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Since E(X; Ar < X < ar) > (ar)LE(X?; Ar < X < ar) these imply
(A3) K(ar) < (a™H2K0r) + M(ar) — la"HMAr) + O(G-(Ar)).
Next observe that if |[M(Ar)| < $h(Ar), then
h(Ar) < 2Q(Ar)
(A4) < 2(er 1) ?Q(ar)
< 2(01)\_1)2h(ar),

since x2Q(x) 1.

LEMMA A.1. Assume

Gk (Arp)

A5 lim ——2TR)
(85 NS koo REGATR)
If

M* () k
(A6) lim sup lim inf 270 £ GO

A0 koo hk(Ary)

then )
(A7) inf lim inf LT 5

>0 k>oo hE(ATE)

ProoF. Ifnot, then along some subsequence {k(1)},

MF® (arp1y)

(A8) T D ()

—->u<0

for some «.
Let v > 0 be strictly smaller than the left-hand side of (A6). We consider

two cases, the first of which is
k(1
(A) lim sup Gy Gri)
k(1) > o Glj_(l)(ozrk(l)) v

By (A6) and the fact that the left-hand side of (A) is monotone in A, along a
further subsequence {£(2)} we can find a A € (0, ) to satisfy

(A9) GE® (Aryy) > vIGP (i),
(A10) G*® (Arye) + MF® (Arp@) > vR*® (Arie)
for all £(2). Hence, by (A1) and (A9),
M*® (ary00) = Ao IMF® Qurye) + (@rie) TEFP(X; Arrgy < X < arie)
+0(G*® (Ary2))
> 2" (MF® (ryey) + 1 — v)GP W) + O(G*® (hru2)))
> )Loz_l(G’fL@)(Ark(z)) + M*® (rpe) — th(2)()»rk(2)))
+0(G*® (Arie)).

for some A € (0, ).
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Now divide by h*® (Ary ;) and use (A5) and (A10) to obtain

L MFO(r
lim 1nfw > 0.
k@)~ 00 hE@ (Arye)

Since h* satisfies the doubling property, this contradicts (A8). Next consider the
case

(B) lim sup

<
k@2 =
k(1) > 00 G+( )(ozrk(l))

k(1)
Gy “Orra) % for all A € (0, @).

By (Al),if A € (0, ),

(A11) MV (@ryay) = e " MFO (uryy) + O(GH® ().
Thus if

k(1)
(A12) lim sup M 0re) >

kD> oo PEVOrgay) ~

for some 2 € (0, @), then, by the doubling property of h*,

) M*D (aryqy)
lim sup —
k1) — oo PE(arry)

which contradicts (A8). Thus we may assume (A12) fails for all A € (0, «). Hence,
by (A6), for arbitrarily small A,

.. G0
llm lnf+—(k(—1)).
k(1) > oo hk(l)(lrk(l))

Since h* > G% + |M*|, this means that, for arbitrarily small A,
+

MFED 1-
(A13) limsup| kl)( na)| _1-v
kD—o0 GHP (Arg) v

Thus, by (B) and (A13), for arbitrarily small A,

. |M*® rpay| |M*®D Gy )|
lim sup O = lim sup —D,
k(1) = o0 h )(Oﬂ‘k(l)) k(1) — oo G+ (ark(l))

1 MO (r
(A14) < —limsup L—km—(ﬁh—)l
V k(1) > o G+ ()\J‘k(l))

<1-vy2

Since we are assuming (A12) fails for all A € (0, «), it follows from (A5), (A11),
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(A14) and the doubling property of A* that, for arbitrarily small A,

Mk(l)(ark(l)) —2(1-v)
lim inf .
k(1) > o0 hkD (drk(l)) av?

Letting A | 0 then contradicts (A8). O

COROLLARY A.2. Assume (A5). Then, for any a > 0, we have the implication

B I - T
Proor. We have
h*(ary) < 2(G% (ars) + 1M @rp)l) + KH(ary) — 1M (@ri)| + GE ().
Thus
Ghilary) + MMyl 1 1M er)| —KHery _ GE(or)
hk(ary) -2 2 hk(ary) h*(ary)
The result now follows, since the hypothesis implies
lim ior:ka(otrk) /h*(ary) = 0. O

LEMMA A.38. Assume (A5). If

k (x rk)
(A15) lim su llm 1nf G ,
20 P hk(Ary)
then Gk M
ot (Arg) + ()»rk) 1
of z
(A16) Jnflimin REGrs) =5

PrOOF. Fix a > 0 and ¢ € (0, %]. Then, by (A15), we can find a A € (0, ®)
such that for all & sufficiently large

(A17) G" (Arp) = (1 — e)h* (Ary).
Note that this implies |[M*(Ar;)| < 31h*(Ary)|. Thus, by (A3), (A4) and (A5),

K*(ary) - 2Kk (ary)  M*(ary) A M (ury)
hk(ary) —  hE(Ary) hk(ary) o hk(ary)

Next observe that (A15) 1mp11es (A6). Thus, by Lemma Al and the doubling
property of A},

(A18) +o(1).

(A19) lim inf >0. forallx > 0.

k— 00 hk(oz )
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Hence for the A chosen above

M*(ary) — K*(ary) - _9lims K*(\ry)
h*(ary) - kot RE(ATR)

> —2¢

(A20) lim inf
k— o0

by (A17). Letting ¢ | 0 and using Corollary A2 then completes the proof. O

PROOF OF PROPOSITION 3.8. We must show, assuming (A5), that the fol-
lowing are equivalent:

G% (Ary) + M* (ary)

(A21) hn;foup l}enl Lr;f o) ,
e JGEOr) +MEOr) 1
22 SRS ey T

Clearly, (A22) implies (A21). For the converse we argue by contradiction.
Thus assume that, for some o and some subsequence {£(1)},

(A23) lim GiP @riay) + M D (arsn) <

1
k(1) > o0 hk(l)(ark(l)) 5

We consider two cases, the first of which is

. MFO(
(A) lim sup lim sup klﬁ(’“k(l)l
A0 k(D)oo PFD (M)

Let u > 0 be a strict lower bound for the left-hand side of (A). Then, for
arbitrarily small 2, there is a subsequence {k(2)} of {k(1)} (depending on A)
along which

M*® () > pK*® (Ary )
for all £(2). Hence if A is chosen small enough that A < u«, then
AT M*® (hrye)) = (b H2KED (Arye).
Thus, by (A3),
K*® (aryg) < M*® (arye) + O(G’i&)(krk(g))).
Dividing by h*® (ary9)) and letting k(2) — oo, we obtain

Mk(2)(057‘k(2)) _ Kk(Z)(OH‘k(z)) -0

liminf
k(2)— oo hk@) (ary@) -

Then the conclusion of Corollary A2 contradicts (A23). Next consider the case

. . MFEO (),
(B) lim sup lim sup #)—2 <0,
A0 kM- oo PV Areay)
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and hence, by (A21) and Lemma Al,
lim sup lim sup ——-———|Mk(1) Griw)| _
210 kM—oo PFDATRm)

We first observe that by (A5), (A21) and (B) we can find arbitrarily small A’ so
that, for all large k(1), '

k
G (rpy) - G (Arpy)
KO Gryay) ~ REO rgay)

(A24)

’

where v > 0 is a strict lower bound for the left-hand side of (A21).
Subcase (B1): For every 8 > 0 there is a y € (0, ) such that

k(1)
(A25) lim infGZ—(D(y—rk(—l)l -9
k(1)— o0 G+ (ﬂrk(l))

Fix g > 0 and choose y € (0, B) so that (A25) holds. Then, for all 1 € (0, y]
and all k(1) sufficiently large,

GV () > 2G5V (Briqy).-
Thus, for large k(1),
(A26)  (Bray) E*O (X% dry < X < Bray) = 087G Oraw) /2.
Next by (A24) we can find a A € (0, y) so that, for all large k(1),
(A27) K*D () < v I ().
Fix a A so that (A26) and (A27) hold for all large k(1). Set ¢, = 2v~1 4+ 1. Then
by (A1), (A2) with « replaced by g, (A26) and (A27 ), for large k(1),
KD (Brya) < 0D G Graay) + (Braa) PEHV(X?; Areay < X < Bra)
+ O(Gli(l) (ATr)))
< ¢, (Bray) 2EFP (X% Array < X < Brie)
+0(G*P (Arpqry))
< ¢, (Briy) LEFV(X; Arey < X < Brr)
+O(G*® (Arrary)
< ¢, (M*V (Bryy) — (B~ HMD (ra) +.0GD (i)

Dividing by h*®(Bryq,) and using (A5), (A7) and the doubling property of h*,
we obtain, for every g > 0, :

Kk(l) Mk(l)
lim sup TR A (Breq) < ¢, limsup VT TT RS (Brac) .
k(1) — 00 H*D(Brra)) E)— 0o PV (Briay)
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Letting 8 | 0 and using (B), we conclude that
GO (Braq)
uf}lilon k%gl—lgo h*D (Bryay)

By Lemma A3, this is more than enough to contradict (A23).
Subcase (B2): There is a 8 > 0 such that, for all y € (0, ),

k(1
. G+( (yrem) <9

(A28) <
k(1) —> o0 Gﬁ(l) (ﬁrk(l))

We first observe that there is a fixed subsequence {£(2)} of {£(1)} such that,
for all y € (0, B) and all k£(2),

(A29) Gt (yrue) < 3GE® (Brae).
To see this, let
A, ={rQ): Gi(l)(yrk(l)) < 3Gli(1)(f3rk(1))}.

Then A,, C A,, if 1 < y2 and |A,| = oo for each y € (0, B). The required
sequence is then obtained by letting

k(2) = kth integer in Ag,-1.

Thus, for arbitrarily small y > 0 and A satisfying y < A < 8, we have, by (A3),
(A24), (A29) and the monotonicity of G,
E*® (o) < (vA7) K* (yruey) + MFP (Arace))
— (PATHMP (yrae) + O(GE? (yrae))
< (A )20 18GE® (i) + MP® (riga))
— (A MO (yry@) + O(G*® (yriey).

Dividing by A*® (Arye) and using the doubling property of h*, (A5) and
Lemma Al, we obtain

K@) 3y? . M@ ()
lim sup ————( k) < + lim sup i)

k2 o0 MFAOO2) ~ A k@) hE@ (Arpe))
Now let y | 0 and then A | 0 and use (B) to obtain

L G0
lim inflim inf —:élﬂ)—) =
A0 k@) — oo RED (Arke)

By Lemma A3, this contradicts (A23). O
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