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THE FULL MARTIN BOUNDARY OF THE BI-TREE

By MASSIMO A. PICARDELLO AND WOLFGANG WOESS
Universita di Roma and Universita di Milano

We determine the Martin boundary for aperiodic simple random walk on
a bi-tree, that is, the Cartesian product of two homogeneous trees. Thisis ob- -
tained by first deriving a “renewal theorem,” giving an asymptotic estimate
of the Green kernel as the space variable tends to infinity. The basic tool is
a result of Lalley that gives a uniform estimate of transition probabilities of
nearest neighbour random walks on trees.

1. Introduction. Let T; and T, be two homogeneous trees with degrees
1, and I, > 3, respectively. On the bi-tree, that is, their Cartesian product T x
T, consider aperiodic simple random walk or, more generally, a random walk
obtained by taking a convex combination of aperiodic simple random walks on
each of the Tj. Let p be the critical eigenvalue of the transition operator. We
are interested in the Martin compactification of the bi-tree with respect to each
eigenvalue ¢ > p of the transition operator acting on nonnegative functions.

The minimal Martin boundary (i.e., set of minimal ¢-harmonic functions) is
well understood: see [20] and also [22] for Cartesian products of Markov chains
in general.

On the other hand, the description of the full Martin compactification has
remained an open problem. Some evidence has been obtained by Picardello
and Sjogren [21], who studied boundary behaviour of harmonic functions on
the bi-tree. .

The situation is similar for the (hyperbolic) bi-disk, equipped with the
Laplace (—Beltrami) operator: In this case, the minimal Martin boundary is
known via the work of Karpelevié [13] and Guivarc’h [10] (see also the general
result of Freire [7] and Taylor [26] concerning Cartesian products of mani-
folds). The problem of determining the full Martin boundary was proposed by
Guivarc’h and Taylor [11], who gave the answer only for the critical eigenvalue
(where the behaviour is different).

In the present paper, we describe the full Martin compactification of the bi-
tree with respect to all eigenvalues ¢ > p. This is possible thanks to recent
work of Lalley [14], who has given a local limit theorem for aperiodic, nearest-
neighbour random walks on homogeneous trees, that is, an asymptotic estimate
of the n-step transition probabilities, which is uniform both in time and space
(a considerable improvement of previous work of Sawyer [24], Gerl and Woess
[8] and others). We use this uniform estimate to derive a kind of “renewal
theorem?” for our random walk on T x Ts, that is, to describe the asymptotic

Received September 1992; revised December 1993.
~ AMS 1991 subject classifications. 60J50, 60J15, 05C05.
Key words and phrases. Martin boundary, positive harmonic functions, Green kernel, Martin

kernel, renewal theorem.

2203

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% )z

S

The Annals of Probability. STOR ®

WWw.jstor.org



2204 M. A. PICARDELLO AND W. WOESS

behaviour in space of the Green function (resolvent) of the random walk for
t > p. Our method is a bi-dimensional discrete variant of Laplace’s method for
determining the asymptotics of parametrized integrals. For a nice description of
the one-dimensional, continuous version in the context of Lalley’s work, see [25].

As an immediate corollary, we find the directions of convergence of the Martin
kernels. The full Martin boundary M(¢) is then what has been suggested by
previous evidence: If ©; denotes the space of ends of T}, then

M) = (1 x To) U (21 x Q2 x Sp)U (T x ),

where S; is a closed line segment in R? that collapses to a single point when ¢ = p.
In particular, the Martin boundary of the product is considerably larger than the
product of the boundaries. We remark that a similar approach was used by Ney
and Spitzer [19]: they determined the Martin boundary for random walks on the
Euclidean lattices Z¢ via computations of the Green kernel based on a uniform
estimate of the n-step transition probabilities. (The technical difference is that
their estimate gives an additive error term, whereas here we use asymptotic
equivalence in terms of quotients tending to 1.)

We also remark that in a similar way, one can find the full Martin com-
pactification of H,, x H, for positive eigenfunctions of the Laplace—Beltrami
operator (here, H, denotes the n-dimensional hyperbolic sphere): this is shown
in a note by Giulini and Woess [9]. It is noteworthy that the full understanding
of the Martin boundary in the discrete environment (that of trees) provided
inspiration for similar results in the continuous setup. Comparing continuous
and discrete settings, it should be observed that the natural analogue of taking
the pointwise product of the heat kernels (continuous time) is the Cartesian
product of Markov chains (discrete time).

We mention that the minimal Martin boundary for direct products of Markov
chains has (in part) been studied by Molchanov [17, 18]. Our method easily
adapts to the direct product of aperiodic simple random walks on two trees.
However, the simple random walk on T; x T, does not arise as a direct, but
as a Cartesian product of simple random walks on the factors. See [22] for a
discussion of Cartesian versus direct products.

The structure of this paper is as follows. In Section 2, we present the nec-
essary ingredients concerning simple random walk on a tree and the end com-
pactification, taken from [14] and others. In Section 3, we state and prove our
“renewal theorem.” Finally, in Section 4, we explain the Martin compactification
of the bi-tree.

2. Simple random walk on a homogeneous tree. This section is a re-
casting of known results on trees. We consider a homogeneous tree T with
degree I > 3. Recall that T arises naturally as the (right) Cayley graph of the
group Zg * --- x Zsg (free product of ! two-element groups). Writing x~'y for
x,y € T refers to operations in this group. The distance d(x,y) between two
elements is the number of edges on the unique shortest path xy in T'. We select
a reference vertex o, corresponding to the group identity. Setting |x| = d(x, 0),
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we have d(x,y) = |x~'y|. A ray is a one-sided infinite sequence of successively
adjacent vertices without repetitions. Two rays are equivalent if they differ only
by finite initial pieces. An end is an equivalence class of rays. The set of all ends
is denoted by Q. If x € T and w € , then there is a unique ray xw that starts
at x and represents w. If y,z € T U Q, then their confluent c(y,z) is the last
common element of 6y and 6z. This is a vertex unless y = z € ; in this case, we
set ¢(y,2z) =z. On T'U Q, we define an ultrametric:

exp(—lc(y,z)|), y 752,

e(y,2)= {0, y==z.

Thus, T U Q becomes compact, totally disconnected and T is open-dense. The
horocycle index of x € T with respect toz € TUQ is
h(x,z) =d(x,c) —d(o,c) where c = c(x,z).

The aperiodic simple random walk on T is the Markov chain with state space
T and transition operator P given by

DO =

) x=y7

2.1) plx,y) =

| =

) d(xay) =1,

[\
~

0, otherwise.

Here and in the sequel, the assumption p(x,x) = 1/2 serves only for technical
convenience; if instead one chooses the usual simple random walk [p(x,y) = 1/1
if d(x,y) = 1 and = 0 otherwise], then one has to specify parities on various
occasions. Our results apply to the ordinary simple random walk by elemen-
tary operations.
The Green kernel or resolvent is
=1
G(x,y|t) = Z t—np(")(x,y), x,y €T teC.

n=0

(Thus, the complex variable z of [14] is replaced by 1/t.) Here, p™(x,y) is the
probability that the random walk is in y after n steps, having started in x. The
series converges for ¢t > p, where

(2.2) p=pP)= nlingop(")(x,y)l/” = % + ll_ 1,
Setting
2
o (e () -
(2.3) B

G@) =

t—(1/2)(1+F®)"



2206 M. A. PICARDELLO AND W. WOESS

we have
2.4) G(x,y | 1) = GOF@) ™,

compare, for example, with [24] and [14].
A real-valued function h on T is called ¢-harmonic if

Ph=th where Ph(x)=_p(x,y)h(y).
y

We are interested in the cone H*(P,¢) of positive z-harmonic functions: it is
nonempty if and only if ¢ > p(P); see Pruitt [23]. The general tool for describing
H*(P,t) is provided by the Martin boundary: set

G(x,y | t)
Go,y|?t)’

the Martin kernel. The Martin compactification is the unique minimal compact-
ification of T such that for every x € T, K(x,- | ¢) extends continuously in the
second variable. The Martin boundary M(¢) = M(P, ¢) is the set of points added
to T in this compactification. Every h € H*(P, t) has an integral representation

(2.5) K(xy|t) =

(2.6) h(x) = K(x,- | t)dv",
M(P, t)

where V" is a positive Borel measure on M(P, t). For the general theory, see (3],
[12] or [4]. For nearest neighbour random walks on trees, the Martin boundary
has been determined by Cartier [1]; see also [5] and [16].

THEOREM 2.1 [1]. Forevery eigenvaluet > p(P), the Martin compactification
of (T,P) is given by T U Q. The continuous extension of the Martin kernel is
given by

K(x,z | t) = F(@)"=?, xe€T,zeTUuQ.
The measure V" in the integral representation of h € H*(P,t) is unique.

The last statement follows from the fact that each K(-,w|?), w € Q, is a
minimal #-harmonic function. Recall that &~ € H*(P,t) is minimal if h(o) = 1
and, whenever h > h' € H*(P,t), then h’/h is constant.

We shall need another characterization of the function x — K(x,w|p), w €
), which is given in the next lemma. Following [1], for £ € Z we define the
horocycles

Hy(w) Q:{x e T: hlx,w) =k}.

LEMMA 2.2. If h is a positive function on T that satisfies Ph = ph and is
constant on each horocycle Hy(w), where w € ), then h = h(0)K(-,w | p).
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PrOOF. Because it is constant on the horocycles H(w), h may be identified
with a function A of the variable &, which satisfies the following identity: For
every k € Z,

1 - I - 1- ~
For k € Z, let now g(k) = I*/2h(k). Then g(k) = (gk — 1) + g(k + 1))/2 for all
k. Therefore, g is a positive affine function. Hence g is constant and A(k) =
h(0)I—*/2, Now it follows from (2.3) and Theorem 2.1 that h(x) = h(0)K(x,w | p)
forallxe T. O

As mentioned by the referee, Lemma 2.2 may also be deduced from the max-
imum principle for harmonic functions.

For every t > p(P), there is precisely one function in (P, ¢) that has value 1
at o and depends only on |x|: this is a spherical function. Of particular interest
will be the one when ¢ = p(P). It can be calculated explicitly

1-2 1
U(x) = where =(—— +l>——r—, >0.
@) = 9(Jx]) bO = (L) =T
We shall need a normalized translate of ¥(x):
T (x~ly)
2.7 U(x,y) =
2.7 (x,y) %)

Next, we present Lalley’s uniform estimates; [14] gives these for arbitrary ape-
riodic nearest neighbour random walks, but here we only study the “radial”
case (2.1). Consider the function

(2.8) o) = tigf (¢logF() +logt), 0<¢<1
>p

¢ is continuous, negative and decreasing, ¢(0) = logp and (1) = —log2l. If
0 < ¢ < 1, then the infimum is attained for ¢ = #(¢€), which is the unique solution

in (p, co) of

tF'@) 1 _ 1 1\ 1-1_
(2.9) W'FZ—O, thatls, Z@\/(t@)_§> ——-—l—i—_g

If ¢ = 0, then the infimum is attained for #(0) = p, whereas for £ = 1itis attained
when ¢ — co. Furthermore, ¢ is differentiable on [0, 1),

(2.10) ¢'(&) =logF(t(¢)), ¢'(1-)=—oc0.

The function #(¢) is increasing and differentiable on [0, 1). Both ¢(£) and #(¢)
can be computed explicitly, but we shall not need this. However, we shall need

_ 2
§It((§) = 1-¢ , 0<¢<1,
HO 1v1/1- (-0 -)

2.11) u(®=
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which is a positive, continuous, decreasing function. (It corresponds to ;'(s(£))-
€3 in [14].)

From now on, keep in mind that p™(o0,x) = 0 when n < |x| and that ~ denotes
asymptotic equivalence (i.e., quotients tending to 1).

THEOREM 2.3 [14]. There is a sequence of functions f: [0, 1] — R* such that

lim sup —| log £,(8)] =

n——PO()ee ’

e () on((2)

for all x € T and n > x. Furthermore, 3,(£) ~ ,(&) uniformly in ¢ € [0,1] as
n — oo, where

and

G(H9) -3/2( l ) . —3/4
oma®) né+ 7= £<1-n=%4%

n(1—2¢)
(M) /(n(l —O), €>1-n"%4

e

B,(€) =

We remark that in the formula for 3, [14] has a further subdivision according
to whether ¢ < n=1/4 or not. At least in the radial case, this is not necessary:
elementary and lengthy computations lead to the foregoing formula.

3. A renewal theorem for the bi-tree. We now consider two homoge-
neous trees T, Ty, with degrees 1,1l > 3, respectively. Their Cartesian product
has vertex set T x T and neighbourhood < described by

%1 < y1 and x3 = y; or
X1X2 < Y1Y2 <

x1 =y1 and x3 < ys.

For j = 1,2, we denote by €, the space of ends of T}, by P; the aperiodic simple
random walk on Tj and by p; = p(P;), Fj(¢t), G;(¢), 53(¢) and so forth, the quan-
tities and functions associated with P; according to Section 2. Also, I; denotes
the identity operator on T;. By a Cartesian product of P, and P;, we mean a
transition operator on T x T of the form

Q@=Q,=aP1®I1+(1-a), ®Ps, 0<a<l

Hefe, ® denotes tensor product. These are the kinds of transition operators
that are naturally associated with taking Cartesian products of graphs. In



THE FULL MARTIN BOUNDARY OF THE BI-TREE 2209

particular, the aperiodic simple random walk on T x T, given by

1

X X1X2 = Y12,
qyxg, y1y29)=4 1

20 + 1)’ X1X2 < Y1Y2,

0, otherwise,

arises as @, with a = 1,/(l1 +15).
We now study the asymptotic behaviour of the Green kernel of @,. By group
invariance, it is enough to consider G(0102,y1y2 | ) as y1y2 — oco. Note that

n
q(")(xlxz,y1y2)=2( )a Fp P, y10(1 — @) ~*pG ~Plas, ).
k=0

Thus p = p(Q) is obtained as p = a- p; + (1 —a)- p3, and asp}k)(oj,yj) = 0ifk < |yjl,
we get

G(0102,y1y2 | t)
oo

3.1
@D = Z > kl (k +m)ap‘f’<ol,y1x1 ay"p™(0z,y2).

m
k=|y1| m=|yz|
Set

=[y2l/Ival, & =Iyil/k and 7w =|y1|/m.

Suppose for the moment that both |y;|,|y2| — co. We may then use Stirling’s
formula to approximate the binomial coefficients and then apply Theorem 2.3:

G(0102,y1y2 | t)
1 & & (k+m)prm k+m | 1] |yl
~E 3 G 2 () (22])
(3.2) kr1—
T o) {2

«/27r|_y1| Z > BHEIBENIMVE + 1m XD (| y1| B2 ,6(Ek, 1))
k=|y1| m=|ys|

where

Dy, (&m) = % (log(l + %) +.log% + sol(§)>

1 n) 1-—
+=[log{l+=)+1lo
n( g( £ ¢

(3.3)

> =

a+<pz(>\n)>,0<€sl,0<n£
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Our strategy will be to show that the principal contribution to the last sum in

(3.2) comes from the point where @, ; is maximal. For this purpose, we now
analyze @, ; for 0 < )\ < co and ¢ > p. First of all, observe that

(8.4) @y, 4(&,m) — Pxy, (&, m) = %(602(/\77) — 2(om) = (A — o) log Fy (t2(0))

(X between A and Ag) if 0 < ¢ < 1and 0 < n < min{1/\,1/X\}. In particular, if
A — Xg € [0, c0), then &) ; — @), ; uniformly for 0 < ¢ < 1 and 7 in bounded
intervals. By (2.8), we see that the gradient is given by

0%y _ 1 (log(l + %) + log% +10gt1(§)> )

o &
(3.5)
00yt 1 n l-a
o - (log<1+§) + log ; +10gt2(/\n)>.

Elementary computations show that the absolute maximum of ® At is attained
in its only stationary point (£()\), n(\)), which satisfies

a

t1(€)<1 + %) e 1 and tg(An)<1 + g)

1—a=1.

Thus at; + (1 —a)ty =t and

tz(/\n)ﬂ l-a _
th€) ¢ a

By (2.9), we have the system of equations

(3.6)

aty + (1 —a)ty =t,

3.7 ¢G :ﬁz L-1_ Ja ¢G :ﬁz -1
2— 5| — = 1= 5 ) ——5—
2 2 l1-a 2 2

(3.7) has a unique solution in [p;, 00) X [pa, 00): this is (¢1(6(\)), £2(An(N))). Via
(2.9) we can now compute £()\), and n()\) is then obtained from (3.6). Note that
if X = 0, then ¢; = p; and #; = (¢ — (1 — a)pg)/a. [If A\ — oo, then for the solutions
of (3.7) we get t; — p; and ¢ — (¢ —ap;)/(1—a).] Also note that, by (2.9),
(&(X), n(X)) lies in the interior of the domain of &) ; for every real A > 0. By (3.5),
(3.3) and (2.8), the value of the maximum of &) ; is

(3.8) M) = log F1(t) + Alog Fo(ts),
where (¢1,t5) is the solution of (3.7). Next, let

_(—al) b
(3.9) H“'(M» %QJ
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be the Hessian of @, ; at (£(A),n(\)):

a0 = L ( 1 t’l(ﬁ(/\))),

E0F \En+ 70 * 71 (ev)
1 1
) = M EN + 70’
1 1 Ath (An(N))
‘W =00 (5(» 10 T H0m) ) '

It is negative definite and depends continuously on X € [0, o). We shall write
H) (&m =& -Hy:- (€, n)T for the associated quadratic form.

THEOREM 3.1. Suppose that t > p(Q), |y1| — o0 and X = |y2|/|¥1| — Ao €
[0, co). Let (t1,t5) be the solution of (3.7), depending on \. Then

l
G(0102,51¥2 | t) ~ G1(01,y1 | £1)G2(02,¥2 | t2) <|y1| + E‘i—z)

Iy ) 1
c(),
X (|y2|+ I»—2) /3y \)

where C()\) is a continuous, strictly positive function of \.

Proor. We split the sum of (3.1) into two parts:
G(0102,y1y2 | t) = S1(y1,y2) + S2(y1,¥2),
where

S1(y1,52)

= Y > tk%n- (k -;m) a*p{P(01,y1)(1 — a)"py (02, 72)
k& — €N L6 mi|nm —nN)| <6

and Sqo(y1,y2) is the rest. Here, § is chosen such that the points (&,7,) of

S1(¥1,y2) are in the interior of the domain of ®, ; when ) is close to \o. This is

possible by (3.4) and the facts that (£()\o), (o)) lies in the respective interior

and that £()\) and 7()\) depend continuously on X. We first analyse S;. Observe

that this sum ranges over all k£, m with

|¥1] |y1 |y1| |y
fn+s ~F<mny—s ™ NS¢

As|y;| — 0o, we may use the same approximation as in (3.2), plus the asymptotic
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equivalents of Theorem 2.3 for 8, and 3,,, respectively, to obtain
S1(y1,52)

1 l 1 1
N\/27fly1|<|y1|+lli2)<|y2|+ - )27r| T xR (1711M)

(3.10) G1 (81(&0) €2% Ga (820mm)) 2

x )
s~ €I <6 lnm—nui <5 V¥1ER) Vu2(Aim)
XV & + Tim eXP(|y1|(‘I’,\,t(§k, Nm) — M(A))).
Straightforward computations show that

G, (t2(0m)) G (t2(Aom)

(3.11)
\ug(An) Vug(Xon)

uniformly for n in bounded intervals, as A — ). Also,
By 4(&,m) — M(\) = 1H)\, (€ = €O, — n(N)
+o((£ = €0)" + (n—n0)*)

(3.12)

and the o(-) for the argument tending to zero is uniform in A\, as A — )q. In
(3.10), we substitute the terms corresponding to the left-hand sides of (3.11)
and (3.12) with the respective right-hand sides. Also, we perform a “change of

variables,” setting

or = (& —EN)V/I|y1l and 7 = (mm — n(N) V|31l

Write Aoy, = 03, — 0141 and A7y, = Ty — T+ 1. As | y1| — 00, we have in the range

of summation of S,

3/2 2 3/2 2
Aoy, ~ Iy;elz = \/éli’_ﬂ and A, ~ Iy:n|2 = \/nl%l_l’
which tend to zero uniformly. Consequently,
S1(y1,52)
~ s (1l 1 ) (Ioal + 2 Jesp(1a100)
- (600 /5
losIS6V/IT Irml<8y/Toal \/ul(E()\o)+0k/\/W)

G (tz(/\oﬂ(/\o) +XoTm/ /| y1] ))
X
\/uz()\on()\o) +MoTm/V/|y1l)

(3.13)
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1 1
* \/E(Ao) +0r/v/|y1] T 00+ Tm/ V|31l

X exp( Hy,, (og, Tm) +0(0F + 1, ))Aak ATy,

where o(c? + 72) — 0 as (02 + 72)/| y1| — 0, uniformly with respect to A ~ ). In
(3.13), the term in the double summation before the exponential is bounded by
some constant D = D()\). Also, the exponent is

lyll( A t<§(>‘0)+ \/I—l,ﬂ( 0) ,—Iyl ) —M(/\)> < —50(0']%"'7'31)

by (3.9), where €9 > 0. As [ [¢, exp(—eo(0? + 72))dodT < oo, we may apply
Lebsegue’s theorem and see that the double sum in (8.13) converges to

G1(1(€00)) Ga(00n00)) [T 1
+
(3.14) VirE00)  fuz(ronrg) V€00 T 10

x / / exp(-l—H,\o,t(a,’r))dadT.
R2 2

Because all the functions in (3.14) depend continuously on ), we may replace
Ao with ). It follows from (3.8) that

1l .
exp(1321M00) = Py (2 (600)) ' 7y (r20m)) ™.

This and (2.4) yield that S1(y,,y2) has the asymptotic behaviour proposed in
the statement of the theorem.
Next, we show that Sa(y1,y2)/S1(y1,y2) — 0, that is,

-3/2

(8.15)  Sa(yr,y2)exp(~|y M) = o (<'y ) g

as |y1| — oo and either |y;| — oo or y, remains fixed.
By (3.4) there is €1 > 0 such that for A close to ),

©y,¢6,m) —M\) < —¢;

for all (&,n) with |£ — £&(N)] > 6 or [n — n(N)| > 6.
We assume for the moment that y; #0,. For k,m > 1, the error term in

Stirling’s formula yields

Bem) 1 (k+mPrmil2 g g g
E ) Von B i2mmeifz OF " " m)

E+m EkE m
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where 0 < §; < 1. Thus, the exponential term is bounded by ¢y = exp(1/4).
Furthermore, (& + m)Y/2/(km)}/2? < 1/v/2. We get

Vz_wexp(—lyﬂM(A))sz(yl,yz)s% 3 Y BHEBEODm) exp(—e1]y1]).-
k=|y1| m=|ys|

We split this sum into four parts according to whether &, and (1 + Ay, > 1/2
or < 1/2, that is, whether £ > 2|y1| or |y1]| <k < 2|y1], and m > 2(1 + )| 4| or
|ye| < m < 2(1 + A)|y1|, respectively. Given ¢ > 0, by Theorem 2.3,

Bi(&w) < explek),  Ba(nm) < explem)
if e > k.,m > m.. If | yo| remains fixed, then let
ce =max{1, f2(\nn)exp(—em): m = |y,|,...mc — 1}.
If | yg| — o0, then set ¢, = 1. We obtain
BE () < ce exp(em)

for all m > | y3|. Thus,

YooY BHEBLOIm) exp(—ea|y1])
>3 QA+ Nm> 3
2|y1|=1 20+ N)|y1] -1
< Z Z exp(ek) c. exp(em) exp(—e1|y1)

kE=|yil  m=|y]
< celyal(2171] + |2l) exp(~131l(e1 — 262+ V) )

(3.16)

If we choose € < €1/(4 + 2)¢) and if ) is close to Ao, then the last term tends to
zero faster than (|yg| + I/l — 2))|y1|~%/2, as proposed in (8.15).
Recalling once more that k¢, = |y1| — oo, we get from Theorem 2.3 that

BEE) < Cy|y1|k32, k > 2|y,
B2 Omm) < Cz(lyzl v )m-3/2, m > 21+ Ny,

lg—2

where Cq,C3 < co. Indeed, the lower bound for m gives m — oo and Anp, < 1/2.
We get

Y. X BEIBROmm)exp (—aly])

&<t A+Mnm <}

l
(3.17) < CalnlCs (|y2| T~ 2) exp(—e1ly1])

o0 o0
% Z Z B=%/2m~3/2,

k=2|y1| m=2(1+X\)|y4]
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which also tends to zero faster than (|yg| +I2/(s — 2)) y1| =%/
Next,

Z Z Br(&R)BE ) exp(—e1|y1l)

G<i A+ Nam> 3
fo’e) 2(1+A)|y1| -1

3.18) < Cilyilexp(—eilyil) 3 k2. explem)
k=2|y| m=|ys|

< Cilyilee(2ly1l + 1 y2l) exp(—|y1|(51—2s(1+)\))) Z k32,
k=2|y1]|

which with the same choice of € as above is also an o((| yo| + la/(g — 2))|y1|7%/2).
Analogously,

> Y BHEBaOmmIexp (—elyil)

& >3 1+ na<}

2|y1|_1 o0
l
(3.19) SCz('”'*l fz)exp(—ellyll) Y Y explehm?
? k=|yi| m=21+XN)|yl

(o]

l
< 1521Ca 12l + 25 ) expl(claller=22) >0 m7
2 m=21+ M1l

which with the same choice of ¢ as previously is once more an o((|y2| +l2/(2 —

2))| y1|7%/2).

If y5 = 0y then we first split So(y1,02) into two parts according to whether in
the summation m > 1 or m = 0. The part with m > 1 is treated exactly as in
(3.16)—(8.19). From (3.1), we see that the part with m =0 is

i l k (k)( Y=G i
tkapl 01,y1) =011 01,0 a)

k=l

Observe that A = 0 and hence ¢, = pg and ¢; = (¢ — (1 — a)p2)/a < t/a; see (3.7).
Using the asymptotic equivalent for S1(y1,02), we get

Gi(oy,y1]t/a) G1(01,y1 | t/a)
S1(y1,02) G1(o1,y1 | t1)

ll _1l2—2 5 -1
X (Iyll A 2) 7 \/2|1/57C(0)

2 .

[y1]
~ Const |y1|7%/? (F———l ¢/ a)> ;

Ga(p2) 7!

F(t1)

see (2.4). As Fy(t) is decreasing, the last term tends to zero as |y;1| — oo. This
concludes the proof. O )
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REMARK. By symmetry, exchanging the role of y; and y,, one also obtains
an asymptotic estimate when |yq|/|y1| — oo.

We also remark that for ¢ = p(Q), the renewal theorem becomes more compli-
cated. This is due to the fact that the maximum of ®, , is no longer attained in
the interior of its domain. Indeed, the solutions of (3.7) become ¢; = p;, t5 = po
and &(A) = n(A) = 0 for all \. However, it is already known [11] how to determine
the Martin boundary in this case (see Theorem 4.2).

4. The Martin boundary. On the basis of Theorem 3.1, we can determine
the Martin boundary for eigenvalues ¢ > p(Q). With an abuse of the notation
introduced in the preceding sections, we write £;(\) = 1(\, ¢) and £5()\) = £5(\, 2)
for the solution of the system of equations (3.7), which we repeat here for the
convenience of the reader:

at1(N) + (1 — a)a(N) =¢,

(4.1) 1 2 l2 _1 \a 1 2 ll _1
o = e

Here, we include also A = co. The solutions are then ¢;(co0) = p; and #3(c0) =
(t —ap1)/(1 —a). By

G(x1%9,y1¥2 | t)
G(0102,y1y2 | t)

K(x1x9,y1y2 | t) =

we denote the Martin kernel of T'; x Ty, whereas K|( -, | ¢;) denotes the Martin
kernel of T, j = 1,2. We also need the normalized spherical functions ¥;(-, - );
see (2.7). The directions of convergence of the Martin kernel on T; x T, are
the following.

THEOREM 4.1. Lett > p = p(Q).
(a) Suppose that y; — w1 € Q1,y2 — ws € Qy and |y2|/|y1] — Ao € [0, o0l
Let t; =t;j(X\), j = 1,2, as determined by (4.1). Then

K (x1x9,y1y2 | t) — Ki (1, w1 | t1)Ka (x2, w2 | t2).

(b) Suppose that y; — wy € Q1 and that ys € Ty remains fixed. Let t i =1¢;(0),
J=1,2, as determined by (4.1). Then

K (x1%9,y1¥2 | t) = K1 (%1, w1 | £1) Ualaz, y2).

(c) Suppose thaty, € T1remains fixed and that y; — wy € Q. Let tj = ¢ j(00),
J =1,2, as determined by (4.1). Then

K (x1%2,y1¥2 | £) — U101, 510Kz (%2, wo | £2).
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ProoF. (a) We assume without loss of generality that Ay < co. (For )¢ = oo,

the result then follows by symmetry; see the remark after the proof of Theorem

3.1.)Set A =|y3|/|y1|and A = |x2‘1y2|/|x1‘ y1|. Both A and X tend to \g. Theorem
3.1 yields

Fy (6:00) 7 Fy (500) 2
Fl (tl(A))lyll F2 (tz(/\))|y2|
(4.2) = Fl (tl(X)) b(xhyl)Fz (tz(X)) blxg, y2)

x (%) Il (%%)lm

As y; — wj, hlxj,y;) stabilizes at the value h(x;,w;), j = 1,2. Hence, the first
two factors of the last term in (4.2) converge to the proposed limit. It remains

to prove that
F1 (tl(X)) |71 F2 (tz(X)) | yel
Fy (tl()\)) Fy (tg()\))
(4.3) = exp<|y1| (logF1 (1) —log Fy (t1(/\)))

+ 132 (log Fa (2200) ~ log P (tz()\))))

K (x122,y152 | ) ~

— 1.

Observe that by easy computations, (4.1) yields

AL Log Fy (150) =

(4.4) L log s (1:0) + Ao

di

for all X € (0, c0).
If X and ) happen to coincide, then there is nothing to prove; otherwise, at
least one of the two is not equal to 0, and we may rewrite the exponent in (4.3) as

ly1l ((log F1(t:0)) + Xlog Fy (tz(x))) - (logF 1(21(V) + Alog Fa (£2(N)) ))
— |y1/(X = N log Fa (22(V)

< 1(ED) , Fy(t20) ,
= 31l =N £, + X222 1.3 + log Fa (£2(0)
191 (Fl(tl(x)) Y w0y 2T 2(t2(V)

~logFy (tz@))

= 111X = 2 (log F3 (22(0) — log F () ),
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where X is between ) and X. [We have used (4.4) in the last step.] As |y4], |y2| —
00, A — Ao and A — Ag, that is,
log Fy (t2(V)) — log F (ta(X)) — 0
On the other hand,

k21 Iyzl

, Xy 1' ' Xy
— hlxg, we) — Aohlxy, wy),

[y1lx = A) =

hlrz,y2) — ol ——bh(x1,y1) -

a constant. Hence, the term in (4.3) tends to 1, as desired.
(b) With the same choice of A and X, which tend to zero in this case, we
now get

Py (60)" ! ! (7] + 12/ s ~ 2)
Fl(tl()\))lyll Fo(p)lv2l  (|yo| +1g/Ug — 2))

Fy(t,00) | !
Fy (tl(A))

K (x1x9,y1y2 | t) ~

~ Fy (8:00) "V g 9, 35) (

Now,

Fl(tl(X)) |31 N Fl(tl(X)) |31l Fg(tz(X)) | ¥zl
F1(t:(V) Fi(t:(0) Fy(ta(V)
and the same argument as before shows that this “error” term tends to 1.
By exchanging the two coordinates, (¢) is symmetrical to (b). O

THEOREM 4.2. Lett=p=p(Q).
(a) Suppose that y; — wy € Q; and yg — wy € Qq. Then

K (x129,51¥2 | p) — K1(x1,w1 | p1)Ka (%2, w3 | pa).
(b) Suppose thaty; — w1 € Q; and that y; € Ty remains fixed. Then
K (x1%9,51¥2 | p) — Ky (%1,w1 | p1) Talxa,ys).
(c) Suppose that y, € T remains fixed and that ys — we € Qq. Then
K (x1%9,5152 | p) — ¥1(x1,y1)K3 (2, w3 | p2).

Proor. Thisresultisproved asin the continuous case [11], by making use of
results of [20] (see also [22]). Choose a sequence ( ¥1,n.Y2,n)n that tends to infinity
as in statement (), (b) or (c) and, in addition, converges in the Martin topology:

nILH;OK(xlx2,y1,ny2,n | p) = h(x1x2).



THE FULL MARTIN BOUNDARY OF THE BI-TREE 2219

Then A is a positive p-harmonic function on Ty x T9. Now the minimal p-
harmonic functions are given by

x1%g — K1(x1,@1 | p1) Ko (%2, W2 | p2), @1 € Qs € Qy;

see [20] or [22]. By the Poisson—Martin representation theorem, there is a mea-
sure v on Q; x Qg such that

h(x1xg) = / Ki(x1,- | p1)Ka(xa, - | p2) dv.
Ql X Qg

Therefore A is separately pj-harmonic on T}, j =1, 2.

In (a) and (b), we are assuming thaty, , — w; € Q;. Hence for fixed xy € Ty,
h( . x9)is constant (in the first variable) on the horocycles Hj(w, ). To see this, it is
enough to observe that, for each uy,v; € Hy(w;) and fory, , sufficiently far from
01 [namely, farther than the confluent c(u1,v,)], there exists an automorphism
(self-isometry) of T that interchanges u; and v, and fixes y;; compare with
[20]. Then we can apply Lemma 2.2 to the function A(-x2) on T; and obtain

h(x1x9) = Ky (%1, w1 | p1)h(01%2)

for all x;,x,.
If now yg , — wy € €1y, the same argument shows that

Rh(o1x3) = Ky (%2, ws | p2)

for all x,. Therefore, we have the desired limit, independently of the particular
choice of the sequence (y1,,¥2,n): by compactness, this proves (a).
To prove (b), first suppose that y, , = 02. Observe that the function

G(%1%2,Y1,n02 | p)
G(0102,¥1,702 | p)

Xg K(xlx2ay1,n02 | P) =

depends only on |xz|. Hence the same is true of the limit function x5 — A(01x2).
Moreover, this function is an eigenfunction of P; with eigenvalue py, and h(0102)
= 1. By [6] and the references therein, 4(0; ) is the spherical function on Ty with
eigenvalue py: that is, h(01x2) = ¥a(xg) for all x;. Once more by compactness,
this proves (b) in the case y; = 0s.

To conclude the proof of (b), suppose that y; , =y2 # 02. We argue as in [11],
Proposition 2.4: Recall that multiplication in T refers to group operation in
Zg*-u*Zg.TheII

-1 .
G(x1%2,¥1,n52 | ) - G(xl(y2 %2),¥1,n02 | p) G(0102,¥1,202 | p)
G(0102,¥1,n¥2 | P) G(0102,51,702 | p)  G(01¥5",¥1,102 | p)
K(xl(yz_lx2)yy1,n02 | P)
K(o1y3 51,0021 p)
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By the previous argument, the right-hand side converges to

Ty (yy 'xs)
Ta(yz")
[notation as in (2.7)], independently of the particular choice of (yi,,)» tending

to wi.
Now (c) follows by switching the first and second variables in (b). O

Ki(x1,01 | p1) =K (21,01 | P})‘I’z(xz,yz)

COROLLARY 4.3. Fort > p=p(Q), set
Sy = {(t1,82) | t1 > p1, ta = po, at1 +(1 —altg =t}
Then the Martin boundary of @ = @, on Ty x Ty with respect to eigenvalue t is
M) = (1 x Tg) Uy x Qg x Sp) U (T x Qo).

The minimal Martin boundary Q x Qg X S; carries the product topology relative
to the three factors. The other two pieces consist of nonminimal points and also
carry the relative product topology, with T; discrete. The two nonminimal parts
are attached to the minimal one as follows.

Ifuy > w1 e and ys — Wg € Qg, then

(W1,y2) — (@1, e, (t1, p2)),

where t; = (t — (1 — a)p2)/a.
Analogously, ify; — w1 € Q1 and wg — Wa € Qy, then

(y1,ws) — (w1, e, (p1,12)),

where ty = (t —ap1)/(1 —a).
Inparticular,whent = p, then the Martin boundary is the boundary of Ty x T,
in (T1 U Q) x (Ty U Qy), the latter equipped with the product topology.

5. Final comments. The uniform estimate of [14] does not only hold for
simple random walk, but for arbitrary nearest neighbour random walks, which
are invariant under the group Zg * - - - * Zy (I factors). Therefore, our method
for determining the Martin boundary of Ty x Ty will also work for Cartesian
products of arbitrary random walks of this type (at least for eigenvalues ¢t > p).
However, whereas the method remains the same, writing down the details will
become much more space consuming, requiring a more involved notation. Also,
the results extend obviously to the Cartesian product of a tree with a straight
line (see [2]) and to Cartesian products of more than two trees.

More recently, Lalley [15] has also given (partial) uniform estimates for the
case of group-invariant random walks on T' with (arbitrary) finite range. Taking
Cartesian products of two such walks, one should be able to determine on this
basis the asymptotic behaviour of the Green kernel, when |y1|/|y2| — Ao €
(0, 00). )
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Another possible approach regards Cartesian products of arbitrary isotropic
random walks on T; and T5. One may try to refine the methods of harmonic
analysis used by [24] to obtain uniform estimates for the transition probabilities
on the factors.

In any case, our result should be considered as a “prototype,” waiting for
extensions and refined methods. Note that besides the integer lattices studied
in [19], the result presented here is the only example where one has full knowl-
edge of the Martin compactification with respect to a natural “discrete Laplace
operator” of a Cartesian product of two infinite graphs.
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