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MULTIDIMENSIONAL REACTION-DIFFUSION EQUATIONS
WITH WHITE NOISE BOUNDARY PERTURBATIONS!

By R. B. SOWERS
University of Maryland

In this paper we study multidimensional stochastic reaction—diffusion
equations (SRDE’s) with white noise boundary data. More precisely, we con-
sider a general SRDE with Robin data to be a white noise field. Because
this boundary data is very irregular, we formulate a set of conditions that
a random field must satisfy to solve the SRDE. We show that a unique
solution exists, and we study the boundary-layer behavior of the solution.
This boundary-layer analysis reveals some natural restrictions on the re-
action term of the SRDE that ensure that the reaction term does not qual-
itatively affect the boundary layer. The boundary-layer analysis also leads
to the definition of some functional Banach spaces into which are encoded
the boundary-layer degeneracies and that would be the natural settings for
other analyses of the SRDE of this paper (e.g., large deviations and central
limit theorems, approximation theorems).

Introduction. In this paper we study the stochastic reaction—diffusion
equation (SRDE)

ou 1
= = 5Au + (b, Vu) +cu +f(x,u),
(I.1) u(0, ) = uo,

(v, Vu) + Bx)ulr, x sm = 0(x)¢,

where the space variable takes values on some n-dimensional (n > 2)
Riemannian manifold M with boundary and where ¢ is a space-time white
noise field on R, x M. We use v to denote the inward-pointing normal vector
field on M. Our aim in studying (I.1) is twofold. First, we want to find a nat-
ural way to interpret the SRDE (I.1) and show that there is a unique solution
for this interpretation. Second, we are interested in the structure of the solu-
tions, particularly near the boundary. Because ¢ is a generalized function, the
solution of (I.1) is degenerate near the boundary, and we would like to have a
basic understanding of these degeneracies.

This work is essentially an extension of the efforts of Freidlin and Wentzell,
who in [10] considered the problem for n = 1 (see also [9]). We shall see that
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in the multidimensional case considered here, the boundary behavior is more
intricate than in [10]. Another difference is that our study of the boundary
layer will stem almost entirely from a statistical analysis, whereas in the one-
dimensional case of [10], there was a natural integration by parts that P-a.s.
transformed the white noise boundary data into continuous functions. Related
efforts that lead in a slightly different direction are in [7].

The organization of this paper is as follows. Our assumptions and notation
will be given in the next section. Then in Section 2 we shall see exactly how we
may understand (I.1). We shall also see that locally ¢ is a generalized function
that may be thought of as the n-fold derivative of a continuous but nondiffer-
entiable function. Thus, the understanding of (I.1) must define the notion of
a weak solution that may have boundary-layer degeneracies. Section 3 is de-
voted to briefly recalling some facts about the fundamental solution of (I.1).
This leads to the efforts of Sections 4 and 5, where we study the simpler linear
case of (I.1) when f = 0. In Section 4 we show that this simplified version of
(I.1) has a unique solution that may be described by a natural integration of
Section 3’s fundamental solution against the boundary data o¢. In Section 5
we study the boundary layer of this solution. We finally return in Section 6
to the fully nonlinear SRDE (I.1) and bring everything together by describing
the solution of (I.1) as a nonlinear transformation of the solution of the linear
SRDE of Sections 4 and 5. The interaction of this functional transformation
with the boundary layer is studied by encoding the boundary-layer degenera-
cies into certain functional Banach spaces and then interpreting this functional
transformation as a mapping between such Banach spaces.

1. Assumptions and notation. In thispaper, M is ann-dimensional, com-
pact, connected, Riemannian C*° manifold with smooth boundary. We denote
by &M the boundary of M and M° := M ~ 8M is the interior of M. We denote
the Riemannian metric tensor by (-,-), and the associated fiber metric on TM
by || - ||. Also associated with (-, -) are the Riemannian volume element, denoted
by ap, and the corresponding volume measure « on (M, B(M)). The gradient
operator defined by (-, -) is denoted by V and the adjoint of —V with respect to «
is the divergence operator, div, and A := div V is the Laplace—Beltrami operator
(our sign conventions follow [8]). The inward-pointing unit normal vector field
on OM is denoted by v, as we already mentioned (note that in [8], v denotes
the unit normal outward-pointing vector). In (I1.1), b is a C* vector field on
M, ¢ and 8 are some C™ functions on M and M, respectively, and u, is some
continuous function on M. We will discuss the nonlinearity f later in Section 6.
The distance function on M defined by (-, -) will be denoted by d(-, ) and for any
subset S of M and any point x in M, dist(x, S) := inf, ¢ s d(x,y) as usual. We will
also let rad(M) denote the radius of M.

Although the results of this paper will be phrased in a geometric-invariant
language, some of our intuition and some of our more delicate calculations
will come from looking at, respectively, R” or the n-dimensional Euclidean
half-space, which are by definition models for open neighborhoods, which are,
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respectively, in M° or near 0M. We denote the half-space as
H, := {(x1,%3,...,%,) € R" x, > 0}

and, consistent with our previous notation, we let 6H, be its boundary and
H? be its interior. We always assume that H,, is endowed with the standard
Euclidean metric. The Laplace-~Beltrami operator on H, is

~ i 52
ot Ox;

We shall denote by | - ||g» and || - ||g» -1 the Euclidean norms on R” and R* ~ 1,
respectively. Whereas the canonical local diffeomorphisms between neighbor-
hoods in M° and R" are given by normal coordinates, the canonical local dif-
feomorphisms between open neighborhoods of M near OM and H,, are Fermi
coordinates (see [14])..

We will also use some of the geometry of M. The volume element og on M
and the volume measure « on (M, B(M)) naturally induce a volume element &,
on OM and a volume measure & on (OM, B(dM)). The Riemannian metric (-, -)
also induces a Riemannian metric tensor (-,-)~ on M, under which dM is it-
self a Riemannian manifold. Unfortunately, the fact that OM is not necessarily
connected (consider an annulus) means that we cannot immediately define a
distance function on M from (-, -)~. We must first break OM into its connected
components, which we shall denote by {9;M: i = 1,2, ...,i} (because M is com-
pact, i is finite) and then use (-,-)~ to separately define a distance function d; on
each 9;M. Each 0;M has its own injectivity radius, &7 ;, which must be positive
because 9;M is compact, and its own d;-radius, rad;(8;M), which must similarly
be finite. We may then define

Einjr \= minfem i and rad(6M):= max rad;(5;M).
1<i<i 1<i<i

Our choice of the notation @, @, (-, -)~ and so forth reflects our convention that
objects associated with an n — 1-dimensional manifold, be it R® ~ ! or M, have
overbars, whereas objects associated with n-dimensional manifolds, such as R
or M, do not have overbars.

As a final requirement, we assume that there is an underlying probability
triple (2, ¥, P) on which all random variables are defined.

2. The meaning of the SRDE. We now develop the meaning of the SRDE
(I1.1). We begin by using the volume measure @ and Lebesgue measure on R, to
give a “natural” meaning of the space-time white noise field ¢. We show that
P-a.s., ¢ may be understood as a classical generalized function on R, x dM. Thus
the solution of (I.1) should be degenerate near the boundary, so we must give
an appropriate weak formulation of (I.1). We finish the section by listing the
resulting conditions that a random field must satisfy to “solve” (I.1).



2074 R. B. SOWERS

To start, we define ¢ in a fairly standard way (see [3, 16]) as a Gaussian
additive set function; this is appropriate if we view ¢ as the effect of a large
number of independent random particles hitting the boundary. We need to fix
some sigma-finite measure p on (R, x M, B(R, x M)) and then take ¢ to be a
random set function on B(R, x 6M) such that:

wn. For any finite number of sets A;, Ay,..., A, in B(R, x M) of finite
p-measure, ((A;),((Ag),...,((Ay) are jointly Gaussian random variables with
means zero and covariances E[{(A;)((A)] = (A; NAj) forall 1 <i,j < m.

By standard results [3], such a random set function ¢ does in fact exist. A
natural choice of the measure . in our case is the product measure ;1 = Leb x @,
where Leb is the Lebesgue measure on (R,, B(R,)). Thus we define ¢:

DEFINITION 2.1. The white noise field ¢ is a random set function on B(R, x
OM) satisfying wn with p = Leb x @.

Although our decision to use the measure @ on (6M, B(6M)) may appear
somewhat arbitrary, this only slightly limits the generality of the SRDE (1.1). If
we want to use p = Leb x @, where & is any other finite measure on (M, B(6M))
that is absolutely continuous with respect to @, we may simply use ¢ as in
Definition 2.1 and replace ¢ in (I.1) by 0y/da/da (we should also then require
that /da/da be smooth).

Some quick estimates show that (, as given by Definition 2.1, may also be
locally treated as the signed variation of a continuous, but nondifferentiable
function (see also [16]). If we fix a T' > 0 and take any oriented chart (¢, U) on
OM such that p(U) = {x € R* ~1: ||Z||ga—1 < 1}, then we may define

2.1) Wit %) = ¢ (10,81 x o (10,71) )

for all 0 < ¢ < T and all ¥ in R*~! such that ||[Z||gs-—: < 1. Here [0,%] is the
rectangle in R*~! having 0 and ¥ as opposite vertices. Forany 0 <s <t < T
and such x = (x1,%2,...,%, 1) and ¥ = (y1,¥2, ..., ¥n— 1),

E[|W(t,%) — W(s,5)%]
= (Leb x a)(([o, t] x go_l([O,a_c]))A([O, s] x w%[o,y])))

< Leb((0, A[0,s])a(aM) + T (1 (10,71) 0™ (10,31))

n—1
< aOM)|t - s| +TK< >l —yil),
i=1

where A denotes the symmetric difference set operation and

K = Sup{llao(E)IIAn—l(aM)Z x G‘U, ”(P(E)”]Rn—l < 1},



RDE’S WITH WHITE NOISE ON THE BOUNDARY 2075

where || - || on - 11 is the standard fiber metric on A®~1(8M), the vector bundle of
n — 1-degree exterior forms on M (see [1], Proposition 6.2.11). By the celebrated
Garsia, Rodemich and Rumsey bgunds [2, 12, 16], we can then show that for
every n > 0, there is a version of W that is Hélder continuous of exponent % -7
jointly in all of its arguments. By using the additivity of ( and (2.1), we can then
see that for any rectangle in {¥ € R*~!: |[Z|g.-1 < i} and any 0 <s <¢ < T,
¢([s, t] x p~1(A))is equal to the variation of W over [s, ¢] x A, which heuristically
may be written as
Gl

-1 _
¢([s, 2] x ™ 1(A)) = .01 4 DE0E] 8x2--~6xn_1dx1dx2 dx, _ 1.

To see that this expression is only heurlstlc and cannot be made rigorous,
we may calculate that the variation of W along any axis is hke that of a
Wiener process. For any fixed % in R* ~! such that ||[%|g.-1 < 1 5,8 W(s,%)
is a Wiener process on [0,T], as a simple covariance analysis reveals. Sec-
ond, for any fixed 0 < ¢ < T, any fixed (x1,%g,...,%, _2) in R*~ 2 such that
|1, %2, - -y %n —2)||gn—2 < & and any fixed i in {1, 2 ,n — 1}, a simple time-
change argument shows that

W(t, (x17x2a s Xi— 1Y% - 7xn—2)) = W(T(y))

for y small enough, where W is some Wiener process and 7 is some increasing
and perhaps random mapping from R, to itself that satisfies Ky < 7(y) < Ky
for all y small enough. Here K is some positive constant that reflects the fact
that @, is nondegenerate.

Returning now to (I.1), we see from the foregoing analysis that the boundary
data ¢ are very irregular, which forces us to formulate (I.1) in a weak sense. To
simplify the notation, we define the second-order operator

(2.2) Ly = tAp+ (b, Vo) +ep, e C™M),
and its adjoint (with respect to )
L*p = 2Ap — (b, V) + (c — divd)y, p € C®(M).

We similarly define two first-order operators on functions that are differentiable
at the boundary:

p = (v, VQO) + By,

(2.3) T =, V) + (B8 — 2, ), pe C=(M).

The relevant Green’s formula is thus

/  gERalds) + %/ g@(Th)E)adE)
S x

z € OM

- / RGN & D) waldx) + ) / hEE @),
xEM €M
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which holds for all g and 2 in C®(M). We will also use the collection of
test functions

CR+ x M) := { € C*(R, x M): supp ¢ is compact}

with supp ¢ denoting the support of ¢. The weak formulation of (I.1) is then
given by an integration by parts of u against any such test function. This would
imply that at least formally,

/ * / u(t,x)(% +;;*<p)(t,x)a(dx)dt
t=0Jxe Mo ot

+ / ” / f (x, u(t, x)) (¢, x)oddx) dt
(2.4) t=0JxeMe°
== / uo()p(0, x)odx) — % / / u(t, ®)(T" )¢, a(dz) dt
xEM t=0JxecoM

1 / * / ot D)o (®)C(dE, dF)
2 Jt=0Jzeom

for any ¢ in C3°(R, x OM). To make this rigorous, we need to define the last
integral and we need to define the first two integrals so that they allow for the
anticipated boundary-layer degeneracies of u.

The definition of the last integral in (2.4) is the easiest of these two problems.
For any set A in B(R, x dM) of finite Leb x @ measure, we define the integral

of x4 by
/ ” / xat,x)((dt,dx) := C(A).
t=0Jx€M

We may then define, in the obvious way, integrals of linear combinations of such
simple functions and then complete the definition, again in the obvious way (see
[16]) by using the natural isometric mapping of L%(R, x M) into L%(Q, F, P).

Slightly more difficult is the question of what to do with the first, second and
fourth integrals in (2.4). The biggest problem is the fourth integral, that is, the
al(dx) dt integral, because v might not even exist on the boundary. Because u will
exist, however, inside M°, the next best thing might be to “shift” the boundary in
some orderly manner into M°. The presence of a Riemannian distance function
on M suggests that for each € > 0 we shrink M to

M, := {x € M: dist(x,0M) > ¢}, e>0,

and then somehow replace M by M. and M by 6M, in the first three terms
of (2.4). We then wish to define these integrals as limits, if they exist, of these
e-integrals. Clearly the first two limits will exist if and only if the following two
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limits exist for any arbitrarily chosen ¢ in C3°(R, x OM):

lim / / u(t, x)p(t, x)al(dx) dt,
t=0JxeM,

e—0

(2.5)
/ / f (x, u(t, x)) (¢, x)oddx) dt, P-a.s.
8 - 0 t=0JxEM.

Taking up next the question of the fourth integral of (2.4), we would like to
change the region o of integration to R, x 8M.. Unfortunately, this is not directly
poss1ble because (T~ ¢)(t,x) is defined only for x in &M. We must instead look at
(T p)¢, %) for X in &M but u(z,5) for 5 in M., where X and ¥ are related by some
shift operation (or more precisely, a “tubular neighborhood” [6]). Once again,

the Riemannian metric on M gives us a natural tool, this time in the form of
the exponential map, which we shall denote by E. By standard results ([6] or
[14], Chapter 2.3)], there is an &), > 0 such that the mapping

0.(%) = E(ev(®), %€M,

is a diffeomorphism from M to OM, for each 0 < ¢ < &,. Furthermore, 6 is
the identity map on M. For convenience, we shall fix for the rest of this paper
some ¢, such that

0 < ety < Etub

and consider only ¢ in [0,&},]. This will avoid any problems stemming from
degeneracies of the mapping 6. for € near ey,,. We thus see that an appropnate
integrand for the modified fourth term of (2.4) should contain (L7 p)¢,%) and
u(t,y), where x and ¥ are related by ¥ = 6.(x). Thus, we approximate the fourth
term of (2.4) by

(2.6) §[ ] ulo@)E e Dt

for € small. As we did with the first two terms of (2.4), we will define the fourth
term of (2.4) by the limit, (if it exists) of (2.6) as ¢ tends to zero. Clearly this
limit will exist if and only if

@.7) lim / ” / u(t,0.) (¢, DadR)dt,  P-as,
t=0Jxe€doM

e—0

exists for any arbitrarily chosen ¢ in C (R, x OM).
We finally can give some rigorous conditions that a random field v on R, x M*
must satisfy to be a weak solution of (I.1). We want some continuity:

a.l. The random field u is ]P’-a.s.; continuous in R, x M°.
We also need the limits (2.5) and (2.7) to exist:
a.2. The limits of (2.5) and (2.7) exist for each ¢ in CP(R, x M°).
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Third, we need (2.4) to be true if we replace the first, second and fourth integrals
by the appropriate approximate integrals, namely, that

lim / / u(t,x)(@e +£,*cp>(t,x)a(dx)dt
e—0 t=0JxeM. 8t

+ lim / ” / £ (&, ult, 2)) (¢, x)aldz) de
t=0JxeM,

e—0

(2.8) =— / uo(x)p(0, x)oldx)
xEM

_lim ) / ” / u(t,0.) (T )¢, D) dit
2 Ji=0Jicom

e—0

L1 / > / ot B)o®)((dt, dF).
2 Ji—oJicom

This is the third condition:
a.3. For each ¢ in C(R, x M), (2.8) holds.
We give the following definition.

DEerFINITION 2.2. We say that a random field u solves the problem (I.1) for
the nonlinearity f, the initial condition © and the boundary data ¢ if conditions
a.1-a.3 hold.

3. The Robin kernel. The natural place to start searching for solutions
of (I.1) is the deterministic PDE,

(31) g_lt) =Lv+ d)) U(O, ) = Vo, LUIR:, xOM = E7

for some functions ¥ in C®(R, x M), ¢ in C*(R, x 8M) and v, in C°(M). This
corresponds to replacing (¢,x) — f(x, u(t,x)) in (I.1) with 1) some smooth function
of t and x, but which does not depend upon u, and smoothing off the random field
o(¢. The solution of (3.1) can be explicitly given in terms of the Robin kernel p";
for each y in M, pf is a C* function of (¢,x) in R, x M° ~ {(0,y)} that satisfies

opk R . R ~ R
(32) 8_;, = pr ’ tlli%Py (t, ) = 6y1 pr ,]]h X OM = 0’

where all of the relevant derivatives exist and pf and these derivatives are
continuous on Ry x M ~ {(0,y)}. Here the middle equality is understood in
the sense of distributions with 6, being the Dirac measure on (M, B(M)) concen-
trated aty, and the last equality is interpreted as LpR(¢,x) := lim, _, 5 + ¢ o (D(%),
fof"(t,x)) + E(x)pf(t, x) for each (¢,%) in R, x M, where ¥ and 3 are any exten-
sions of v and G into M°. The next result tells us that the solution of (3.2) exists
and that it is regular when x # y:
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PROPOSITION 8.1. The Robin kernel p® exists uniquely; that is, there is a
unique solution in C* (R, x M° ~ {(0,y)}) for each y in M. Furthermore, the
mapping (t,x,y) — pﬁ?(t,x) isC®onR, x M° x M ~ {(0,x,x): x € M}.

We can use the Robin kernel and the next several results to prove that the
unique solution of (3.1) is given by

t
v(t,x)=/ / pf(t—s,x)dl(s,y)a(dy)ds"'/ Py(t,2)vo(y)oldy)
(3.3) e -
1 / / PRt — s,2)9(s, y)a(dy) ds
s=0Jy€edM

for all ¢t > 0 and x in M.
To get a better idea of the behavior of p®, which by (3.3) should play some
role in our study of (I.1), we may consider a canonical model for (3.2):

8p( n) 1 g\ . AN 8p( . _
—o = 508Gy HmBGE ) = b, 8;3“ (t,®,0) =

n

the solution of which (subject to the correct conditions on growth for x large) is

7 — ~l12 2
~ _ X —Yon—1+ |Xn —Yn n
By (& @ 2)) 1= exp[—” I 57 o '](zmr) /2

(3.4)

T —Y|20_ 1+ X0 +yn|?
+exp[— [ y”w ;t [%n + yn| ](27rt)"‘/2

for all ¢ > 0, (%,x,) and (¥,y,) in H,. Some of the theory showing that p%, the
solution of (3.2), may indeed be thought of as a perturbation of % is given in
Appendix A. In particular, we have the following proposition.

PROPOSITION 3.2. Let K be any compact subset of M°. Then for all x and y
in K such that d(x,y) < dist(x, M),

pl(t,x) = exp[-d?(x,y)/20)] @n) /2 (1 +0(1)), t—0,
uniformly over all such x and y.
We also have the following results on the boundary behavior of p%:

PROPOSITION 3.3. Let T > 0 be some fixed time horizon. The Robin kernel
p® has the following behavior on [0,T1:

. (a) There is a positive constant x1(T) < 1 such that

(3.5) PP, )| < 574D exp[ &) )]t"‘/2
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forall 0 <t <T,xin M°andyin M.
(b) For every X > 0, there is a positive constant ko(T, \) < 1 such that

VP, )|
(3.6) 9 —
<Ky T, ) exp [—ng(T, )\)d_(:;c,_y)] $n/2+X0/2-1/2 (dist(x, BM)) =X

forall0 <t <T,xin M° and y in OM.
(c) For every XA > 0, there is a positive constant k3(T,\) < 1 such that

B -
l%’(t; x) < l‘és_l(T, A) exp [_K,?’(T, A)M]

3.7
x /22 = 1(Qist(x, OM)) ">

forall 0 <t <T,xin M° and y in OM.

Analogous bounds for pV are easy to prove. Although one could take \ = 0 in
claim (b) in these analogous bounds for p¥, our method of proof in Appendix A is
not refined enough to do so for p®. Also, although the results of Proposition 3.3
give the natural generalization of the behavior of p¥, the formulae (3.5)—(3.7)
are not the easiest to deal with, because the dependences on ¢ and x are so
closely intertwined. A more useful collection of standard bounds may be found
by recalling that

(3.8) C(\) := supx*/2e™*
x>0

is finite for every A > 0. We then have (see [8], Chapter 7) the following
proposition.

PROPOSITION 3.4. Let T > 0 be some fixed time horizon. The Robin kernel
p® has the following behavior on [0, T':

(a) For every pair of nonnegative constants \y < n and )y > 0, there is a
positive constant £1(T, A1, \g) such that

B9 |pBt,x)| < KT, Ay, A)tP2 — 22g =+ My, 5) (dist(x, OM))

forall0 <t <T,xin M°, andy in OM. ‘
(b) For every pair of nonnegative constants \y < n and Ay > 0, there is a
positive constant ko(T', A1, \y) such that .

VPR, %)|| < KH(T, A, Ag)tP2 = 21 = D/2g=n+ My 3)

3.10)
@1 x (dist(x, 8M))

forall 0 <t <T,xin M° and y in OM.
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(c) For every pair of constants A1 < n and g > 0, there is a positive constant
ka(T, A1, Ag) such that
< RY(T, Mg, At~ 2e = D/2g =+ Ay, 57)

6p51,it
T
x (dist(x, 0M)) "

(3.11)

forall0 <t <T,xin M°andyin oM.

PrROOF. The proofs are simple. To show (3.9), use (3.5) and the obvious fact
that d(x,y) > dist(x, M). Then calculate that

d?(x,y)
t

t (n— )\1 +)\2)/2
< | ——
- (nl(T)dZ(xJ))

27—\ (1= A1+Ag)/2 n =
o (nl(T)d (x,y)) exp [—nl(T)d (x,y)]

exp [—nl(T)

t t
< ""(1)\1 —-n— )\2)/2(T)C(n A+ /\2)t(n =M +Ag)/2g—n+ ’\l(x,y) (diSt(x, 3M)) —)\2.

Similarly, for (3.10) and (8.11), we can take X = ) in parts (b) and (c) of Propo-
sition 8.8. This gives us the dist(x, 0M)~*? term. We then calculate that for i = 2

ori=3and any \; <n,

2 p—
exp [—ni(T, Azﬁ—(f’—”]

¢ (n—X1)/2
< S —
- (F»i(T, Az)dz(x,7)>

, 20 1\ (2= AD/2 2. =
X ('ﬁ'———t(T’ /\2t)d (x,y)) eXP[—Fvi(T, /\2)d (;C,y

< KM TV NG)C — AR MR My ).

]

The proof is complete. O

These results will be used in conjunction with the following result, which
gives the bounds of (3.9)-(3.11) some of the same integrability properties as the

bounds (3.5)—(3.7):

LEMMA 3.5. For every positive constant ), the quantity

Ey:= sup - d= =D+ (x, 6.(3))aldy)
xEM yEM
0<e<ey,

is finite.
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Proor. Use normal coordinates on M. See also [8], Chapter 7. O

In addition to using (3.2), we shall also use the adjoint equation for p®. For
each y in M, we may define

(3.12) pyr(%) =pi@y), t>0,xeM.

Then we have the following classical result.

PROPOSITION 3.6. For each y in M, pff’* is in C®°(R, x M° ~ {(0,y)}) and
satisfies the PDE

(9py o *_ R, % . R, x —_k *
(8.13) o - L7py", }Er})py @) =0y, L py ,R+ wom =05
where the second and third of these equalities are interpreted in the same way
as the second and third equalities of (3.2).

4. Existence and uniqueness for a linear problem. In this section we
use the Robin kernel of the last section to study a simple linear version of
(I.1), namely,

ou —
(4.1) 8—; =Lu;, w0,)=0, Tulg, xaou = o).
This is of course of the same form as (I.1) except that we have set f = 0 and
ug = 0. This linear stochastic PDE will be important in our study of (I.1) because
a nonlinear transformation of it will give a solution of (I.1).
Representation (3.3) suggests a natural guess for the solution of (4.1):

t
(4.2) wt,x) = —%/ / p§‘(t _ s, 2)0(7)¢(ds, dy), >0, xc M.
s=0JyeoM
For every t > 0 and x in M°, this stochastic integral is well defined because
/ / lpg(t - S,x)|2|0(7)lza(dy)ds < 00,
s=0Jye M

as is clear from the smoothness result of Proposition 3.1. A more extensive use
of the properties of p® shows that the guess (4.2) is correct:

PRrOPOSITION 4.1. The random field u; defined by (4.2) solves (4.1) in the
sense of Definition 2.2. It is also P-a.s. in C°(Ry x M°).

Proor. Consider first the regularity of u;. The smoothness result of Propo-
sition 3.1 implies that for all integers £ and /,
t & 2
[ ‘ (Dk _Tpg)(t —s0)|  lo(®Padpds
s=0Jycom ot 0. kM
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is uniformly bounded as ¢ and x range over any compact subset of R, x M°. Here
D* is the kth order tensor derivative operator and || - |0, 13 is the standard fiber
metric on the vector bundle 70 *M (see [11]). Thus by standard results, not only
is condition a.1 true, but moreover, u; has a C* version.

Next, we verify condition a.2. Select any test function ¢ in CP(R, x M).
Take any T > 0 such that supp ¢ C [0,T'] x M; this will allow us to reduce the
integrals in (2.5) and (2.7) to finite horizons. Consider (2.5), which, because here
f =0, is equivalent to the existence of the first limit of (2.5). For simplicity, set

(4.3) I{(e) = / / u(t, x)p(t, x)oldx) dt, 0 <e < epyp-
t=0JxeM.

Using the stochastic Fubini theorem, we can rewrite this as

I?(e) = -1 / / ( / / y pyB(t—s,x)go(t,x)dta(dx))a(y)g‘(ds,dy)
s=0JyedoM t=sJxeM,.

for all 0 < € < ;. The natural limit point of I{ for ¢ tending to zero is

Il(p(O) = _%/oo/ (/00/ pj}_/?(t_s,x)(p(t,x)a(dx)dt>
4.4) s=0JyeoM \ Jt=s JxeMo

x o(¥)¢(ds, dy),

and we shall verify that P-a.s. lim, _, ¢ I{(¢) = I{(0) by using Kolmogorov’s conti-
nuity theorem and the fact that I{ is a Gaussian field. Forany 0 < ;7 < g3 < e,

E[[I£(e1) — If(e)]?]

T T 2
=1 / / ( / / Py — s,x)cp(t,x)a(dx)dt)
s=0JyeoM t=s JxeM. ~M.,

(4.5) x |o(3)|*a(dy) ds
< 1 sup o', %) sup |o(2)?
t'>0 zeoM

XEM

T s 2
<[] ( || |p’;<t,x)|a(dx)dt) a(dy) ds.
s=0JyeoM t=0JxeM. ~M.,

We shall use Proposition 3.4 to bound the term in parentheses. Note that by
expanding the volume form « in Fermi coordinates (see [14], Theorem 9.2.2),
one can see that there exists a positive constant % such that

’
€tub

/ Wx)alds) <k / / (0.) w(dR) dn
xeM~M, . n=0 JzeoM

for all B(M)-measurable mappings v from M to [0, 00). To proceed with our
analysis of (4.5), fix any 0 < ¢ < 1; then use Proposition 3.4 with A\; = 1+¢ and
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A2 = ¢. We can thus calculate that

R
R(s, d
/xEMslfVMez g (@ 2)jald)

€2
<K{(T,1+5,9s" 2R / / == 1+5(0,2),5) 1~ a(dz) dn
n=e, JXEM

(4.6) .
< KT, 1+5,9)s 2k / ns / d="=V+s(6,(x),y)a(dx) dn
=€ X €M

&
<Ki(T, 1+, c)s“l/zﬁEg{ / N dn}
n=ex

forall yindM,0 <s <T,and 0 < &; < g3 < ;. Because n — n~° is decreasing
on (0, 00),

£9 Eg — €1
4.7 / n~*dn < / nSdn=1—-¢) Yeg — &gt °.
n=ée n

=0

Inserting this into (4.6) and thence into (4.5), we can see that for all 0 < ;1 <
[} S Eéu]y

E []1{’(51) - 1;’(52)|2] = 1 sup |p(t, )2 sup |o(Z)2
>0 z€oM
xEM
x {K}(T, 1+, hE ) a6M)(2T?)(1 — )2
X |eg — 81|2(1 =<
Then (2.5) follows from this by applying Kolmogorov’s continuity theorem and

using the fact that I{ is Gaussian.
To verify (2.7), we may define in a way analogous to (4.3),

(oo}
(4.8) I3(e) = / / u(t,0.(x))o(t,x)a(dzx) dt,
t=0JzecaM
with alternate representation

I9(e) = 1 / / < / / pg(t—s,05(9?))g0(t,f)a(do_c)dt>a(y)((ds,di)
s=0Jyeom \Ji=s Jzcom

for all 0 < € < €}, and set

—5 t— t, dx)dt
4.9) I /so/eaM(/ts/xeaM 5t = 8 Dplt, D)3 () )

x a(y)(ds,dy).
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Then, in place of (4.5), we have that

E[|If(en) - (e’

B %/s:/yeaM (/t: /xeaM (pfve(t—s,Oel(a_c)) —pﬁ—,e(t—s,n%z(f)))

2
x (¢, XVl d%) dt) lo(y)|*a(dy) ds

(4.10)
< 1 sup o, 0 sup |o(z)?
t'>0 zeoM
xeEM

T s N
B t,9€l %)) — pE t,952 %)) | @ (dx dt)
></S=0/5'e<9M</t=0 a‘ceaMlpy( @) —ps ( (x))la( )

x a(dy)ds

for all 0 < &1 < &2 < €. Using the fact that ¢ — 05(3?) is a geodesic of unit
speed, we have the bound

S conr |PE(,06,®) — PE(s,0.,(0)) | a0 (d%)

(4.11) .
< / / VR (s, 6,@) |[@(d%) dn,
n=¢e1 y €M

which holds for all 0 < s < T, ally in OM and all 0 < &1 < &3 < &, We can
bound the innermost integral with Proposition 3.4. Fix any 0 < ¢ < % We can
use claim (b) of Proposition 3.4 with A\; =1+ ¢ and Ay = 25 to see that

|VPE (s,6,() || < Ky(T,1+¢,2¢)s/2~1d~"~D*s(5,(x),5)n~2

for all X and ¥ in OM, all 0 < 5 < &;, and all 0 < s < T'. Inserting this in (4.11)
and then using Lemma 3.5, we calculate that

/ 2 / (|VpE (s, 6,@) |[adz) dn
n z€OM

=€

(4.12)
,’7—2< d’?}

forany 0 < s < T,any yinOM and any 0 < €; < €2 < ¢, . Use now a calculation .
similar to (4.7) to bound the term in braces. Then insert (4.12) into (4.11) and
thence into (4.10). This gives us that for all 0 < e; < €3 < ey,

€2
< Ky(T,1+g, 2¢)s5/2~ IEQ{ /
n

=€

’

]E[|I;"(51)—I2“’(52)|2] <1 sup |p@#, %) sup |a(§)|2{K§(T,1+c,2c)E<}2
t'>0 zZEM
X €M
xa@(@M){ (s/2) "1+ 97T A - 207

x |€2 _ €1|2(1—2<)‘ .
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Another appeal to Kolmogorov’s theorem combined with the fact that I is
Gaussian shows that there is a continuous version of I3, thus completlng the
proof of (2.7) and thus of condition a.2.

Finally, we prove condition a.3. The proofs of condition a.2 not only showed
that the limits of (2.5) and (2.7) exist, it also identified them. In light of the
expressions for these limits given by (4.4) and (4.9), we need to show that

1 [ o0 . o
_§/s=0/5'€6M </t=s /xeMopy (t_s’x)(ﬁ +L ‘P>(t,x)a(dx)dt>

x o(y)(ds, dy)

4.13) / / ( / / — s, DL )t x)a(dx)dt)
s=0 €M t=s x€6M

x o(¥)((ds,dy)
1 / / (s, 7)o(F)¢(ds, dF).
s=0JyeoM

A simple integration by parts shows that

/ / pf(t —8,%) (592 + L*(p) (t, x)oldx) dt
t=s Jxe Mo ot

(4.14) 1
-1 / / PR — 5, BT o)t D) di + 50(5,)
t=s JX € 8M

for every s > 0 and y in M, and thus by the linearity of stochastic integration,
(4.13) must follow. This shows that indeed condition ¢.3 holds. O

The following argument proves that (4.2) defines the unique solution of the
stochastic PDE (4.1).

PROPOSITION 4.2.  The random field u; of (4.2) is the unique solution of (4.1)
in the sense of Definition 2.2. More exactly, if a random field 1, solves (4.1) in
the sense of Definition 2.2, then

P{u(t,x) = uy(t,x) forall t > 0 and x € M} =1

Proor. Because the stochastic PDE (4.1) is linear, it suffices to show that
any random field z; that solves

om ... —
(4.15) g =L,  @(0,)=0, L, xom =0

in the sense of Definition 2.2, is the identically zero random field; that is,
P{u(t,x)=0forall¢ > 0andx € M°} = 1.
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Definition 2.2 makes sense here upon settingf = 0, uo = 0 and ¢ = 0 in (I.1).
Although all of the coefficients in (4.15) are deterministic, we must allow for
random solutions because we are within the framework of Definition 2.2. In
view of the continuity requirement of condition a.1, it is clearly sufficient to
show the simpler property that

(4.16) P{u(s,y) =0} =1

for each s > 0 and y in M°. We can do this with a fairly simple classical adjoint
argument. For each n > 0, define &, in C*(R, x M) by

2 a2\ L
¢ t.%) = C,7 eXp[_ (1 _ d (x,y)',;;(t s) ) :I, ifdz(x,y)+(t—s)2 < 772:
n\,%) =

0, else,

where C,, is the unique constant such that [~ [, ¢, & (¢, %) df a(dx) = 1. Then,
as 7 tends to 0, &, tends to a Dirac measure on (R, x M,B(R, x M)) that is
concentrated at (s,y). Now fix a T' > s and for each n > 0, let ¢, in C*°(R, x M)
be a solution of

7] « —
Ly =C, T =0, Tlgyleom =0;

we may get such a ¢ by convolving &, against p®* as given by (3.12) and using
the adjoint equation (3.13). Inserting this in (2.8) withf =0,u, =0and e =0

we conclude that

/ / u(t,x)én(t, x)aldx) dt = P -a.s.
6—’0 t=0 EM.

Clearly supp&, C (0,00) x M, for € and n small enough, so P-a.s.

(¢,x) € supp &,

/ (e, %) (¢, Doddx) dt = lim, (¢, %06, (t, x)oldx) di = 0
(t,x) € supp &,

for each n > 0 small enough. We finally get (4.16) by letting 7 tend to 0 through
a countable sequence and using the continuity of Z required by condition ¢.1. O

5. Boundary layer degeneracies for the linear problems. We now
characterize the boundary layer behavior for the stochastic PDE (4.1). From the
results of Section 2,  is a generalized function that is locally the nth derivative
of a continuous function. Thus we expect degeneracies in the boundary layer,
and in this section we shall characterize them. Our approach of choice will be
entirely probabilistic, as compared to exploiting the above-mentioned interpre-
tation of ¢ as a generalized function; this retains more closely the probabilistic
nature of the problem.

To have an idea of where to start we consider the prototypical stochastic PDE

(5.1) a”’ =1A@,  @0,-)=0 Oy =0  t>0,xecHS

O R, x OH,
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on the half-space, where A is given by (1.1) and Z is a standard space—time
white noise field on R, x 0H,,, which we may also write as

~

"W
Ot Oxq1 Oxg -+ - Oxp _ 1

(5.2) (=

with W being a standard Brownian sheet on R, x 0H,. This last fact of course
corresponds exactly to (2.1). By classical results, the unique solution of this
stochastic PDE, which does not grow too fast (we need not be more specific), is

t
a(t, @ %)) = —1 / 0 / BBt —s.@x) (ds,dp)
s=0JyeRr—

for all ¢ > 0 and all (%,x,) in HS, where p¥ is as in (3.4). Consider the behavior
of u#; near the boundary as we vary x,. An easy calculation shows that for all
t > 0 and (¥,x,) in H},

~ —_ 2 1 ¢ ~R _ 2 ,_
]E[]ul(t,(x,xn))| ] =1 s=0/yemn—1 PG, 0)(t — s,&, %)) | dyds

¢ = _ w12 4 a2
= / / exp[—w](%rs)‘”dyds
s=0JyeRn -1 s

¢ 2
=2 exp [— ?"] (4ms)~ "+ D/2 gg

s=0

1 4 /°° exp(-u?/2) . 5,

T xn—1(8mp/2

u=x,,\/2_/; V27T

Thus asymptotically E[|Z;(¢, %,x,))>] ~ K/x*~1 at the boundary, so we could
hope that P-a.s. the mapping x, — u;(t, (%,x,)) has an algebraic singularity of
order (n —1)/2 for each ¢t > 0 and x in R” ~ ! (see [13], Section 1.3). More exactly,
we conjecture that for each ¢ > 0 and x in R* 1,

(5.3) lim 17 (¢, (%, %)) = 0
X — 0*

for each v > (n — 1)/2 (recall that we are considering the case n > 2). This
will serve as a model of the sought-for boundary layer results for (4.2) in the
direction perpendicular to the boundary.

Turning now to the behavior of the boundary layer of (5.1) in the direction par-
allel to the boundary, we study the regularity of the mapping (¢,%) — u;(¢, (%, x,))
for x, very close to 0. In view of (5.1) and the fact that the differential opera-
tor 8" /0t Ox1 Oxg - - - Ox,_; commutes with the operators §/0¢t, A, and 9/9x,, we
might formally apply an inverse operator (6" /0t 8x1 Oxs - - - x, _ 1)~ to (5.1) and
use (5.2) to get a stochastic PDE with continuous boundary data. More precisely,
we may solve the stochastic PDE

ou, 1. ~
(5.4) 'a?l = 5Au;, )0,) = 0,

>yl
ou,

g(\t,(f,()))=ﬁ,, t>0,er,‘{
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(subject to some unspecified growth conditions that ensure uniqueness) and
then show that 8"1;/0t 0x1 0x; - - - 9%, _ 1 also solves (5.1). Thus

o o,
L otox, 0%y 0%, 1

(5.5)

where we note that %) is continuous on all of R, x HJ and, in particular, at
the boundary R, x H,,. This sort of regularity result, that the solution of (5.1)
is a certain number of derivatives of a function that is continuous up to and
at the boundary, is what we seek for the variation of u; of (4.2) parallel to the

boundary.
Returning to (4.1), we see that the obvious analog of (5.3) is the following

result.
ProprosITION 5.1. Foreach T > 0and v > (n — 1)/2,
(5.6) lim sup (dist(x, 9M))” |u;(¢,%)| = O, P-a.s.

x— M
0<t<T

Proor. For eachy > (n — 1)/2, define
(5.7 Vi4(#,%, &) = e7uy (¢, 6. (%))

forallz > 0,x € OM, and 0 < & < ¢, . Fix v > (n — 1)/2 and choose any 7’ such
that (n — 1)/2 < 4" < min{v, (n — 1)/2 + 1}. For each x in M within distance ¢{
of OM, necessarily x = O4ist(x, on)(X) for some ¥ in OM, so

(dist(x, BM)) 7 Jus(t, x)| = (dist(x, 8M))7|ul (t, Odist(x, 3M)(3_C)) l
< (dist(x, 0M)) "™ " |Vy, (£,%, distCx, OM)) -

Because v — 7' is positive, the result will follow from the boundedness of V; .,/
on [0,T] x OM x [0,&(,]. That V; ., has a version that is continuous at the
boundary and hence is bounded near M, follows from the next result, which
we prove in Appendix B. O

LeEMMA 5.2. ForanyT>0and(n—1)/2<y<(n-1)/2+1,

(5.8 sup E[|V1,4(,%,8)[?] < 0.
0<t<T,z€dM
0<e<eny,
Furthermore, for any 0 < 8 < v — (n — 1)/2, there is a constant K such that for
anyi=1,2,...,1, B

E[|Vy,4(t1,%1,61) — V1,42, %2, £2)|?]

59 -
9 < K{|ts — t1] + &1, %) + &3 — &1]}”
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for all (¢1,%1,¢1) and (t3,%2,2) in (0,T] x ;M x (0,e(, 1.

Invoking again the Garsia—Rodemich—Rumsey results, we conclude from this
that as a function of all three arguments, V; ., has a version that is Holder
continuous of exponent /2 for each 0 < 8’ < 8. We leave the relevant cal-
culations to the reader, noting only for clarity that the domain of V; ., is an
n + 1-dimensional manifold. The reader should also convince himself or herself
that there is no problem caused by the fact that we do not consider ¢ =0 ore =0
in Lemma 5.2 (this is done for convenience of proof). One may simply define
Vi, ,(¢,%,¢) for ¢ = 0 or € = 0 by using Lemma 5.2 and the fact that L2(Q, 7, P) is
complete. These arguments complete the proof of (5.6). O

We interpret this result as showing that the boundary layer of u; of (4.1) has
an algebraic singularity of order at most (n — 1)/2 in the direction perpendicular
to the boundary.

This leaves us with the task of finding the analog of (5.5) in order to describe
the variation of u; in the direction parallel to the boundary. We would like to
show that locally
oy
- OtOx10x9 -+ 0%y _1’

(5.10) u;

where u; is some random field that is continuous at the boundary and where
X1,%2,...,%, 1 are some carefully chosen local coordinates on OM. Unfortu-
nately, the random field ; of (5.4) came from a good guess, and no such guess
is apparent here. Note, however, that heuristically we may rewrite (5.10) as
uj = (0" /0t 0%, 0xg - - - O, — 1)~ luy, so instead of trying to explicitly solve (5.10),
we may try to simply show that the dt dx; dxs - - - dx,, _; integral is continuous
near the boundary. More precisely, we hope that

(5.11) /  w(s, 6.®)ds add)
(s,6)€A

is continuous in € at £ = 0 for all sufficiently general sets A in B(R, x dM).
Because it is reasonable to require that the sets A be geometrically meaningful,
we shall fix some constant o such that

0<o<&n;
and take A of the form
(5.12) A=1[0,7] x B@®,r) ‘
fort > 0,xin OM and 0 < r < p, where for any X in any 9;M and any 0 < r < p,
B, r) :=\{2 coM:dE® <r).

Here &, is as we defined in Section 1. The restriction that r be less than or
equal to g instead of &, ; is enforced because we will want to locally map B(x,r)
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into R* ~1, and such a mapping may break down if r is near ;,;,. For additional
notational simplicity, we define

t

Ui, x,r,e;T, )= /

/ (s, ds a(dy)
s=0Jy€BR&,r)

for each T' > 0, each continuous real-valued mapping ¢ whose domain contains
[0,T] xM° andeach0 <t < T,x € OM,0 <r < pand 0 < € < &ty,. This is
simply the integral (5.11) with A of the form (5.12) and with u; replaced by a
general function ¢ defined at least up to the finite horizon 7. Although the true
parallel to (5.10) is that U(., -, -, -; T, u;) be continuous for each T' > 0, we shall
once again be content with something simpler, namely:

ProrosITION 5.3. For every T > 0, P-a.s,

limsup |U@,%,r,e;T,u)| < oo.

e—0
0<t<T,xeM
0<r<p

Proor. Similarly to (5.7), we fix a T' > 0 and define
Vo(t,x,r,e) := U, x,r,e;T,u;)

foreach0 <t <T,Xinany 9;M,0<r < pand 0 < < ¢, . We intend to show
that V, has a modification that is jointly continuous in all four arguments. This
follows from the next lemma.

LEMMA 5.4. Forany T > 0,

(5.13) sup E[|Va(t, %, r,€)%] < oo.
0<t<T, €M
0<r<o,0<e<ely,

Furthermore, for any 0 < 8 < 1, there is a constant K such that for all i = 1,
2,...,1,

(5.14) E[|Va(t1,%1,71,€1) — Valte, %2, 2, 2)|?]
' SK{|t2—t1|+di(371,972)+|"2—7’1|+|€2—€1|}ﬂ

for all (¢1,%1,71,€1) and (¢3,%2,7r2,€2) in (0, T] x ;M x (0, o] x (0,&f, 1.

Invoking again standard estimates on Gaussian fields, we conclude from
this that Vs, as a function of all four variables has a continuous version that is
Hélder continuous of exponent 3'/2 for each 0 < ' < 8. The details are left to
the reader, with the note that the domain of V5 is an n + 2-dimensional manifold.
Similarly to the proof of Proposition 5.1, we have not included ¢ = 0,7 =0ore = 0
in the statement of Lemma 5.4. Finally, although Lemma 5.4 is sufficient for
our purposes, we do not claim that it has the best possible Holder exponents. O
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This completes our study of the boundary layer of u;. For future reference,
we put these results into the description of a functional space. For each T' > 0
and v > (n — 1)/2, define the vector spaces

C\(T) = { p € C(I0,T1 x M°): lim sup (dist(x, 8M))|(z,2)| = 0
x— OM
0<t<T

NS peC([0,T]1 xM°): limsup |U,X,r,&T,¢)| < oo
0<tST icom
0<r<e
and
(5.15) C,:= {(p € C(Ry x M®): plio, 1) x Mo € Co(T) for all T > 0}.

The implication of Propositions 5.1 and 5.3 is that for each v > (n — 1)/2, C,(T)
is a natural space in which the solution u; of (4.1) has values:

THEOREM 5.5. For each v > (n — 1)/2, the random field u; is P-a.s. in C.,.

It will be important for the upcoming section that C.,(T") actually be a Banach
space. One may check that for each T' > 0, the function

llellc, ) := limsup (dist(x, 6M))7|ga(t,x)| + limsup |UG,Z,r,&T,9),
— M

x e—0
0<t<T 0<t<T,z€dM
0<r<e

defined for each ¢ in C,(T"), is a norm on C,(T) under which C.(T) is complete,
s0 (Cy(T), ||  llc, ) is a Banach space. We also note that (5.15) defines a family
of seminorms on C,; namely, for each T' > 0, we may define

lelle,a = llelorxmellc,a, ¢ €Cy.

6. The nonlinear problem. We return to the fully nonlinear SRDE (1.1).
We search for the solution u of (I.1) as a classical nonlinear transformation
of the solution u; of the linear stochastic PDE (4.1). Of course the boundary-
layer analysis of the previous section will play an important role in this, as we
need to understand the interaction of the nonlinear transformation with the
boundary-layer degeneracies. A result of this study will be the identification
of a class of “admissible” nonlinearities f that do not magnify the boundary-
layer degeneracies.

We begin with the integral equation that corresponds to (3.3) and that the
solution of (I.1) should solve for each ¢ > 0 and x in M°:

t
ult,x) = ) / 0 / PR = 5,00 (ds,d)
s=0Jye
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6.1) . / PR, Duo(y)aldy)
yEM®

t

+ / / PR(t — 5,2 (v, uls,)ody) ds
s=0Jy€eMe°

for every ¢ > 0 and x in M°. Note that the first term on the right-hand side of

this equation is exactly u;—recall (4.2). Upon replacing the first term of (6.1)

by u;, we see that

(6.2) ' u = Bu;,

where B is the functional mapping that takes any ¢ in C., into the solution of

(BLp)(t,x):cp(t,x)+/ " pff(t,x)uo(y)a(dy)
(6.3) t v€
v [ [ pG-saf (s )adds, 20,z
s=0Jy€eEM°

We make this precise, finding conditions on f under which By is well defined
for all ¢ in C,, for any fixed v > (n — 1)/2, and such that u as given by (6.2)
solves (I.1) in the sense of Definition 2.2.

We shall require that, for each fixed v > (n — 1)/2, B maps C,, to itself, that
is, that the solution of the nonlinear SRDE (I.1) has the same boundary layer
behavior as the solution of the linear problem (4.1). This is an important but
natural restriction; if the nonlinearity f is “small” in some sense, it should not
cause qualitative changes in the boundary layer. To get a better idea of what
this condition implies about f, we add a nonlinear term to our model SRDE
(5.1); that is, we study

@
Oxy,

64 X %&7 +f@@), 40,9 =0,

e =(, t>0,xeH,

R, x6H,

The analogue to (6.1) is that

~R
D5,y = 8,%)
o/yenn—l/y,,>o (3:9

x ((7,92,8(s,(F,3n)) )dyn dy ds

t
ut,x) = u)(t,x) + /
(6.5) §=

for all £ > 0 and x in HZ, where ﬁ%’ ) is as in (3.4). The boundary behavior of
f(s, %) will be assumed to be something like

n

(6.6) ‘f((i,yn);;i(s, (i,yn))) <K|yn
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for some constant 7 for all s > 0 and all (¥,y,) in H;, so a natural condition,
which is sufficient for the integral in (6.5) to be well defined, is that

t

// / |PE, )& — 5,2)||ya|" dyn dy ds
_ Yy¥n

s=0JyeRr—1Jy, >0

be finite. From the explicit formula (3.4) for p%, this is true if and only if

/ / exp[ |2] p[_l__z_IH
6.7 5=0J5,>0 2(t— s) 2(t —s)

x (2m( — s))_l/ |3a|" dyn ds

is finite, and from this we can easily see that 1 should be greater than —1. If the
boundary behavior of the nonlinearity f is

lf((?,yn), U)l §K|yn|ﬂ1|u|n2

for all (¥,y,) in H? close enough to H,, and all u of large enough absolute value,
and if Z of (6.4) has boundary behavior like (5.3), then the only way that we can
get (6.6) for some n > —1 is to have

(6.8) m—my > -1

This suggests that the natural, albeit rather odd-looking, growth condition for
the nonlinearity f in (I1.1), where u is to be considered as an element of C,, is:

nll,. There is a constant F and two exponents 7; and 7, related by n; —
ngy > —1, such that for all x in M° and all z in R with |u| > 1,

f(x, )| < F(dist(x, OM))™ u|™.

We may now turn around and assess the consequences of this condition upon
the last terms of (6.1) or (6.5), over and above simply ensuring that these inte-
grals should be well defined. If we assume that (6.8) holds and set n = 7; — 72
in (6.7), we find that the expression of (6.7) has no boundary-layer degenera-
cies; that is, it is well behaved for x, near 0. Thus, at least in (6.5), the natural
condition that ensures that the last term of (6.5) is well defined, also makes
this last term nondegenerate near the boundary, and thus implies that the
boundary-layer degeneracies of (6.4) come only from #;, the solution of (5.1).

We shall in a moment rigorously carry out this sort of calculation for (6.1)-
(6.3), but to get the full existence and uniqueness result for the solution of
(6.3), we will need to have a continuity condition on-f, in the same way that
one needs both growth and continuity requirements on the coefficients of finite-
dimensional SDE’s. We will here require:

ﬁlzy. There is a constant f such that for all x in M° and all z and v in R,
|fCe,u) — flx,v)| < f(dist(x,0M))"|u — v].
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Under this condition, the mapping u — f(x,u) is Lipschitz continuous for
every x in M°, but the Lipschitz constant is very small for x near OM. An
important consequence of this condition is that for any elements ¢; and s
of C,,

(6.9) Jsup If (s, 01(5,2)) — £ (s, 02(5,2)| < Flipr — pallc, @

for each ¢ > 0.
We can better understand how these ideas fit into our study of B by separately
considering the different terms in (6.3). Define

(Tyuo)t, %) = / PR 2u(y)aldy)
yeMe°

for all £ > 0 and x in M. Also, for each ¢ in C,,, define

(Top)t,x) = /s:O /yeM° pf(t — 5,2)f (s, p(s,) aldy) ds
for all such ¢ and x. If these two integrals are well defined, then we may rewrite
(6.3) as
(6.10) (Bop)t,x) = ¢p(t,x) + (T1uo )2, %) + (T2(By)) (¢, %)
for all ¢ > 0 and x in M°. We may further rewrite this as
(6.11) o(t,x) = (Bp)(t,x) — (T1uo)t, %) — (T2(By))(¢,x)
for all such ¢ and x, from which we see that B should be invertible with inverse
(6.12) (B ) (¢t,) = (¢, x) — (T1uo)t, %) — (T29)(¢,x)

for all such ¢ and x. The following two results show that Thu, and T are suf-
ficiently well behaved that these ideas work. One may think of the second of
these two results as the partial analog of our foregoing analysis of (6.4):

LEMMA 6.1. The function Tiu, is a well-defined element of C(R, x M ~
{(0,%): x € OM}) and of C,,.

PRrOOF. This standard result may be seen from the bounds of Propositions
3.1-33. O

LEMMA 6.2. If conditions nll, and nl2., hold for a v > (n — 1)/2, then Ty is
a well-defined mapping from C., to C(R, x M) and thus to C.,. Furthermore, for
each T > 0, there is a constant Ky, > 0 such that for any @1 and ¢z in C,,

t
(6.13) |Ts01 — Tagallc,w < Kran / llex = el ds

s=
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forall 0 <t<T.

Proor. The proof that T is a well-defined mapping from C,, to C[R, x M)
follows from estimates like (6.7). For any ¢ in C,, and all £ > 0 and x in M, we
can use claim (a) of Proposition 3.3 to see that

t
Lo L 1P =96 pt5.9)lotayds

(6.14) / / K I(T)exp[ () EEY) (x’y)] —n/2
s=0JyeMe
x F(dist(y, 0M))™ ~ ™ a(dy) ds||el|c, )

and that the last integral is finite. Thus (T9p)(¢,x) is well defined for all ¢ in
C, and all ¢ > 0 and x in M. The continuity of (T¢)(¢,x) in ¢ and x follows from
fairly standard arguments involving the uniform integrability of the integrand
of the right side (6.14) as s, x and y vary (see [11], Lemma 1.3.1). The bound
(6.13) stems from (6.9) and the estimate

s=

t
[(T2p01)(t, %) — (Top2)(,%)| < / . (}—”/ |pfe—s x)|a(dy)) o1 — e2llc s ds,
e

which holds for every ¢; and ¢, in C,, and every ¢ > 0 and x in M. By a bound
similar to that of (6.14), the term in parentheses is integrable with uniformly
bounded integral as ¢t — s and x vary over [0,T] x M. O

These two results allow us to show that the mapping B defined by (6.3) is well
behaved. In particular, they allow us to solve (6.10) by a Picard iteration scheme:

PROPOSITION 6.3. For any fixed v > (n — 1)/2, if the function f satisfies
conditions nll, and nl2., then B is an invertible mapping of C., into itself with
inverse given by (6.12).

Proor. For any ¢ in C.,, we approximate (6.10) by

(Bop)(t,x) := p(t,x) + (Tquo)(t, x),

(6.15)
(Br+10)(¢,%) = o(t,x) + (T1uo)t,x) + (T2(Bny)) (¢, x)

for all £ > 0 and all x in M°. Because C, is a vector space, Lemmas 6.1 and 6.2
ensure that {B,¢} is a well-defined sequence in C.,. Furthermore, from (6.13)
and standard calculations,

(K, 2
ZIIB,HW anllc ® < [T2(Boplllc (t)Z m

n=0
= ||T2Bop)lic.® exp[Kt,,,t]
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for each ¢ > 0, so there is some element B¢ of C, such that
lim |1Bry — Booyllc, =0
n— oo

for each ¢ > 0. Upon letting n tend to infinity in the second equation of (6.15)
and using (6.13), we see that thus B, satisfies (6.10). If ¢ in C,, is any other
solution of (6.10), then for any 0 <¢ < T,

t
1Boow — Plle,w < Kr. / 1B = ¥l s,
s=

so by Gronwall’s lemma, ||Boo — 9||c. 1) = 0. Hence By is the unique solution
of (6.10), and we may simply label it as Bep.

These calculations have shown that B is a well-defined mapping from C,, to
itself. The invertibility of B is clear from the explicit formula (6.11). O

We are almost finished. Proposition 6.3 implies that the random field u de-
fined by combining (4.2), (6.2) and (6.3) is a well-defined element of C.,. The
remaining step is to show that (6.2)—(6.3), which was suggested by analogy
with (8.3) and (6.1), actually gives the unique solution of (I.1) in the sense of
Definition 2.2:

THEOREM 6.4. If the nonlinearity f satisfies conditions nll., and nl2. for
some fixed v > (n — 1)/2, then there is a random field u in C that solves (1.1) in
the sense of Definition 2.2. This solution is unique in the sense that if u is any
other random element of C., that solves (1.1) in the sense of Definition 2.2, then

P{u(t,x) = u(t,x) forallt > 0 and x € M} =1.

Finally, this solution is exactly u = Bu;, where u; is given by (4.2).

ProoF. We first show that (6.2) gives a solution of (I.1) in the sense of Def-
inition 2.2. Condition a.1 is true thanks to the continuity results of Proposition
4.1 and Lemmas 6.1 and 6.2. In light of Proposition 4.1, conditions ¢.2 and ¢.3
will be true if the following five limits exist for every ¢ in C (R, x M) and every
¥ in C,:

lim / ” / (Thuo)(t, x)o(t, X)a(dx) dt,
t=0JxEM.

e—0

lim / - / (Ty)(¢, 2)plt, x)oldx) dt,
t=0JxEM

e—0

(6.16) lim / ” / f(x, ¢(t,x))<p(t,x)a(d5c)dt,
t=0JxEM,

e—0

lim / ” / (Thuo)(t, 0.3) (¢, Bai(dz) dt,
t=0Jx€e oM

e—0

lim / ” / (To)(t, 0.(%)) (¢, X)ai(d%) dt.
t=0Jx€doM

e—0
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The first two and last two limits follow from the continuity of Thu, and Ty on
R, x M. In fact, we may easily identify these limits:

e—0

lim / ” / (T1ug)(t, x)p(t, x)aldx) dt
t=0JxeM,
= / / / PR, D)t w)ald) dt uo(y)oddy),
yeMe Ji=0Jxeme

lim / ” / (Torp)(t, x)p(t, x)aldx) dt
t=0Jx EMe

e—0

=/ / / / Py (t — 5,%)p(t,x)a(dx) dt
s=0JyeMe Jt=s Jx€ M°

x f(y,9(s,y)aldy)ds,
6.17)

lim / ” / (T1u0)(2, 6:(®)) (¢, %)oU(dX) dt
t=0Jxe€dM

e—0

= / / / pf(t, xX)p(t, x)o(dx) dt uo(y)aldy),
y EMe Jt=0J%€ oM

lim / ” / (To)(t, 6.0) (¢, D) dit
t=0Jx€edM

e—0

=/ / / / Pyt — 5, B)p(t, D)cu(dx) dt
s=0JyeMe Jt=s JzeoM

x f(y,¥(s,y)aldy)ds.

The first two of these limits follow from dominated convergence and the absolute
integrability of the right-hand sides [the calculations are similar to our study of
(4.3)]. The last two follow from calculations similar to our analysis of (4.8) [one
can directly use (4.11) and (4.12)]. Returning now to the third limit of (6.16),
we see that it exists thanks to a calculation similar to (6.14):

[7 [ el e, ot ds
t=0JyeM°

T
< sup ot [V [ [ (disty,000)" " atdy)ds,
tZ](\), t=0JyeMe°
x €

where T > 0 is any number such that supp ¢ C [0,T] x M, and where the
integral on the right-hand side is finite. We thus see that indeed

wm [
o /‘=0/xeM€ f(x’ ¢(t,x))w(t,x)a(dx)dt

e—0

(6.18) .
_ / / £ (x, (2, 2)) ot Dol da) dt,
t=0JxeM°
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where the right side makes sense. Finally, consider condition a.3. In light of
Proposition 4.1, (6.17) and (6.18) and some simple calculations, condition a.3
follows from (4.14) [set s = 0 in (4.14) to take care of the contribution of T;u,].
This completes the proof that (6.2) gives a solution of (I.1) in the sense of
Definition 2.2.

Finally, consider the uniqueness question. If u in C,, solves (I.1) in the sense
of Definition 2.2, then we may define & := B~'u. By Proposition 6.3, % is in C,,,
and by collecting together (6.12), (6.17) and (6.18), z must actually solve (4.1).
Proposition 4.2 then implies that # = u; P-a.s., sou = By;. O

The picture is now complete. If the nonlinearity f satisfies conditions nl1,
and nl/2,, then (I.1) has a unique solution in C.,.

7. Conclusion. This completes our study of the equation (I.1). We have
developed the basic theory for the Robin problem with white noise perturbations
on the boundary. We have the existence and uniqueness results and we have
a characterization of the solution given by (4.2), (6.2) and (6.3). In addition,
we have a description of the boundary layer behavior for (I.1). We know the
degeneracies of u both in the normal and tangential directions at the boundary.

There are a number of ways to build on the results presented here. Using
the functional space C, of Section 5, one can consider boundary perturbations
of the form

(v, Vu) + Blelulg, x am = oru)¢,

where for every ¢, o;: C,(tf) — R is some mapping with good enough behavior.
Of course, with this boundary condition, the solution of both problems (I.1) and
(4.1) would be non-Gaussian, so the estimates of Appendix B would need some
major modifications. Another question one could consider involves the “correct-
ness” of the white-noise perturbations ¢ as the limit of a fast-oscillating noise;
that is, central limit theorem type results (the case n = 1 was considered in [10]),
and of course one could investigate large deviations for (I.1) if the random per-
turbation has the form ¢ for small € > 0. The question of random perturbations
of PDE’s by boundary noise is a new field with many interesting problems.

APPENDIX A

The Robin Kernel. We give here an idea of the proofs of Propositions 3.1-
3.3. Although the construction and analysis of p® using the parametrix method
is classical, we have been unable to find a reference that gives the estimates
we need, namely, Propositions 3.2 and 3.3. Because these estimates are crucial
for our calculations, we shall briefly point out how to get these estimates from
standard constructions and arguments. We shall in particular rely on [8], but
other relevant references are [4, 5, 11 and 15]. B
_ To begin, we construct the double of M, which we shall denote by M. Then

M is a compact manifold without boundary.and M is a regular domain in M.
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We extend the metric tensor (-, ), the vector field b and the function c to all of
M in any smooth way, denoting these extensions as (-,-), b and . All objects
related to M instead of M will have tildes. The manifold M together with (-,-) isa
Riemannian manifold. The metric (-, -) induces gradient and Laplace—Beltram1
operators V and A on C®°(M) and a volume measure &. We can then define a
second-order differential operator £ on M by attaching tildes to all geometric
objects in (2.2). Classical techniques (see succeeding text) allow us to construct
the heat kernel p for £ on M. For eachy yin M Dy is a solution of the PDE
(A.1) %5 _ Ly lim py(t, -) = &
ot » t—0 7 &4

with §; denoting the Dirac measure on (M, B(M)) concentrated at . Note that
(Lf )x) = (Lf )x) for any f in C>(M) and all x in M , so for each y in M, p, must
also satisfy
(A.2) %—Lp lim p,(¢,-) = 6

. ot Al 50 PANE] y
for all y in M°, where here §, is (as in Section 3) the Dirac measure on (M, B(M))
concentrated at y. The heat kernel p will be the starting point of our construc-
tion of pF.

As we noted previously, the construction and asymptotics of the heat kernel
(A.1) is a classical problem. The relevant results are that the solution of (A.1)
exists and that there is some function ¢ in C®(R, x M x M) such that

(A3)  Py(t,%) = exp[-d°, 5)/(20)] @rt) "/ ?p(t,%,5),  t>0,% €M,

for all y in M and such that ©(0,%,%) = 1 for all x in M. One can copy the
arguments of [8], Chapter 6, everywhere replacing the Laplacian by £. The
dominant asymptotic behavior of (A.3) is the same as that of Proposition 3.2,
except that d replaces d. Of course if we replace M by H, and M by R”, then
because H, is convex, dge (x,y) = dg,(x,y) for all x and y in H,. We can extend
this special case to our general M and M by expanding the metric tensor (-, -) in
Fermi coordinates. This yields a w with 0 < @ < 1 such that wd(x,y) < d(x,y) <
w~d(x,y) for all x and y in M. Thus it is more or less sufficient, at least for the
purposes of Proposition 3.3, that p% also have dominant asymptotics like those
of (A.3).

We now start to construct the Robin kernel pE. The dominant term should
be p,, but recalling the model (3.4), we shall first add to p, its reflection across
OM. More specifically, for any y in M such that dist(y, 0M) < e{,, necessarily
y = E(dist(y, oM)v(y)) for some ¥ in OM, where E is the exponential map of
Section 2. Letting now E denote the exponential map on M and considering
v(y) as an element of of TM we set «(y) = E(—dist( y,0M)v(y)). We also let
¢t M — [0,1] be any C* function such that ¢/(y) = 1 if dist(y, M) < ¢, /4
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and 9'(y) = 0 if dist(y, OM) > €{ , /2. Finally, we set
Pl 1@ x) =py(t,x) + ¥ (yPuyt,x), t>0,xeM,

for each y in M. Note that pf”" also satisfies (A.2) for each y in M°. We then
search for p¥ in the form

t
(A.4) pi(t,x) =pl1(t,x) + / / p:(t — s,%)f,(s,2)adz)ds, t>0,x€M,
s=0JzeoM

for some sufficiently regular function fy: R; x 8M — R. By the jump relation
([8], Theorem 7.1.1), fy should then satisfy

t
7,65 = (S 1) 6, ) + / / @pe)t — 5,2, (s, E)aldz) ds
s=0Jze M
for all ¢ > 0 and X in OM. This suggests the recursion

g,t,%) = (CpP 1) (%)

. t o .
(AB) givi 5 .o / / (@)t — 5, D (s, 2)aldz) ds,
s=0Jze oM
t>0,F€M°n=01,...,

with f being defined as

(A.6) f,&,%):=> g5, t>0,%coM.
j=0

A detailed study of this recursion will finally yield the estimates of Proposition
3.3. To simplify our calculations, let us now define

&, x,y;v) = v lexp [—v32(x,y)/t], t>0,x,yeM,

for each v > 0. The preexponential term v~! will make some of our formulae
simpler. Note for future reference that for each ¢ > 0 and x and y in M, the
mapping v — &(¢,x,y; v) is monotone decreasing on (0, 1]. Let us also now fix a
finite time horizon T' > 0. We will only consider (A.4)—(A.6) for ¢ in (0, T'], and
henceforth all v’s and 7n’s will be positive constants that depend (only) on T
Finally, I" will denote the standard gamma function.

Some straightforward modifications of the parametrix calculations of [8],
Chapter 6.4, show that the sum in (A.6) converges absolutely for each ¢ in
(0,T],xin OM and y in M, and that there is a v; > 0 such that

(A.7) If, )| < @, X%,y;00t ™2, te(0,T],xc oM,y M.

We give only the most relevant parts of these calculations. Like equation (2) of
[8], Section 7.1, there is a constant v; ; > 0 such that

(A.8) |Cpl1(t,x)| < &t %,y;v1,10t™% and |Lps(t,%)| < £, X, Z; vy, 1)t
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forallt € (0,T],x € OM,y € M and Z € 8M. These bounds can be shown by
using Fermi coordinates. It is very important here that v in (2.3) is normal to

OM. Next note that there is a constant 7; with 0 < n; < 1 such that for any
v <1,

¢
/ / &t —s,%,Z;v1,1 0t — 8)2¢(s,2,y;0)sY ~ "/25(dz)ds
s=0Jz2€0M

(A9) < GOVt o g )= D/ { /
s

_T(1/2)r(j/2+1/2)
T D20 (/2 + 1)

(t—s) 1/2 (j— 1)/2ds}

&, x,; "7'17)t«f+ 1) —n)/2

for all t € (0,T], and all x,y € M. The analogous calculation on H, is simple,
and the constant 7; compensates for the error incurred by mapping (A.9) to the
calculation on H,,. We use this calculation to show that for each j = 0,1, ...,
there is a positive constant vy ¢ ; such that

(A10) |8/t %) < &G, X, y;v1,2, 8"V, 0<t<T,X€dM,yecM.

Then the preexponential singularities of the g’’s get weaker and weaker as j
grows. The cost of this is the constant 7, which, because it is strictly less than
1, also weakens the exponential decay for small time. We shall use (A.10) to
bound g’ only forj = 0,1,...,n. Forj=n, n+1, n+2,..., another calculation
replaces (A.9), and this other calculation preserves the exponential decay for
small time. There is a second constant 7 > 0 such that forany j=n, n+1, ...,

t
/ / &t —s,x,Z;v1, 1)t — s)%¢(s,2,y; vl,z,n)s(j"‘)/za(di) ds
s=0Jz€ oM

V1,1 — U1,2,n)

< E,X,y; 'U1,2,n)(
U1,2,n

¢
(A.11) X / / &t —s,%,2;v1,1 — V1,2, )t — s)~ "~ V/2g(dz)
s=0JzedM

X (t — s)—l/Zs(j—n)/Z ds

< ol (1/2) I((j—n+2)/2)

&, x,y; fJ+D—n)/2
> (Ul,l — U1,2,n)(n_l)/2 F((]— n+3)/2) ( X,y Ul,Z,n)

forall¢ € (0,T] and all x, y € M. The first exponential term on the right side of
the first inequality comes from [8], Lemma 6.4.3. Note that because 7; in (A.9)
is strictly less than 1, vy 3 , < v1,1. We use this calculation to bound the g’’s for
j=n+1,n+2, ... The short-time exponential decay of all these g”’s is thus
G(,-, 5 v1,2,n) and the preexponential terms decay to zero like v/ /T'((j — n + 3)/2)
(see [8], Section 7.2). This, in conjunction with (A.10), shows the convergence
of (A.6) and yields the bound (A.7) for some v.
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For convenience, we now define
t
(A.12) Lt,x) = / / Palt — 5, 9F (5, 2Vaildz) ds
s=0JzedM

for all ¢t € (0,T'] and x, y € M such that the right side is well defined. To show
that I is well defined for all ¢ € (0,T'] and x,y € M, and to also get the bounds
of Proposition 3.3, we first need some corresponding bounds on p®t and p.
Appealing again to local coordinates, we can see that there is a v, > 0 such that

Py 1(2,2)| < &(t,x,; 02D/, | By (8, 2)| < ECt,x,y; vp)t~"/2,

Vp5 T, 20)|| < &, 2,55 v2)t/2=1/2, ||V, (2, %)|| < &, x,y; vg)t /2= 1/2,
’ R, t

(A.13)

—a‘gt (t,%)| < &t,x,y; vp)e /27, %’tl(t,x) < &(t,x,y;vp)t /21

forall¢t € (0,T),x € OM,y € M, and Z € M. These bounds, along with (A.7),
give us the integrability of (A.12) and most of Proposition 3.2.

IDEA OF PROOF OF EXISTENCE OF pF AND IDEAS OF PART OF PROOF OF
ProOPOSITION 3.3. To do a number of calculations simultaneously, let us let j
be 0, 1 or 2, and fix any A’ such that 0 < ) < min{1, j}. Calculations similar to
those proving Proposition 3.4 show that

(j— /2
&(t,x,Z; vg)t—"/2-i/2 < (j’?i) e (t, x,Z; Pg) p—(=1D/2- (N +1)/2
d2(x,2) 2

gZ(x,E) (j—A"/2 _ vg
(Gmn)  E(=5%)

v J=X)/2 M
< <_22> C(j — X)(dist(x, BMD) >~

(A.14)

v !
x €& (t,x, zZ; —23> g~ =D/2- N +1)/2

for all¢ € (0,T], allx € M and all Z € OM. Here C(j — X') is defined by (3.8). A
calculation similar to (A.9) now shows that for some 73 > 0,

t
s=0Jze oM 2

(A.15) x &(s,Z,y; v1)s M 2a(dz) ds
msC(1/2)0( - X)/2)
(n+1)/2 Y
vy r'(1-x/2)

for allt € (0,T] and all x, y € M, where vz := min{vy, ve/2}. From (A.4), (A.12),
(A.13) and (A.14), this is exactly what we need to get some of our desired results.

t—n/2+(1 —-X)/2

g(t,x,ya 771'03)
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Taking j = ) = 0, we get that the integral of (A.12) is indeed well defined and
that for some vy,

|L,(t,%)| < &(t,x,y;va)t /2, te(0,T], x,yecM.

Combine this, the first inequality of (A.13) and (A.14) to get claim (a) of Propo-
sition 3.3. To get claim (b), at least for 0 < A < 1, takej =1and ' =1 -\
Then by taking the gradient of I, and moving the gradient operation inside the
integrals in (A.12) and using (A.14) and (A.15), for some vs > 0,

VL) < (v2/2) CO)(distix, OM)) &, x, y; v )t /2~ 1/2

for all ¢t € (0,T'] and x, y € M. Combine this and the third inequality of (A.13)
to get claim (b) of Proposition 3.3 for 0 < A < 1. The case A > 1 follows by
calculations similar to the proof of claim (a) of Proposition 3.4. To get the proof
of claim (c), at least for 1 < A < 2, takej = 2 and X = 2 — ). Take the time
derivative of I, and pass the derivative inside the integrals in (A.12) [recall that
lim,_,,- ps;(¢t —s,x) =0forall¢ € (0,T], x € M° and Z € OM]. This shows that
for some vg > 0,

oL,
ot

for all ¢ € (0,T'] and x, y € M. Combine this and the fifth inequality of (A.13)
to get claim (c) of Proposition 3.3 for 1 < A < 2. The calculations for A\ > 2
follow similarly to those for claim (b) with A > 1. Note that if we want to take
0 < X < 1in claim (c¢) of Proposition 3.3, then if we set )’ = 2 — ), the expression
(¢ — s)~¥ *+1/2 ig not an integrable function of s on (0,¢), so (A.15) fails. Thus
our proof of claim (c) of Proposition 3.3 is only partially complete. However, a
careful analysis of our entire effort in this paper shows that this is a restriction
only for calculations (B.10)-(B.12) whenn =2 and vy < 1. O

The same arguments that are at the end of [8], Section 6.2, show that p% has
the regularity of Proposition 3.1. By the Chapman—Kolmogorov equation, p™*
as given by (3.12) must satisfy (3.13). Because we can apply the same entire
preceding argument to the PDE (3.13), we also know that p? is unique (see [5],
Proposition 2.17). Finally, we can get the asymptotics of Proposition 3.2 from a
slight modification of the foregoing estimates for p®. For any fixed x in M°, (A.3)
implies that p,(,)(t,x) and I,,(¢,x) both decay faster than exp[—dist?(x, OM) /(2¢)]
for any y in M. If d(x,y) < dist(x,0M), then the exact decay of p, as given by
(A.3) clearly dominates and gives Proposition 3.2 [a needed auxiliary result is
that d(x,y) = d(x,y) if both x and y in M are close enough together and far
enough from oM] .

Our only remaining task is to plug up the hole in the proof of claim (c) of
Proposition 3.3. Clearly it is sufficient to prove the claim for A = 0 [recall the
proof of (3.9)]. From (A.13), p*:t has the correct behavior. We thus need to show
that for some vy,

A
(t,x)( < (923) C(/\)(dist(x,aM))_)‘g(t, x,y;ue)t 21

(A.16) ’?g—ty(t,x) < &,x,y; T 1 te(0,T],x,ye M.
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A direct differentiation under the integral sign in (A.12) is not sufficient; that
led only to claim (c) of Proposition 3.3 with A > 1. An alternate way of studying

oI, /8t is to write it in terms of 8f /9t instead. Things will work out if we first
rewrite (A.12) as

(A17)  L(¢,x) —/ / {p:(t —s, x)f (s,2) + ps(s, x)f (t —s,2)}a(dz)ds
s €M

forallt € (0,T] and x, y € M. Then
oI, ~(t \N=/(t _\_, ,_
002 [, 7 (570 (57)7
t/2 b _
(A.18) / / {pz —s,%)f,(s,2)
s zZ€EM

+52(S,5)%tl(t - S,E)}a(df)ds

for all such ¢, x and y. Collecting together (A.7), (A.13) and a calculation like
(A.9), we see that (A.16) will hold for some v; > 0 if for some vg > 0,

(A.19) ’ y(t x)| < &t x,y; vt~ 271, te(0,T), x,y M.

The proof of (A.8) shows that Z? obeys a bound like (A.19), so we shall try to use
(A.5) to show that f does indéed have the bound (A.19) for some vg. The same
calculations as in (A.17) and (A.18) show that for j=1,2,...,

8§;‘+1 _ _ t__jt____
5 (t,x)—2/263M£ap2—.(§,x)gy(§,z)a(dz)
t/2
(A.20) / / {a(;;p Z)(t -5 x)g’(s Z)
s zeoM

—_ ., 08 RS
+ £’172(8,36)-%@ - s,z)}a(dz) ds

for all ¢ € (0,T],% € OM and y € M. Collect together the bounds on the g’’s for
j=0,1,...,n+10f (A.10), (A.8) and a bound on 8(Lp)/dt like (A.19). A bound
on (A.20) using calculations like (A.9) shows that for j = 0,1,...,n + 1, there is
a vg 1,j > 0 such that

og! .
—égtl(t,x) < &(t,x,y;u8 1, Y T2 £ €(0,T], %, y € M.

Use these bounds for all j = 0,1,...,n+ 1. Thenforj = n+2,n+3,..., use
the calculation

8g;+1

(t,%) = / / s (5,5 y(t—SZ)a(dz)
s=0JzeoM



2106 R. B. SOWERS

This is exactly the same recursion as (A.5), so the calculations (A.11) and the
comments following it directly show that for all j =n +2,n+3,..., dg, /0t is
bounded by E(¢,x,y;vs 1,,+1) and the preexponential terms tend to zero in a
summable way. This completes the proof of (A.19) and thus of (A.16) and thus
completes the whole proof of claim (c) of Proposition 3.3.

APPENDIX B

Proofs of Lemmas 5.2 and 5.4. We here give the proofs of Lemmas 5.2
and 5.4. Although these calculations are very technical, they are essential. The
basic idea of these lemmas, and thus perhaps the most illuminating approach to
proving them, is that locally p® looks very much like (3.4). In this direction, we
should use the bounds of Proposition 3.3. Brevity, on the other hand, obliges us
to cut some corners and use some cruder bounds, namely, those of Proposition
3.4. The ambitious reader may at his or her leisure make the calculations given
here much more precise. A particular suggested refinement might be to see how
the continuity of the estimates of Lemma 5.4 could be improved depending on
which argument—t, X, r or e—is varied.

Let us begin with some comments that will be useful in the proof of both
lemmas. Some of our calculations will be simpler with the notation

loll == sup |o(F)].
yEM

Second, the following auxiliary result will help us in two specific parts of our
proofs, namely, the continuity of V; , in X and the continuity of V, in ¥ and r.

LEMMA B.1. For every n > 0 there is a positive constantii,l7 such that

[ a0 (o 5)d- 0 (5, ) ads)
5 € oM

< ﬁ}]d—(n —D+2n (95(51), 95(3_52))
forall 0 < ¢ < e, and for all X, and X3 in OM such that X, # Xp.

Proor. This is a generalization of equation (3) of [8], Section 7.1. Here, as
there, we leave the proof to the reader. O

We first prove Lemma 5.2. We can use (4.2) to rewrite (5.7) as

, |

Viatmo=-4 [ [ k-5 0.m)0()dsd)

(B.1) e

= o [7 ] xeople- s 0ot
s=0JyeoM

forallt > 0,allxin M and all 0 < ¢ < ealb, where x(; < is the indicator
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function of the set {s < ¢}. Thus

t

2
(B2) E[Vy .%o < illo|? / / {evpg(t—s,ea(o-c))} a(dy) ds
s=0JyeoM
for all (¢,%,¢) in (0, T] x OM x (0, ] and

]E[|V1,7(t1,3_61, 1) — Vi, ,(t2, %2, 52)12]
B % l:o ~/J;E oM {EgX{SStZ}pg(tz - 37‘952(9_52))
2
(B.3) - 8’1YX{SSt1}p51,2 (tl —s, 051(3_51))} |0(7)|206(dy)ds

o0
<Hol? [ [ {xecmpE (- ,0.)
s=0JyeoM

2
— €1X(s szl}pr (t1—s, 951(3_51))} aoldy)ds
for all (¢1,%1,€1) and (tg,%2,e2) in [0, T'] x OM x (0, ].

It will turn out that our study of the variation of V; ., in ¥ will require yet
another auxiliary result in addition to Lemma B.1:

LEMMA B.2. Fix n > 0. Then there is a positive constant ﬁf, such that if
{9(r): r > 0} is a geodesic in any O;M and ¥ has unit speed,

R
/ dr1! (06 (8(), 6. (19(0)))dr <HZR"
r=0

forany 0 <R <pandany 0 <e<e,.

ProOOF. By using Fermi coordinates and fields one can expand the mapping
(e,7) = d" = 1(B.(3(r)), 6:(9(0))). This allows us to find a positive/_’ ' such that

R R
/r @2 (6.0, . (000) ) ghf;T/ﬁOr”‘ldr:hfﬂn‘lR”

for all 9, R and ¢ as in the statement of the lemma. Take hf, = h,z,’ 1. O

With these representations and results in hand, we can commence with the
proof of Lemma 5.2.

PRrOOF OF LEMMA 5.2. We shall first show the boundedness result (5.8) and
then show the continuity estimate (5.9). By virtue of the triangle inequality, we
can show the continuity estimate (5.9) by separately considering the variation
of ¢, ¥ and . To simplify the various parts of the proof, let us now fix for the rest
of the proof some ¢ > 0 such that

(B.4) ¢ < min{y— (n — 1)/2 - 8,(n — 1)/2},
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where 3 is as in the statement of Lemma 5.2. O

Boundedness. Fix0<t <T,xin OM and any 0 < ¢ < ¢{ ;. From (B.2) and
a simple change of variables,

t
B5) E[[Vi, &5 < Lof? /
s=0

2
pE(s,6.®) } aldy)ds.
[ (eFes

We bound the integrand using claim (a) of Proposition 3.4 with \; =n/2 + 1/2
+c¢and Ay =v.Then \; <nby(B4),and g - A\;=(y—(n—1)/2 -¢)— 1 and
—n+ A1 = —(n — 1)/2 + ¢. Consequently,

Ievpjlf (s, 95(3_6)) | <K (T, n/2+1/2+g, ,y)s(('y—(n— D/2-9-1/2

(B.6)
xd==D/2+s(g,(x), 3).

Inserting this in (B.5), we get that

/s: 0 /5'6 oM {€7p51? (s’ 95(3_6)) }26(d§) ds

<{&i(T,n/2+ 1/2+c,7)}2{ /st

s~ -1/2-9-1 ds}
=0

B.7) x{ / d—<n-1>+2<(9€(a‘c),7)a(d§)}
yEM
2
< {K{(T,n/z +1/2+ c,’r)}

XEzg{(’y -(n-1)/2- g)‘ltv—(n—n/z_g}
Because ¢7=(=1/2=¢ < T1=(=1/2=5, (5.8) follows by combining (B.5)
and (B.7).

Variation int. Fixnext0<t#; <t <T,Xin OM and 0 < ¢ < ¢/, . We may
then rewrite (B.3) using some simple transformations as

E [lVl, 'y(tl,iy 5) - Vl,'y(t2)-¥7 €)|2]

t1
<tolr [ [ {epk-s,0.0)
s=0JyedoM
2

— &P (t1 — 5,0.®) } aldy)ds
t )
(B.8) + o / / {eE(t2 - 5,6.0) } atdy)ds
S =t1 5’\6 oM

t1 .
=t [* [ {ewha-t+s0@)
s=0JyeoM

— TR (s,0:) ) wlpds
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ity —t1 9
+ 1o / / {ep2(s.0.®) } (5 ds.

The last term is the easiest to bound. From (B.7) we can see that

to — 11 2
/ / {e7PB (s, 6.®) } atdy)ds
yEM

2
(B.9) < {K{ (T,n/2 + 1/2+c,’y)} =
x(y—(n—1)/2 - g)—lT'v—(n—l)/2—ﬁ—<|t2 — )P

Returning now to the first integral in the last equality of (B.8), we can use
the fundamental theorem of calculus to express the difference there in terms of
8py /0t. However, we can bound OpR /0t by Proposition 3.4, similarly to the proof
of boundedness. Take A\; =n/2+1 / 2 + ¢ and )\ = v in claim (c) of Proposition
3.4. Then calculations similar to those of (B.6) give us the bound

’8”’ (pﬁ‘? (ta —t1 +5,0:.() — 67p51'e (s, 06(9_6))) ‘

to —t1 +8

(B.10) < KyT,n/2+1/2 +§,,y){/ u(*r—(n—l)/2—c—3)/2du}
u

x d~(=V/2+5 (g, (x), 7).

Because v < (n — 1)/2 + 1 (we required this in the statement of the lemma)
and 3 and ¢ are positive, y — (n — 1)/2 — 8 — ¢ — 1 < 0, so the mapping u —
u = @®=1/2-F-s-1/2 j5 decreasing on (0, co). Thus

tog —t1 +8
/ SO == D/2—s—3/2 g,
u

=8

=8

to —t1 +8
(B.11) =/ u('y—(n—1)/2—ﬁ—c—1)/2uﬁ/2—1du
u=s

g —t1+8
Ss('v—(n—l)/2—ﬁ—<—1)/2/ uB2=1gy

u=s
Moreover, because the mapping u — u#/2-1 is similarly decreasing on (0, c0),
we have in a way similar to (4.7) that

tog —t1+s to — _1
(B.12) / uﬁ/2—1du < / uﬁ/2—1du - (/3/2) |t2 _ t1|ﬁ/2-
u u=0

=8

Collect together (B.10)—-(B.12) and use them to show the bound

t1 ' 2
/ / {57p§3 (ts —t1 +5,0.()) — e”pg (s,6:(x)) } a(dy)ds
s=0Jyec oM -

(B.13) <{&5(T,n/2+1/2+¢,7) }25%( —(n-1)/2-8-¢)""

X I == D/2=60=5(5/2) Pty — 1y]8.
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The combination of this and (B.9) gives us the desired bound for the variation
int.

Variationine. We next vary ¢; the variation of X involves more complicated
calculations. Fix 0 < ¢ < T, x in some §;M and 0 < ¢; < &3 < €. From (B.3)
and an obvious change of variables,

E [IVl, 'y(ta Ea 82) t_ Vl,'y(ta E, el)lz]
2
B 1 / / {e3pB(5,6.,(®) — }pF (s, 6.,®) } aldy)ds.
s=0JyeoM

Again, we will bound the integrand by using the fundamental theorem of cal-
culus and Proposition 3.4. We have that

6305 (5,0.,0) — <28 (00,0

(B.15) €2 .
< [ (o BB e 0@) |+ o 10, Vo 5,6, |
n=e1

Note that ||6,®)| = 1 for all 0 < n < &}, because the curve n — 6,(%) is a
geodesic of unit speed. We next want to use claims (a) and (b) of Proposition
3.4 to combine £” and 7 ~ ! with |pZ(z, 6,(x))| and || VpE(s, 6,(7))||. After this, we
want to use calculations somehow like those of (B.9) and (B.13).

To make all of this work out, let us bound (B.15) by using claim (a) of Propo-
sition 3.3 with A\; =n/2+1/2 +¢ and A =y — 3/2, and claim (b) of Proposition
34with\;=n/2+1/2+cand \g =y — 3/2+ 1. Then

395 (5, 6e,®) — €75 (5, 62, ®) |

(B.16) < {K{(T,n/z +1/2+6,7— B/2) +K}(T,n/2+1/2 +5,7 — B/2 + 1)}
x gV~ =1/2-8/2-c-1)/2 /52 d—m- 1)/2+<(9n(£), y)nﬁ/2— 1d77-

n=¢€1

If we forget about the d~"~1/2+<(g,(x),¥) term in the integral, we get a term
like |e3 — £1/%/2 by a calculation similar to that of (B.12). Inserting this, (B.14)
would then give us the desired variation on the order of |¢; —£1|°. On the other
hand, if we forget about the 7%/2-1 term in the integral in (B.16), we could
use Lemma 3.5 as we did in (B.9) and (B.13). We can use Cauchy—Schwarz to
do both:

d—(n -1)/2+¢ (977(5), y)nﬁ/Z -1 d"]
n=e;
€ )
= d—-(n—D/2+¢ (9,7(3_6), y)nﬁ/4 - 1/277ﬁ/4 —-1/2 dn

n=éei

€2 1/2 &2
< {/ d—(n—l)+2g(9n(3—c),y)nﬁ/2—ldn} {/ nﬁ/2—1dn}
n=¢€1 n=eé1

1/2
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Insert this bound into (B.16) and thence into (B.14). This allows us to compute
E[|Vy,(2, %, €2) — V1,42, %, €1)|?]
< Hlol?{&{(T,n/2+ 1/2+5,7 - 5/2)

+Ky(T,n/2+1/2+¢,7v—B/2+ 1)}2

X{/t s'y—(n—l)/2—ﬁ/2—§—1ds}
s=0

€2

n=e; J7€8M

([
n=ée
< Hlo|2{K(T,n/2 +1/2+5,7 - 6/2)

+Ky(T,n/2+1/2+¢,v—B/2+ 1)}2
X {(7 -(n-1/2-p/2- c)‘lTv-m—1)/2—ﬁ/2—g}52g

[0} 2
([ vl
n=e1

Using a computation analogous to (B.12) yields the bound
E[|V1, (%, e2) — V1 4(t,%, €1)]?]
< Hlol*{K} (T,n/2 +1/2 +5,7 - B/2)
+K(T,n/2+1/2+6,7y— B/2 + 1)}2
x{('y -(n-1)/2-p5/2- c)—lTV‘("_l)/2'ﬁ/2‘<}

X Eg¢ (ﬂ/2)_2|52 — &P,

which is what we want.

Variation in x.  Finally we vary x. Thanks to (5.8), we can restrict our
attention to x; and X, in some 9;M that are within d;-distance ¢ of each other.
From (5.8) there clearly exists some K such that (5.9) holds for all (¢,%;,¢) and
(¢,%2,€)in [0, T'] x ;M x (0, €, ] such that d;(%1,%2) > 0. Thus we fix 0 <t < T,
0 <€ < g, and ¥; and X3 in some ;M such that d;(%1,%2) < o. From (B.3),

]E[IVI ’Y(t 52,6) - V1 ’Y(t 3_61,€)|2]
(B.17) 1 e 2
N < zlall / / s”py 5,0(%3)) — €"pE (s, 6 (xl))} aldy)ds.
s=0

Instead of directly using the fundamental theorem of calculus to represent the
difference in the integrand, let us start with a slightly simpler manipulation.
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We can break up the integral on the right of (B.17) as

Py 10e(® —€'py ,0:(x aldy)d
/S=0/yeaM {E Py (5,0c®) — €75 (s (xl))} al(dy)ds

= IZ(taEI)EZa 6) - Il(taflvf% 6),

(B.18)

where forj=1orj=2,
Ij(tafl)£2a€)

t
= TpE (s, 60.(x3)) — e"pE (s, 6. (% pE (s, 6.(x;)) bau(dy) ds.
/s=0/y€8M {6 Dy (5, 0:(F2)) — €7p5 ( e(xl))}{5 Py (s 9€(x,))}a(dy)ds
Now let us use the fundamental theorem of calculus to separately bound I,
and I;. As in Lemma B.2, we let {9(r): 0 < r < d;(¥1,%3)} be the geodesic in
8;M that has unit speed and for which ¥(0) = %; and 9(d;(%;,%;)) = X [because
d;®,%) < o < Einjr» this geodesic must exist and be unique]. Then define
pe(r) = 6:.(9(r)) for all 0 < r < d;(%;,%) and all 0 < & < €iup- The curve
{pe(r): 0 <r < 3,-(9?1,3?2)} joins 6.(x1) and 6.(x2). Note that for all 0 < e < ¢f,,
@e(r) = DO.(H(r)) for all 0 < r < d;(%,%,), where D0, is the differential of the
map X +— 6(%). Note also that ' := sub:cam, o<c<er [1D6c Imsnllop is finite,
where || - [lop is the operator norm. Because ¥ has unit speed, we have that
SUD) <, < 4,3y, ) |9 < R for all 0 < e < ¢, . Collecting together all of this
and now using the fundamental theorem of calculus, we see that for j = 1
or j=2,

|Ij(t7£l)£2) 6)'

¢ d;(xy,%2) & .
®19 Sh// / / || Vpy (s, e V| pB (s, 0.(%;
s=0JyecoM Jr {6 ” Py (s ® r)“}{E Ipy (3 (xj))lj

=0
x dr a(dy)ds.

To show that the I;’s are on the order of Ef(a?l, x3), we shall use Lemma B.2. To
make all of this work, we bound (B.19) by using claims (a) and (b) of Proposition
34withA;=n/2+3/2and \g=~v.Then Ag— Ay =vy—(n-1)/2—-3/2-1/2 and
-n+X=—-(n-1)/2+(8-1)/2, and so

{71VPR (s, 0er) | } {7 | pF (s, 6.5)) |}
<K{(T,n/2+p/2,7)K}(T,n/2+ 3/2,7)s" ~n-V/2=A/2=1
x d—(n -1/2+(8-1)/2 (905("), y)d—(n -1/2+(B~ 1)/2(y, 95(-”?1)) .
Insert this in (B.19). Integrate in s and use Lemma B.1 to integrate in y. Finally,
use Lemma B.2 to integrate in r. If X; = X3, then r — 9(r) is a geodesic in ;M

with unit speed and which starts at x;. If ¥; = %5, then r — Id;(%y, %) — 1)
is a geodesic in 9;M with unit speed and which starts at xy. This gives the
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following inequalities:

|Ij(t,.7_61,.'72,8)|
< KK, (T,n/2+B/2,7)Ks(T,n/2+ 5/2,7)

t
x{/ sw—(n—n/z—ﬁ/z—lds}
s=0

(B.20) . {hfn Caea | B 181, 0€(o_ci))dr}
< KK (T,n/2+ ﬂr/_2o K, (T,n/2+5/2,7)
" {('y —(h-1)/2- ﬂ/z)_lT'y—(n—l)/2—ﬁ/2}
X By g4 pyyail df G %).
Combining (B.17), (B.18) and (B.20), we find that

E [|V1, 'y(t) Xg, €) — Vl, 'y(tafla E)IZ]
< Yo |?A' Ky (T, n/2 + B/2,7)K5(T,n/2 + B/2,7)
x{(y-tn-1/2~ ) Ll Y d; @1, %).
This completes the proof of Lemma 5.2. O

We next prove Lemma 5.4. Using the stochastic Fubini theorem and a calcu-
lation similar to (B.1), we see that

t S
Valt, & rye) = —1 / . /y . r){ / . / . —u,ee(y))a(z)c(du,dz)}

xa(dy)ds

t t
SYRMRTW ST
u=0Jz s=uJy x,T

xoZ)(du,dz)

0 t—u
=—%/ / {X{ugt} / p?(s,es(y))a(dy)ds}
u=0J2€M s=0 Jy€B@&,r)

xo(@){(du,dz)

for allz > 0, % in any 9;M, all 0 < r < g and all 0 < ¢ < &{;,. Thus, like (B.2),

E [lVZ(t, Ea r, €)|2]
(B.21)

t t—u 2
st [ [ [T eommapis ) man
u=0JzedM s=0 ye?(i,r)
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for all (¢,%,r,¢) in any (0, T'] x ;M x (0, o] x (0,&;,;] and

E[|Va(ta, %2, 72, €2) — Valty,%1,71,€1)|?]

o] to—U
< %||U||2/ / {X{ugtz} / . pE(s,0.,(3)ady)ds
u=0Jze0M s=0 Jy€EB(z,r2) .

(B.22) ¢ —

~ X{u<ti} / i pE(s,0.,(M)
s=0 J5€BG,r)

2
x aldy) ds} a(dz)du

for all (¢1,%1,71,€1) and (¢2,%a, 72, €2) in any (0, T'] x 9;M x (0, o] x (0,ef, 1.
An auxiliary result that will be necessary in these calculations is the
following lemma.

LEMMA B.3. There is a positive constanth® such that:
(@) If xisinany M and 0 <r; <rg < p,

a(B®,r) AB®,ry)) < Blrp — 1.
(b) If %y and Xy are in any .M and 0 < r < p,

a@(B@i,r) AB@®,, 1)) < B°d;(®1,%).

PrROOF. Let us first prove part (a). For any X in any 8;M, we can expand the
volume form @, in normal coordinates. Mapping the measure @ into a measure
on (R*~ 1 B(R" 1)) through such normal coordinates, we see that there is a
nonnegative constant#% ' such that for all X in any 9, and all0 < r; < ry < g,

p— — T2

(B23) a(B®,r)AB®,rp) < A>T / M= 2dr <E>T 0" ¥ry — 1.
r=ri

This proves part (a) of the lemma. To prove part (b), consider two cases: when
di(fl,fz) >r and when di(ﬂ—cl,fz) <r. Ifdi(:)_cl,fz) >r, then by (B23),

a(B(x1,r) AB®,, 1)) < @(B@®y1,1) +a(B(xz, 1))
(B.24) —

< 28> 1gn ~2r < 21% 1 0"~ 24,3y, %o).
On the other hand, if d;(%;,%;) < r, then for any z in B(Xy,r) ~ B(X,,r),
r < di(®,2) < di(®, %1) + di(%1, 2).

Comparing the outer two terms, we see that d;(%,2) > r — d,(%,,%). Because
also d;(%1,2) < r asZ is in B(X1, ), we see that

(B.25) B(®1,r) ~ B(x,r) C B(%1,7) ~ B(%1,r — di(®1,%2)).
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Similarly,
(B.26) B(®;,r) ~ B(1,7) C Bz, 1) ~ B(%p,r — d(%1,%5)).
Collecting together (B.23), (B.25) and (B.26), we thus have that if d;(%;,%;) < r,
@(B®1,r)AB®,,r)) = a(B@1,r) ~ B(Fy,1)) +a(B®,, r) ~ BE;,7))
< a(E(fl,r) ~B (%1, — Ei(&:'l,fz)))
+a(B@a,) ~ B, 7 - di&,%)))
< 25> 10"~ 2dy(%,, %p).

The combination of this and (B.24) gives the full proof of part (b) of the lemma. O
We now can give the following:

PRrROOF OF LEMMA 5.4. Asin the proof of Lemma 5.2, we first show bounded-
ness, that is, (5.13), and then continuity, that is, (5.14). We prove the continuity
by separately varying ¢, X, r and . As much as possible, we shall try to follow
arguments similar to those of the proof of Lemma 5.2. Similarly to (B.4), we
shall fix for the rest of the proof some ¢ such that

(B.27) O0<¢<1-0,

where ( is as in the statement of Lemma 5.4.

Boundedness. Fixa0<¢<T,xinsome ;M,0<r<pand0<e < Efub
From (B.21),

E[lVg(t,IJ—C, r, €)|2]

t u 2
(B.28) < Lo|? / / { / / _ |p§(s,ee(y))|a(dy)ds}
u=0Jz€oM s=0Jy€B(x,r)
x a(dz)du.

We shall use Proposition 3.4 to bound this quantity. To do so, take \; = 1 +¢
and )\ = 0. Using these choices of \; and ), in claim (a) of Proposition 3.4, we
have that

/ / | PE(s,0:() [ady) ds
s=0J5€B@&,r)

u
gK;(T,1+g,0){ / s-<1+<>/2ds}
S

=0

X{/ ‘—d—"‘-”*‘(ee(y),z)a(dy)}
y

€ oM

(B.29)

-1
sK{(T,1+<,0)sg(12—.<> L1-972,



2116 R. B. SOWERS

Thus
/ / { / / ] |P§(S,0e(y))|ﬁ(dy)ds} a(dz)du
u=0Jz€edM s=0Jy€B&,r)

~1)2 +
(B.30) < {K{(T,l+g,0)§<(1;g) }a(aM){ / u1—<du} _
u=0

—1)2
= {K{(T, 1+¢,0)E, (%) } FHOMY2 — )12+,

Because 2~ < T2~ ¢, (5.13) follows from (B.28) and (B.30).
Variationint. Fix0<t; <ty <T,xinanyg;M,0<r<pand0<e<ej,.
Then from (B.22),

]E[|V1(t2afa r, 5) - V2(tlafa r, 8)|2]

2
131 to — U
< 1o / / { / / |p§(s,oe<y>)|a<dy>ds}
u=0Jz€oM s=t; —u JyEBR,r)

x a(dz)du

tg u
1||0'||2/ / {/ / ~ |PE(s,0 (y))|a(dy)ds}
u=t; JZ€OM y € B(x,r)

(B.31) x a(dz)du

to — 1) +u 2
= Hol? / / { / / REC 9(y))|a(dy)ds}
u=0Jz€oM

x aldz)du

to — &1 u
o [~ { [ lpﬁ(s,ee<y>)|a<dy>ds}
u= zZEOM s=0Jy €B&,r)

x oldz)du.
The last term is the easiest to bound: replace ¢ by £, — ¢; in (B.30) to see that

t2 tl u 2
R(s,0.(7 —d‘d}—d“d
/ /z-eaM{/uo/yeB(x,r) IP (s (y))la( y) s a( Z) “

1—-¢\"

(B.32) 13 2
S{K{(T,1+c,0)5<(——> }—(aM)(z TIPSty — 1P,

2

A slightly different modification of (B.29) and (B.30) allows us to also bound the
penultimate term in the last equality of (B.31):

tog —t1+u
/ / _ |pE(s,0:(®) [a(dy) ds
s=u yE€B®&,1)
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to — 1 +u

<Kji(T,1+g, O)Eg{ / u—(1+)/2 du}.
S

=u

Using a calculation similar to (B.12) and inserting this into (B.31), we find that

t1 to—t1+u 2
/ / { / / _ |pE(s,0.() Ia(dy)ds} aldz)du
u=0JzeoM s=u y €Bx,r)

~1)2
(B.33) < {K{(T, 1+, 0)E<<1 _ C) } aOM)T |ty — t,|1~<

2

—1)2
< {K{(T,1+g,0)5<(1;g) } a(OM)T? =P =S|ty — 19)°.

The passage to the last inequality used the fact that ¢ < 1 — 8 to see that
lta — £1|1 = < T1=P=<|t; — #|P. Equations (B.32) and (B.33) yield the desired

variation in ¢.
Variation in .  We skip over the variationinx and 7. Fix 0 < ¢t < T, % in

any OM,0 <r < pand 0 < ¢e; < &3 < ¢f;. From (B.22),

]E[|V2(t)3_ca r, E2) - V2(t,£1 r, 8l)|2]

t u
@30 <qolt [ [ L]0
u=0Jz€oM s=0Jy€B(x,r)
2
— PE(s,0.,(®)| a(dy)ds} a(dz)du.

As we did in the corresponding part of the proof of Lemma 5.2, we use the
fundamental theorem of calculus and claim (b) of Proposition 3.4 to bound the
difference within the absolute value signs in (B.34). To make everything work
out in the end, take A\; = 1 +¢ and A\p = 1 — 3/2. Then by using claim (b) of
Proposition 3.4 with these values of A\; and )y, we have that

P2 (s, 0 (3) — P (s, 66,(3) |
[
SEY(T, 14,1 /2)a 0@/ [ gnvs (g3, 2)02 =,
n=e

Note that because of (B.27), /2 + ¢ < 1. Integrate s and y as indicated by (B.34).
Interchange the 7 and ¥ integrals and use Lemma 3.5 to integrate over 3. This
yields that

/ / | PR(5,85(3) — PR (5, 6.,(3) | ) ds
s=0Jy €B&,r)

-1
<Kj; (T, l+¢,1- §)5< (1__(ﬁ_2/2_+_§)> u(1=B/2+a)/2

€2
([ w)
n=e
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Using an argument like (B.12), we can bound the term in braces. Insert the
result back into (B.34) to see that

]E[le(t, x,r,e9) — Vo(t, %, r, 61)|2]

1 2 -1) 2

-1 2
x(2—(-§—+c>> T2“(ﬁ/2+‘)(—’g—) lea — €1/?,

which shows the desired variation in €.

Variation inXandr. Finally, we vary x and r. Note thatife; = eg and £ = 45
in (B.22), then the size of the term in braces in the last inequality of (B.22)
measures the difference caused by integrating y over B(%,,r;,) as compared to
integrating y over B(%a,r2). Motivated by this observation, we shall consider
simultaneously the variationinx and 7. Fix 0 <¢ < T'and 0 < ¢ < g; ;. To vary
%, we take any ¥; and X, in any 9;M, fix any 0 < r < p and define subsets of OM:

(B.35) A; =B(x;,r) and A, :=B&,,r).

If, on the other hand, we wish to vary r, we fix any ¥ in any 0;M, take any
0 < r; <rg < p and then define

(B36) A1 = E(E, 7'1) and A2 = E(f, r2).

With either of these choices of A; and Ay, we can rewrite the right-hand side of
(B.22) using the trick of (B.18):

[ /MM{ [, prooimpman

2
(B.37) - / .\ p§(s,9€(y))a(dy)>ds} a(dz)du
yEA

= Il(ta Al) A2a 5)_ I2(ta Al) A2a E)a

where
t u
Ijt, Ay, Ag,e) = / { / (/ pE (s1,0:(7,))dyy)
u=0Jz€oM 51=0 51 €Ay _
_ R — \\m( g=
(B.38) . /5,1 GAzpz (31,9e(y1))a(dy1)>dsl}

x { / / pg (32706(72))6(@2)d32}
s9=0J¥y EAj .
x a(dz)du
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for j = 1 or j = 2. We will separately bound I; and I;. A simple argument
involving the linearity and monotonicity of integration shows that

/ P (51,005 aldlyy) — / P (51,0.(57)aldyy)
J1EA; J1EA;

(B.39)
</ P2 (51, 6:(7) | atdy).
J1€EAIAA,

Ultimately, we will want to use Lemma B.3 to bound this sort of integral. First,
however, we use Proposition 3.4 to bound the last term of (B.38) and the right
side of (B.39). To use claim (a) of Proposition 3.4, set A\; = 1+¢ and Ay = 0. Then
we have the following two inequalities:

/ | P (51, 6.(5) | adyy)
J1EA1 AAy

S K{(T’ 1 + Q‘, 0)3;(1.'-()/2/ d_(n— 1)+§(0€(yl)’ E)a(dyl),
J1 GAI AAZ
/ |p2R (32, 05(72)) | a(dy2)
S K{(T, 1+ S, 0)32_(1+§)/2 / d—(n —1D+g (ae(yz), E)a(dyz)
F2 €A;

We can insert these into (B.38) and reorder the integrals to get that for j = 1 or
Jj=2,

|Ij(ta Al) A2a E)l

t u 2
< {K{(T,1+g, 0)}2{ / ( / s-<l+<>/2ds) du}
u=0 s=0

X/ / / d—(n—1)+<(0€(yl),z)d—(n—1)+<(§’05(yz))
y1€A1AAy JFr €A JZEOM

x TdZ)ady)a(dF,).

Use Lemma B.1 and Lemma 3.5 to bound the innermost two integrals. We can
then use Lemma B.3. This calculation shows that

/ / / d—(n—1)+<(06(yl)’§)d—(n—1)+c(§, 95(72))
Jy1EAL AAy Y, GAj 566M»
x al(dz) aldy,) aldy,)

<A / / d="=D*2(0.(5,), 0:(7,))aldyy) aildy,)
y1 GAl AAZ ¥2 GAf

< BlEp a(Ag AA,)

{Ei(a_cl,a_cz), if A; and A are given by (B.35),

|re —r1], if A; and A, are given by (B.36).
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Thus
|Ij(t1 Ala A2a E)I

-2
< {K{(T,1+s, o)}z{ (1—2_—‘> @- c)‘1T2"}

d;(%1,%;), ifA; and A, are given by (B.35),
|ro —r1|, if A; and A, are given by (B.36).

(B.40)
X hlEzJi3{

Finally, combine (B.22), (B.37) and (B.40) to get the proper variation in X and r:
for any X; and X in any ;M and any 0 < r < p,

E[|Va(t, %1, 7,€) — Valt, o, 7, 0]

-2
< S lolP{E(T, 1 +c,0>}2{ (F) e- <)‘1T2“}

x k2, 3 (rad(0M)) ' ~Pdl &1, %2)
and for any x in any M and any 0 < r; <rg < p,
E[|V2(t73_clar’ 5) - V2(t,3_62,7‘, €)|2]
-2
< 2ol (Ki(T, 1+, 0>}2{ (—1 = c) @- <>-1T2—<}
X i BP0t~ Plrg — ry|P.
This completes the proof of Lemma 5.4. O
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