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LEVY MEASURES OF INFINITELY DIVISIBLE RANDOM VECTORS
AND SLEPIAN INEQUALITIES!

GENNADY SAMORODNITSKY AND MURAD S. TAQQU
Cornell University and Boston University

We study Slepian inequalities for general non-Gaussian infinitely divisi-
ble random vectors. Conditions for such inequalities are expressed in terms
of the corresponding Lévy measures of these vectors. These conditions are
shown to be nearly best possible, and for a large subfamily of infinitely divis-
ible random vectors these conditions are necessary and sufficient for Slepian
inequalities. As an application we consider symmetric a-stable Ornstein—
Uhlenbeck processes and a family of infinitely divisible random vectors in-
troduced by Brown and Rinott.

1. Introduction. Let X and Y be two random vectors in R¢. If for any

A eR?,
(1.1) P(X>X)>PXY >N,

then the random vectors X and Y are said to satisfy the right Slepian inequality.
If for any X € R?,

(1.2) P(X<A)>PXY <N,

then the random vectors X and Y are said to satisfy the left Slepian inequality.
[Throughout this paper the notation x > y for x = (x1,...,%4), ¥ = (¥1,...,5d)
means that x; > y; for every i = 1,...,d, whereas the notation x > y means
that x; > y; for every i = 1,...,d, and similarly with reverse inequalities.] If X
and Y satisfy both (1.1) and (1.2), then we say that these two vectors satisfy the
two-sided Slepian inequality.

Because probability measures are continuous from above and from below, it
is clea:ir that X and Y satisfy the right Slepian inequality if and only if for any
A €Re,

(1.3) P(X>X)>PY > X,
and they satisfy the left Slepian inequality if and only if for any A € R¢,
(1.4) P(X<A)>PY <))

As a result, we may switch from one version of the Slepian inequalities to the
other depending on the situation.
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Our terminology is (only) slightly unorthodox. First, the original Slepian
inequality [15] has been proved for centered Gaussian vectors. Second, (1.1)
and (1.2) are equivalent if the random vectors X and Y are symmetric, but
because (1.1) and (1.2) are, in general, not always equivalent, it is necessary to
consider both inequalities. The right (left) Slepian inequality has the following
interpretation: the probability that the components are X are all very large
(very small) is greater than the corresponding probability for Y. Hence the
components of X are “more positively dependent” than those of Y.

The original Slepian result for centered Gaussian vectors can be formulated
as follows. If X and Y are two zero mean normal random vectors, then (1.1) and
(1.2) hold if and only if

EX? = EY? foreachi=1,...,d,

(1.5) E(X;X;) > E(Y;Y;) foreveryi,j=1,...,d.

This result has been used extensively for studying Gaussian processes, espe-
cially their sample paths (see, e.g., [7], [1] and [10]). Its importance has gener-
ated a lot of interest in extensions to as wide a class of (non-Gaussian) stochastic
processes as possible. The task, however, has turned out not to be easy. The main
difficulty seems to be that natural extensions of the conditions (1.5) do not, in
general, suffice for Slepian inequalities. This is not surprising if one remembers
that “a few numbers” like those appearing in (1.5) do characterize a Gaussian
law, but this is not usually the case for many other laws of interest.

A weaker version of Slepian inequality, the Sudakov version of Slepian’s com-
parison principle, for Gaussian random vectors ([7]) was extended to symmetric
a-stable random vectors with o > 1 by Marcus and Pisier [11] and to general
type G infinitely divisible random vectors by Samorodnitsky and Taqqu [14].
However, these extensions are not entirely satisfactory, in the sense that the
result of Marcus and Pisier involves a dimension-dependent numerical constant
that blows up as the dimension increases, and the conditions under which the
result of Samorodnitsky and Tagqu holds are often difficult to verify.

The only instance known to the authors of a successful nontrivial extension
of the full Slepian inequality to non-Gaussian situations is due to Brown and
Rinott [3]. It deals with an especially simple family of infinitely divisible ran-
dom vectors. Our wish to understand the basic features that make the Slepian
inequality work in this case has led us to the present research. We discuss the
Brown and Rinott family later in the paper.

Our goal is to extend the Slepian inequality, that is the conclusions (1.2)
and (1.1), to the class of all infinitely divisible random vectors. Our conditions
involve comparison, not of covariances as in (1.5), but of Lévy measures. This
is, of course, quite natural for this type of random vector.

Our overall approach is akin to that used in [12] and [9] under different
circumstances. Professor Pitt kindly pointed out to us the potential usefulness
of his approach to our problem.

The paper is organized as follows. In Section 2, we consider a particular
subfamily of infinitely divisible random vectors for which our main results are
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especially transparent (and complete). In Section 3, the main results are given
in the general infinitely divisible case, and Sections 4 and 5 contain examples:
in Section 4, we specialize our results to the symmetric a-stable case and treat,
in particular, symmetric a-stable Ornstein—Uhlenbeck processes, whereas in
Section 5, we discuss the Brown and Rinott [3] family of infinitely divisible
random vectors.

2. Slepian inequalities for infinitely divisible random vectors. A
particular case. We consider in this section a subfamily of d-dimensional
infinitely divisible random vectors X = (X3,..., Xy) without a Gaussian compo-
nent, whose characteristic function ¢x(0) = E expi(X, 8) has the form

@2.1) $x(6) = exp{ / (exp(i(o, x)) — 1) w(dx) + (8, c)}.
R - {0}

The Lévy measure v of X in (2.1) satisfies

2.2) / (1A x])#dx) < oo
Ri - {0}

and ¢ € R? is the shift vector of X.

Our main results are more transparent when condition (2.2) holds, and this
case will be considered first. The general infinitely divisible case will be treated
in the next section.

Infinitely divisible random vectors satisfying (2.2) have the nice property
that if K is a closed convex cone in R? supporting the Lévy measure v of X
and if the shift vector ¢ € K, then P(X € K) = 1. Examples include compound
Poisson random vectors and a-stable random vectors with 0 < o < 1.

For a given infinitely divisible random vector X with characteristic function
#x(0) given by (2.1) and ¢ > 0, let P? denote the distribution of an infinitely di-
visible random vector with characteristic function (¢ x(0)). Then P! x P$ = Ps+t
for any ¢, s > 0, where * denotes convolution of probability measures. Moreover,
letting {X*?, ¢ > 0} be a process with stationary independent increments satis-
fying X* = 0 and X*! =; X, we have X* ~ P?for ¢ > 0. We refer to {P?, ¢t > 0} as
the convolution semigroup generated by the infinitely divisible random vector
X, and these semigroups play an important role in our arguments. Recall that
the generator G of the convolution semigroup {P?, ¢ > 0} generated by X whose
Lévy measure satisfies (2.2) can be written in the form

(2.3) Gg(y) = (gx+y) —g(y)v(dx) + (c, Agly))
R — {0}

for y € R%, where g: R® — R is in the domain D of the generator G. Recall
further that any g € Cp° (the space of all infinitely differentiable functions
R4 s R with bounded derivatives) is in the domain D (see, e.g., [8]).

To maintain the view of the forest beyond the trees, we describe the basic
ideas behind our results. Looking back at the Gaussian conditions (1.5) one
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observes that they imply that the components of the random vector X “cluster
together” more than the components of the random vector Y do. The Slepian
inequalities (1.1) and (1.2) may then be regarded as an expression of that “clus-
tering.” In the non-Gaussian infinitely divisible case, criteria of clustering are
naturally related to Lévy measures. Specifically, let X and Y be two infinitely
divisible random vectors with Lévy measures vx and vy satisfying (2.2) and
shift vectors ex and ¢y accordingly. If one is interested, say, in the right Slepian
inequality (1.1), it is intuitive then that the appropriate clustering requirement
on the Lévy measures should be

(2.4) vx{x € R%: x> A} > vy{x € R%: x > \}

for every X € R?, or a version of this condition with nonstrict inequalities. The
condition (2.4), however, can be awkward when A € R? := {x € R%—{0}: x < 0}
because the origin, which plays a special role for Lévy measures, belongs to the
set {x € R?: x > \}. For example, vy and vy may have an infinite mass in a
neighborhood of the origin. We will therefore suppose

(25) vx{xeR* x>A} >vy{xcR* x>} foreveryAcR?—R%,
to which we add the “complementary” condition
(2.6) ve{x e R: x # A} <vy{x € R%: x # A\} forevery A cR%,

where x # y for x,y in R? means that x; < y; for at least one i = 1,...,d, and
similarly with x £ y. We will also have to take into account the effect of the
shift vectors.

In fact, further reflection on conditions (2.5)~(2.6) tells us that these con-
ditions should properly be regarded as corresponding not to (1.1) alone, but
rather to the right Slepian inequality for the whole families of infinitely divis-
ible random vectors arising from the corresponding convolution semigroups.
Specifically, let P} and P}, be the convolution semigroups generated by the in-
finitely divisible random vectors X and Y, respectively, and let X* ~ P and
Y* ~ P§ for ¢t > 0 (X =4 X*!). Then (2.5) and (2.6) should be regarded as
corresponding to the family of right Slepian inequalities

(2.7 P(X* > \) > P(Y* > \) forevery A € R?
for all ¢ > 0. The distinction between (1.1) and (2.7) is critical and we will have

more to say about this point in the sequel.

THEOREM 2.1. Let X and Y be two infinitely divisible random vectors in
R? with Lévy measures vx and vy satisfying (2.2) with characteristic functions
given in the form (2.1) and shift vectors cx and cy, respectively.

(i) The following are equivalent:
(a) Conditions (2.5) and (2.6) hold and
(2.8) cx > Cy.
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(b) For every X € R?, the right Slepian inequalities (2.7) hold for all ¢t > 0.
(i) The following are equivalent:

(a)

(2.9) vx{x e Rt x < A} >vy{xeR:x< A} forevery A € R® — R?,

(210) vx{xeR*:xZA}<vy{xecR%xZ\} forevery A cR?

and

(2.11) cx < cy.

(b) For every X € R?,

(2.12) P(X* < X)>P(Y" <)) forevery X € R®

forallt > 0.

REMARK. The pair of assumptions (2.5) and (2.6) is equivalent to the fol-
lowing assumption, which is in certain circumstances more tractable than the
former: For every random vector W € R¢ whose coordinates Wy, ..., W, have
bounded densities,

/ (P(W < x) — P(W < 0))vx(dx)
2.13) -0

> / (P(W < x) — P(W < 0)) vy(dx).
Rd — {0}

Note that both sides of (2.13) are well defined and finite. To verify the equiva-
lence, observe that

/ (POW < x) — POW < 0))vx(dx)
x ER? - {0}
= / [/ (1w < x)L(w £ 0)
x€ER?— {0} LJ/Rd
(2.14) — 1w £ x)l(w < 0))Fw(dw)] vx(dx)
- / vx{x € B - {0}: x > w}Fy(dw)
Ri_Rd
- / vx{x € R — {0}: x # w)Fy(dw),
Rt ‘

where Fy is the probability law of W. The implication (2.5) + (2.6) = (2.13)
is now obvious. Let us check the converse implication. To establish (2.6) (say),
pick first a A in R% such that both A < 0 and )\ is a continuity point of both
vx and vy. That is, vx{x: x; = A; for some i} = 0, and similarly for vy. (Let us
agree to call such points “nice.”) For all ¢ > 0 small enough, the cube C(¢) =
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H‘f()\i — g, )\ +¢) is entirely in R%. Let W have the uniform distribution over
C(g). Then (2.13) implies

/ vx{x €R?— {0}: x # A+ey}dy
[-1,1)¢
5/ vy{x € R? — {0}: x # A +ey}dy.
[-1,1

Because ) is nice, we recover (2.6) for all nice A\ € R% by letting € go to zero.
Observe now that nice points are dense in R% . Forany X € R% choose a sequence
of nice points \;, i = 1,2,..., converging to A from below. Then

vx{x e R —{0}: x # \;} Tvx{x € R* — {0}: x # A}

and we obtain (2.6) for all A € R?. One can show in the same manner that
(2.13) implies (2.5) for all A € R% — RY.

Similarly, the pair of assumptions (2.9) and (2.10) is equivalent to the fol-
lowing assumption: For every random vector W € R? whose coordinates have
bounded densities,

/ (P(W > x) — P(W > 0))vx(dx)
Ri - {0}

(2.15)
> / (P(W > x) — P(W > 0)) vy(dx).
R Z {0}

We now prove the sufficiency part of Theorem 2.1. The necessity part will be
proven in Theorem 3.1.

Proor. We may and will assume that ex = ¢y = 0.

(i) It is obviously enough to prove (2.7) for ¢ = 1 [that is, to prove (1.1)].

Fix a A € R% and let f(x) = [T%_,1(x; > \;), X € R4, Fix an ¢ > 0. For each
i = 1,...,d there clearly is a nondecreasing function f; .: R — R in C3° (of R)
such that lim, _, _ f; (x) = 0, lim, _, « f;, <(x) = 1 and such that

|fie(x) —1x > N)| <€
for every x ¢ E; ., where E; . is a Borel set such that
P(X;c€E;.)<e and P(Y;€E;.) <e.

Further, let fo(x) = I% , 3, (x;), and observe that f. € C° of R%, that |fo(x)| < 1
for every x € R® and, moreover,

(2.16) |f(x) - fu(x)| < ed
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for every x ¢ E. := {x € R%: x; ¢ E; . for somei = 1,...,d}. We remark fur-
ther that

(2.17) P(XcE.)<ed and P(Y€EE,) <ed.

Write f; .(x) = H;((—o0,x]), where for i = 1,...,d, H; is a probability mea-
sure on R with a bounded density with respect to Lebesgue measure. Then
H =H,; x --- x Hy is a probability measure on R%. Let P§ and P} be the convo-
lution semigroups generated by X and Y accordingly and let Gx and Gy be the
corresponding generators. Note that for every ¢ > 0 and x € R¢,

(2.18) Pif(x):=Ef.Y'+x)=E | 1z <Y +x)H(dz)=PW < x),
R4

where W = Z — Y* and Z is an R%valued random vector with the law H inde-
pendent of Y*. We conclude by (2.3) and (2.18) that for every y € R¢,

GxP%Lf(y) = [e o (P fex+y) — P4 fo(y))vx(dx)

(2.19)
- / (P(W < x+y) — P(W < y))vx(dx),
R? — {0}

and similarly

2200  GyPLf(y)= / oy POV <x+3)~ POW < )yt
R — {0

The distribution of W has bounded marginals because it is obtained by con-
volving the distribution of Z, which has bounded marginals. Recall that (2.5)
and (2.6) are equivalent to (2.13). It then follows from (2.19) and (2.20) that for
everyt > 0 and y € R?,

(2.21) GxP4f.(y) > GyPyfo(y).
Define h.(¢) = P}t(P‘l{‘t f:(0),0 <¢ <1 Thenforevery0 <t <1,
R.(t) = P{(Gx — Gy)PY.(0).

An immediate conclusion of (2.21) is that A.(¢) > 0 for every 0 < ¢ < 1 and so,
in particular,

(2.22) Ef.(X*Y) = h (1) > h(0) = Ef.(Y*D).
Now (2.16) and (2.17) imply E f(X*!) > Ef(Y*!) — 4ed. That is, for any A € R?,
’ P(X>))>P(Y > \) — 4ed.

Because this is true for every € > 0, (1.1) follows.
The proof of the second part of the theorem is identical. O
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3. Slepian inequalities for infinitely divisible random vectors. The
general case. The characteristic function of a general d-dimensional infin-
itely divisible random vector X = (X3, ...,Xy) without a Gaussian component
has the form

Px(6) = exp{ / (eXp(i(O,X)) -1
(3.1) Ri-{0}
~ i1(x] < 1)(8,x) u(dx)+i(0,b)}.

The Lévy measure of X, v, is a o-finite measure on the Borel subsets of R? — {0}
such that [, {0}(1 A ||x||*)v(dx) < oo, and we will also call (with some abuse
of terminology) the constant vector b the shift vector of X. Incidentally, this
name is more appropriate for the vector ¢ in (2.1) because the vector b in (3.1)
depends on the somewhat arbitrary compensator 1(||x|| < 1)(0,x).

As in the previous section, for a given general infinitely divisible random
vector X with characteristic function ¢x(@) given by (3.1) and ¢ > 0, let P? de-
note the distribution of an infinitely divisible random vector with characteristic
function (¢x(8))t. Then again P! x P¢ = P$*! for any ¢, s > 0, where * denotes
convolution of probability measures and we still refer to {P?, ¢ > 0} as the
convolution semigroup generated by the infinitely divisible random vector X.
As before, X** ~ P! for ¢ > 0. Recall that the generator G of the convolution
semigroup {P?, ¢t > 0} generated by a general infinitely divisible random vector
X can be written in the form

a2 EOF /Rd ) (g0 +3) — g - 1(Ix| < 1) (x, Ag(y) ) (dx)

+ (b, Ag(y)),

for y € R%, where g: R? — R is in the domain D of the generator G. As before,
any g € Cg° (the space of all infinitely differentiable functions R? — R with
bounded derivatives) is in the domain D.

Because the Lévy measure v of an infinitely divisible random vector is finite
outside of a neighborhood of the origin, one can transform any infinitely divisible
random vector into one satisfying (2.2) by restricting its Lévy measure to the
complement of such a neighborhood—a procedure used repeatedly in the sequel.
Specifically, given a vector X with characteristic function (3.1) and a Borel set
A C R? such that Bs := {x € R ||x|| < 6§} C A for some § > 0, we define an
infinitely divisible random vector X4 as having Lévy measure v4 = I,.v and
shift vector b4 = b. Then its characteristic function can be written in the form
(2.1) with the shift vector ¢4 given by

(3.3) A =b; - / 1(x] < Dxartd),  i=1,....d.
AC

The intuition that lead us to (2.5) and (2.6) in the beginning of the previ-
ous section remains perfectly valid in the general setting as well. However, in
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the general case for technical reasons, conditions (2.5) and (2.6) will have to
be somewhat modified (strengthened, in fact). We do not know, at this point,
whether this is intrinsic to the problem or stems from our approach only.

DEFINITION 3.1. A sequence {A,, n > 1} of Borel sets in R? is said to be
deflating to the origin if

1) A1 :)Ag Do
(i) M,>14n = {0}
(iii) For every n > 1 there is a § > 0 such that Bs = {x € R%: ||x| < 6§} C A,.

REMARK. A natural way to produce sequences of sets deflating to the origin
is to choose sequences of balls of positive radius decreasing to zero in some
norm, not necessarily the Euclidean norm || - ||. All the applications of our results
considered in this paper use only sets of this kind. It is conceivable, however,
that the greater generality may turn out to be useful in future applications.

Given an infinitely divisible random vector X with Lévy measure v and shift
vector b and a sequence of sets {A4,, n > 1} deflating to the origin, we define a
sequence of infinitely divisible random vectors {X4», n > 1} as described above,
by restricting the Lévy measure to the complement of the corresponding set A,,.
We record at this point the obvious observation that X4» = X as n — oo. The
strengthening of the assumptions (2.5) and (2.6) previously mentioned amounts
to assuming the following: that these assumptions hold for X and Y restricted
as before to the complements of two (not necessarily identical) sequences of sets
deflating to the origin.

The following theorem is the counterpart of the sufficiency part of Theorem
2.1 in the general case and it is, in fact, an easy consequence of the latter.

THEOREM 3.1. Let X and Y be two infinitely divisible random vectors in
R? with characteristic functions (3.1) with Lévy measures vx and vy and shift
vectors bx and by, respectively.

(i) Suppose there are two sequences of sets {A,, n > 1} and {B,, n > 1}
deflating to the origin such that for every n > 1, the following three conditions
hold:

(34) vx{xeAL:x>A}>vy{xeBi:x> A} for every A € R* — R%,
(3.5) vx{x€A:x#? A} <vy{xeBi:x¥A} foreveryecR?
and

(3.6) o > ey

lef (3.3)]. Then for every A € R%, the right Slepian inequalities (2.7) hold for all
t>0.
(i) Suppose there are two sequences of sets {A,, n > 1} and {B,, n > 1} de-
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flating to the origin such that for every n > 1 the following three conditions hold:
(BT vx{xeAl:x<A}>vy{xeBi:x<A} foreveryXeR?-R?,
where R? := {x € R? — {0}: x > 0},

(3.8) vx{xeA:x £ A} <vy{xeBi:xZ A} foreveryXe R4

and
(3.9) cgr < B

Then for every X € R?, the left Slepian inequalities (2.12) hold for all t > 0.

REMARKS.

1. It is, of course, obvious how Theorem 3.1 follows from the sufficiency part of
Theorem 2.1. Indeed, under the assumptions of, say, part (i) of Theorem 3.1
we get from part (i) of Theorem 2.1 that for every n > 1 and X € R?,

P((XA)* > X) > P((YB)* > X)

for all £ > 0. Because (X%)* = X* as n — oo and (YB»)* = Y* as n — oo,
it follows that (2.7) holds for every ¢ > 0.

2. Assuming (3.4)and (3.5) for every n > 1 is, clearly, a stronger assumption
than just (2.5) and (2.6) in the sense that the former imply the latter.

3. The argument of the remark following Theorem 2.1 shows that for every
n > 1 the pair of assumptions (3.4) and (3.5) is equivalent to the following
assumption: For every random vector W € R? whose coordinates W1, ..., Wy
have bounded densities,

/ (P(W < x) - P(W < 0)) vx(dx)
A

(3.10) g
> / (P(W < x) — P(W < 0))vy(dx).
B
Similarly, for every fixed n > 1 the pair of assumptions (3.7) and (3.8) is
equivalent to the following assumption: For every random vector W € R¢
with coordinates having bounded densities,

/ (POW > x) — POW > 0))vx(dx)
4

(3.11)

> / (P(W > x) — P(W > 0))vy(dx).
By,

4."In the important particular case when the infinitely divisible random vectors
X and Y are symmetric, it is trivial (but useful) to note in the context of
Theorem 3.1 that any choice of the sequences {A,, n > 1} and {B,, n > 1}
such that the sets A, and B,, are symmetric around the origin, makes the
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conditions (3.6) and (3.9) unnecessary. Moreover, in the symmetric case the
two parts in each of Theorems 3.1 and 2.1 coalesce, in the sense that the
assumptions of either part of the former imply the conclusions of both parts,
and the same is true for the latter theorem with the difference that, in this
case, even the assumptions of the two parts become identical.

We now turn to necessary conditions for Slepian inequalities.

THEOREM 3.2. Let X and Y be two infinitely divisible random vectors with
Lévy measures vx and vy correspondingly.

(i) Suppose that for every X € R¢, the right Slepian inequalities (2.7) hold
for every t > 0. Then (2.5) and (2.6) hold. Moreover, if vx and vy satisfy (2.2)
and ex and ¢y are corresponding shift vectors in the representation (2.1) of the
characteristic functions, then (2.8) holds as well.

(ii) Suppose that for every A\ € R?, the left Slepian inequalities (2.12) hold
for every t > 0. Then (2.9) and (2.10) hold. Further, if vx and vy satisfy (2.2)
and cx and ¢y are the corresponding shift vectors in (2.1), then (2.11) holds as
well.

PROOF. (i) Let W be any random vector in R?. Define f(x) = P(W < x),
x € R®. Because for every ¢ > 0,

PLf(0) = Ef(X*)=EE1(W <X*)= [ P(X* > w)Fy(dw)
Rd

and

P4 f(0) = / P(Y* > w) Fy(aw),
R

we conclude by (2.7) that
(3.12) PLf(0) > P4f(0) for every ¢t >0.

Suppose now that W has a Cy° density with respect to the d-dimensional
Lebesgue measure. Then f € C;° and so it is in the domains of both gener-
ators Gx and Gy. It follows from (3.12) and P%f(0) = £(0) = P} f(0) that there
is a sequence ¢, | 0 such that

PLFO)'|,., > (PEf©@)'],.,, n=12,..

That is,
PiGxf(0) > PGyf(0)
for everyn = 1,2,.... Letting n — oo, we obtain

(3.13) Gxf(0) > Gyf(0).
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Using the representation (3.2) of the generators, we conclude that for every
random vector W € R with a Cg° density,

/R ) (POW <3~ POW < 0) — 1(jix] < 1) (x, AFw(0)) )vx(dx)
+ (bX) AFW(O))

(3.14)
> /R , (POW <20~ POW < 0) — 1] < 1) (x, AFy(0) ) wy(d)

+ (bYa AFw(O)).

We first prove (2.5). An earlier argument shows that it is enough to prove it for
X € R?—R?%, whichisa continuity point of both vx and vy. Let \; =¢ > 0 (say).

Define ¢x(y) = vx{x: x > y} and ¥y(y) = vy{x: x >y}, y € R%. Observe that
¥x and 1y are bounded on [¢/2, c0) x R?~! and continuous at y = \.

Let W* = X a.s. and choose a sequence {W”, n > 1} of random vectors in R?

satisfying

(3.15) W= W* asn — oo,
(3.16) W has a C3° density,
(3.17) Wi>e/2 as.n=12,....

Then it follows from (3.17) that A Fy.(0) = 0, n = 1,2,.. ., and so (3.14) takes,
in this case, the form

/ P(W" < x)vx(dx) > / P(W" < x)vy(dx), n=12,....
Rd Rd

Equivalently,
Eyx(W") > Eyy(W"), n=1,2,....
Taking the limits as n — oo, we conclude that
Epx(W*) > Epy(W"),

which is exactly (2.5).

We now turn to verification of (2.6). Of course, it is enough to check it for
A < 0, which is, in addition, a continuity point of both vx and vy. We pursue a
strategy similar to that used in the proof of (2.5). Define ¢x(y) = vx{x: x # y}
and ¢y(y) = vy{x: x 2y}, y € R% Let € = min;_; _4(—);) > 0. Observe that
¢x and ¢y are bounded on (—oo, fs/Z]d and are continuous aty = .

Let again W* = X a.s. and choose a sequence {W", n > 1} satisfying (3.15),
(3.16) and

(3.18) W < —¢/2 foreveryi=1,..,dandn=1,2,....
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Then again AFw.(0) = 0, n = 1,2,..., and so we immediately obtain from
(3.14) that

/ P(W" £ x)vx(dx) < / P(W™ £ x)vy(dx), n=12,...,
Rd Rd .

which is equivalent to
Epx(W") <E¢y(W"), n=12,....
Now take the limits as n — co. We obtain
E¢x(W*) < E¢y(W™),
thus proving (2.6).
It remains, therefore, to prove (2.8) under the assumption that the Lévy
measures vx and vy satisfy (2.2).

Because we need to compare the vectors cx and cy componentwise, we may
as well restrict ourselves to the case d = 1. We have by (3.13) and (2.3),

/ (POW < x) — P(W < 0)vg(dx) + (cx — cx) fir(0)
(3.19) I
> / (P(W < x) — P(W < 0))vy(dx)

for every random variable W with a C3° density fw.
Let W ~ N(0, 02). Observe that

/oo (P(W < x) — P(W < 0))vx(dx) = /Oo P(0 < W < x)ux(dx)
0 0

(3.20) ) /0 ((D (;) ) %) )
< /o ' (@(g) - %)Vx(dx)+ vx ([1, 00))

=o(c~l) asoc—0

by the boundedness of the density and (2.2). Applying the same argument to
the other half of the integral in the left-hand side of (3.19), we conclude that

(3.21) /oo (P(W < x) — P(W < 0))vx(dx) = 0(0_15 as o — 0.

—00

Similarly,

(3.22) /Oo (P(W <x)—-PW < 0))Vy(dx) =o(c™!) asoc—0.



LEVY MEASURES 1943

Recalling that fw(0) = 1/0+/2m, we conclude immediately from (3.19), (3.21) and
(3.22) that cx > cy.

This completes the proof of part (i) of the theorem. The proof of part (ii) is
identical. O

When the Lévy measures of the infinitely divisible random vectors X and
Y satisfy (2.2), Theorems 2.1 and 3.2 imply that (2.5), (2.6) and (2.8) are the
necessary and sufficient conditions for the right Slepian inequality (2.7) and
(2.9), and (2.10) and (2.11) are the necessary and sufficient conditions for the
left Slepian inequality (2.12).

Assuming only (1.1) instead of assuming (2.7) for all ¢ > 0 is not, in general,
sufficient for the conclusions of Theorem 3.2, even under the assumption (2.2).
We show this through the following two examples.

ExaMPLE 3.1 [(1.1) implies neither (2.5) nor (2.6)]. We modify an example
of Samorodnitsky and Taqqu [14] as follows. Let d = 1 and let Y be a mean 1
Poisson random variable. Let X be a (nonnegative) infinitely divisible random
variable such that X =; X; + X,, where X; and X, are independent infinitely
divisible random variables with Lévy measures

vx, (dx) = ndy/a(dx),

(3.23) vx,(dx) = clx > 1) exp(—x(logx)l/z) dx,

where n is a positive integer to be specified later, and ¢ > 0 is chosen in such
a way that vx,([1,00)) = 1/2. (The two random variables have zero shifts cx,
and cy,.)

Observe that as A — oo (through integer values),

P(Y >N ~PY =X)=(e\)1= o(exp(—)\(log A)l/z)).

On the other hand, f1°° vx,(dx) < oo and hence X, is compound Poisson, that
is, Xo = Z1 + --- + Zy, where N is a Poisson random variable and the Z’s
are i.i.d. random variables independent of N. Because the distribution of Z; is
vx,(R))~lvx,, there is a constant C such that, as A — oo,

P(Xy > X) > C(Z; > \) > C%exp(—A(log MV/2).
Therefore,
(3.24) P(Y > ) =0(PX; > X))
as A — oo. Hence there is a Ay > 0 such that for every A > A,
) PX > )\)>PX,; >\ >PY > \).
Onathe other hand, one can choose n so large that

PX>MN>PX;>M)2>PY >0 >PY >\
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for every 0 < A < Ag, implying (1.1). However,

v ((3/4,00)) =vx, ((8/4,00)) = 1/2 < 1= vr((3/4,0))

and so (2.5) fails. B
By taking X = —Y and Y = —X, we have an example of a situation where
(1.1) holds in the absence of (2.6).

ExaMPLE 3.2 [(1.1) does not imply (2.8)]. We take once againd = 1. Let E
be a mean 1 exponential random variable. Let X = E and Y = —E +log 2. Then
the Lévy measures of X and Y are vx(dx) = x~le=*1(x > 0)dx and vy(dx) =
|x|~te*1(x < 0)dx ([6], Section XVIIL.3(d)). They satisfy (2.2) and, moreover,
cx = 0 < log2 = cy, which means that (2.8) fails. However, it is elementary to
verify that (1.1) holds in this case.

REMARKS.

1. Example 3.2 notwithstanding, (1.1) does imply (2.8) in the case (2.2) under
the additional assumption that the Lévy measures vx and vy are concen-
trated on the same quadrant of R®. To see this, suppose, for example, that vx
and vy are concentrated on RZ. Then X; = U;+(cx); and Y; = Uy+(cy)s, where
U, > 0 and U; > 0. Because (2.2) holds, we have P(U; > §) < 1 because
U, is a limit in distribution of compound Poisson variables. If (cx); < (ey):
(say), then P(Y; > (cy)1) = 1, but P(X; > (ey)1) < 1, contradicting (1.1).

2. In view of Theorem 3.2, Examples 3.1 and 3.2 illustrate situations where
the right (say) Slepian inequality (2.7) holds for some ¢ > 0 and fails for
other ¢ > 0. In the strictly a-stable case with 0 < a < 2 (including centered
Gaussian case o = 2), because of the relation X* =; ¢/=X, all the distinction
between (1.1) and (2.7) disappears. In particular, strictly a-stable random
vectors X and Y with 0 < a < 1 satisfy the right Slepian inequality (1.1)
if and only if (2.5), (2.6) and (2.8) hold, and similarly with the left Slepian
inequality (1.2).

4. Symmetric a-stable case: Ornstein-Uhlenbeck processes. In this
section we specialize the results of Section 2 to the symmetric a-stable (SaS) case
0 < a < 2. The example of Ornstein—Uhlenbeck SaS processes presented in the
end of the section is, to the best of our knowledge, the first nontrivial example
where Slepian inequalities can be checked in the SaS case with 0 < a < 2. In
the SaS case the Lévy measure v of a random vector X is given in the form

“.1) WA) = / / 1 € Ayr=0+ @) gr T(ds),
Sd Jo

where I' is a finite symmetric measure on Borel subsets of the unit sphere
8% = {x € R%: ||x|| = 1} in some norm | - || on R%. The measure I' is commonly
called the spectral measure of X. We will use in this section the maximum norm
x|l = max;_1,..a %l
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Let, therefore, X and Y be two SaS random vectors, 0 < a < 2, with spectral
measures I'x and I'y accordingly. Choose the following sequences {A,, n > 1}
and {B,, n > 1} of sets deflating to the origin:

d d
(4.2) Ap=[(~6ni:60,) and By =]](~n,ir0n,),
i=1 i=1
where for afixedi € {1,...,d}, {6,,:}3% and {6,,;}3° , are two sequences of pos-

itive numbers decreasing to zero (refer to the remark following Definition 3.1).
Because these sets are symmetric around the origin, conditions (3.6) and (3.9)
hold automatically (see Remark 4 following Theorem 3.1). A straightforward
computation shows the following proposition.

PRroPOSITION 4.1. In the SaS case, conditions (3.4) and (3.5) take, respec-
tively, the following forms. For every A € R — R4 ,

l(iP,\QiPs)[(maxﬁv in ﬁ—'—)_ - (minﬁ)_ } I'x(ds)
5d .

mi
i€ePy 8;  ie{l,..,d} |si| igPs S

iePr8; i€{1,..,d} |Si|

- (min ﬁ) I'y(ds)
i¢Ps S; R

4.3) Z/I(TAQCPS)[(maxﬁv min %ﬁ)_
Sd

and for every A € R%,

A . G\ ”
min =V min = I'x(ds)
e \igP 8 ie{l,...d} |si|

4.4) \ ) o
< / min 2 v min -2!) Ty(ds).
e \igP s ief{l,...d} |si

Here Px = {i: x; > 0}1.

Stationary SaS moving averages are stationary SaS stochastic processes
that are important in applications (e.g., [4]; see also [16] for a recent study).
They can be represented as

(4.5) X() = / ¥ fe+0Mdx), —oco<t< oo,

where f € L*(—o0,00) and M is an independently scattered SaS random mea-
sure on (—o0, oo) with Lebesgue control measure. The d-dimensional random
vector (X(¢1),...,X(t3)), t1,...,tq € R, is SaS with spectral measure given by

(4.6) D(A) = (1)my (T~HA) + (3)my (T~ 1(-A)),
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where m; is a finite measure on Borel subsets of R defined by
mi(dx) = || f(- + x)||® dx,

I£(-+x)|| =max;_q, . q|f(¢ +x)| and T: R — 8¢ is given by

T(x) = (FEL+)/IIFC+0, ..., Ftg +)/IIFC+2)|) if | F(- +2)]| #0,
(1,0,...,0), E1FC+ 2] =

See, for example, Samorodnitsky and Taqqu [18]. In particular, if f(x) > 0 for
all x € R, then the spectral measure given by (4.6) is concentrated on R¢ U R4,
Substituting (4.6) into (4.3) and (4.4), we get the following corollary.

COROLLARY 4.1. Let {X(?), t € R} and {Y(¢), t € R} be two SaS moving aver-
ages as in (4.5), defined by two nonnegative functions f and g in L*(—o0, 00). For
given ty,...,tg € R consider the two SaS random vectors X = (X(t1),...,X(tg))
and Y = (Y(t1),...,Y(ty)). Then the Slepian inequalities (1.1) and (1.2) hold for
these vectors, if for every A >0and n=1,2,...,

7 (s s )"
oo \i€{1,...,d} [t +x) ze{l d}f(t +x)

4.7) _a
> n,i d
_/_oo (Le{l d}g(t +x) zE{l ..... d}g(t +x)) x
and
/00 )‘ n, i )_adx
—oo \i€E {1 d} f(tl +x) i€ {1 ..... d} f@; +x)
(4.8)

> )\' n,i e
S/ dx
oo ze{l ..... d} g(¢; +x) ze{l d} g(t; +x)

EXAMPLE 4.1. SaS Ornstein-Uhlenbeck processes. The conditions of the
corollary are relatively easy to verify for SoS Ornstein—Uhlenbeck processes.
These are stationary Sa:S moving averages of the type (4.5), with

(4.9) fx) = 7Y% "1(x > 0) and gx)= pt/ e 1(x > 0),

with , 4 > 0. (The purpose of the normalization v/ and 1/ is to give the two
processes the same scale.) The Ornstein—Uhlenbeck processes are also Markov
(see [2]).

We will see that if 0 < v < p, then the two processes satisfy Slepizn inequal-
ities in the sense that for every ¢,,...,¢; € R and all real numbers )y, ..., )y,

(4.10)  P(X(t1) > A1,. ., X(a) > Ag) 2 P(Y(t1) > Aq,..., Y(tg) > \g)
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(and by symmetry, the left Slepian inequality as well). This result is known in
the Gaussian case because for Gaussian Ornstein—Uhlenbeck processes,

E(X(#)X(s)) = exp(—7|t — s]) > exp(—plt —s|) = E(Y(£)Y(s))

for all t,s € R, and so (1.5) are trivially verified. Intuitively, a large u causes
Y(¢) to be affected mainly by the increments of the random measure M “near
t.” Thus, independence of the increments of M leads us to suspect that the
components of the process Y “cluster together” less than the components of X

do.
For a rigorous verification, assume that —co =#) <t; < -+ <#tg <tg,1 =00

and choose
bn,i = Gnexp(—7(t; — t1)),
On,i = 6nexp(—p(t; — t1)),

6 | 0andi =1,...,d. In the subsequent computations we will drop the sub-

script n.
In our case, the left-hand side of (4.7) is

/°° Ai . bexp(—y(t; — 1)) -
max V  min dx
—t, \i€{l.d} Y/ %exp(—(t; +x)) i€ {1,...d} v/ *exp(—(t; +x))

o0 —Q
= / 7exp(—7ax)( el{lllaxd} ;i exp(yg;) vV é exp('ytl)) dx

-t i

=a! (iel{l}?}fd} Aexp(y(E — 1)) v 6) a.
Because the last expression is clearly nonincreasing in «, (4.7) follows.
We now check (4.8). Because ¢y = —o0, the left-hand side of the latter equals
Ko . A
/_tj+1 (ie ey yVeexp(—7(t; +x))
Sexp(—(t: — t1>)) ) -

Y, in
i€ {ﬁl,...,d} 71/°‘exp(—'y(ti +x)

Jj=0

tj+1 yoooy

d-1 —¢ —a
(4.11) _ Z / 'yexp(—'ycvc)< et Iillln 2 i exp(yt;) V 6 exp('yt1)> dx
_ i€{j
j=0
d-1
=a! Z (exp(yat;.1) — exp(yo;))
Jj=0 .

. —a
X ( min )\ exp(y) V6 exp('ytl)> .
i€{j+1,..,d}

Now (4.8) follows from (4.11) and the following lemma.
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LEMMA 4.1. Let —co<t; <---<tg <00, N\, i=1,...,d, positive numbers.
Then for every § > 0 and u,v < t; the function

d-1
k() =Y (exp(yotj.1) — exp(yot))
(4.12) j=0 )

with ty = v is nondecreasing in v > 0,
Proor. The proof is by induction in d. For d = 1 we have
k(y) = (exp(yot;) — exp(yaw)) (A1 exp(yt1) V § exp(yuw)) ™~
= (1 —exp(—yalt, — v))) ()\1 V bexp(—(t, — u))) -

and this is nondecreasing in v because ¢; > u V v.
Suppose now that the statement of the lemma is true for ad > 1 and let us
prove it for d + 1. We have now

d

-
k(y) = on(exp('yatﬂ 1) — exp(yaz))) (i . Plnn 1) X exp(y2;) V 8 exp('yu)) .

Consider two cases.
Case 1. \je"1 < min; ¢ {2,...,d+1} ;e Then

k(y) = (exp(yat;) — exp(yaw)) (A1 exp(vt) V 6 explyu))

-
. A exp(v¢;) vV 6exp(7u)) .

d
+ Z (exp(yat;+1) — exp(yat))) ( el +nlnn o)

Jj=1

The fact that the first term in the preceding sum is nondecreasing has been
proved when we considered the case d = 1, whereas the second term is nonde-
creasing by the assumption of the induction with v = ¢;.

Case 2. \1e™ > min;¢ (o, 4+1) Mie”%. Then combining together the first two
terms in the sum, we obtain

k(y) = (exp(yatz) — exp(yav)) (ie ( g}}i% 3 A exp(vt;) V 6 exp(vu))

d

+ Z (exp('yatj+ 1) — exp('yatj)) (

. Aiexp(vg) VvV 6 exp(vu))
j=2

min
i€ {j+1,..,d+1}

and this is nondecreasing once again by the assumption of induction (we pre-
serve the same u and v, delete ¢; and let ¢, play the role of #;).
This completes the proof of the lemma. O
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5. The Brown-Rinott family. In 1988, Brown and Rinott [3] obtained
Slepian inequalities for a particular family of infinitely divisible random vec-
tors. The authors of the present paper have wanted to understand for some time
how to place their result in a general theory of Slepian inequalities for infinitely
divisible random vectors. We show in this section where the results of Brown
and Rinott fit in the general theory, and we also provide some extensions.

Brown and Rinott consider a particular subclass of the infinitely divisible
distributions, defined by 2¢ — 1 numbers, labeled ¢4, where A # @ runs through
all subsets of the set {1,2,...,d}.

Let @ be an infinitely divisible probability law on R, not necessarily sym-
metric, and let {@’, ¢ > 0} be the corresponding convolution semigroup. The
Brown—Rinott family BRq of infinitely divisible random vectors in R? is con-
structed as follows. Let A = {A: A C {1,...,d}}. Choose a vector of nonnegative
numberst = {4, A € A, A#@}andlet {Z4, A € A, A# D} beindependent (real-
valued) random variables, with Z4 ~ @4, A € A and A#®. Then define an
infinitely divisible random vector X = (X3, ...,Xy) by

(5.1) Xi= Y Zy i=1,..d
A:ieA

The family BRq is obtained by allowing t to vary. It is indeed a family of in-
finitely divisible random vectors because any linear combination of components
of members of the family can be expressed as a linear combination of indepen-
dent infinitely divisible random variables. It is easy, moreover, to identify the
parameters of the random vector X in BRg for fixed t. Namely, suppose that
the infinitely divisible law @ has [in the representation (3.1)] one-dimensional
Lévy measure p and shift a. Then the d-dimensional Lévy measure v of X is
given by

5.2) v= Z tapt,
AEA
AtQ

where for an A € A, A#®, u“) is the measure u placed on the line [ = {x €
R%:x;=0Vi¢A, x;, =x;, Viy,ip € A}. That is, for every nonnegative measur-
able function 4: R¢ — R,

/ h(x)v(dx) = Z tA/ hC..,x,...,0,...,x,...,0,.. )u(dx)
Re — {0} AcA —00
At

when the arguments of z in the integral under the sum are equal to x for all
s in A and to O for all ’s not in A. Further, by (5.1), the shift vector b of X is

given by
(5.3) bi=a Y ta
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[if the norm || - || in (8.1) is chosen to be the maximum norm as well].

Brown and Rinott give as an example the multivariate Poisson distribu-
tion (X1, ...,X4), which is defined by (5.1) with Z, Poisson with mean ¢4. They
also consider the M /G /oo queue (Poisson arrivals, general service time, infinite
number of servers). If X(7) denotes the number of customers in the queue at
time 7, then (X(ry),...,X(19)), 0 < 11 < --- < 74, is multivariate Poisson with
ta #0 if A consists of consecutlve numbers and ¢4 = 0 otherwise. (They give an
explicit expression for ¢4 that involves the rate of the Poisson arrival process
and the distribution of the service times.)

Let X and Y be two infinitely divisible random vectors in BRgy defined by
vectors t and t* accordingly. We want to use our results to derive Slepian in-
equalities for X and Y based on a proper comparison of the vectors t and t*.

We start by obtaining an explicit form of (3.4) and (3.5) in this case. Choose
A, =B, = {x € R% |x| < §} with 6§ = 6, > 0 and | - || our usual maximum
norm. It turns out to be somewhat more convenient to work with the equivalent
condition (3.10) here. For every random vector W € R%, we have by (5.2),

/ (P(W < x) — P(W < 0))vx(dx)

- Sl (o) (<o)
(é{w < 0})}u(dx)
- = o[ #|((qon ) Q<o)
(5.4) (ﬁ{w < 0}>lu(dx)

-3 tA/_:P[(ﬁ{Wi<O}> - <=1<1Q{W,.<x}>

n <£1 W, < 0}))} u(dx)
-y /:OP<('ﬂ{OSWi<x}>

i€EB

n ( ﬂ'{W,. < 0}))u(dx) > ta

i¢B A:ADB

Sl
wm
v =
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-5 L)

BGA
ﬂ(ﬂ{Wi<x}>)u(dx) > ta

i¢B A:ANB # @

We immediately conclude that if for all B € A and B # @, the two conditions

(5.5) otz >

A:ADB A:ADB
and :
(5.6) oot Y 4
A:ANB# @ A:ANB# @

hold, then (3.10) holds. Moreover, use (5.5) and (5.6) with B running over sin-
gletons to conclude, using (5.2) and (5.3), that (3.6) holds (with > replaced by
an equality). In the same way, one can easily check that for any random vector
W € R?, we have

/ (POW > %) — POW > 0))vx(dx)

= > /_6 (( {x<Wis0}>n(ﬂ{Wi>0}>>u<dx> Yoota
i€EB i¢B A:ADB

BGA
(5.7) ro
Z/ ((ﬂ{0<Wi§x})
€A i€EB
o)
ﬂ(ﬂ{Wi>x})>u(dx) Z ta.
i¢B AANB# @

We conclude that (5.5) and (5.6) imply (3.11) and (3.9) as well. Applying Theo-
rem 3.1, we recover Theorem 1.1 of Brown and Rinott:

PropPoSITION 5.1.  Relations (5.5) and (5.6) imply the right and left Slepian
inequalities (2.7) and (2.12) for all ¢t > 0.

Furthermore, suppose that the distribution @ is supported by [0, o). This is
well known to be equivalent to (i) u satisfies (2.2) and is supported by (0, c0) and
(ii) @ > 0 (Feller [6], Section XV11.3(f)). By using (5.4) and (5.3) (with B once
again running over the singletons), we recover the direct part of Theorem 1.2
of Brown and Rinott:

PROPOSITION 5.2. Ifthe distribution @ is-supported by [0, 00), then (5.5) =
(2.7 for all t > 0 and (5.6) = (2.12) for all t > 0.
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Turning to converse statements and using our Theorem 3.2, we obtain the
following refinement of the results of Brown and Rinott:

PROPOSITION 5.3. Suppose that the right Slepian inequalities (2.7) hold
for all t > 0. Then u((0,00)) > 0 = condition (5.5) and u((—=c0,0)) > 0 =
condition (5.6). '

Suppose that the left Slepian inequalities (2.12) hold for all t > 0. Then
1((0,00)) > 0 = condition (5.6) and u((—o0,0)) > 0 = condition (5.5).

ProOF. Setting W = X\ in the identity (5.4), we get, for any A € R? — R?

(5.8) vx{x e R x> A} = Z tAu{x >0:x > max)\i}
AAD Py € P

and for any A <O,
vx{x € R%:x ¥ \}

(5.9) = E _;_ ap{fx < 0:x <\ VieB, x>\ Vi¢B}
BEA AANB# g
B# g

We can now apply Theorem 3.2. Because of (5.8), the right Slepian inequali-
ties (2.7) for all ¢ > 0 implies (5.5) provided u((0, 00)) > 0. It is almost as easy
to see that because of (5.9), they also imply (5.6) provided u((—o0,0)) > 0: for a
fixed B€ A, B#®,use (6.9)with \; | —coVigBand \; 10Vie€ B.

The other statements follow in a similar way if we start with (5.7) and set
W=\ O

Brown and Rinott [3] also discuss the extent to which (1.1) alone implies (5.5),
and (1.2) alone implies (5.6), when @ is supported by [0, co). Although we do not
have a complete answer to this problem, we are able to shed some additional
light. The following proposition generalizes Proposition 1.3 of Brown and Rinott
and Theorem 1 of Ellis [5]: we remove the compound Poisson assumption (while
retaining, in the first part, the assumption of existence of exponential moments
of the Lévy measure).

PROPOSITION 5.4. Suppose that @ is supported by [0, ), and that 1((0, 00))
> 0.
(i) Assume that for all 8 > 0,
(5.10) / % (dx) < oo.
: 1

Then the right Slepian inequality (1.1) implies (5.5).
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(ii) Assume that the shift a = 0 and that the Lévy measure u has slowly
varying tails at 0; that is, for any r > 0,
p((rx, 0))
im ————— =1,
x—0 p((x,00))
Then the left Slepian inequality (1.2) implies (5.6).

(5.11)

Proor. Because u satisfies (2.2), so do v and vy. We will assume, therefore,
that all relevant characteristic functions are given in the form (2.1). In partic-
ular, we assume that a is the shift corresponding to the representation (2.1).
Then by analogy with (5.3) we conclude that the shift vector cx is given by

(5.12) (cx)i=a Y ta,
AiicA
and similarly with cy. Now, choose 8 > 0. For part (i), observe that (5.10) implies

Eexp(0,X) = exp(/Rd } (exp((O,x)) - 1) vx(dx) + (B,cx)>

+

(5.13) =expq Y tA[ /0 ” (exp <x}:ei> - 1>,u(dx) +aZ€,~>]

AcA icA icA
At
< oo.

Because (1.1) implies

d
Eexp(0,X) = Hei /d exp(0,x)P(X > x)dx
i=z1 /B

d
>[I o / exp(8, P(Y > x)dx = E exp(6, Y),
i=1 /B

we conclude by (5.13) that
00
Z ta [/ (exp(x Z 0i> — 1>u(dx)+a Z 91‘)]
2&5}1 0 i€A icA

[ (e - peasa)]

ta
A+ @ .
Take now any B € A, B#@®, and choose

5.0 ifi€B,
‘" lo, ifi¢B,

(5.14)
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@ > 0. Then (5.14) reduces to

( 3 tA) [ /0 °° (exp(xe|B|) - l)u(dx)+a0|B|]
+ ) ta [/000 (exp(xe|A NB|) - l)p,(dx)+a0|A nB|]

>3 t;;) [ /0 - (exp(x0|B|) - 1) ,u(dx)+a0|B|]

+ Y tz[/w (exp(x614 N B|) —1),u(dx)+a0|AnB|},
B

where |A| stands for the cardinality of A. Setting
cn(0) = / (exp(xfn) — 1) u(dx) + abn, 6>0,n=0,1,2,...,
0

we can rewrite (5.15) as

cip|(6) Z A+ Z ciang|(@)ta > ciz|(6) Z 0+ z cjanB|(@)t;.
ADB A2B ADB A2B
At g At

Now (5.5) follows from the easily verifiable fact

. cr+1(6) _
MR T

’

by letting 8 T oo.

For part (ii), we have Ee=@X > Ee~®Y and, hence, an argument identical
to that leading to (5.15) shows that (1.2) implies, in our case, that for every
6 >0,

Y ot [/Ooo (1 — exp(—x6] A r‘rB|));L(dx)]

ANB# @

< Z th [/ooo (1 — exp(—x6|A ﬂBl))u(dx)].

ANB#

(5.16)

Denote b(8) = f0°°(1 — e~ %)u(dx), 8 > 0. Using (5.11) one can easily check that
for every ¢ > 0,

b Joetn((t/et o0)) dt
m —— = lim
600 b(0) 600 ffe“y((t/e,oo)) dt
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Now (5.6) follows from (5.16) upon letting 6 1 co. O

REMARKS.

1. IfQis supported on [0, c0) and is compound Poisson, then it is the distribution
of the random variable V = Z}f\’:IUi, where the {U;} are i.i.d. nonnegative
with distribution p/u(R.) (1 is the Lévy measure of V), and N is a Poisson
random variable independent of the U;’s. Then (5.10) reduces to Ee®Vt < o,
which is the assumption of Proposition 1.3 of Brown and Rinott [3] and
Theorem 1 of Ellis [5].

2. For the BRg family,

(1.1) = (5.5) [Proposition 5.4()]
= (2.7) forallt¢ > 0 (Theorem 3.2)
= (2.5) and(2.6).

In general, however, (1.1) does not imply (2.5) or (2.6) even in the presence of
all exponential moments, as Example 3.1 demonstrates.

In their Theorem 1.2(ii), Brown and Rinott [3] state that for the BRg family,
conditions (1.2) and (5.6) are equivalent when @ is supported by [0, co) without
any additional assumptions. We do not find their proof convincing, and the
following example seems to provide a counterexample to that statement.

EXAMPLE 5.1. Letd = 2 and u(dx) = x"le~*dx, x > 0, with shifta > 0
to be chosen later. (i is the Lévy measure of a unit mass exponential random
variable.) Let

t1=t2=3, t12=0,
tr=t5=0, =5
Observe that (5.6) fails for B = {1,2}. Let I'(5), I';1(3) and I'y(3) be independent
random variables with gamma (5), gamma (3) and gamma (3) distributions

accordingly (all with the scale parameter equal to 1). Then we can represent
the vectors X and Y (in law) as

Xl = F1(3) + 3a, X2 = F2(3) + 3a, Y] = Y2 =T'(5) + 5a.

We claim that one can choose a > 0 so large that for every A € R?, (1.2) holds.
Because Y; = Y, a.s., the “worst case” for (1.2) is the case A\; = Ao = A. In that
case, (1.2) reduces to P(X; < A, X3 < A) > P(Y; < )\) or, equivalently, to

(5.17)

(5.18) (P(ry(®)+3a < )\))2 > P(I(5)+5a < A).

Observe that (5.18) holds trivially for every A < 5a. We need, therefore, only to
consider the case A > 5a. Letting x = A — 5a > 0, we see that we only need to
exhibit an a > 0 for which

(5.19) (Pry@ <=+ 2a))2~ > P(T'(5) < x)
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for every x > 0. Choose an xy > 0 such that for every x > x,

(5.20) P(T(5) > x) > Lot and P(I1(3) > x) < e™"”.

~ 48

Let x; = x¢ V v96. Choose now a so large that

(Pmi@ < :m))2 > P(T(5) < xy).

Then (5.19) holds trivially for all 0 < x < x;, while its truth for x > x; is a
simple consequence of (5.20).
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