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Lim inf results for Gaussian samples are obtained. In particular, there

are applications to rates of convergence for the functional form of Chung’s
law of the iterated logarithm for Brownian motion.

1. Introduction. Let {W(¢): ¢ > 0} be Brownian motion in R! and assume
H, C CI0,1] is the Hilbert space of absolutely continuous functions on [0, 1]
whose unit ball is the set

t 1
(1.1 K= {f(t) = / fi(8)ds, 0<t<1: / If's)ds < 1}.
0 0

Here the inner product norm is given by

1 1/2
(1.2) ||f||ﬂ=( / |f'<s>|2ds) . feH,

and || f|lco denotes the usual sup-norm on CI[0, 1]. If
n(£) = W(nt)/(2nLan)*/?, 0<t<1,

then the functional form of Chung’s law of the iterated logarithm, given in
~ [1] and in more refined form in [3], implies for each f in C[0, 1] that with
probability 1,

. _ 2 -1/2 .
(1'3) llmlnfL2n||17n _f“oo = {W/4 (1 ”f”u) ) lf “f”lt< 1,
n—00 +00, otherwise.

Here and throughout Lx = max(1,log, x) and Lox = L(Lx).
A natural question that arises is what is the precise behavior when || /||, = 1?
If f is a piecewise linear or quadratic function, then the results in [1] and
[2] yield

(1.4) I}LII_I'lg.}f(LG)z/sll’l’]n "f“oo = 7(f)’
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where 0 < v(f) < co0. Also, Theorem 2 in [4] easily implies that with probabil-
ity 1,

(15) lim inf (Lyn)? ||, — flloo < 00

for all f € K, and recently more definitive results were obtained by Grill [5].
For example, an interesting consequence of [5] implies that (1.4) holds with
0 < ¥(f) < oo whenever |f|, = 1 and f’ is of bounded variation on [0, 1].
Furthermore, if ||f|, = 1, but f’ is not of bounded variation on [0, 1], then
Corollary 2 of [5] states that with probability 1,

(1.6) Lim inf (Lyn)?/?|In, — flloo = 0.

Grill’s paper also obtains specific examples of f, with || ||, = 1, which interpo-
late between the power 2/3 in (1.4), and the power 1 in (1.3).

In view of what are now rather well understood rescaling ideas, (1.4) with
0 < 4(f) < oo is equivalent to proving that the series

. > P(|W - @Lr 2], < CLn)~Y)

n>1

converges for some C > 0 and diverges for some other constant C < co. Hence,
throughout the remainder of the paper we will concentrate on obtaining infor-
mation regarding (1.7) for general Gaussian random vectors. This, along with
the Borel-Cantelli lemma, allows us to obtain lim inf results for sequences of
i.i.d. Gaussian vectors with values in a separable Banach space. When appropri-
ate, we will include remarks regarding the corresponding analogues for scaled
Brownian motion.

In Section 2, we recall some basic facts about Gaussian random vectors, and
in Section 3 we state the first results of the paper along with some remarks
relating to [5] and the remaining sections of the paper. Section 4 contains the
proof of Theorem 1, and Section 5 examines the functional

I(f,6)= inf 2
(f,9) ||f—1g||56“g“”

In particular, we examine the asymptotic behavior of (|| f||2 —I(f,6))/6 as § — 0
for Gaussian measures. These results, combined with Theorem 1, characterize
precisely those points f on the boundary of K, that is, with || f||, = 1, which
are approached slowest by the random sequence {X,/(2Ln)Y/?}. For example,
if u is Wiener measure on CI[0, 1], then from (1.1) and (1.2) we have for each
f in H, that f’ is in L2[0,1], but from (1.6) and the surrounding discussion,
f' being of bounded variation is also relevant. However, because f’ may fail to
exist.everywhere on [0, 1], to characterize those points on the boundary of K
approached most slowly, we will see that one needs to examine if there is a
version of f/ that has bounded variation on [0, 1]. By a version of f’ we mean
a measurable function g defined everywhere on [0, 1], and such that g = f/
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almost everywhere with respect to Lebesgue measure. These subtleties were
not discussed in [5], but to be precise (1.6) does require some clarification. That
is, if f is piecewise linear, then f’ does not exist at those points in [0, 1] where
the graph of f has a corner, and hence f’ is not of bounded variation. On the
other hand, for piecewise linear f with | ||, = 1 we know (1.4) holds and hence
(1.6) fails. Of course, in this example if the graph of f has only finitely many
corners, then f’ has an obvious version (extension) that is of bounded variation,
but what is the general situation? Section 5 clarifies the matter for © Wiener
measure, as well as for other Gaussian measures.

In Section 6 we introduce some comparison principles for two points on
the boundary of K to have a common rate of approach by the sequence
{X,,/(2Ln)Y/?}. In Section 7 we obtain both the exact constant, as well as the
rate of convergence, for some examples in Hilbert space. These results apply to
the measure induced on L2[0, 1] by the usual series representation for Brown-
ian motion, and in this situation the exact constant has a universal form. This
is surprising because we doubt that this is the case when u is Wiener measure
on C[0, 1] and distances are computed in the sup-norm.

Throughout we write a,, ~ b, when lim,, _, , a,/b, = 1, and a,, ~ b, if there
is a censtant C, 1 < C < oo, such that
(1.8) 1/C < ligi;}f @n /by, <limsupa,/b, <C.

n— oo

Similar notation is also used for functions.

2. Gaussian random vectors. Let B denote a real separable Banach
space with norm | - || and topological dual B*. If X is a centered Gaussian
random vector with values in B and y = L(X), then it is well known that there
is a unique Hilbert space H,, C B such that  is determined by considering the
pair (B,H,) as an abstract Wiener space (see [6]). For example, if B = C[0, 1]
and p is Wiener measure, then the unique Hilbert space H, has unit ball K as
in (1.1) with inner product norm given by (1.2).

In general, H, can be described as the completion of the range of the mapping
S: B* — B defined via the Bochner integral

2.1) Sf = /xf(x)du(x), f € B*,
B

and the completion is in the inner product norm

(2.2) (SF.S¢) = [ fwewdut,  f.geB"
B

Lemma 2.1 in [7] presents the details of this construction along with various
properties of the relationship between H, and B. In particular, if {o;: & > 1}
is a sequence in B* orthonormal in L%(u) such that {Say: £ > 1} is a CONS in
H, C B, then the operators defined for d > 1 by

d
(2.3) Ig(x) = Z ap(x)Scoy, and Qq(x) = x — IIy(x)
k=1
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are continuous mappings from B to B. Furthermore, when restricted to H,, I,
and @, are orthogonal projections onto their ranges. It is also known that for
1 centered Gaussian, limy _, o, ||@4(x)|| = 0 with u-probability 1, and that for
f € H, we can define the stochastic inner product for ;. almost all x in B by

d
2.4) (@) = lim 3" ap@)(f, So).
k=1

Because (f,Sa;), = ax(f), it is easy to see that (-, f)~ is N(0,0?) with 02 =
(f, )u. Furthermore, if f = Sh for some 2 € B*, then we actually have with
u-probability 1 that

(2.5) (x, )~ = hx).

The Cameron—Martin translation formula for Gaussian measures states that
2.6) WE+) = [ exp{-3IfIE - = £)} duto
E

for Borel subsets E of B. This is well known, but a particularly nice proof is
contained in Proposition 2.1 of [3]. When the Banach space B is a Hilbert space
H, we will frequently identify the dual B* = H* with H itself without further
comment, Also, it is well known that the support of v is the closure of H, in the

B-norm. We denote this by writing supp(y) = H,,.

3. Statement of Theorem 1 and some remarks. The formulation of
(1.4), (1.5) and (1.6) in the setting of Gaussian samples is the content of our
first theorem. First, however, we recall the /-function defined for f € B and
6 >0by

3.1 I(f,6)= inf 2
3.1 (f,6) ”f_lgussllgllu

Here ||g||, is +oo for g ¢ H,, and || - || is the norm on B. Of course, I(f,0) = | |12,
which is finite iff f € H,. The analogue of (3.1) when p is Wiener measure
was used extensively in [5] (also see (2.6) in [4]), and we include some further
comments on these matters following the statement of Theorem 1. Of course,
I(f, 6) also appears in large deviation literature on Gaussian measures.

THEOREM 1. Let X,X;,Xs,... be i.i.d. B-valued centered Gaussian random
vectors with p = L(X). Let

(3.2) Y(e) =log p(x: ||| < e), e>0,
and assume d = d(n) is the unique solution to the equation

(3.3) P(d@Ln)/?) +o~dLn =0,
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where

o= sup E(h'X)).
[lRllpx <1

Then the following hold:
@) If || fllx < 1, then with probability 1,

(3.4) lim inf (d(n)) ™' [|X,/(2Ln)/? — f]| < 2.

i) If || fllx = 1, f = Sh, where h € B*, and () < —&™P for some p > 0 and
all € > 0 sufficiently small, then with probability 1,

(3.5) liminf (d(n))” YIX, /2Ly 2 — £ > 0.

@ii) If | fllx = 1, ¥(e) is such that for each X > 0, there is a positive constant
¢ satisfying

(3.6) P(Ae) > exrple)

for all € > 0 sufficiently small, and

3.7 lim L2150 _
50 6

then with probability 1,

(3.8) lim inf (d(r)) 7'[|X,/(2Ln)? — £ = 0

REMARKA. The conclusion in (3.4) is the Gaussian sample analogue of (1.5)
because for ; Wiener measure,

(3.9) Ple) ~ —m2/8e2 ase — 0,
and hence
(3.10) d =d(n) ~ (Ln)~2/3,

Furthermore, when p is Wiener measure, (3.4), (3.5) and rescaling combine to
yield (1.4) with 0 < v(f) < oo whenever f is of bounded variation on [0, 1]. This
follows because it is easy to check that if

1
(3.11) h(x) = 2(LF(1) - /0 *(5)df(s),

where f’ is of bounded variation on [0, 1], then & € C[0, 1}* and f = Sh, where S
is determined by Wiener measure on C[0,1].
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REMARK B. We formulated Theorem 1 in an attempt to find all the points
of K that, modulo constants, are approached slowest by the sequence {X,, /
(2Ln)'/? }, and Theorem 1 shows that

(3.12) E={fecK:|fll,=1andf c SB*}

is the correct set no matter which Gaussian measure y on B is being considered
provided () satisfies the conditions in (ii) and (iii). For example, the conclu-
sions in (i) and (ii) combine to show that E is a subset of the points of K that are
approached slowest. Furthermore, for any Gaussian measure y we show in Sec-
tion 5 that if || f||, = 1, then f ¢ SB* is equivalent to the condition (3.7). Hence
under the minor assumptions on ¢(¢), (iii) implies that E is the correct set.

REMARK C. The function v¥(¢) is hard to compute, but if 1(¢) is regularly
varying or slowly varying as ¢ — 0, then the required assumptions on ¥(¢) in
(ii) and (iii) all hold.

REMARK D. It is easy to check that all of the properties given in (3)—(7) of
Lemma 1 in [5] for Wiener measure also hold when p is an arbitrary centered
Gaussian measure on a separable Banach space. For example, the analogue of
property (5) in [5] is that if g € H,, and ||g — f|| < 6, then

(8.13) (& ) = (hyh)y,

where A is the unique vector in H,, yielding I(f, 6). Using these properties and
the ideas in [5], it is possible to prove the following modification of Theorem 1

in [5].

THEOREM 1*. Let X,X;,Xs,... bei.i.d. B-valued centered Gaussian random
vectors with values in B and p = L(X). Let () be as in (3.2), and assume that
for € > 0 sufficiently small the function 1 satisfies both of the following:

(3.14) e 9< —p(e)<eP forsomep>q>0

and for each a € (0,1) there is a 3 > 0 such that

(8.15) —)(e) + Plae) < P(Be).
Iff € K and d = d(n) is the unique solution of the equation
(3.16) Ln(1-I(f,d)) = —((2Ln)*/%d),

then with probability 1,
(3.17) 1< liminf (d(n)) ™| X,/@Lr)2 ~ || < 2.

REMARK E. Because 1(¢) is explicitly known in only a few examples and
because the conditions on v¥(¢) in Theorem 1* are more restrictive than those
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in Theorem 1, we chose to present the proof of Theorem 1. However, when
Theorem 1* is applicable, it presents the rate of approach modulo constants for
allf e K.

REMARK F. One of the important computations involving I(f,§) in [5] is
given in Lemma 2 of that article. This is a beautiful result, and in Section
5 we extend it to arbitrary centered Gaussian measures as well as provide
some additional facts when u is Wiener measure. The analogue of Lemma 2 for
arbitrary centered Gaussian measures p is obtained in Proposition 1 of Section
5. It proves the following:

If || fll. =1 and f = Sh for h € B*, then as § — 0,

(3.18) I(f,8) = 1— 2|lhj5.6 +0(5),
where ||h||5. = sup{|h)|: ||x| <1, x € H,}.

4. Proof of Theorem 1. First assume 0 < ||f]|, < 1. Because it is well

known that 1(¢) is continuous, strictly increasing and lim, _, ¢ 9(¢) = —oo (when
w has separable support), it is clear that (3.3) has a unique solution and further-
more that lim, _, .o d%(n)Ln = 0. Given f, 0 < | ||, < 1, set f, = f(1 —d®)/| FID.
Then for n large, || f — f,|| = d(n), (2.6) and Jensen’s inequality imply

P(|[%,/2Ln)/2 - || < 2d(n))
> P(|[X. /@@L - f,]| < dw)
= —/n 2L —{x, fu)”~ d
exp{ ”f”u n} {x € B: ||x|| < d(n)2Ln)}/2} eXP{ (x f> } ;U'(x)

> exp{~(Ln)(1 —d@)/I1)| FI% + p(dn)2Ln)/2) }.

From (3.3) and || f||, < 1 we thus have

Xn

> exp{ —(Ln)||f|I2 + 2Lnd(n)

(4.1)

4.2)
2 IR
TR

Because d?(n)Ln — 0 and || f|| < o||f||,, with || f]|, < 1, (4.2) implies

- a_ld(n)Ln}.

(4.3) P(|X./@Lr)/2 - f]| < 2d()) > 1/m,

and hence the Borel-Cantelli lemma yields (3.4) if 0 < || f||, < 1.
If | f]|. = 0, then (3.3) immediately implies

exp{w(dm)2Ln)/?) }

exp{—o~'d(n)Ln}
1/n

P(||%, /L) ~ £ < dw))

vV u
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as d(n) — 0. Again the Borel-Cantelli lemma yields (3.4), so Theorem 1(i)
is proved.
To prove Theorem 1(ii), assume || f||, = 1 and f = Sh for A € B*. Then

Pt n -] < )

(4.4) = exp{—Ln} /
{llxl < ed(n)2Ln)1/2}

< exp{—Ln +2ad(n)Ln||h| g + ¢(ad(n)(2Ln)1/2)}

because (x,f)™~ = h(x) with probability 1 when f = Sh, h € B*. Now 0 < a <
1 implies

exp{ —(x, (2Ln)1/2f>’“} du(x)

¥ (ad(®)(2Ln)"/?) < 4(dn)2Ln)"/?),
and hence (3.3) and (4.4) combine to yield

(4.5) P(HX,, J@Ln)Y2 — | < ad(n)) < exp{ —Ln +d()Ln 20|k |z — oY) }

Because ||f]|, = 1 and (x, f), = h(x) we have ||k|g- > 071, so taking o =
o~1/(4||h||~) we have 0 < a < 1, and (4.5) implies

46)  P(|[X./@Ln)"? ~f|| < ad(m)) < exp{~Ln - 27'o"d(n)Ln}.

This sequence of probabilities converges if d(n)Ln > (Ln)? for some ¢ > 0,
and hence the Borel-Cantelli lemma will yield (3.5) with limiting constant at
least o=1/(4||h||g-). Thus it remains to show d(n)Ln > (Ln)? for some ¢q > 0.

Because we are assuming () < —e? for some p > 0, we thus have from
(3.3) that

d(n) > C(Ln)~P+2/@p+1)

where C is some positive constant. Hence d(n)Ln > C(Ln)?P/&r+D) gnd (3.5)

holds.
Now assume (3.6) and (3.7) hold. Arguing as in [5], Lemma 1, there is a
unique element g, in H, such that for A > 0, ||g, — f]| = Add(n) and

4.7) I(f,2d®)) = |igal.
Hence
P([[X,/@Ln)V? ~ || < 22d(n))

> P(|[X, /2Ln)/2 - gu| < Ad(n))

> exp{ ~llgall2Ln + $(\d(nX2Ln)"/2) }

> exp{ —lgn|[2Ln + cxh(d(nX2Ln)V?) }

= exp{_I( f,2d(n))Ln — c,\a‘ld(n)Ln}

> exp{~ (1 - MA(m)Ln - exo~d(m)Ln },

(4.8)
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where the second inequality is by the Cameron—Martin formula and Jensen’s
inequality, the third inequality follows from (3.6) because d(n)(2Ln)'/2 — 0,
the equality is by (4.7) and (3.3), and the last inequality is by (3.7) with M
arbitrarily large as d(n) — 0. Thus as n — oo and M)\ > ¢ o~ !, we have

P(|[Xn/@Ln)? ~ f| < 22d)) 2 1/m.
Applying the Borel-Cantelli lemma again we obtain with probability 1 that
lim 1nf (d@m))~ “X /@Ln)2 —f|| < 2.

Because X > 0 is arbitrary, this completes the proof of (3.8). Hence Theorem 1
is proved. O

5. Some remarks on I(f,8). Here we characterize SB* in terms of the
asymptotic behavior of I(f, §) as § — 0 for arbitrary Gaussian measures . on a
separable Banach space. The basic results are contained in Propositions 1 and
2, and show that for | f||, = 1 we have f € SB* iff

lim sup 1-1t4,9) —1(4,0) <
50 6

In particular, this characterization is valid for Wiener measure on C[0, 1], and
combined with the discussion below it adds some precision to the results in
Lemma 2 and Corollary 2 of [5]. Now we turn to a lemma of use in our under-
standing of the Brownian motion case.

LEMMA 1. If u is Wiener measure on B =C[0,1] and f € H,, then
(5.1) f € SB* iff f' has a version X such that V()) < oco.

Proor. Iff’ has a version )\ such that V(\) < oo, define A € B* by
1
h(x) = (DXL - / #()d\(s).
0

Then Sh(t) = fg A(s)ds and because ) is a version of f’ we have A = f” a.e. Hence
Sh(t) = fg f'(s)ds, but f € H, implies f is absolutely continuous with f(0) = 0

S0 fo f/(s)ds = (). Hence Sh = f as required.
If f € SB*, then f(¢) = Sh(¢). Now h € B* imphes there is a function of
bounded variation )\, on [0, 1] such that

(5.2) hix) = / () A ().
0

In computing Sh we are free to assume )\, is right continuous at zero be-
cause x(0) = 0 with py-measure 1. Similarly, because x(s) is continuous with
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p-measure 1, we are free to assume ), is left continuous on (0, 1). Hence we do
this and define

D) = W(1) = Lim Ai(o),
(5.3) M) = =M@+ Lim M@ +X1),  0<s<1,
XO) = lim X(s).

Then ) is of bounded variation on [0, 1], right continuous at zero, left continuous
on (0,1] and

1
(5.4) h(x) = x(1)A(1) — / x(s)dA(s).
0

Using (5.4) for h(x) we get f(t) = Sh(¢) = fg A(s)ds as above, and hence f/(¢) = A(2)
a.e. Because ) is of bounded variation, (5.1) is proved. O

The difference between the assumption that f/ has a version that is of
bounded variation and in saying f” is of bounded variation is revealed in the
next lemma. For this it is useful to define § = {f € H,: V(f') < oo}, and we
emphasize that for f € § we are assuming f” is defined everywhere on [0, 1] and
of bounded variation as well. We also recall from Lemma 1 and its proof that
f = Sh for h € B* implies f’ has a version )\ € ¥, where ¥ denotes the functions
of bounded variation on [0, 1] that are normalized to be right continuous at zero
and left continuous on [0, 1]. Furthermore, by (5.4), A can be written as

1
(5.5) R(x) = (DAL — / 2(8)dA(s),
0
and £(¢) = Sh(?) = [, Ms)ds, 0 < ¢ < 1. Hence

t
SB* = {f(t) =/0 Ms)ds, 0<t<1:he s"},

and the linear functional 4 defined in (5.5) is such that ||&|g+ = [A(1)] + V(N).

Now G C SB* because f € G implies f = Sh, where h(x) = x(1)f'(1) —
fol x(s)df'(s), and the lemma below indicates f’ is smooth. Hence (3.18) implies
Lemma 2 of [5] with ||||g« = |[f'(1)] + V(f"). However, § is a proper subset of SB*
as can be seen from the following lemma.

LEMMA 2. Iff € G, then f' is continuous on [0, 1].

Proor. Iff’is of bounded variation on [0, 1], then f/(¢) exists at every point
of [0, 1]. Of course, f/(0) is a right-hand derivative and /(1) is a left-hand deriva-
tive. Furthermore, /' has right- and left-hand limits at all interior points of [0, 1],
aright-hand limit at 0 and a left-hand limit at 1. Because f € § implies f(0) = 0,
the mean value theorem applies and f/(0) = lim, _, o /((s)), where 0 < 7(s) < s.
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Hence f/(0) = lim,; _, ¢ f/(s) and f” is right continuous at 0. Similarly, f’ is left
continuous at 1 and both left and right continuous at each interior point, so f’
is continuous on [0,1]. O

Now we turn to the proof of (3.18) for arbitrary centered Gaussian measures.
Our first task is a necessary lemma.

LEMMA 3. Let J(f,6) = inf{||x||x: || f — x|| < 6}. Then, for f € H,,
(5.6) J(f,6) = sup{g(f) - 6llglz.: & € B*, llgll, < 1},

where |lgl|2 = f;82()du) and |g|5. = sup{lg@)|: x| < 1, x € H,}.

PRrOOF. First observe thatifg € B*, ||g||, < 1,then | f—x| < éandf,x € H,
imply |g(f) — g)| < é||gl|z.. Henceforf e H,,x € H,,,

%l > &) > g(f) - 88l
Because ||x||, = oo for x ¢ H,,, taking the sup over g then gives
J(f,6) > sup{g(f) - 6lgll-: & € B*, ligllu < 1}.

If J(f,6) = 0 the result now holds by taking g = 0, so assume J(f,§) > 0 and
take 0 < a < J(f,6). ThenaKn{x: | f —x| < 6} = @. Because K is compact, the
Hahn-Banach theorem implies there is a g € B* such that |g(x)| < @ whenever
x € aK and g(x) > a whenever | f—x|| < 6§ andx € H,,. Furthermore, because f €
H,, the Hahn-Banach theorem allows us to have ||g||z- = ||g]|5.. Thus ||g]|, < 1
and g(f +u) > a whenever |[u|| < é. Hence g(f) —6||g||z. =8&(f)—6||gllp~ > a. As
a < J(f,6) is arbitrary, Lemma 3 now holds. O

The proof of (3.18) is the following proposition.

ProOPOSITION 1. Let J(f, 6) = inf{||x||,: || f — x|| < 6}. Then, when ||f]|, =1
and f = Sh for h € B*, it follows that

(5.7) J(f,8) =1 8|[h| 5. +0(6),

where ||h||g. = sup{|h)|: ||| < 1,x € H,}. In particular, for ||f|, = 1 and

= )

(5.8) lim =159

lim =% = 2 ..

RROOF. First we deduce (5.7) from Lemma 3. Because f = Sh € H, with
|| fllu = 1, b € B*, the special choice g = h shows that

(5.9) J(f,6) > h(f) — b||hllg. = 1 = 6][R|5..
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Next, consider g € B*, ||g]|, < 1 and
(5.10) 8(f)=dlgllg. =>1—6||h|z.

Then g(f) < 1and we see that |jg| 3. < ||k|5.. Alsog(f) > 1—6]|h||3., S0, because
lglly < 1, A(f) =1, we have

I1£ =kl = [ g—pPdu
- /Bgzd,u+/8h2d,u—2/3ghdu

(5.11)
< 2(1 - /ghdp.)
B

= 2(1-g(f)

< 26|R|p. -
Now if g, € B, |lgk 3. < 2||h||5. and |gx — k|2 — O, then
(5.12) klingo 8r(x) = h(x)

for all x € H,, because the support of y is H,.
Now take é; — 0 and choose a sequence g; € B*, ||g;||, < 1, such that

(5.13) &i(f) - éilgillg. > J(f,8) — éllhllge > 1~ 26;]|h|5. .

By Lemma 3 such a sequence {g;} exists, and we have ||g;||3. < 2||%]|5.. Then
by (5.11) and (5.12), we have lim; _, , gi(x) = h(x) for all x € H Thus given
x € H,, and any ¢ > 0 there is an i, sufficiently large so that g;(x) > h(x) — ¢ for
alli > iy. Taking ||| < 1,x € H,, h(x) > |k]|gs — €, we thus have for i > iy that
gi(x) > ||h| g« — 2¢. Thus for i > i,

8i(f) — Gilgillg. < 1= 6illhlg. +26e.
Thus for f = Sh, || f||, = 1, we have
(5.14) J(f,6) < 1= 6||h|g. + 26

Because e > 0 canbe made arbltranly small and §; — 0 isan arbitrary sequence,
(5.14) and (5.9) combine to give (5.7).

To verify (5.8) is easy because 1 —I(f, ) = (1 - J(f, 6))(1 +J(f,6)) and limg _, o
J(f,6)=||fllx = 1. The continuity.of J(f, §) in § is well known, and can be proved
as in Lemma 1 of [4], where I(f, §) is proved to be continuous for 6 € [0, c0). O

For a converse to Proposition 1, we have the following proposition.
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ProprosITION 2. If ||f|l, = 1 and there exists M < oo such that J(f,§) >
1 —Msé for all § > O sufficiently small, then f € SB*. In particular, if Ifll. =1,
f ¢ SB*, then

(5.15) lim L6812 IED
§—0 é §—0 é

Proor. By Lemma 3 there exists g € B*, ||g||, < 1, such that
1-6|gllg- > 8(f) —6lgllg. = J(f,8) — M6 > 1 —2M5.

Thus |igllz. < 2M.As § — 0, g(f) — 1, so a weak-star cluster point % of g as
6 — 0 (which therefore converges uniformly on compact subsets of B) satisfies
|hllx < 1, A(f) = 1. Thus f = Sh and the proposition is proved. O

REMARK G. If y is Wiener measure, we see that if | f||, = 1, then f € SB*
iff
lim 1-1(,9) < o0
6§—0 6

Hence from Theorem 1, the set of points approached slowest by {X,,/(2Ln)'/2:
n > 1} is precisely the set E given in (3.12). Furthermore, by Lemma 1 above,

E={f €K: ||f|.=1 andf has a version of bounded variation on [0, 11}.

Of course, by standard rescaling arguments, E is also the set approached slowest
by the scaled Brownian motion in Chung’s functional LIL.

6. Some comparison results. Theorem 1* implies that if || f||, = 1, then
the normalizing sequence d(n) defined by (3.6) gives the correct rate of conver-
gence in (3.17). The examples in [5], and Theorem 1(iii) show that if || f; |, = 1
and || f2]|, = 1, then the sequences d;(n) for fi and ds(n) for f, may be consid-
erably different. Our next result gives conditions when the sequences {d;(n)}
and {dz(n)} are comparable.

THEOREM 2. Let i be a centered Gaussian measure on B with i as in (3.2).
Assume (3.14) and (3.15) hold and for x,, > 0, y, > 0 such that lim, _, .oy, = 0,
lim, -, oo %n /yn = 0 we have

6.1) Tim ) yn) = oo.
If fi.fo € Hy with || fill, = || fellp = 1 and fy — fo € SB* or f1 + f; € SB*, then
(62) dl ~ d2.

REMARK H.  If () ~ —e~P for 0 < p < oo, then (3.14), (3.15) and (6.1) all

hold. In particular, Theorem 2 applies to Brownian motion and the Brownian
bridge. )
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To prove this result it is useful to have the following lemmas. The first is a
simple generalization of part of Lemma 1 in [5], so we omit the proof.

LEMMA 4. Iff € H, and 6§ < o||f]|, where o2 = SUP |45 <1 Jp h2(x)du(x),
then

(6.3) IF1IE = ICF, 8) = 81| fllu/ o

LEMMA 5. Iff1,fo € Hy, || fillu = | fallu = Land fy —fo € SB* or fy +f, € SB*,
then as § — 0,

(6.4) 1-I(f1,6) =~ 1 —I(f,6).

PRrROOF. Because I(f, 6) = I(—f, §) we need only show the result for f; — f; €
SB*. Hence let f; — f, = Sh for h € B*. Then
If2,6)= inf (1-2(f3.8) + lglly)
llell < 8 )
= inf (1-2(f; —Sh,g),+lgl?)

(6.5) gE€H,
llell <6

= gieng (1—-2(f1,8)u + llgll% +2(Sh,g),.)
llgll <'6

and

(6.6) I(f1,8)= inf (1-2(fi.8), + lglly)-
llell < 6

Combining (6.5) and (6.6) and using the fact that
[infA —infB| < sup|A — B,
we have
(f1,6) = I(f3,6)| < 2||h|p-6.

Hence for 6§ < o,

’1 —I(fz,(s) <1+ II(fl’(S)_I(fZ’a)l
6.7) B

<1+ —m——

= 1+20‘”h||3~

by Lemma 4 because || fi, = || f2ll,. = 1. Similarly, we have for 6 < o,

1 _I(fl,é)

(6.8) 121(6,0)

< 1+20]h| 3.
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Hence (6.4) follows from (6.7) and (6.8). O
PRrROOF OF THEOREM 2. By (3.16) of Theorem 1* we have d;(n) and dy(n)

such that

1-1I(f1,d1(n)) _ ¢((2Ln)Y/2dy(n))

6.9 1-1(fo,do() ~ $(@Ln)2dy(m))’

If liminf, _, ,d1(n)/d2(n) = 0, then arguing along a subsequence where the
liminfis 0, the right-hand term of (6.9) goes to infinity by (6.1) because lim,, _,
(2Ln)Y2d,(n)=0fori = 1,2. However, along this subsequence the left-hand term
of (6.9) is bounded because

’1—I(f1,dl) _II—I(fl’dl) 1-1I(f1,dy)
1-I(fo,d2)| ~ |1-I(f1,d2)||1 - I(f3,d3)
1-1I(f1,dy)
< C’ 1=1(f,do)
<C,

where the first inequality is by Lemma 5 and the second inequality follows from
d; < d3 along the subsequence. Hence liminf, _, o, d1(n)/d3(n) > 0. Similarly,
we also have lim sup,, _, ., d1(n)/d2(n) < co. Therefore, d; ~ dy and Theorem 2
is proved. O

Next we turn to the Hilbert space case with u = L(X), where
(6.10) X =) M&on).

n>1

In (6.10), A\, > 0, {£x:n > 1} are independent N(0,1), {¢(n): n > 1} is an
orthonormal sequence in H and ¥, > 12 < co. In this setting,

H, = {a = Z and(n): Z aZ/): < oo},

n>1 n>1

with (@, k), = ¥n>10nha/N; Wwhen a = 5, > 10,¢(n) and b = %, > 14,¢(n). Hence
the sequence {\,¢(n): n > 1} is a complete orthonormal sequence in H, and
a = Sh = E(Xh(X)) implies ap, = h,X2, n > 1, where a = ¥, 1a,6(n) and
h = ¥, > 1hn¢(n) by identifying H and its dual space H*. Thus a = Sh, h € H*,
implies ¥, > 1]an/A2|2 < co. .

Let a = 5> 10,6(n) and b = £, 5 18,6(n) with [lall, = [b],, = 1. Now [la|]% =
Tr>1a5/A%, [B]12 = £ > 167 /X2 and by direct computation it is easy to check by
identifying H and H* that

(6.11) a—beSB* iff Y (an—bn)/A: < o0

n>1
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and
(6.12) a+beSB* iff Y (an+bn)/X; < oo.

n>1

Hence, under the conditions of Theorem 2, we have that if 3, > 1(an — b,)?/\}
< 000r Lp>1(an + by 22/ < 0o, then d, ~ dp. It is also possible to show under
these conditions that if {an} and {b,} satisfy ||, = ||b]|, =1 and

B2
(6.13) PRy I“ L

n>1

then d, ~ dp. The proof of this is computational, so we do not include the details.
Finally, to finish this section we include a remark on the relationship of (6.11),
(6.12) and (6.13).

REMARKI. The series conditions in (6.11), (6.12) and (6.13) are all distinct.
That is, assume Ag, = Agp_1 forn > 1, 3, 5122 < oo, let ag, = COZ, + /\gn)
agn—1=COZ, — A3,), ban = C(N}, — Xg’") and by, _1 = C(\%, + A3,), where Cis
a proper constant such that ||a|| u = [|6]lx = 1. Then (6.13) holds but (6.11) and
(6.12) fail. Similarly, if Mg, = Agn — 1 Withag, = C\gn +23,), @gn — 1 = CAgy — Azn)
bon = COgn — A3,) and bg, _ 1 = C(Ag, + A3,), then (6.13) fails, but (6.11) holds.

7. Exact constants. Up to this point, we have mainly been interested
in finding the points of K that, modulo a constant, are approached slowest
by the sequence {X,/(2Ln)Y/2}. As noted in Remark B in Section 3, the set
{f: IIflly = 1and f € SB*} is the correct set for many Gaussian measures
and d(n) as defined by (3.3) is the right convergence rate. To go beyond the
convergence rate and to determine the exact constant is much harder and very
little is known. The only known results are for piecewise linear functions [1]
and quadratic functions [2] when p is Wiener measure on B = C[0, 1]. Note that
these two special classes of functions are both in SB*.

In this section we give the exact constant for all the pointsa € SH*, ||a||, = 1,
for a class of Gaussian measures (including the Wiener measure) on a Hilbert
space H. First we give the following key estimates, which are of independent
interest. The method of proof is similar to the one used in [9]. In contrast to the
previous sections, we replace A2 by ), for notational simplicity. To aid in this
distinction we index all sums by & rather than n.

THEOREM 3. Let p= LX), X =3 > 1/\;/ 2§kek be a centered Gaussian mea-
sure on a separable Hilbert space H, where
(7.1) Ap = AR+ )79, a>1,A>-1,A>0,

{&: n > 1} are independent N(O, 1), and {ep: k > 1} is a orthonormal sequence
in H. Let

(7.2) Ky = AYeg~@-V/e(r/q) (sinm/a) -
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Then for any a = ¥ > 1axer, € SH* Gee., |S71a|Z. = Te> 162 /22 < 00),

P(HX _ ta||2 < g2 — 1)/(a+1))

1 aiy
~ Kop~1/(a+1) gt~ A= Df(a+D), _ = log(1 + 2 _ k
2 exp 7-3 k}; 0g(1 + 2)47) kz>:1 Tr2%,

as t — 0o, where

N2
k>1)\

1 9 1 -1/2
- 1/2 ap  a— 1o

(7.3) @2n)~ (2 g + = Kix, ) ,
Xg LS the unique positive solution of the equation

(7.4) 40x% — 4Kyxe¥ D/ - N "k o
E>17k

and v > 0 is the unique solution of the following equation for t large:

—2Aa—1D/(a+1) _ 2
(7.5) ot flact Z 1+ 2)‘k7)2 Z 1+ 2)\k’7

kE>1 k>1

Before we give the proof of Theorem 3, we need some lemmas.

LEMMA 6. Let A, be defined as in (7.1). Then as v — oo,

~ ~(a—1)/a
(7.6) > Trens 2 o K ,
k>1
2 ~ 1o
(7.7) 5 Z log(1+2)\y) ~ oK1y
k>1
ApY 2 a-1 1o
(7.8) ; (1 T 2)\k7) 5a K

where K1 is as in (7.2).

Proor. All of these are easy to check. Related details can be found in ([8],
Lemma 7). O

LEMMA 7. Given 6 > 0, let fy > O be the unique solution of (1.5) for t large.
Then as t — oo,

(79) N~ x0t2a/(a+1),

where x is the unique positive solution of (7.4).
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Proor. Ify=~(¢) - oo as ¢ — oo, then by using D.C.T,, as ¢t — oo,
.10 oY e
k>1(1+2’\k7) 4y k>1

Hence the statement of the lemma follows from (7.6) and (7.10). O
Proor or THEOREM 3. The Laplace transform of the random variable

X — ta||? is given by

t2a? 1
/Hexp(—s||x—ta|| Yu(dx) = exp{ sZ 1+;§ <3 Zlog(1+2/\ks)}.
E>1

Furthermore, if f(s,t) = P(J|X — sa| < ¢) for a € H, and p = L(X), then the
Cameron—Martin formula in (2.6) gives

2
f(s,8) = /HI(x: llx|| < t)exp{—%lla”i —s(x,a)N}du(x)

for —co <s < coand ¢ > 0. Because it is known that u(x: ||x|| =¢) = 0for allz > 0
and (x,a)” is N(O, ||a||ﬁ), the D.C.T. easily implies f(s, ) is jointly continuous in
s and ¢. Hence using the inversion formula (see, e.g., [10], page 107) and the
calculations below, we have for every v > 0,

1 'y+ioo
(7.11) (||X _ ta||2 < 0t—2(a 1)/(a+1)) 27r / exp(<I>(s)) dO',

where s =y +ic and

t2a?
- _ —2(a - 1)/(a+ 1) _ %k
d(s) logs + 6t sk§> 1 T+ons

Z log(1 +2);5).

k>1

Note that the function ®'(s) has a zero at (v, 0) where v = y(¢) is given by

(7.12) gt~ 2e—D/(a+1) _ 2 z o 2)\k7)2 z T 2/\k7

k>1

Hence we take v > 0 in (7.11) to be the unique solution of (7.12) for ¢ large.
Now we rewrite (7.11) as a sum

(7.13) P(|X —ta|? < 6 Xe-D/e*D) o1 4 [ 4 Iy,

where

1
" om /Icrl > yT-2/8 xp ((I)(S)) dq,
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1
I, = — . B
*" 2r lo| < ~T—2/5 exp (Re <I>(s)) (eXp (l Im ‘I’(s)) 1) do,

1
Iy = o /Ial e exp(Re &(s)) do,

My \?
= Z(1+2>\k’v) ‘

k>1

We will show that I5 is the dominating term.
Let us rewrite Re &(s) = A(y) + B(y,0) by using log(a + ib) = log Va2 + b2 +
i arctan(b/a). Here

2
~2Ao =D/t 21 tagy
(7.14) A(y) =6t —logy Z logL+207) = 3 7=k yver
k>1 E>1
and
2\ 0 2
B(v,0) = ——log(1+ ( ) ) - —I;log<1+ (1 +2/\k7) )
(7.15) os2ar
&t (1 + 20703 + @Me0)2(1 + 2)047)°
Then
1
| < exp(A(v)) / exp(B(y,0)) do
lo| > 47275

Because ) is decreasing, we have by omitting the first and the third terms
in (7.15),

/ exp(B(v,0)) do
lo| > T-2/5
2o \2)
< 1+ —— do
< /|6| > 4T-2/5 kl;Il < (1 + 2)\k'y) )

2y \2\ 7t preo 2h0 \2\
< —4/5 k / 4
< ]I (“T <1+2Ak7 U el Sy v do

k>5

k>5
1 s 2% \*_1oes( 2wy \*
SCVeXp{ 4Z(T . (1+2,\k7 a7 \T=r2awy
D 21 A 2
_m—4/5 £y Lm-8/5 kY
SCVeXp{ T Z<1+2Ak7) +3T ;(uz,\ky) }

E>5
< Cyexp{-T'%}.
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Therefore,
(7.16) II1] < Cyet™ exp{-T"/5}.
Now turning to I3, we have |exp(i Im ®(s)) — 1| < |Im &(s)| and

2\0

_ pp—2a—1)/(a+1) o 1
Im ®(s) = 6¢ /(o + a—arctan—-iz arctanm

E>1
s Z tzai
2 T+ ony 7 + @ho?

(e o 1 20 2)\ o
= (7 arctan’y> + 5}; (1_‘_2)%'y - arctanm)

t?a? t?a?
+o ) -
p>1 (1 +207)2 (A +2072+(2M0)?

by plugging in (7.12). Thus we have by using the inequality x —arctan x < x3/3,
x> 0and 1/22 — 1/(x? +y?) < y? /x4,

3

1le]® 1lof? 2wy \° 1loPe a2/ 2wy \*
ImaGs)| < | 2| +£|2 ( )+__ 2 _k(_.__>
| | 3|y 6|y kzzzl 1+ 2)y 4|y 71;’\% 1+2X\y
1 2 MY N2 1, et a?
< lp-es, 2p-em 3o ( . ) + Ip-est 5~ %
3 3 =1 1420y 4 ’ykZI/\’%
< CT—1/5
for |o| < yT~2/5. Hence
(7.17) II,| < CT~Y/5 / exp(Re &(s)) do.
lo| < T-2/5
Next we turn to the dominating term I5. Let
2 2
_ _ 9 ak(z)\k')’)
B=B)=1+£2) s zae T2
E>1
Then by using (7.8) and (7.9),
t? a?
Br= Y L2
2~ As1 A%
(7.18) 1 @ o—1u 1/a)g/@+D
. ~ (ﬁ; kgl A_I% + p leo t
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Using the inequality x — x2/2 < log(1 + x) < x, we have from (7.15) that

1/0\2 1/0\? a\?
_5(;) Biy) < B(y,0) < —5(;) (1— (;) )ﬂ('y).

Hence by the change of variables,

Y 2
— —u“/2)d
\/ﬁ |ukT-m\/}aexp( u /) u

< / exp(B(v,0)) do
lo| < ~T-2/5

<L exp (:—152-) du x exp{-l—T‘S/sﬁ}.
= VB Jlu<1-215,/5 2 2
Note that from (7.18), T-8/54 ~ T—3%/5 and T-2/5,/B ~ T*/%, Hence,

—u? 27y
By, ) do ~ 2 (J.‘_)d ~ Y217,
/|0|<7T 2/sexp( (y 0' (o |u|<T-2/5f exp 2 u /i
Thus,
=1 8
(7.19) Is= 27rexp(A('y)) /|a|<~/T—2/5 exp(B(y,0)) do ~ mexp(A('y)).

Combining (7.13), (7.16), (7.17), (7.18) and (7.19), we have as ¢t — oo,

P(”X - ta||2 <g.gHe- 1)/(a+1))

Y
~ exp(A(y)
g P (Am)
1 ~2a=Df(e+ D,y tajy
= expy 6t~ °‘ log(1 + 2)y) —
/278 { k; ot ;uzm

o K=/ D) pr—2e = Dfta+ 1,y _ t* ak’Y
Kot exp{ ¢ ;;log(l +227) ,; T+ 207

where K is as in (7.3). This completes the proof of Theorem 3. O
The asymptotic expression given in our theorem is still implicit in terms of
¢t. With a little bit of extra work, we can obtain the followmg easy to use, but

weaker asymptotic expression.

COROLLARY 1. Under the assumptions in Theorem 3,if ||la||, = Tk > 102 /X =
1 and x; is defined as in (7.4), then as t — oo,

Iog(exp(tz/Z)P(”X _ ta||2 < gt—2Aa—D/(a+ 1))) ~ G(e)tZ/(ou 1)’
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provided G(6) # 0, where

2
(7.20) GO) = 5— Z TRl DKy *.

k>1

Proor. We need to give more detailed estimates for the exponents in
Theorem 3. Note that v ~ x¢¢2%/®*D from Lemma 7. Hence as ¢t — oo,

(7.21) gt—2(a— 1)/(a+1),y ~ 9x0t2/(°‘+1),
and by (7.7),
1
(722) 5 Z log(l + 2)\k’y) ~ aKlfyl/a ~ ale(l)/at2/(a+1).
>1

By using ¥ > 102 /M = 1, we have
t2a?y 2 2 a? 2\y
(7.23) — kT _ . _ kTR
Zl T+207 2 47,§1A,§ 1+ 27
and as t — oo,

t2 az 2Ny 2 a?
(7.24) — t, i, 2 P ot 3 kt2/(a+ 1
M1+2Ny 4y kX: 4x0 kz>:1

Now by Theorem 3 and (7.21), (7.22), (7.23) and (7.24), we obtain

2
log (exp(%)P(”X _ ta||2 < gt~ 2e— 1)/(a+1)))

2= D/(e+D), ap 2\
~ Ot Z log(1+ 27 + £~ Z M1+
k>1
1/ 1 2/(a+1)
~ <9x0 —aK1x0 a+E Z )\2>t /(o
E>1
1 1/a> 2 1
Z —(a— 1DKix g2/ e+ 1)
32
<2x° E>1 Ak
= GO+,

provided G(9) # 0, where the ﬁrst equality above follows from (7.4). This finishes
the proof. O

Our next lemma gives more information about the function G(6). This is
critical when we are using Corollary 1 to prove limit theorems.
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LEMMA 8. The function G(8), 8 > 0, is strictly increasing and its unique
zero is

1 —(a—-1)/(x+1)
_ a+t _ 2a/(a+1) 2 /12
(7.25) 6o = 7m—75 (2K1(e - 1)) (;ak //\k) .

Proor. We only need to show xj is a strictly decreasing function of #, where
x¢ is the unique positive solution of (7.4). The constant 6, given in (7.25) can be
solved from the equation G(6) = 0 and (7.4).

Let £(¢),¢ > 0, be the unique positive solution of the equation #f2 —afte+ D/ _
b =0, where a > 0, b > 0. Implicit differentiation gives us

L 1f-1 (ia__tf2 - af‘a”)/a)f' =0.

a a+l

Note that
2a
a+l

Thus we have f/ < 0 because f > 0. This finishes the proof when we take a = K;
and b = 4—12]3210%/)\,23. O

tf2 _ af(a+l)/a > tf2 _ af(a+1)/a =b>0.

Now we provide the convergence rate and exact constant in the setting of
this section. Because 9(¢) of Theorem 1 is known for these examples to satisfy

a/(a—1)
1/)(8) ~ _2—1A1/(a - 1)(a _ 1)<Zr_/sm Z) 6_2/(0‘_ 1)
(o4 [0}

as € — 0 (see [8]), the convergence rate can easily be computed by Theorem 1
to be

(7.26) d(n) ~ (Ln)~*/t@+D),

Hence all that remains is the exact constant, and this is the next result.

THEOREM 4. Let X,X1,Xs,... be i.i.d. H-valued centered Gaussian random
vectors with p = L(X), where X is defined as in Theorem 3. If a € SH* and

la||, =1, then
lim inf(Ln)*/(®*+ X,
2Ln

=K, o as,
n— oo N

where

K, o=+ 1)1/é(a _ 1)@-D/2a+DpL/a+D

da , 7\ "D
x(_w_sm_&> . ”S—la”—(a—l)/(a+1)



1902 J. KUELBS, W. V. LI AND M. TALAGRAND
and ||S“1a||2 =%r> 1a,§/)\,%.

Proor. From Corollary 1, if a € SH* and ||a||, = 1, then for every € > 0,
G(0) > 0 and ¢ sufficiently large,

P(|X — ta||? < g¢~2e~D/(@a+D)

(7.27) > exp{~£2/2 + GO/ @+ D(1 - £)}.

If 6 = (1 + )y, then G((1 + €)6) > 0 by Lemma 8. Hence (7.27) will give with
t = (2Ln)'/2 and n large that

X 2
P(N 2o —af| < +e)00(\/2Ln)'2(°‘—1>/(a+1)—2>
(7.28) valn

> exp{—Ln + G((1 + £)f) (2Ln) "/ @+ V(1 - e}

Hence if 0 < € < 1, (7.28) and the Borel-Cantelli lemma imply

X

—=—a

n

(7.29)  liminf(Ln)®/@+D < (1+e)2g)/%2o/@+D g
n— oo

Similarly, Corollary 1 and G((1 — )fy) < 0 imply for all 0 < € < 1 that

2
< (1 - £)8p(V2Ln)~2ea—D/(a+D - 2)

(7.30) vaLn
< exp{ ~Ln + G((1 - £)6o)(@2Ln)M(@+ (1 + &)}

Hence the Borel-Cantelli lemma implies

Xn

———a

n

(7.31)  liminfiZn)*/@*V > (1 - e)l/2gy/22-o/@+D) g4
— 00

Because ¢ > 0 was arbitrarily small, this gives the theorem because K, , =
9;/22—a/(a+1). 0O

Let {&: & > 1} be i.i.d. N(0, 1) random variables and consider the orthonor-
mal functions {¢: £ > 1} in H = L2[0, 1] given by ¢4(t) = v/2 sin((2k — 1)n¢/2)
for £ > 1. Then it is well known that the series

1 )smm

(7.32) X=W) = Z m

k1

represents Brownian motion for 0 < ¢ < 1, and we define the probability mea-
sure . = L(X) induced by X on H = L2[0, 1] to be Wiener measure on L2[0, 1].
Applying the above results to X, we have the following corollary.
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COROLLARY 2. Let H = L2[0, 1] and assume X,X;1,X,, ... are i.i.d. H-valued
centered Gaussian random vectors with yp = L(X) being Wiener measure on H.
Ifa € SH* and ||a||, = 1, then

liminf(Ln)?/®

n — oo

K _ a” e

v2Ln

PrOOF. Because p = L(X) is Wiener measure in H = L2[0,1], we have
X = W(¢) as in (7.32). Thus by taking A = 72, A\ = —1/2 and o = 2 in Theorem 4,
we obtain the claim of Corollary 2. O
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