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A UNIVERSAL CHUNG-TYPE LAW OF THE ITERATED LOGARITHM!

By UwWE EINMAHL AND DAVID M. MASON

Indiana University and University of Delaware

Let X;,Xp, ..., be a sequence of independent and identically distributed
random variables. We find sequences of norming and centering constants o,
and 3, such that a universal Chung-type law of the iterated logarithm holds,
namely, lim inf, -, oo max) < < n ISk — kBn|/an < oo almost surely, where
S, denotes the sum of the first & of Xj, X5,..., # > 1. If the underlying
distribution function is in the Feller class, we show that this lim inf is strictly
positive with probability 1.

1. Introduction. LetX, X7, X5, ... be independent identically distributed
(ii.d.) nondegenerate random variables and set Sy :=0,S, =X; + - + X,
n > 1. Write Lt for log(¢ V e) and put LLt := L(L¢), t > 0. It follows from the
so-called other law of the iterated logarithm (LIL) due to Chung (1948) and
Jain and Pruitt (1975) that under assumption

1.1 EX? <00 and EX=0,

one has almost surely (a.s.)
(1.2) liminf max |Sy|/v/n/LLn = (v/V8) (Ex2)"/2.

It is known that condition (1.1) is necessary for (1.2) to hold. [Refer to Csaki
(1978).] More general results, however, are attainable if one uses different norm-
ing sequences. Jain and Pruitt (1973) obtained analogues of (1.2) for certain
random variables in the domain of attraction of a stable law of index « € (0, 2].
Among other things they showed that if one has for a suitable sequence a, T oo,

(1.3) S,/a, — Z in distribution,

where Z is a stable r.v. of index a € (0, 2], which is not supported on a half-line,
then there exists a positive constant ¢ such that

14 liminf max |S:|/a =¢c <00 a.s.
1.4) im in 1gkgn| kl/@n/LLn) )

where as usual [x] denotes the integer part of x.
Using large deviation techniques, Jain (1982) was finally able to identify the
constant ¢ in (1.4), thereby showing that the classical Chung LIL is a special
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1804 U. EINMAHL AND D. M. MASON

case of a general result on the lim inf behavior of suitably normalized sums of
1.i.d. random variables in the domain of attraction of a stable law as above. This
of course excludes random variables in the domain of attraction of completely
asymmetric stable laws if o < 1, and one might ask what type of lim inf behav-
ior one has in such situations. Jain and Pruitt (1973) pointed out that if both X
and the limiting variable Z are nonnegative (or nonpositive) with probability 1,
then the statement on the maximum reduces to a one-sided LIL result for the
sums S, (see Corollary 5). For some related results refer to Fristedt and Pruitt
(1971), Klass (1976, 1977), Mason (1994), Pruitt (1981, 1990), Wichura (1974)
and Zhang (1986). This still leaves open the question of what is the proper ana-
logue of (1.4) when a general r.v. is attracted to a completely asymmetric stable
law if o < 1.

Another problem that has not yet been solved is to find out what is the lim inf
behavior if relation (1.3) is only satisfied after a suitable centering, that is, if
one has for some sequences {b,} and a, 1 oo,

(1.5) (S, — bn)/a, — Z in distribution,

which is more general than (1.3) if & = 1. Jain and Pruitt (1973) obtained in
that situation only a partial answer.

More recently Weiner (1985) showed that it is possible to extend result (1.4)
to certain random variables in the Feller class. Recall that a r.v. X is in the
Feller class if there exist sequences {b,} and a, 1 oo, such that

(1.6) (S, —b,)/a, istight with nondegenerate subsequential limits.

He proved that if one has (1.6) with b, = 0 and if all the limit laws are in a
certain sense uniformly “nonasymmetric,” then (1.4) holds true.

The purpose of the present paper is to show that there exists a universal
Chung-type LIL that is applicable for any random variable in the Feller class.
To prove such a general result, it will be necessary to introduce appropriate
centering constants in statement (1.4). To be more specific, we are interested
in a result of the type

.7 0< lin_l)ig.}fllsnfgn ISk — Bn,2|/¥n <0 a.s.,
where {8, £,1 <k <n,n > 1}is an array and ¥, T oo.

Here one might think that it would be most natural to work with 3, ; = 0,
but given the work of Jain and Pruitt (1973), this is clearly impossible. One
of our most difficult tasks is to find the right centering constants. Somewhat
surprisingly it will turn out that a centering exists. such that the liminf in
(1.7) is always finite, no matter whether X is in the Feller class or not, thereby
making the upper bound part of (1.7) a universal result.

:We will employ the so-called quantile transformation method, which has
been successfully used by Csérgt, Haeusler and Mason (1988a, b) to study weak
convergence results for trimmed sums, and also by Mason (1994) for his work
on one-sided LIL results. If F is the right-continuous distribution function of
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X, define the quantile function @ by setting Q(u) := inf{x: F(x) > u},0<u < 1,
Q(0) := Q(0+). Then two functions—the truncated mean function u(s,1 —t), 0
<st< %, and the truncated variance function c%(s,1 — t),0 < s,t < %—Wﬂl
play a crucial role. They are defined as

1-¢
uw(s,1—1¢):= Q) du,

1—t pl1—t
o2(s,1—t):= / / (u Av —uv)dQ)dQw), 0<s,t< %

Obviously, the o-function increases as s and ¢ decrease so that if we define
for v1,v2 > 0,04(71,72) := o(yLLn/n,1 — y9LLn/n), n > 1, we obtain non-
decreasing sequences (in n).

Finally set for v1,72 > 0, pn(v1,72) = u(y1LLn/n,1 — v2.LLn/n),n > 1. Then
our first result is as follows.

THEOREM 1. Let X be a nondegenerate random variable. Given v;,v > 0
with v1 + 2 < 1, there exists a positive constant Cy such that

(1.8) li"iig.}fl?,?i‘n ISt — kpn(y1,72)|/v/n/LLn oy(y1,72) < C1 <00 a.s.

Here of course it might happen that the liminf is equal to zero. Our next
result, which also gives more information about the centering, shows that this
is not the case if X is in the Feller class. As already indicated in statement (1.7),
we will consider general arrays {6, 1,1 < k£ < n, n > 1}. For technical reasons
we need the mild regularity condition

(1.9) max  max |6,k — Bkl =0(y/n;/LLnjon,) s j— oo,

ni<n<ni11<k<n;

where n; := [exp(j/(LLj)?)],j > 1, and 0, := 0,(1,1),n > 1. This condition

of course is trivially true if 3, » = 0. It will also turn out that it is satisfied if
Bn,k = kpn(y1,72), 71,72 > 0 (see Lemma 6). We then have the following theorem.

THEOREM 2. Let X be a nondegenerate random variable in the Feller class.
There exists a positive constant Cy such that we have for any array
{Bn,x, 1 <k < n,n > 1} satisfying (1.9),

(1.10) limi£f11<nka§ ISt — Bn,kl/v/n/LLno, > Cy  a.s.

Using the fact that the two sequences o,(v1, 72) and o, are of the same order
if X is in the Feller class (see Lemma 4), it is evident that (1.7) holds true
in this case if we set 3, r = kun(y1,72), where 0 < 71,72, 11+ < 1 and
U, = (n/LLn)l/za,,. )
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COROLLARY 1. Let X be a nondegenerate random variable in the Feller class
and let v1,ve be positive constants satisfying v1 + v2 < 1. Then we have for a
suttable positive constant Cs,

(1.11) l’iln_l)iorgfllglfi{ ISy — kun(y1,72)l/v/n/LLno, =C3 a.s.

Recalling Theorem 2, it is now clear that the preceding centering in terms
of the truncated mean function is optimal in the sense that it enables us to use
the smallest possible norming sequence. If X is in the domain of attraction of
a stable law of index « € (0,2], which is not supported on a half-line, then of
course the result (1.4) of Jain and Pruitt (1973) applies too. Comparing (1.4) to
Corollary 1, we first note that the norming sequences in (1.4) and (1.10) have
the same order. To see this, use the convergence of types theorem and recall that
whenever X is in the Feller class, then (1.6) is satisfied with b, = nu(1/n,1-1/n)
and a, = n'/20(1/n,1 — 1/n). [Refer to Corollary 10 in Csorgs, Haeusler and
Mason (1988a).] The centering, however, may be quite different. What one can
always show is that under condition (1.3),

(1.12) nlpn(m, 1) = O((nLLn)20y).

At first sight, this does not appear too useful because it clearly indicates that
the order of our centering might be much larger than the order of the lim inf of
the maximum of the partial sums. As a matter of fact, one can do slightly better.
We will show that if the stable r.v. Z in (1.3) is not completely asymmetric, then
one can improve (1.12) after an appropriate choice of the constants 4, y2 to

(1.13) nlpa(r1,72)| = o((nLLn)?ay),

and we can apply the subsequent Theorem 3 with g, = 0.

THEOREM 3. Let X be a nondegenerate random variable in the Feller class.
Given 1,72 > 0 with v1 + v2 < 1, there exist positive constants Cy, Cs such that
if {B.} is a sequence satisfying

(1.14) limsup |Bn — pn(v1,72)l/v/LLn/nop < Cy < 00,
n— oo

then we have

(1.15) liminf max |Sy —k,|/v/n/Llnos <Cs a.s

One might now wonder whether it is possible to obtain a similar improvement
of Theorem 1 in general. It will turn out that this is impossible. To see this we
first formulate a corollary to Theorem 3 that might be of independent interest.
It shows that the liminf in the one-sided LIL of Mason (1994) cannot be equal
to 0if X is in the Feller class.
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COROLLARY 2. Let X > 0 be a nondegenerate random variable in the Feller
class. There exists a positive constant Cg such that

(1.16) -2 < liminf(S, — npn)/VnLLnG, < ~Cs  a.s.
where ¢, := 0(0,LLn/n), p, := 4(0,LLn/n).

If Theorem 3 were true for general random variables, we would also obtain
statement (1.16) for nonnegative random variables whose distribution func-
tions have slowly varying upper tails. However, this would be in contradiction
to Lemma 4 in Mason (1994), which says that in this case the liminfin (1.16)
is equal to 0 almost surely. Moreover, we will show in Section 5 that it is not
even possible to prove Theorem 3 for random variables outside the Feller class
in general if one only assumes

(1.17) 1Bn — tn(v1,72)|/v/LLn/nop(y1,72) = 0 asn — co.

One might also ask whether one can choose a constant in (1.14) that de-
pends only on ~; and 7, such that (1.15) holds for all random variables in the
Feller class. If this were true, our proof of Corollary 2 would lead to a universal
constant Cg in (1.16), which is impossible in view of Lemma 4 in Mason (1994).

After having indicated how the foregoing theorems relate to the result (1.4)
of Jain and Pruitt (1973), we now would like to turn to random variables in
the domain of attraction of completely asymmetric stable random variables in
the case o < 1. If X is nonnegative, one can use the aforementioned one-sided
LIL results to obtain a Chung-type LIL with zero centering and the norming
sequence {(nLLn)'/2a,}, which misses the optimal sequence by a factor LLn.
The same phenomenon will occur if one uses the zero centering in (1.7) for a
general random variable attracted to a positive stable random variable, though
the resulting norming sequence v, might be somewhat closer to the optimal one.

Finally, if X is in the domain of attraction of an asymmetric stable law of
index « = 1, then Jain and Pruitt (1973) have shown that under an additional
condition one can prove a lim inf result with zero centering, where the resulting
norming sequence has the same order as the sequence {n|u(1/n,1 — 1/n)|}.
One can show, however, that if their condition is satisfied, then this norming
sequence is at least of order {n'/20(1/n,1 — 1/n)}, which misses the optimal
norming sequence by a power of LLn. As a matter of fact, one can easily show
that in the cases covered by the corollary in Jain and Pruitt (1973), the above
norming sequence even leads to an additional factor of order O((Ln)°), where c is
a positive constant. We thus see that in many cases the zero centering requires
much larger norming sequences than in Corollary 1. °

The remainder of the paper is organized as follows. We will first prove The-
orem 1 in Section 2. Our proof is based on the Skorokhod embedding in con-
junction with an appropriate truncation argument. Here it will turn out to be
extremely helpful to represent the random variables {X,,} as quantile trans-
formations of uniformly distributed random variables. We then prove Theorem
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2 and Corollary 1 in Section 3. We will show that after a symmetrization ar-
gument one can obtain Theorem 2 by a modification of the proof given by Jain
and Pruitt (1973). The proof of Theorem 3 will be carried out in Section 4. We
will employ the same truncation argument as in Section 2, but then we will
use a skillful conditioning argument due to Jain and Pruitt (1973) that enables
us to eventually reduce the proof to studying small deviation probabilities for
certain arrays of rowwise independent random variables. Because we will be
dealing with truncated random variables at that point, we can show via the
Berry-Esseen inequality that the normal approximation will be good enough
for our purposes. Finally we will demonstrate in Section 5 how one can infer the
results for random variables in the domain of attraction to a stable law from
the foregoing theorems. We will also construct a random variable where the tail
probabilities are slowly varying and condition (1.17) is satisfied for a suitable
sequence {0, }, but (1.15) fails.

2. Proof of Theorem 1. It is enough to prove Theorem 1 for random vari-
ables with infinite variance. (The finite variance case will be included in the
proof of Theorem 3.)

We first need the following auxiliary result.

LEMMA 1. If EX? = oo, we have:
(@) 0%(s,1 —t) ~sQ%(s) +tQ%*(1 —t) + 7%(s,1 — ) as s, ¢ | O, where 72(s,1 —¢)
= [T QA du,0 < 5,6 < L.

s

(b) wu(s,1—1¢)/7(s,1—¢) > 0ass,t|0.

Both statements are contained in the proof of Lemma 2.1 of Csérgs, Haeusler
and Mason (1988b).

To simplify our notation, we set v, := /n/LLno,(y1,7) and M, :=
maxi<i<n Sk — ERun(711,72)|. Without loss of generality, we can and actually
do assume that X; = Q(U)), j > 1, where {U;} is a sequence of i.i.d. uniform
(0, 1) random variables. The next lemma will be crucial for the proof of Theorem
1.

LEMMA 2. Given v1,7s > O with v, + v2 < 1, there exists a constant C; > 0
(depending on vy, and v, only) such that for large enough n,

P{M,, < Crypn} > (Ln)~1+%/2,
where § :=1— v, — 7.
PrOOF. (i) Define the event
E, = {mLLn/n <U;j<1-"LLn/n, 1 <j<n}.
Th;n it is obvious that

(2.1) P{M, < Ci¢pn} > P({M,, <-C1¢n} | E,) P(E,).
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Moreover, we have,

(2.2) P({Myn < Cryn} | En) =P{ max |

k
Z {QWVs, ) = pn(m1, 1)}
Jj=1

< C7'¢’n}’

where V, ;,1 <j < n, are independent uniform (y;LLn/n,1 — yLLn/n) r.v’s.
Next observe that on account of Lemma 1(b),

EQ(V,, ) = pn(y1,72)/ (1 — (m + v2)LLn /n)
= pn(m,72) +0(0n(n,12)LLn/n),  1<j<n.

Setting Z, ; = Q(V,,, ) —EQ(V,, ), 1 < j <n,and Ty} := $F.1Z, j,1 <k <n,
we can infer that for large enough n,

k
P{ ll<nka§n Z {Q(Vn,_]) - Nn(71a72)} < C7'¢’n}
(2.3) AL
Cy
ZP{ lrsnka%{ann’kl < ?"/)n}

Because
P(E,)= (1-(1-6LLn/n)"
= exp(—(1 — §)LLn + O((LLnY/n))
which is, for large n, greater than or equal to
L(Ln)~ 146

we can infer from (2.1)—(2.3) that
_]; ﬁ -1+6
(24)  P{My<Crfn}> 2P{ max [Tosl < wn}<Ln> ,

provided n is large enough.

(ii) We now use the Skorokhod embedding. Without loss of generality, we
can assume that there exists a Brownian motion W and a triangular array of
rowwise independent stopping times {v,, j:1 <j < n, n > 1} such that for any
n>1,

(2.5) (Tn 1y -y Tnyn) =a (W 1),..., W1+ + Vn,n)),

(2.6) Ev,; = EZ2, 1<j<n,.

and for any integer r > 2,

2.7 Elv, I <2(8/7%) " 'MEQZ, ¥, 1<j<n.

[Refer to Theorem A.1 in Hall and Heyde (1980).]
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Setting 7.2(71,72) := 72(viLLn/n,1 — v, LLn /n), 71,72 > 0,n > 1, it is easy to
see that

28) EZ] ;< 2m,7)/(1- (m+wLLn/n) ~2(y1,7), 1<j<n.

Moreover, we have for any constant o: > 0 and large enough n,

1 _
2.9) P{ max [T, < 2c7¢n} > P,(1)~ Pa(2),
where
. 1

P,(1) := P{ogtg(zr?o%fagm,w (W) < 207¢n}

and
n
P,(2) = P{ (Vn,j — Evy ) > an03(71,72)}-
j=1

Now

Po(1)=P{ max [W()| < Crlda +8)V2LLr) V2],
0<t<1
and using relation (2.1) of Jain and Pruitt (1975), we get
(2.10) Pa(1) > (L) 20}

Next we need an upper bound for P,(2). Toward that end, we first note that
by Lemma 1(a), for large n,

|Zn,j| < 2|@(mLLn/n)| v 2|Q(1 - v,LLn/n)|
< 8% V2 Vn/LLnowiv,v), 1<j<n,

where v := 71 A 7s.
Using the c,-inequality, (2.7) and Lemma 1, we get, for large n,

E|vy,; — Bv, ;" < 4(16/x%) " 'HEZY
< 5{(144/n270)¢3}r-lr!a,z,('yl,’)'z), 1<j<n.
In particular,
(2.11) Var(v,, ;) < (1440/7%y0)Yon(y, 1) =: A2,  1<j<n,
and ’

(2.12) Elvn,j—Bvn jI" <3Nrlch=2 . 1<j<n,
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where ¢, = (144 /72yo)2.
Using a version of the Bernstein inequality given as Exercise 14 on page 111
of Chow and Teicher (1988), we find that for large n,

P,(2) < exp (— o?Yp(LLn)*/(2n)2 + 2acnz/;3LLn)) ,

which is
= (Ln)—wz'yoaz/(288(10 + )

Choosing a = a(v;, ¥2) large enough so that
my00?/(288(10 + o)) > 1,

we get for large n,

(2.13) P,2)< (Ln)7!,

Setting Cy := 272 + a6~1/2, we finally can infer from (2.4), (2.9), (2.10) and
(2.13) that

1 8 _6 _
<= s S /8 _ 1
p{ max [T, < 2c7¢,,} > 2 (Lny*/® (L)
> 2(Ln)~%/2,
which in combination with (2.4) implies the assertion of Lemma 2. O
Set m; := [exp(l?)], | > 1, where p > 1.

LEMMA 3. Given 1,72 > 0 with y1 +v2 < 1, we have,

(2.14) \mex Sk — kpim,(v1,72)|/om, = 0 a.s.

PrRoOOF. Let Xz/,j = QUH{mLLm;/m; < U; < 1 —vLLm;/m;},1 <j <
m;_1,and set S} , = 2f=1Xz/,j’ 1 <k < m;_1. Then it is obvious that

mp_1
P{Sy #8Sj ; forsome 1 <k <m;_;} SP( U X #Xl',j}>
Jj=1
< my_1LLm;/m.

Because by the choice of the subsequence {m;},

(2.15) > my_1LLmy/my < oo,
l

we obtain via the Borel—Cantelli' lemma

i ! =
(2.16) max |~ 84 =01) as.
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Next observe that EXI' ;= tm,(71,72), 1 < j < my_1. Thus a straightforward
application of Kolmogorov’s inequality yields for any ¢ > 0

P X 1S] & — Rttmy (1, 72)| > 6¢m,}
< e ?my_1LLmy Var(X;,) /(mo2,(y1,72)).
Recalling Lemma 1(a), it is clear that
Var(X] 1)/om,(11,72) = O(1).

Using once more (2.15), we get for any ¢ > 0,

(2.17) EI:P{ X 1S & — Bttm,(y1,72)] > 6¢m,} < oo.
This of course implies
(2.18) , max 1S7. 1 — Etim,(71,72)| /¥m, = O a.s.

Combining (2.16) and (2.18), we obtain the assertion of Lemma 3. O

We are now ready to conclude the proof of Theorem 1. To further simplify our
notation, we set for [ > 2,

MP =M,,_,,
O ._
My’ = max |(Sk — Smy_ 1) — & — miy_ Dptm, (71, 72)]-

Obviously,
Mo, /tbmy < ML [p, + MD [tp,.

In view of Lemma 3, it will be enough to show that after an appropriate choice
of p>1,

(2.19) lilm infMP /ypm, < C7  as.

Noticing that the r.v’s M. él), I > 2, areindependent, and using the Borel-Cantelli
lemma, we only have to check that

(2.20) > P{MP < Cithm,} = 0.
l

Because P{Mél) <t} > P{M,, <t}, t >0, we can infer from Lemma 2 that for
large enough /,

@.21) P{M < Crtpm,} > (Lmy)~1+%/2,

which implies statement (2.20) provided we choose p = (1 — §/2)~!. This com-
pletes the proof of Theorem 1. O .
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3. Proof of Theorem 2 and Corollary 1. The following lemma is an
immediate consequence of relation (1.42b) in Csérgs, Haeusler and Mason
(1988a).

LEMMA 4. Let X be in the Feller class and let 0 < A1, Ao < 1. Then we have

lim sup 02(\1¢,1 — Agt) /02(¢,1 — ) < K < 00,
tl0

where K is a positive constant depending on A1, g and the distribution of X.

The next lemma will be crucial for the proof of Theorem 2. It can be in-
ferred from a result of Hall (1983) on concentration functions [see also Griffin,
Jain and Pruitt (1984), relation (1.3)], but we prefer to give a somewhat more
direct argument.

LEMMA 5. Let X be in the Feller class. Then we have
liln(} lim sup supP{]Sm -8l < c\/ﬁio’(l/m)} =0,
¢ B

m — 00
where we set 0%(s) :=0%(s,1 —5),0 <s < %
Proor. We use a symmetrization argument. Let {Y}} be a sequence of inde-

pendent copies of X, which is also independent of the X;’s. Set X := X; Y}, j > 1,
and Sy, := £ ; X*, m > 1. Then it is obvious that

2
@D P{IS.-8l< evma(l/m)} < P{IS;| < 2evmo(1/m)}
and it is enough to prove
(3.2) lim lim supp{|s;;| <cym a(l/m)} =0.
c m — 00

To that end, we first note that by Corollary 10 in Csérgs, Haeusler and Mason
(1988a),

{(sn =~ muta/m)) o a/m) |

is tight with nondegenerate subsequential limits,

(3.3)

which of course implies
(3.4) {S;*n /vVmao(1/m) } is tight with nondegenerate subsequential limits.

Denoting the class of all subsequential limit distributions by £L*, we can infer
that for any ¢ > 0,

(3.5) lim sup P{|S;,| < cvma(1/m)} < sup @(Ic,c)).

m — oo Qe L
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By the theorem of Pruitt (1983) we know that all p-measures @ in £L* have C*°-
densities, and we can use the same argument as in Lemma 1 of Weiner (1985)
to infer that

(3.6) 11m sup Q([—c,c]) =
0Qer~

Combining (3.5) and (3.6), we obtain (3.2) and consequently the assertion of
Lemma 5. O

We are now ready to prove Theorem 2. To simplify our notation, we set

= — > 1.
Mn 1I<nka§ I‘Sk ﬁn kl n>1

Because of Lemma 5, we can find a positive constant Cg such that for large
enough m,

3.7 Py, :=supP{|S, - | < 2Csvmo(1/m) | <e™?.
B

Setting m, := [2n/LLn] and arguing as in Jain and Pruitt (1973), we find that
for large enough n,

P{M, < Ca\/n/LLn o, }
< P(M, < Covimo(L/mn)}

[LLn/2]
< H P{ISJmn S(J Dm, — (,Bn Jmg ﬁn (Jj— l)m,,)
Jj=1
< PRV < (Lny~¥2,

< 2Cs /i o (1/mn) }

Letting n; := [exp(j/(Lj)®)],j > 1, we readily obtain
(3.8) > P{M,, < Cs/n/LLn;o(1/n) } < o0
Jj=1

Using Borel-Cantelli and (1.9) we find that we have almost surely for any
>0, nj<n <nj,1andj > jole,w),

M,(w)>M,(w)— max max .
alw) > n,( ) mn<n.i1<k<n lﬂn, :Bn,,kl

> (Cg — s), /n;/LLn; oy,
> chl Vn/LLno,,

where K := limsup,, _, o, on,,,/0n;, which is finite on account of Lemma 4.
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Because ¢ can be made arbitrarily small, we obtain the assertion of Theorem
2 with Cz = Cg/Ko.

We now turn to the proof of Corollary 1. In light of Theorems 1 and 2, we
only have to check that condition (1.9) is satisfied. The assertion then follows
from the Hewitt—Savage 0-1 law.

LEMMA 6. Let X be in the Feller class. Then we have for any 1,7, > O,

ny, MEK [ (v1,72) = pn, (71,72 = 0(\/nj/LLnj Un,~> as j — oo.

nj<n<nj,

Proor. We first prove Lemma 6 in the infinite variance case. Recalling
Lemma 1, we obtain for large j,

max  |pa(y1,72) — pin, (71, 72)|

ni<n<nj

'ylLLnj/nj 'ygLLnj/nj
</ Quldu+ | QU - w)| du
%

1LLnj, 1/nj,1 YoLLnj, 1/nj1

'ylLLnj/nj 'yzLLnj/nj
< 20y,,,(71,7) / u_l/zdu+/ uY2dy
2l ol

WLLnj, 1/njsy oLLnj,1/nj1
< 4[()Y2 + (Y0, (y1,72) (12 = n Y2 (LLnj V2,
which is of order
O(Unj“(')’l,’)’z)nj_l/ XLLn)~%)  as j— oo.

Because by Lemma 4, 0, ,(71,72)/0n; = O(1) for any 71,7, > 0, we obtain the

assertion of Lemma 6 for the case EX? = co.
If EX? < o, it is easy to see that

lim sup (v/5|Q()| + VEHRQ(L - 1)) =0,
s,t

and we can prove Lemma 6 in this case by an obvious modification of the above
argument. O

4. Proof of Theorem 3 and Corollary 2. We need a further lemma that
shows that the o-function and the 7-function are of the same order if X is in the
Feller class. Recall that 72(s, 1 — ¢) is defined as fsl “'Q2uw)du,0<s,t < I

LEMMA 7. Let X be in the Feller class. Then we have for all A1, g > 0,

lim sup 02(\1£, 1 — Agt)/72(0\it, 1 — Mot) < K,
tl0

where K is a positive constant depending on A1, \s and the distribution of X.
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Proor. We only have to prove Lemma 7 for r.v’s with EX? = co. Recalling
Lemma 4, we see that it is enough to show

4.1) lim sup 02(\gt, 1 — Agt)/72(A\1t, 1 — Aot) < o0,
t|l0

where A3 = \{ V \s.
By the monotonicity of the 7-function, we have

(4.2) 72(\it, 1 — Agt) > 72(\gt, 1 — Agt),

whence (4.1) follows from

(4.3) limsup o?(t,1 —t)/7%(t,1 — t) < oo,
tL0

which is always true if X is the Feller class. To see this, use relation (1.42c) in
Csorg6, Haeusler and Mason (1988a) in conjunction with our Lemma 1(a). O

We are now ready to show how the proof of Theorem 1 has to be modified
so as to obtain the improved statement for r.v’s in the Feller class. The next
lemma is the counterpart to Lemma 2. To simplify our notation, we set

72(y1,72) 1= 7'2(71LLn/n, 1- 72LLn/n), 1,72 >0, n>1.
LEMMA 8. Given v1,7v2 > Owith v1 + y2 = 1— 6, where § > 0, there exist pos-

itive constants Cg, C1g such that if {5,} is a sequence of real numbers satisfying,
for large n,

(4.4) 1B — bn(y1,72)| < Co/LLN /N Tr(y1, 72),

we have for large enough n,

45 P{ max ISy~ kA < Crov/n/ELnon(i, )} > (Ln) 14902

Proor. If EX? = co, arguing as in part (i) of the proof of Lemma 2, we can
obtain for all large enough n,

we P{ ,max ISe — kBa| < Cm%}
' ZP{ max |Tn kB kAnl < %d]n}(Ln)_l*-&)

1<k<

where T, ; = Zk HRWV, ) —EQ(V, D}, 1 <k <n, Ap =B — pn(y1,72) and

Yn = V n/LLn O'n(’)’l, ¥2).

‘Moreover, noticing that if EX 2 < 00,

EQ(Vy, ;) = pin(y1,72) + O(pn(7v1, 72)LLn /1)
= pn(y1,72) + O(0on(m1, v2)LLn/n),
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it is easy to see that one can also prove (4.6) in the finite variance case.
Next set m, := [an/LLn], where a > 0 will be specified later and consider
the events

Fn,j = {lTn,(j+1)m,l - (J+ l)mnAnI < %Clo'ﬂbn, Mn(.]) < %Clown},

where M,( j) := MaXjm, <t <(j+Vmn | Tn,k2 — Tn, jm, — (B —jma)An|, j > 0. Let
I, :=min{j > 0: (j + 1)m, > n} and note that

4.7 l,~LLn/a asn — oo.

From the definition of the events F, ; it is easy to see that

(4.8) (ﬂF,,) <P{ max [T, —kA,| < clo¢n}

Furthermore, we have for 1 <1 <1,

l -1
(4.9) P(ﬂFn, j> =ElHIF,,'j FrilSim )]
Jj=0 Jj=0

where 9(") is the o-field generated by the rv’s T, 1,..., Ty 2, 1 <k <n.
Because M, () is independent of 6™ it is obvious that

Im,?

C
( n, l”g(n) ) ({lTn,(Hl)m,, -+ 1)mnAn| < ﬂ%}”SEﬁ.)

(4.10) 1
—P{Mna) > chown}.

Letting K := limsup, _, o, Tn(71,72)/0(71, 72), which is bounded above by 1 if
EX? = oo [use Lemma 1(a)] and equal to (EX?/Var(X))/2 if EX? < oo, we
find that

P{M,(1) > 3C1o%n}

< P{  max [T 4] > (1C1 — 20K Co) v/n/LLn (1, 72)},

which by Kolmogorov’s inequality is less than or equal to
16a(C1g — 8aK1C9)~2 Var(Q(V,, 1)) /o2(y1, Y2)-
As in (2.8) we have
lim sup Var (Q(V,,, 1)) /m2(v1,72) < 1

n— oo

so that the last term is less than or equal to

17K12a(010 - 8aK1C'9)_2
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provided we have chosen n large enough.
Setting Cyg := 8aK;Cy + 12(aK ?)!/2, we can infer that for large n,

(4.11) P{M,(1) > {C1o%n} < §, 0<I<L,.
Next observe that

P({ITn,a+1m, = U+ Dmalal < Jero/dun} | S, ) s, ,_,
> P{— 1C10%n < Tn,m, — MalAy < 0} 0< T, 1, —Imrs < (Cro/n}F
+P{0 < T, m, —mnl, < 1Ci09n H{(0> Ty iy — Iman > ~Cro/a00n HFn 1 15

which in turn, by (4.11), is greater than or equal to

anFn, 1-1
where
@n = (P{Tn,m, — MLy > 0} AP{Ty m, — muA, < 0}) — L.

If EX? = 0o, we have Var Q(V,,.1) ~ 72(y1,72) as n — oo, so that an application
of the Berry—Esseen inequality in conjunction with (4.4) yields, for large n,

In=1- (I‘(z\/nT"lA"l/Tn(’Yl"Y?)) -HR \/’;1_17'3(’71Q’Yz),1 l 8

3(|Q(nLLn/n)| Vv |Q(1 - voLLn/n)|
2 1 - @(209&1/2) —_ ( \/"n—n,rn(,yl,,),z) > —_

> 1- 8(2Csa"/?) — 4Kylorno)™? -,

0| =

where vy := 71 A 1 and K, := limsup, _, , 0n(71,72)/7(71,72), Which is finite
because of Lemma 7. Choosing Cy < (1/32)a~Y/% and o > v, '64K%, we have, in
this case,

1\ 3_1
>1- — ] -=>=.
=1 <I’(16) 8= 16

If EX? < oo, we have 02(y1,72) T Var(X),v1,72 > 0. Moreover, it is easy to
see that in this case the array {Z, ; = Q(V, ;) — EQ(V, ;);1 <j < m,,n > 1}
satisfies Lyapounov’s condition for the CLT. It follows that as n — oo,

(4.12) supx|P{:l: Thm, <x/Mpyon(y1, 72)} - <I>(x)| — 0,
which in turn implies

(4.13) liminf P{+ Ty, m, > maAn} > 1 — &(a'/2K;Cy).

n — oo
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Setting Cy = (1/82A(4K;)~1)a~1/2, we see that we have in both cases, for large n,

1
. > —.
(4.14) an = 715

Recalling (4.10) and (4.11), we get for 1 <! <1, and large n,

1
(4.15) P(Fn,lllggg,.)IFn,l_1 > 1_6[Fn,l- v
which of course implies in combination with (4.8) and (4.9),

(4.16) P{ \max [T, i — kAy| < %Clm/;n} > 1674P(F,, o).

Noticing that F,, o = {M,(0) < }C10%»}, we can infer from (4.11) that the last
term is greater than or equal to

(-
167",

which in turn by (4.7) is, for large n, greater than or equal to
exp(— 5(log2)LLn /@) > (Ln)~%/2,

provided a > 10(log 2)5~1.
Setting o = 10(log 2)6~* V 7v; '642K2 and defining Cy and C; as before, we

obtain (4.5). O
The next lemma corresponds to Lemma 3.

LEMMA 9. Let {3,} be as in Lemma 8 and let v1,v2 > 0 be real numbers
satisfying v1 + ve < 1. Set m; = [exp(l?)],l > 1, where p > 1. Then we have, as
[ — o0,

(4.17) ax |Sp —kBm,|/v/mi/LLm;0y,(71,72) — 0 a.s.
-1

m
1§k§m1

Proor. Noticing that the proof of Lemma 3 also applies to r.v’s with a finite
variance, we only need to show that

(4.18) my _1|Bm, — pm,(71,72)l/v/mi/LLmy 0, (1,7v2) — 0.

To prove (4.18), simply note that m; _; = o(m;/LLm,;) and use (4.4) in conjunc-
tion with the fact that as [ — oo,

Tml(’Yl, 72)/Um1(71) 72) = 0(1) 0O

_ Using the two foregoing lemmas and arguing as in the proof of Theorem 1,
we obtain, for any sequence {3,} as before,

(4.19) liminf max |S; —kB,|//n/LLno,(v1,7) < C1o a.s.,
n—oo 1<k<n
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which in combination with Lemma 4 implies (1.15).
Finally, observe that by Lemma 7,

(4.20) 0,2,/73(71, ¥2) = O(1).

It is now obvious that condition (1.14) with an appropriate choice for the con-
stant C, implies (4.4) and consequently (1.15), and the proof of Theorem 3

is complete.
To verify Corollary 2, we apply Theorem 3 with 8, = p,(y1,v2) — Cs+/LLn/n
On, Where 71 = 72 = 1 (say) and Cg = Cy(}, 3, X). It follows that

lélm i£f(S,, —npB,)/vVnLLn oy,
<liminf max |S; —k@B,|/VnLLno, =0 as.,
1<k<n

n— oo
but we also have
lim inf(S,, n6,)/VnLLno,
= Iiﬁigf(sn — npn(y1,72)) /VnLLno, + Ce.
Because X is nonnegative, it is obvious that

pn(v1,72) < pin
and we can conclude that

4.21) lim iolgf(S,, —np,)/vnLLno, < —C¢ a.s.

Finally noting that 5, /o, — 1 because X is nonnegative, we obtain the upper
bound in Corollary 2. The lower bound follows from the Theorem in Mason
(1994). O

5. Examples and discussion. We first consider random variables X
whose distribution functions F' are in the domain of attraction of a stable law
of index 0 < a < 2, written F € D(«). It is known [cf. Corollary 3 of Csorgd,
Haeusler and Mason (1988a)] that F' € D(a), 0 < a < 2, if and only if there
exists a positive function 4 defined on (0, 1), slowly varying at 0, and constants
61 > 0,85 > 0 with at least one being greater than 0 such that ass | 0,

(5.1.0) Q(s+) = (=681 +0(1))s~/*A(s)
and
(5.1.ii) Q(L —8) = (65 +0(1))s™Y/*h(s).

Using elementary properties of regularly varying functions, it can be readily
shown that forall 0 < a < 2 as s,¢ | 0,

-1
62 TXs,1-t)~ (% = 1) {6252+ 1h2(s) + 8272/ ** 1h2(1)},
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(5.3) o¥(s,1 - 1) ~ 22 — a) " {6372/ 1p2(s) + 53t~/ 1p2p)},

-1
(5.4) ws,1—18) ~ (% — ]_> {_513-l/a+1h($)+62t_1/a+lh(t)},

for0<a<1,and

-1
6:5) w0, -pte,1=0~ (1= 1) (-0 b9 557/ ),
forl<a<?2.
Set for 1,15 >0andn > 1,
wn(v1,19), if0<ax<l,
(56) n(Vla V2) = " .
w(0,1) — p,(q,15), Ifl<a<?.

Using (5.3), (5.4) and (5.5) we see that for all 0 < a < 2,a#1 and vy, > 0,

(n)mmmM>
LLn on(vy, va)
(5.7) @ — )2 {_611/1—1/a+l +621/2-1/o¢+ 1}

= 1 .
21721 — 1/q] (6%1/1_2/“” . 6§V2—2/a+1) i3 +o(1) asn— oo

We are now prepared to derive versions of the results of Jain and Pruitt
(1973).

COROLLARY 3. Assume that F € D(a),0 < a < 2, a#1, with both 6, and
82 > 0in (5.1.i) and (5.1.ii) or F € D(2). Then there exists a positive constant
¢ > 0 such that

(5.8) liminf max |S —mya|/(vVn/LLnoy) =c a.s.,

n—o0 1<m
where po =0if0 < a<land po=pu0,1)=EX;ifl<a< 2.

Proor. First assume a#2. Choose v; > 0 and v, > O such that y; +v5 < 1
and :

(5.9) —177 M sy e =0,

Setting 5, = po We see by (5.7), (5.3) and (5.9) that as n — oo,
(5.10) B = tn(11,72) = o(vLLn/n oy).

Thus by (1.15), for some positi\}é constant Cs,

(5.11) liminf max |sk — kol /(v/n/LLno,) < Cs  a.s.

n—oo 1<
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and, further, because (1.9) is trivially satisfied with 3, ; = kuq, by Theorem 2,

lim inf11<n;?§ ISy — kpal/(v/n/LLnoy) > Cy  as.

n— oo

for some positive Cg, which in combination with (5.11) and the Hewitt—-Savage
0-1 law implies (5.8). »

When F € D(2), then by Corollary 1 of Csérgd, Haeusler and Mason (1988a),
o(s) =: 0(s,1 — s) is slowly varying at 0 and

s12{|Q(s)| + 1@ — )|} /o(s) > 0 ass |0,

from which it is easy to infer that (5.10) holds for any v;, 2 > 0 and (5.8) follows
as before. O

Suppose now that F € D(1). Further assume that
(5.12) a;18, —qY asn — oo,

for a suitable norming sequence a,, — oo, where Y is a stable random variable of
index 1. We can assume without loss of generality that a, = \/no(1/n,1—1/n).
Moreover, we also have

(5.13) a;l{Sn —nu(1l/n,1- 1/n)} —qY' asn — oo,

where Y’ is also stable of index 1. [See Corollary 3 of Csorgs, Haeusler and
Mason (1988a).] From (5.12) and (5.13) in conjunction with the convergence of
types theorem, we can conclude that for some b € R,

nu(1/n,1-1/n) /(VAo(1/n,1-1/n)) b asn— oo,
from which it is straightforward to infer that
(5.14) s7Y21(s,1—5)/o(s,1—s) > b ass|O.
Using (5.1.1) and (5.1.1i) it is easy to show that for all v, v > 0,
(5.15) (18,1 — ves) — u(s,1 —s) ~ {611logvy — 6logrr}h(s) ass | 0.

Also by setting o = 1 in (5.3) we have
1/2
(5.16) o(s,1-5)~ (2(63+83)) " s7V/%h(s) ass | 0.

Thus from (5.15) and (5.16) we get

s™V2{ (s, 1 - 1/28)' — s, 1 —8)}/o(s,1—5s)

(5.17) 1/2
~ (51 10g1/1 —62 logug)/(2(6%+6§)) ass l 0.
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COROLLARY 4. Assume that F' € D(1) and (5.12) is satisfied. Further assume
that (5.1.i) and (5.1.ii) hold with both &, and 63 > 0. Then there exists a positive
constant c such that

(5.18) lim inf max |Sm|/(\/n/LLn on) =c as

n—oo 1<

ProoF. Choose vy; > 0 and v, > 0 such that y; +v2 < 1, satisfying the equa-
tion

1/2
(5.19) b1logm — 6ylog s = —b(2(63 +3)) .
Next from (5.14) and (5.17) we have

[ n pn(y,7e) _ [ n {Hn(71,72)_ﬂn(1,1)}+ [n pn(1,1)
(5.20) VLLn oy LLn On LLn o,

=-b+b+0o(l)=0(1) asn — co.

Setting 3, = 0 we see that (1.14) holds, so that the proof of Corollary 4 now
proceeds exactly like that of Corollary 3. O

COROLLARY 5. Assume that F € D(o) with 0 < a < 1 and that (5.1.i) and
(5.1.ii) hold with either 6; = 0 and 6, > 0 or 6; > 0 and 63 = 0. Then there exists
a positive constant c such that

(5.21) liﬁgfl?gn ISk|/(VnLLno,) <c a.s.

Moreover,if F(0—) = 0,if § > 0,and F(0) = 1,if 63 = 0, then the positive constant
¢ can be chosen so that equality holds almost surely in (5.21).

Proor. We will assume that 63 > 0. The proof for the case §; > 0 is the
same. Notice that for any choice of 71,72 > 0 such that v; +y5 < 1,

max |S';e |/(VnLLnoy,)

1<k

(5.22) < 11<nax ISk, — Eun(71,72)|/ (VRLLn 0y,)

+ /7 |n(11,72)|/ (VLLn 0y,).
It follows from (5.3) and (5.4) that .
(5.23) lim v lunty, w)l/(VILny) = K > 0,
and from Corollary 1 we get ‘

(5.24) liminf max |Sk - kua(y1,7)l/ (VaLLno,) =0 as.
n—oo 1<k<n



1824 U. EINMAHL AND D. M. MASON

Now (5.21) obviously follows from (5.22), (5.23) and (5.24).
If we assume further that F(0—) = 0, then

(5.25)  oax ISk|/(VnLLno,) = S,/(VnLLnay,),

so that in this case equality in (5.22) for a suitable positive constant is obtained
from Theorem 3.1 of Wichura (1974). O

Corollaries 3 and 4 correspond to Theorem 1 of Jain and Pruitt (1973), as-
suming that the limiting stable law is not completely asymmetric. Corollary 5
includes their Theorem 2.

We finally show that Theorem 3 is no longer true for arandom variable whose
distribution function has a slowly varying upper tail, written F' € D(0), even if
one assumes (1.17). Let X > 0 be a random variable such that

1 — F(x) = exp(—Lx/VLLLx), x> 1.

Then an easy calculation shows that
Q- 1)~ exp(L(1/t)/LLL(1/t) ) astlo0.

Because Q(1 — ¢) is rapidly varying at 0, arguing as in the proof of Lemma 4 of
Mason (1994), we get

02(s,1 —t) ~tQ*(1—¢t) ass,t]O,

from which we can infer that for any v; > 0 and v; > 0,

LLn n n
2 o [ LT
7l )~ < n ) P (ZL (’YzLLn ) L (72LLn ) ) .

Setting 02(y) = 02(0,7), we conclude after some calculation that if v > 1 and
~1,7v2 > 0 are such that v + v < 1,

02(v1,72)/0%(7) < exple,LLLn)

with ¢, — 0.
Therefore,

(5.26) lim sup 02(y1,v2)/ (02(y)LLn) = 0.

n— oo

Because we have in the slowly varying case

npn(11,72) = o(VnLLn 0,(y1,72)),

condition (1.17) holds with 3, =0,n > 1. If Theorem 3 were to hold for this
example, statement (1.15) would imply

l’ilmioréfSn/(\/n/LLn on(71,72)) <Cs5 < o0 as,
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which by (5.26) gives
I’illgigfsn/(\/r_zan(v)) =0 a.s.

This would contradict (1.6) in Mason (1994), which implies that the preceding
liminf is equal to infinity almost surely.
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