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We are investigating Markov process expectations for large time of
the form exp(TF(Ly)), where Ly is the empirical measure of a uniformly
ergodic Markov process and F is a smooth functional. Such expressions
are evaluated up to a factor which converges to 1. In contrast to earlier
work on the subject, it is not assumed that the process is reversible.

1. Statement of the result. Let E be a compact metric space and & its
Borel field. C(E) is the set of continuous mappings E — R, and || [l is the
supremum metric on C(E). C*(E) denotes the set of strictly positive func-
tions on E. .#(E) is the set of signed measures on (E, &) and .#;(E) is the
set of probability measures. The path space Q = D([0, ), E) is the set of
right continuous functions :[0, ©) » E with left-hand limits. The well-
known Skorohod metric gives () the structure of a Polish space whose Borel
field & is generated by the evaluation mappings X,(w) = w(¢), ¢ > 0. We also
write .#;, C, C* instead of .#; (E),..., if there is no danger of confusion.

We consider an &-measurable family (P, ), . z of time-homogeneous Marko-
vian probability measures on (Q, ¥) with P,(X, = x) = 1, x € E. We assume
that the corresponding semigroup (P,), , is a semigroup of contractions on
(C(E), || llv). Furthermore, we make a strong uniform ergodicity assumption:

AssuMPTION 1.1. There exists a (P,)-invariant probability measure 7, and
for each ¢ > 0, there exist transition densities (p(x, y)), ,cz of P, wrt. =
which satisfy p, € C*(E X E).

Let L;: Q —.#7(E) be.the empirical measure

1 7
LT(w) = -7_1/(; SX.:(“’) ds.

Under our assumptions, L, satisfies a strong uniform large deviation princi-
ple with rate functions J: .#] — [0, «]:

Lu .
J(p) = sup{—[—;—du:u eC Q.@L},
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LARGE DEVIATIONS OF MARKOV PROCESSES 237

where L is the infinitesimal generator of (P,) on C(E), and &, is its domain
(see [9], Theorem 4.2.4). As a consequence, if F: M{ — R is bounded and
continuous, then

1
7111_120 Tlog E.(exp(TF(Lz))) = sup{F(p) — J(p): u EL} = bp.

We define
Kp={pedi:F(p) - J(n) =by).

K is not empty and compact in .#Z7.

It is the aim of this paper to give a more precise evaluation of
E (exp(TF(Ly))) in the case where F is smooth. Such evaluations have
recently been obtained in the reversible case, that is, when the P, are
self-adjoint on L,(7), by Brydges and Maya [7] for processes with finite state
space, with the help of Berezin integration, and Kusuoka and Tamura [10] for
more general cases, but still only for reversible processes. For sums of i.i.d.
random variables, see [4] and [5].

To formulate the appropriate smoothness, we imbed .#(E) in a suitable
Hilbert space which is the same as that used in [10]:

Let (), cn> ¥, € C(E), be a complete orthonormal system in L,(E, )
and let a = (a,), .y be a sequence of strictly positive real numbers, satisfy-
ing

(1.2) lima, =0
and
n=1

If v, u €#(E), let
<V’ l">a = Z anfllln dV lrbn d/“l"
n=1

and || ull, = V{ u, ). . We will give concrete examples for the choices of (a,)
and (¢,) in the case of diffusions on compact manifolds in Section 5.
From (1.3), we immediately get

(14) ” I»L”a < ” ,U/”var,

where || |lvar is the total variation norm. Therefore || ||, is finite on .Z(E). We
denote by H, the completion of .#(E) w.r.t. || |l,. The imbedding .#(E) — H,
is continuous when .#(E) is equipped with the weak topology, that is, the
topology induced by u — [fdu, f€ C. As #7{(E) is compact in the weak
topology, it is compact in H, as well. Therefore, any continuous function
F: #7 - R can be extended to a bounded continuous function F: H, — R. We
will use the following smoothness and uniqueness conditions:

* AssuMPTION 1.5. F has an extension to H, which is bounded, continuous
and has two bounded and continuous Frechet derivatives. We will denote this
extension by F, too.
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(We will give conrete examples of (a,) and (¢,) and differentiable F in the
case of diffusions on compact manifolds in Section 5).

We denote by DF(u) € H, and D?F(u) € H, ® H, the first and second
derivative at u €.#{(E). We also need a nondegeneracy condition:

ASSUMPTION 1.6. F — J has nonvanishing curvature at «, for any k € K.

As it stands, Assumption 1.6 is not a mathematically precise statement
because J is not smooth at all. To state it in a precise form needs some
preparation. The formal definition is given in Section 2 [cf. Assumption 2.26].

THEOREM 1.7. Under the Assumptions 1.1, 1.5 and 1.6, Ky contains at
most finitely many points {x,, K, ..., k,} and there exists h, € C*(E), dp,
eR*, i=1,...,n, such that as T — o,

E.(exp(TF(Ly))) = ~=i1axi(x) exp(Tbz)(1 + o(1)),
where

1
ax‘(x) = dF,xihxi(x)/;mei(dy), i=1,...,n,x€E,

For k € Ky, the function 4, is the unique L?(«)-normalized eigenfunction
associated with by, the principal eigenvalue of the operator L + ¢*, where
¢* € C*(E) is given by

E >x - ¢*(x) = (DF(x), 8, );

compare (2.4) below. d , € (0, ») can be described in terms of a determinant:
dp,. = [det(I — D*F(x)-S,)] ",

where D?F(«k) is the second derivative of F' at «, interpreted as a bounded
linear operator H, = H,, and S, is a trace class operator, essentially the
second derivative of ¢/, which will be described in the next section [cf. (2.29)].

Associated with each k € K and x € E we construct a Markovian law Q;
on (Q, &), the A -transform of P, :

] = exe(e) 2 Z S ] 1, ()
compare Section 2, which has the property that L; converges to x under Q.
Define the family of measures {P7: T > 0} on (Q, ¥):
E.(exp(TF(Ly)); Ly €T)
| E (exp(TF(Ly)))
where we use the notation E(X; B) for E(X1p).

PI(T) = Tes,

i
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In [6] we show that {055 , T > 0} is tight, and that any limit point can be
expressed as a mixture of Qf, k € Ky. In the nondegenerate case, we can
identify the mixture coefficients explicitly in the following convergence theo-
rem which is a direct consequence of Theorem 1.7; compare [6] and [10].

THEOREM 1.8. With respect to the weak convergence on () we have

n

lim BT = ¥ o (x)Q%,
Toe i-1

where a,(x) = a (x)/(X}- a,(x)).

We fix some notations: If f,, f, are measurable real-valued functions
defined on E, and u €#(E), we write {f,, f2). for [fif, dn and {f,), for
[ fi du, if they are defined. This should not be confounded with the notation
{y, Modq for uy, p, €4(E) introduced above.

We will use k, k,, ks, ... for generic positive constants, not necessarily the
same along different computations.

The rest of the paper is divided into four sections. In Section 2 we give a
precise form of the nondegeneracy Assumption 1.6. The argument is based on
a perturbation of the rate function J at the equilibrium points «;. In Section
3 we derive the Gaussian behavior of L; near ;. In particular, we prove a
uniform moderate deviation result; compare Proposition 3.2. Section 4 gives
the proof of Theorem 1.7, following the argument of Bolthausen in [4]. Finally
in Section 5 we present a few examples focussing on the computation of the
rate function J and the nondegeneracy condition 1.6.

2. Perturbations. We recall some facts discussed in [6] and give a

precise form of Assumption 1.6 and the trace class operator S, associated
with « € K. If ¢ € C(E), let

P#(x, A) = [Ex(exp(j:<p(Xs) ds); X, € A),
Aeg;
@) AGe) = su{fodu—I(w:iucai(E)
is the logarithmic spectral radius of (P?):
(2.2) A(e) = }Lngo%logllP,¢llop,

where || ||, is the operator norm on (C(E), || |l). Furthermore, one has the
following duality relation:

2:3) J(w) = swp{ [ du = A(e): o € C(B)).

There exist right- and left-hand principal eigenfunctions k%, [* € C *(E) of
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Pf?, that is,

(2.4) P#?h? = exp(A(@)t)h®, t=>0,

(2.5) [7(d)i*()P#(y, dz) = exp(A(9)t)1%(2)m(dz);
h?, 1¢ are unique if they are appropriately normed. We require
(2.6) [(r)*dm=1,

(2.7) dn?=1*h*dm ed{(E).

A(g), h®, 1¢ depend continuous on ¢. For proofs of these facts, see [6], Section
2. From (2.5) and (2.7) it follows that 7w ¢ is the stationary measure of the
transition kernels

1
£(x, dy) = exp(—A(¢)t) h¢(x)Pt"’(x, dy)h*(y).

We write Qf for the corresponding Markov measure on (Q, &). @f has
continuous strictly positive transition densities ¢(x, y) w.r.t. 7, and there-
fore ‘
lgf(x, ) — I¢h®]ls = O
exponentially fast, as ¢ — oo, uniformly in x.

We set

g7(x,y) = 17(0)h*(2) [ (a7 (x, y) = 1°()h*(3))

and
g%(x,y) =8°(x,y) +8°(y, x).

If ¢ = 0, then we write just g and Z. G is the operator on C(E) defined by
Gf(x) = [g(x, y)f(y)m(dy), and G*f(x) = [g(y, x)f(y)n(dy), G = G + G*.
Note that they are bounded operators on C(E).

We will need some information about how these quantities behave for
¢ ~ 0. Let f € C(E) satisfy [ fdm = 0. We set A(e) = A(ef), h® = h*f and so
forth. We also set :

1
Ap (&) = E;log[Ex exp(a];Tf(Xs) ds).

LEMMA 2.8. There exists K > 0 such that for 0 < e<1land T > 1,

2
slf(i,lf,“i +%l|f|l§ + eIl FI3(1 +exp(K€llfllm))).

82 _—
AT,x(g) - 7<f’ Gf>77'

Proor. For y € E set

) ) .
Are,y(8) = 7log IEx[exp[afo f(X,) ds] X, = y].
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It is enough to show that

er
Ap (&) — ?<f, Gf)n| < rr(e),

(2.9)

where

9 ,
& &
rr(e) < K(?Ilfllw + 7|If|l§ + &IfI3(1 + exp(Kell fll»)) |-
By Assumption 1.1, {P,: ¢ > 0} is uniformly mixing in the sense that
P,(x,dy) =p,(x, y)m(dy), log p,ll. <o fort > 0.
By Lemma 2.5 of [6] we have
llog A°lle < 2¢&llfll. + log ¢y,

where ¢, = exp(|llog p,ll.). Note that ¢, in [6] should be replaced by e‘.) The
corresponding semigroup {QF:¢ > 0} is uniformly mixing with invariant
distribution 7°(dx) = p®(x)w(dx), where p° = h°l°, and Q;(x,dy) =
q:(x, y)mw(dy) with

llog ¢¢(x, )l < 6l fll. + 3log c;.
In particular we have the uniform exponential convergence estimate
lgf(x,") — p°llo < K, exp(—a,t), t=>1,
where
(2.10) K, = 2exp(3c;)exp(6¢llfll.), o, =exp(—8ellflle — 4cy).

For these estimates, see the proof of Lemma 2.5(h) in [6].
We will prove Lemma 2.8 in several steps. Let

T
Ar= [ f(X,)ds
0
and
[Eiif['] = [EQ;[’|XT =y].
Note that if F is bounded % measurable, then
_ EQT[ Fes4r]
B

+A simple computation yields the next lemma.

LEMMA 2.11. Set ¢p(e) = [Egig[exp(aAT)]. Then
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Ar ., (&) = log or(e)
and

d
A'T,x,y(a) = de ATxy(g) _?;;(_—)__T x:y[AT]

&) (¢r()\| 1 B

_ w(s)  _dn(s) dr(e) or(e) )’
Txy(b‘) {4’7‘(3) 34)7'(8) ¢T(8) +2( ¢T(8)) }

E ;E;ﬁ[(AT Es[ A.])].

LEMMA 2.12. There exists a constant K > 0 such that for T > 1,

K
(2.13) INp ., (0)] < ?Ilfllw,
— K
(2.14) X7, (0) = <F, GF)al < ZIFIE.
PrOOF. By Lemma 2.11,
1 hfl. 1
I‘A,T,x,y(O)I = i"EOT[AT“ = T IEOT[AT 1]|

Next, let {P}*: ¢ > 0} be the m-adjoint of {P,: ¢ > 0}. Then
T-1
|pr(% MES[ Az il < [ IR (for-,( 9))llo ds

T-1 T-1
< [T KE Pros(s 9)alds + ky [ e 0t dslif L.
0 0

T-1
< /0 |P%_,f(y)ds + kyll flle < Byll fllos

where we have used (2.10) and the fact that (2.10) holds for {P;*:¢ > 0} with
& = 0. Finally we get (2.13) since pp(x, y) > 1/¢, for T > 1.
The proof of (2.14) goes along the same IineS'

A”Txy(o)-_ [EOT[A ] __IEOT[AT]
By (2.13) we know
1
—-lEOT[AT] < —llflloo

‘ and
I[EO'T_I [AT—I]' < k3”f”°°-

%, Xp_
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This together with the Markov property imply
[E0T[ AZ] — EOT[ A2_,]| < B IfI2.
Next we have
o[ A2 T-1, (T-1
pT(x’ y)IEx,,y[AT—I] =2'l; ds[ dtPs(fPt—s(ﬁ’T—t(" y)))(x)
S
By the first part of the proof,

T-1
sup  [* NP (for-i(s 3))le dt < kgl flle,

0<s<T-1"s

this shows that

pr(x, 9)ELS[AD 1] ~2f s / "4, P (for-i( 9)))e

T-1
< kg fo e~ ds||fII2 < kI FI2.

Also we have

<f’ PT—s(pr—t(" y))>f’ = P;‘k—t(fpt*—s( f))(y)

and

s [T APy (PEAP)(3) ~ (f P2

0

o (T-1, (T-1 2

< kgllflloo'l;) dsf exp(—ao(T — t))exp(—ag(t — s)) dt < kol .
Finally we have

T-1 T-1 « _(T-1 ® ® 2
jo dsfs dt{f, P¥ fn [0 d“"fo dt{f, P¥f )| < kil FII2

with
[ ds [t PEFa = (T = 1)<F, G = (T = DCF, G
Putting things together we get

k
|pr(%, )Ny 0,(0) = 2 f, GF el < —IIFIE,
which implies (2.14) since |pp(x, y) — 1| < Kye~*T. O

LEMMA 2.15. There is a constant K > 0 such that
" A% . (&)l < K(1 + exp(ell fllK))IFI2.

Proor. Basically we can use the same ideas as above with K, and «a,
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instead of K, and «,. In particular one can first show that

[Ar . (&) <ky(1+ exp(&llfllok ),
N7 (&) < k(1 + eXP(8||f||ook2))||f||o2o

and it is enough to prove that

1
EeT[(A; 0’| < Bs(1 + exp(el fllks)) I £12,
where A% _, = fOT L fe(X,)ds with ¢ =f — (f).-. Note first that
a#(x, »ELT[(A5-,)’]
=6 ds["ar [" T du Qs (F QU (F Qi Fat-u(> M))(#).

As above we may replace @7 by 7, since by induction

1 7-1_ 721
?f dtj; du”Qf—s(fs s—t(fsq;‘—u(’ y)))”oo < k4(1 + eXp(allfllook4))|If||°%
Next we have

(£ Qo (F°Qi- (" (-, ¥)))me = QEZL(FRIZAF*QI(F)))( )

where {Q/*:¢ > 0}, the 7 * adjoint of {Q;: ¢ > 0}, is also uniformly mixing and
satisfies Assumption 1.1. Moreover,

1Q7*,(f°R:*(f°R7(f°)))llo
<1Q*.(F°Qe* (foR(f°) — {f* QZ(f*))ne))le
+1QF* . (F)F, ReZ( ) )nells
< kK, {exp(—a,(u — t)) exp(—oa,(t — s))
+exp(~a,(T — u)) exp(—a,(t — )}l Fllz.

However, this implies
1 7.1 T-1 T-1 -
‘T./;) dS[s dt'/; dul(f ) Qt—s(f u—t(f qT—u(.’ y)))>7"8|

< kq(1 + exp(ell fllk,))IFo13
and the lemma is proved. O

PRrROOF OF (2.9). By the mean value theorem we know that there exist
g €[—e, €] such that

82 6'3
AT x y(e) T x y(o) + —_‘NT x y(O) + o7 3! I” X y(a)

and the result follows from the above lemmas. O
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COROLLARY 2.16. We have that
2
& —_
A(e) = ?<f, Gf ). + O(&?).

LEMMA 2.17. (a) h® =1+ &Gf + r(e).

(b) I =1+ eG*f + ry(e).

(© m° =1 + &Gf + ry(e)m.

(@ J(°) = e2/2(f, Gf ) + 0(&?), where |[r;(&)lle = oI f;lle.

PrROOF. First note that by (2.4) and (2.5), A° and [° € C,(E; R*) are
L?( w)-normalized positive eigenfunctions:

(2.18) (L+ef)he=A(e)h®, (L* + ef)l®°=A(e)l".
Next, by continuity,
(2.19) he=1+0(1), I°=1+o0(1).

Also since &{f, h*), — A(e){h®), = 0, we have from (2.18),
L(h® —(h®), — &Gf) = e(f(1 = h®) = {f, 1 = h®);) + A(e)(h® — (R®)z).
This yields
he — (h®y, — 6Gf = eG(f(1 — h*) — (f,1— h®))
+A(e)G(h® — (h®);) =q(¢&).
From Corollary 2.16 we know that

82

(2.20) A(e) =
Also, since {P,:¢ > 0} and {P/:¢ > 0} are uniformly mixing, G and G* are
bounded:

(2.21) IGflle < Kl fllo, 1G*fllo < K|l fllw.

Now by (2.18), (2.19) and (2.21) we see that ||g(&)ll. = o(&)ll fllw. From this
and {(qg(e)), = 0 we also get

1= {(h*))r = (B2 + £2((GF)*Da + 0(£2);

(f, (G + G*)f )+ 0(&?).

thus,
(he)r=1+0(¢)
and
he=(h®), + eGf +q(e) =1+ &eGf + r(e),

where r,(&) has the required property. Using a similar argument one shows
1°=1+4 eG*f + ry(e).
Finally we have dw® = [°h°® and d7 = (1 + &(Gf + G*f) + ry(e)) dm with

Lh®
J(pu?) =<~ ?Zf = 0%, (=L)h*)ue = &(fus — A(s);
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compare [6]. This yields
J( 1) = e{foue — A(e)

2
S(fy 1+ 8(G + G+ r3(6))e = 5 (f, (G + G + o)
2

=%<f,(G+G*)f>,,+o(a2). g

Let F: .#{(E) — R be smooth in the sense of Assumption 1.5. If u .27,
the first derivative of F' at u is denoted by DF(u) € H,. We define
¢#(x) =(DF(n), 8, ).
As E > x — §, € H, is continuous, we have ¢* € C(E). By a slight abuse of
notation, we write A(u), A*, m*, and so forth, instead of A(¢*), A",
AT

LemmA 2.22. If u € Ky, then w# = p.

PrOOF. If ¢ € C(E), let J¥ be the rate function corresponding to (@7), ,-
Using (2.3), one sees

J(n) =J(u) ~ [edu+ A(e).

It is well known that J¢(u) = 0 if and only if u = 7*.
If F(u) — J(u) = by, then by the convexity of J, we have

fgo“d,u, —J(u) = sup ([go"dv—J(V)).
ve[f
Therefore, the function .#7 > v - J*(v) is minimal at x and so u = w* O

Another important property of the elements in K is that F —J has
nonpositive curvature at points in K. Because J is not differentiable, the
formulation needs some care. An appropriate formulation is given in the
following proposition.

PROPOSITION 2.23. Let k € Kg. Then for any f € C(E),

(2.24) (f, G“f>n = D2F(x)[(G*f)m, (G*f)m].

Here, if g € C(E), then g is the measure g(x)m(dx). D2F(«k) is inter-

preted as a bilinear form on .#(E) Cc H,.

Proor. It is convenient to write everything in terms of the densities w.r.t.
k(= m*): Let §/(x, y) be the densities of @ w.r.t. k; that is, §;(x, y) =
q/(x, y)/1*(y)h*(y), and let

o &) = [(@F(x3) - D+ [(ai(y, %) - D)
| = 2%(x, 9) /1 (2)1*(9)h*(x) h*(3).
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Then
<fa §Kf>fr= <f, éKf>Ka

where, by an abuse of notation,

G f = [8"(x, ) F(9)x(dy).
Furthermore
(G“f)m = (é“f)x.
Replacing F' by the function
(2.25) F*(x) =F(x) — F(k) — {(DF(k), x — K)q,
we see that, for the sake of proving the proposition, we may assume that
k=1 € K.

From Corollary 2.16 and Lemma 2.17, Proposition 2.23 follows. O
We can now give a precise formulation of our nondegeneracy assumption:

ASSUMPTION 2.26. For any f € C(E) with G*f # 0,
(2.27) (f, G*f>n > D*F(x)[(G*f)m, (G*f)m].

We will interpret the quadratic form f — {f, Gf). as one coming from a
symmetric positive trace class operator on H,. Note that

(2.28) (f, Gfon= %ij)r:ovarﬂx(ffdlr),

where I; = VT (L, — «). If fe C(E), we would like to write the mapping
u = [fdu in the form (f, u), for some f € H,. This is not always possible,
as [fdu may not be continuous in u on H,. However, ¢, is certainly well
defined and just

o 1

‘pn = _l/fnw'

a’n

We write C,(E) for the set of finite linear combinations of the ¢,. Then, if
f € Cy(E), f is well defined. We put

1
| = —— neN,

n ‘/;n— 7,

which obviously is a complete orthonormal system ih H, and we define the
bounded linear operator S, on H, by

(2.29) Sl = Ls(n, m)l,,

where s, (n, m) = ya,a,, (i, GV )n.
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LEmMMA 2.30. Let k € K. Then:

(a) S, is a symmetric, positive semidefinite trace class operator on H,.
®) Iffe Cy(E), then S, f = (G“f)m and therefore {f, G*f)» = {f, S Fa.
(© (x,S.x) =<S,x, D’)F(«)S,x), for all x € H,.

ProOF. The lemma is obvious from the definition and Proposition 2.23. O

If x € H, let I'(x) = inﬂlylﬁ: x = v/S_y}, where we drop « in the notation
and where inf(J = oo,
H.={xeH:T(x) <}

is a linear subspace of H, and I is a Hilbert norm on Hy. I': H, — [0, ] is
convex, lower semicontinuous and has compact level sets, that is, {x: T'(x) < ¢}
is compact for ¢ € (0, «). Obviously, SH is a dense subspace in (Hy, I'). From
Lemma 2.30(c), we therefore obtain

(2.31) (%) = {x, D*F(k)x),
for all x € Hy, and therefore also for x € H,,.

LEMMA 2.32. Assume (2.27). Then I'(x) > {x, D*F(k)x), for all x € Hy
with T'(x) # 0.
ProoOF. Assume that for some x € H,
I'(x) = {x, D*F(k)x)s = 1.
We claim that for some a € R\ {0},
(2.33) x = aSpD?F(«k)x,

where p is the projection of H, on the closure H. of Hy in H,.
To prove this, let y € H satisfy

(y, D®F(k)x), = 0.

We put x, = (x + ty)/[1 + t2(D?F(«)y, y),]*/?, t in a neighborhood of 0.
Then .
(x,, D?F(Kk)x,), = 1

and therefore I'(x,) > 1. It follows that I'(x, y) = 0, where I'(x, y) is the
inner product in H. Using this, (2.33) follows. We now put

g(¢) = a{pD*F(x)x, & )a,
which is in C(E) and satisfies § = apD?F(«)x. Therefore
x = Sg
and using Lemma 2.30, we have
(g,G*g)y = (G gmw, D’F(k)G*gm), = DZF(K)[é"gﬂ', @"gﬂ'] ,
which contradicts (2.27). O
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3. Gaussian behavior near w. It will suffice to discuss the limiting
behavior of the law of L, near 7. As S is a trace class operator, there exists a
unique centered Gaussian measure y on H, satisfying

[, £y, £2av(dE) = (x, Sy)a.

PROPOSITION 3.1.  (I;, X;) converges weaklytoy ® w for T —» ©on H, X E.

PrOOF. I =1/VT(J{ 8y, ds — T'm), and E > ¢ > 8, € H, is a bounded
continuous function. The proposition then follows by standard central limit
theorems for Markov processes. O

ProposITION 3.2. IfA c H, is closed, then

1
lim sup sup{t—zlog[P’x(lT €tA)ic<t< \/T/c} < -T(A),

c—® t,T

where T'(A) = inf, _ 4, T'(x).

PROOF FOR A COMPACT. Let A be compact, and satisfy I'(A) < «. We may
assume I'(A) > 0. If 0 < £ < I'(A), then

{xeH,:T(x) >T(A) — ¢}

is open and contains A. As I' is lower semicontinuous, we may cover A with
finitely many balls

U=B,(x)={yeH,:lly—=xll.<r}, 1<i<m,

with
T(U) > T(A) - g
Let
c, = {x:F(x) <T(U) - g} 1<i<m,
which is compact and convex. Therefore, there exists y; € H, with
U, c{x:{x, y;0¢ > 1} C {xI‘(x) >I(U,) — g}

By continuity, we may assume that y, = f; with f, € Cy(E), and therefore

(pea:{p, y).>1} = {uE/:[ﬁd/,L> 1}.

From this we get

i

P,(Iy € tA) < % u»x([f,. diy > t).

i=1
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By Lemma 2.8 and the standard exponential estimates, this yields

) 1 VT 1 .
lim supsup{ —logsupP,(l; € tA):c <t < — } < —— min (f;, Gf})~ .
co® t x c 2 1<i<m
Using

{x:(f;, x)e > 1} c{x:T(x) > T(U,) — &} c {x:T(x) — &}
and Lemma 2.30, this proves the claim in the case where A is compact and
I'(A) < . The case I'(A) = » follows by an obvious modification (replacing
the condition I'(U;) > T'(A) — &/2 by I'(U)) > 1/¢, etc.).
It remains to consider the case where A is only closed. This needs some
preparation. Let b = (b,) be a sequence of strictly positive real numbers,
satisfying b, — 0,

(3.3) limbd,/a, = «
n—owo

and
Yo,z = 1.
n

The Hilbert space H, is a subspace of H,, and by (3.3), the imbedding
H, c H, is compact.

LEMMA 3.4.

VT

0(b) = — limsup sup ,:—2logsup[F",c(IllTlll7 >t)ic<t< e > 0.
,T x

c—>® t
We prove the lemma in several steps.
LEMMA 3.5. Let {f,, n € Z%} c C(E) satisfy
(3.6) supllf, = {f)nlle =M <
and set
A,(f) = log[ exp(f = (f)n) dm.

Then
2

sup{A,(sf,) V A, (—ef,):n € Z*) < %L + 89K (&),
where L = Supn”fn - <fn>7r”%2(1r) < M2 and K(é‘) = 8M3€28M/6-
ProoF. Write ¢,(¢) = A_(&f,) and f, =f, — {f, )= Then ¢,(0) = 0,
1 — 7 \2
#(0) = [ (1) dm<L

and .
Je(F2) ethr dar

|¢n(8)|= fE egf-n dmr

< 8M%*M = 31K (&),
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where
= < n? € efn >71'

o=t = =T,
Now the result follows from the mean value theorem. O

LEMMA 3.7. There exists 2 < 3 < » such that

Arn(F) = logt [oms( [T1(X) ds)| < 5.8 Fecm.
Proor. By Holder’s inequality we have
ag(r) < AR | (T (D Arin@r)
ilote that {P,: ¢t > 0} is m-hypercontractive (cf. [9]). Thus by Jensen’s inequal-
1y,

1 [T]-1
[T]Ar(2f) = log[E,,[exp([o ( ]E:O 2f(Xs+k)) ds”
1 [T]-1
slogf [E,,[exp( > 2f(Xs+k)”ds
0 k=0

[T]-1
=logIE,,[ 11 eXp(2f(Xk))]

E=0
[T] ,
< 7/\"(23 )
for some 1 < B’ < = (cf. [9]). On the other hand, again by Jensen’s inequality
we have

(T - [T])A‘T_[T](2f) = log[Ew[exp(f_r_?lmj;T—[T](T - [TDH2f(X,) ds)]

: T-[T]
< AT [TDF) £ —5—A,26'F)
since B' /(T — [T] > 1. This proves the lemma. O

Set b, = b, W, 112, v = ¢, /W, llo and ¢, = ¥, — (4, ». Then
1/2
mm%zmﬁﬂ .

LEmMMA 3.8. Under the above assumptions,

v

&2
E,[exp(eTILy — 7lly)] < exp T(—z—L' + 83K'(3)) + 1],
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where L' = 4BL and K'(e) = 882K(¢). In particular, for each t > 0 we have
1, & @/L) 1

1
(39)  pzlogP.(ILy — mlly > t) <~ 5 )y + 7
and
1 T/
lim sup sup {t—zlog P, (TY?Ly — mlly > t):c <t < . }

(3.10) coe Tt

-—— < 0.
2L’

IA

ProoF. Note that ¢t - ¥(¢) = e'"”” is convex on [1, ). Thus, by Jensen’s
inequality we have

E,[exp(eTILy — wlis)] = E,[exp(lleT(Ly — m)ll5)]

= rE,,[qr( Zb;,eZT2<%;>%T)

< [E,,[‘I'():b;,ezT2<$,;>%T v 1)]
< LOE[¥(2T2y)E, v 1)
< Y B,E, [exp(eTKpdr,l + 1)]
=el') bE, [exp( eT Ky, >LT|)] .
Using the above lemmas and Hélder’s inequality, we have
IE,T[exp(sTKJI,',)LTI)] < [E,,[exp(ZaT(@,’,)ZT)]VZ[E,,[exp(ZeT(J,'l)ET)] 12
< E, [exp(26T¢H)e,)]“E, [exp( - 26 Tz, )]
= exp|T(Ar(269;) + Ar(—2¢4;))/2]
< exp|T(A,(2B24;) + A, (~2Be4;))/(28)]
< exp[T(3£%4BL + £°8 82K (¢))]
= exp[T(3¢2L’ + &°K'(¢))].
Finally note that for each ¢ > 0 we have

P,(ILy — 7lly > t) < exp(—Tte)E, [exp(eTI Ly — mll3)]

" < exp

&2
—T(te - ?L’ - &e3K'(e)| +1

Choosing ¢ = t/L’ yields (3.9), and (3.10) follows from (3.9). O
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Proor orF LEMMA 3.4. By assumption there exists R < © such that

P(x, dy) < Rw(dy), x € E. Note that |ml|l, <|lmllyar and since [|L; —
Ly © 0yllvar < 2/T, where Ly 6,(w) = (1/T)[{*" 8 (,,, ds, we have

7))

- fEPl(x,dy)Py(uLT_ lly > (t _ %)) v

Px(”LT — 7T”b > t) < Px(”LTf’Ol — 7T||b >

T

2
arn (it > (1= 2)).

From (3.10) we get
T1/2

c

}<0.D

c—o® Tt xeE

1
(8.11) limsup sup {t—210gsup P(TY2ILy — wllp > t):ic <t <

PROOF OF PROPOSITION 3.2 FOR CLOSED A. Let D, ={x € H,:||x|l, > t}. D
is compact in H:

1 VT
sup ﬁlogsup[F"x(lT €EtA)ic<t< —
x

c
log 2 1 VT
< cg2 + sup{ﬁlogsupr(lT €t(ANDf))e<t< —(—2——}

X
r2 T
V sup ;7logsupr(lT €D,):re<tx< [
X

for an arbitrary r > 0. Therefore,

1 VT
lim sup sup {t—zlogsupr(lT €A)c<t< —-——} < -T(AND) Ar2o(d)
c—® t,T x c
< —T(A) Ar?o(b).
Finally, letting r — o gives the desired result. O

4, Proof of the theorem. Besides Assumption 1.5, we assume that all
elements k € K satisfy (2.27). As remarked before, this implies that K is
finite. In fact, if K, is infinite, then there exists k € K; which is an
accumulation point of other elements in Ky, and this k clearly would not
satisfy (2.27). By splitting E(exp(TF(L;))) into the contribution coming from
small neighborhoods near the elements in K, we easily see that we may
assume that K contains just one element, K = {k}. If we introduce

F(p) =F(p) = F(x) ~ (DF(x), p~ k)
and the Markovian measure P, = Q¥ on (Q, &), we have

i

EL(exp(TF(Ly))) = exp(Top) h(#)E | exp(TF(Lp)) 7 |
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where k = h*. P has the same properties as P and the stationary measure is
k. Therefore, w.l.0.g., we may assume that K, = {w} and

F(m) =0, DF(w) =0,
but we have to investigate slightly more general expressions

E.(exp(TF(Lr))e(X7)),
with ¢ € C(E).
If ¢4, c; > 0, let

Ii(e;, T) = E,(exp(TF(Lr)) ¢(X7); izl < ¢y),
I(cy, €3, T) = E,(exp(TF(Ly)) o(Xp); €1 <lllglla < eoVT),
Iy(cy, T) = E,(exp(TF(Ly))o(Xp); VT < lizlla),
where I = VT (Ly — ).

LEMMA 4.1. limg ,,, Is(cy, T) = O for all ¢, > 0.
ProOF. By the large deviation principle for L, we have

1
lim sup -flog I3(cy, T) < sup(F(p) —J(p):llule =cy) <0. O

T— o

LEMMA 4.2. We have that
fi(e;) = lim Iy(ey, T)
exists for all but countably many ¢, > 0, and
lim f,(c;) = [det(I — D?F(m)-S)]
[

-1/2

(@)n

ProoF. On Il < ¢;, we have
TF(Ly) = 3{D2?F(7@)lp, lp) + o(1).
Therefore, by Proposition 3.1, we have for all but countably many ¢, > 0,

%%Il(cl, T)= j; exp({D*F(m)x, x).)y(dx){¢)x,

x:llxlla<eq}

and therefore
Jim £,(e1) = [exp(3¢D*F(m)x, x))y(dx)<e)n
= [det(I — D?F(7)>8)] " * (). O
The most delicate part is the treatment of I,. ‘
* LEMMA 4.3. Ifcy, >0 isi small enough, then

lim suply(cy, ¢y, T) = 0.
T ~

cl—POO
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PrOOF. We first claim that if £ > 0 is small enough, then
(4.4) I({x € H,:(D*F(7)x, x), + ellxll’ = 1}) > 1.
Let A, = {x € H,: (D?F(w)x, x), > 1 — 8}. For any r > 0,
F({x: (D*F(m)x, x)q + ellxl? > 1}) >T({x:llxlls = 7}) AT(A,;).

Obviously, I'(A,;) = (1 — r8)I'(A)) and I'({x:llxll, = r}) = © for r - o It
therefore suffices to prove that I'(A,) > 1. This, however, is immediate from
Lemma 4.3.

Assume now that & > 0 is such that (4.4) holds true. Then, if ¢, is small
enough and ||/;l, < ¢,VT, we have

TF(Ly) < ${D*F(m)ly, lp)e + 3ellil.
Therefore,

Iy(cy, ¢3, T) < E,(exp(3(D?F(m)ly, IpYa + 3ellpll); ¢y < liglla < VT

= [ dte'P, (KD F(m)lg, p)a + Lellpl? = ¢)

= [ dte'P,(ip € VECyie; < llglla < VT,

where C, = {x: 2(D*F(w)x, x)s + 2elzll2 = 1}. Note that if

k = sup{{ D?F(7)x, x),:llxll, = 1}, then inf{||x]l,: x € C,} > V2/(k + ¢).
According to Proposition 3.2, there exists ¢ > 0 and ¢ > 1 such that

P.(Ir € VtC,) < exp(—qt)
for ¢ <Vt < VT Jc. If ¢, < (1/c)y/2/(k + €) , then
(VeC,) n{x:llxlla < exVT} = @
if V£ > VT /c. Therefore, if d > ¢, we have

Iz(cl’ Co, T) < edPx(”lT”a > cl) + /ooet(l_q) dt.
) d

Letting first ¢; — © and then d — « yields
].im Suplz(cl, 02, T) = 0

¢12® T
if ¢, > 0 is small enough. O
PROOF OF THE THEOREM. ‘
Jim E.(exp(TF(Lr)) ¢(Xr)) = (¢)x(det(I ~ D*F(m)e s))

isﬂ an immediate consequence of Lemma 4.1-4.3, in the case F(w) =0,
DF(w) = 0, Ky = {w} and 7 is nondegenerate.
As remarked at the beginning of this section, this suffices for the proof. O
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5. Examples. In this section we present a few examples. We focus on the
computation of the rate function J and on the nondegeneracy condition
Assumption 1.6. [more precisely (2.27)].

ExXaMPLE 5.1. The finite-dimensional situation. Let E be a finite set with
|E| = n and let P, be the law of the (time continuous) Markov chain on E
starting at x € E with infinitesimal generator given by the matrix @:

Q(x,y) =0, x#y, and Q(x,x)=— ) Q(x,y).

y#Fx

We write @f(x) = X, ., @(x, y)Xf(y) — f(x)). We will assume that the chain
is irreducible and denote by 7 €.#](E) the invariant distribution. Let
J: #7(E) - [0, ©) be the rate function

J(k) = sup{fE - —Q;—udxzu > 0}

= sup{z Y K(x)Q(x,y)(l - ;—E—%)u > 0}

x y#x

: u(y)
=2 ZK(x)Q(x,y)—lnf{Z 2 k(x)Q(x, y) =u>0}~
X y#x x y#x u (x )

Assume that « > 0, then the supremum is obtained at a regular point
u > 0 and a simple computation of the gradient shows that « is unique up to
multiplication by a positive constant and satisfies

u(x) u(y) )
(5.2) yé:z (K(y)Q(y, x):t—(-;-)— - k(x)Q(x, y)m) =0 forall x€E.
If @* denotes the transformed transition matrix
u(y)

Q"(x,y)=Q(x,y)m, x#*Yy,

then (5.2) is equivalent with the k-invariance of Q. (%), the k-adjoint of
Q*, is of the form .
I(y) k(%)

(@)'(%,9) =Qy, )5y ¥ #y wherel(x) = 2.

If @ is m-symmetric we simply have u(x) = I(x) = y/k(x)/m(x) and
I(x) =3 X L 7(2)Qx, y)(u(x) = u()".
X X#FY

Let I, be the projection from the R” to 8, = {f: {1, f )« = 0} and define on
BW,, G“=(-Q) 1, (G) the k-adjoint of G* and G* = G~ + (G*)' the
symmetrized. Next take F € C*(E) with second derivative D?F viewed as a
symmetric matrix. The nondegeneracy condition is of the form

(h, (GX) ') > (h, D?Fhk),, heWBW,, h+0,
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or equivalently for f # 0 with X, f(x) = 0,

1 1
X f(x)(G") (x,y)mf(y) > Y f(x)D*(x, ¥)f(¥)-

ExXaMPLE 5.3. Random walk on the torus. In general it is quite difficult to
compute J explicitly. For example, let E = {1, 2,...,n} be a discrete one-
dimensional torus and let @ be the generator of a Markov chain with jumps
to the nearest neighbor only, that is,

=(r(x) +U(x)), x=v,

b = + 1’
(5.4 Q= -1, Y
0, lx —y|l = 2.

The chain is irreducible if and only if IT, r(x) # 0 or IT, I(x) # 0. We will
assume [T, r(x) # 0. The invariant distribution 7 is the solution to the
equation
m(x+ 1)l(x+1)+7(x—1)r(x—1) —w(x)(r(x) +1(x)) =0, x<kE.
Also the chain is 7 reversible if and only if
m(x)r(x) = w(x+ 1)i(x+ 1), x €E,

and this is the case if and only if

[Tr(x) = TIi(%).

x x
Next take k €.#7(E) with « > 0. Then in the computation of J(«), (5.2) is
equivalent with

1
k(x+ 1)l(x+ I)Tx) — k(x)r(x)a(x)

. 1
= K(x)l(x)a—(—g—c——_—l)—K(x—l)r(x—l)a(x—l) , =x€E,

where we set a(x) = (u(x + 1))/(u(x)). Thus
1
—K(x+1)l(x+1)m+K(x)r(x)a(x)=2A, x€E,

for some constant A = A(k) € R. Since r > 0, we have
A+ VA2 + k(x)k(x+ 1)r(x)l(x+1)
a(x) = ’
k(x)r(x)
where A is chosen such that [T, a(x) = 1, which is equivalent with

®(A) = Llog(A + VA + k(x)k(x + )r(x)l(x + 1) )

— Y log k(x) — Y logr(x) =0.
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Note that ® is a continuous strictly monotone increasing function with
lim, , _, ®(A) = —» and lim, _,, ®(A) = +o. Thus the above equation has a
unique solution. Also

IIr(x)=T1l(x) ifandonlyifA =0,
x x

and this is equivalent with the 7-symmetry of @. In general we have
ITr(x) < T1l(x) ifandonlyifA <O,
x

x

II7(x) > T1i(x) ifandonlyifA > 0.
x

x

Once A is identified we have

I(k) = L (k(x)(r(x) +1(x)) — 2/A + k(x)k(x + Dr(x)i(x + 1) )

x

> Z(‘/K(x)r(x) —Vr(x+ 1)i(x+1) )2,

where equality holds if and only if A = 0 which corresponds to the symmetric
case. The corresponding @* is given in the form (5.4) with

A+ A+ k(2)k(x + 1)r(x)l(x + 1)
k(%)

—A+ VA2 + k(x — 1)k(x)r(x — 1)I(x)
Kk(x) '

In the degenerate case where k(x,) = 0 for some x, € E, we can compute
J explicitly: One can take a(x,) = ®, a(x, — 1) = 0, A = 0 and get

J(x) = L (Ve(@)r(x) - Yx(x + DIz + 1)) -

Finally consider the explicit example of a random walk on E with jump to
the right only: » > 0 and ! identically 0. Then w(x) = c/(r(x)), where
c=C,1/(r(x))! and -

J(x) = Y k(x)r(x) — 2nA(k) with A(k) = %(I;[K(x)r(x))l/n.

x

’

r<(x) =

I“(x) =

Also we have the following expressions for the transition matrix @* and
G“=(-Q")! and (G*) on B,:
2A(k)

= K—T -A - N =TI -A -TI
K(x) ’ l"(x) O’ G HK AK HK’ (G ) HK K K

r<(x) =

where .
k(y) , k(y)
A(x,y)= ml(xzy)» A:((x, y) = ml{xsyy
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This yields
G“=G. + (G*) =M, (A, +A) I, =1I_-A_-TI,
with
- k(x)
A = — .
K(x’ y) 2A(K) 1(x=y)

The rate function J, associated with @* is given by

[ ) )’}

x Kk(x)

B p(x)
JK("")_zA(K){ = K(x) n
If k(x)=Q + eh(x))k(x) with {h, 1),=0, then a simple computation
shows (d/d&)J (k) |-, = O,
2

_d_;—Z-JK( Ks) |s=0

[

2A(K){Zx‘,h2(x) - -i—(gh(x))z}

A(k)
n

T (h(x) — h(¥))".

If we compute the inverse of G, on T8, we see that

2

d Q-1
EQJK(Ks) |s=0 = <h’ GK h)x

as it should. Take F € C2(R") with second derivative D?F. Then the nonde-
generacy condition is of the form

(h, D*F(x)kh)e = L k(x)h(x)D*F(x)(x, y)x(y)h(y)

x’y
A(k)
< ——= L (h(x) - h(%))*,
x,y
for h € W, with kA # 0.

ExamMpLE 5.5. Diffusion on a compact manifold. Another situation
of interest is when L is the generator of a diffusion on a compact N-
dimensional manifold M. Let X,,, X;,..., X; be a collection of smooth vector
fields and consider the operator L: C*(M) — C*(M) in Hérmander form

d
L = ZXioXi +X0.
i=1
We will assume the strong Hérmander hypothesis:
” Lie(Xy,..., X3)(x) =T(M)(x), =x€M,

that is, the Lie algebra generated by X,,..., X, is the full tangent bundle
over M at each x € M. Let P, be the law of the diffusion generated by L.
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Then the rate function is given by

J(k) = sup{—[MI;—udK: ue C?';(M)}

d
=supf Ly— Y IX g de:p € C°(M)},
M

i=1
where C% (M) = C*(M) N C*(M). For u € C3(M) define
L(u-¢ Lu d
=20 I py 2 T X X, we ),
i=1
Then
Lu*

J(k) = —fM o dk

with u* € C%5(M) if and only if L*" is k-invariant.
Let m €#{(M) be a fixed smooth reference measure. For a vector field X,
let X* = —X + gx, gx € C°(M), denote the m-adjoint of X, that is,

(Y, X =AX*, $), ¢, ¥ €C(M).

We can rewrite L as the sum of a m-symmetric part L = — L%, X* o X, and
a drift Y = XO - Z:‘i=1 gXiXi:

L=L+v.
We will assume that 7 is the (unique) invariant distribution for the process.
This is equivalent with g, = 0 or Y* = —Y, and L*, the #-adjoint of L, is of
the form

L*=L-Y.
The process is 7-symmetric if and only if Y = 0.

In the more general situation we had in Section 2, it is not clear if
J((1 + gh)w) is smooth in & near 0, for a sufficiently rich class of functions A
satisfying (h), = 0. For this reason, we had to resort to a slightly more
delicate perturbation argument. In our more concrete situation here, the
above expression is in fact smooth if A € C*(M). It may be instructive to
calculate the derivatives. Let h € C*(M) with (h), = 0 and set

7,(dx) = (1 + sh(x))w(dx) = f,(x)m(dx).
Take ¢ small enough such that f, € C%(M). Next for a given smooth vector
field X, let X be the m-adjoint of X:
X2 (¢) =X*(¢) —X(log f,)¥, e C(M),

and set
~" d
K LEE —_ ZX::EOXI"
i=1

~

L, is m, symmetric and we can define the corresponding Green operator
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~

G =(-L) ' on B, = (¢ € L*(m,): (), = O}. With this notation we have

)—sup{ (L¢ z:ucw)dw ¢e0°°(M)}

< *(f),¢> - >:<|X,~¢|2>ﬂs=¢ecw(M)} |

i=1

0 42

4

]

N
—_—
b.

*

=

o)

——
SR
>
~—
:'\/

Note that

- [ L*h - -
lim <L*h,Gs( - )> — (L*h, G(L*h)), = 2(h, G~ k),
where G =G + G* = (=L)"* + (-L*)"! on 2W,. This shows that
(d/de)J(m) |, =0and

2

de 7.2
We describe now a possible choice for the sequences (a,) and (¢,) and the

Hilbert space H, of Section 1. We take the operator (— L) as reference: let
{¢,:n € N} and {A n € N} ¢ R*U{0} be the eigenfunctions and eigenvalues
of —L. Denote by {P,: ¢ > 0} the corresponding symmetric semigroup. Then it
is well known that there exist v € (0,) and ¢ € (0, ) such that

c
(5.6) P(x,x) < Pk t € (0,1],

see [1]. In the elliptic case where d = N, v =N is the dimension of the
manifold. In the hypoelliptic case, v > N, is the maximal graded dimension of

the operator; cf. [1].
The estimate (5.6) is equivalent to the Sobolev type inequality

IFIZE3" < AE(f, OIfIBG,,  feC (M),

for some constant A € (0, »); where E(f, ) = L& KX, fI*), is the Dirichlet
form associated with (—L) (cf. [8]). In particular, if v > 2, (5.6) is equivalent
with the usual Sobolev inequality

| FlZemy <A'E(F, F),  FEC(M),{f, 1) =0,
for some constants A’, & € (0, ) with p = 21//(1/ — 2). From (5.6) we have

trace( P, fpt(x x)ﬂ'(dx) t”/2 , te(0,1],

I(m,) | =0 = (b, G1h).
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and using Weyl’s formula one gets
(M)"* = csk, k — o,
for some constants c¢; € (0, »). Also (5.6) implies the following estimate of the
supremum norm of the eigenfunctions:
g2 < e5(Ae)™?,

for some c; € (0, ); cf. (48), page 155 of [11]. Now take {a,: &k € Z*} of the
form a, = const.(A,)~?, where 6 > 0 is chosen such that T, a,lly,]l2 = 1. In
view of the above, we may take any 6 > v.

Let F be a C? functional on .# with second derivative D2F of the form

D2F(w)(v, v) = [[EXEV,,(x,y)v(dx)v(dy),

where V, € C(E X E; R) is a symmetric function of the form

Vo(%,9) = [o(x, 7)v(y, 7)o (dr).

where o is a finite signed measure on a compact space X, and v € C,(M X
Z; R); cf. [2].
Now differentiability in H, requires that

|D2F(m)(v, v)| < Klvl?

for some K € (0, «). Expressing v in terms of the basis {/,: » € Z*} and using
Schwarz’s inequality we see that

K< jz r —(v( ,7), $p2lol(dr) = j(( ~2)"v(, 1), 0(-, 1) Rlol(dr).
nez+ @

In particular the r.h.s. is finite if v(-, 1) e W{X; w) for r =[6/2] + 1,

where W{"(X; 7) is the closure of C*(M) with respect to the Sobolev norm

”g“r,z = Z IIXaglle(ﬂ)
O<lalsr

where, for @ = (ay,..., o), X,g =X, o o X, g (cf. [3]). The situation is
especially simple when the functlon V is dlagomzable with respect to {y,: n
€ 77}, that is, if

k — o,

V(x,9) = X Buth(x) ()

nez*

for some { B,} € R with X, | B,|ll4,|l2 < . Then K < o if
2 BN, < o=

nezZ*
_ Things simplify considerably.if L and L* commute or equivalently if Y and
L ‘commute. Then L is a normal operator, and we will denote by {f,: n € N}
and {u,: n € N} C C the eigenfunctions and eigenvalues of —L. Due to the
normality of —L, we know that ,, = R(f)/NR(FIl2y and ¢y, =
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K /NF(F)llz2x) are (real) eigenfunctions of —L with positive eigenvalues
Agp = Agpi1 = R(p,). A direct computation shows

— n +_n
(h,GhYs= ¥ (f‘——_’i—)(w, Va2 + (B, Y, 2)
nezZ*t :un”‘n
= nezz+ Az P2<h l/’,,)m

where p,, = pg,+1 = F(w,). Thus

2
(h,G'h)y =5 X ()t +—)<h Yna

1 . —
= 5k, (D)), + §<h, (-Q)hdx.

Here —@ is the operator with eigenfunctions {¢;,: n € Z*} and eigenvalues
{p2/A,:n € Z*). For a diagonizable functional F of the nondegeneracy condi-
tion reads

5 o

3 T ez,
n

and we get the explicit expression

2Aan )

dp., = det(I — D*F(x)°8) = [ [1-
’ nez* )‘n+

Consider the concrete example where M = Ty = (— @, w]¥ is the N-
dimensional torus:

7

X, =—, i=1,...,N and X,=Y= ZbX—bV
dx; i=1
for some constant vector b = (b,,...,by) € RY \ {0}. In this case we simply

have m(dx) = (27)™" dx, the normalized Lebesgue measure on Ty, X;* =
—X;, L = A, the Laplacian operator, L=A +b-Vand L* =A —b-V. L and
L* commute and

{fu(x) = exp(ix-k):k = (ky,..., ky) €NV}, {u), = (IkI* — ik -b): k € NV}

are the eigenfunctions and eigenvalues of — L. The corresponding eigenvalues
and eigenfunctions of —L = —A are {|k|*: £ € NV} and {cos(k - ), sin(k - ): k €
N¥}. Note that the eigenfunctions are uniformly bounded; thus 6 > N /2
would be sufficient. Further we get

if 2
k|

’_ ‘IT=2 T4 . 42 h’ : 127 h’ in(k 127
(h,Gh) k§0 Ikl4+(b~k)2(< f:os(k ))a + <k, sin(k -))z7)
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and

(k- b)?
||

_ 1 ,
<h, G_1h>‘ﬂ= o Ikl +
2 k+0

)((h, cos(k )2 + (h, sin(k )),2,)

1 1 ~
= 5(=8)h, )y + 5 <R, (~Q)hn,

where Qh = b - V(b - VGh). Note that this is a nonlocal operator. Next take
the quadratic functional

F(v) = —BfT /T IE(x) — E(y)I%(dx)v(dy),

where 8 > 0 and, in polar coordinates, 5;(x) = (cos(x;), sin(x,)), i = 1,..., N.
Thus F is diagonizable,

F(v)=-BN+pB IZV‘, (f cos(x‘)v(dx))2 + (f sin(x-)v(dx))2
i=1 Ty ' Tn '
with
N
V.(x,y) = ZBE‘,1 {cos(x;) cos(y;) + sin(x;) sin(y;)}.

For sufficiently small B> 0, = is the unique solution of the variational
problem. In view of the above we get

N 48 2
dy, = det(I — D*F(x)+8) = [] (1 - ——-—2) .
’ i=1 1+bi

ExampLE 5.7.  Diffusion on the circle. Let E = S! be the unit circle and dx
be the Lebesgue measure on S'. In this special case we can compute J
explicitly. Let a, b € C*(S!) with a > 0 and [g1 a"!(y)dy = 1. Define the
vector field X = a(d/dx) and the measure A € S!, Adx) = a " '(x) dx. Con-
sider the diffusion operator L on C*(S!):

Lf= (XX +bX)f=a%f" +a(a’ +b)f.
Next let {P,: x € S} be the Markovian family associated with the diffusion
process generated by L. The density of the invariant measure p = dw/dA €
C*(S?) is the solution of the divergence equation

(X X)(p) —X(pb) =0,

that is,

X(p) =pb—c, withec, ={(bh{p 0"
This gives the following explicit solution: set B(x) = [§ b(y)a~'(y) dy. Then
B o l-eT B(y)., -1
! x) =p(0)eB®{1 - ————— [ ¢7BU)g~ dyi,
| p(x) = p(0) { o), () y}

where p(0) is chosen such that {( p), = 1. -
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Let X* be the 7-adjoint of X. Then X* = —X — X(log p). If L* denote the
mr-adjoint of L and L = (L + L*)/2 denote the symmetrized, then we have

~

= -X*X+c,p'X, L*= -X*X—c,p 'X, = —X* X,

that is, refering to the previous example, Y =c,p 'X and the process is
m-symmetric if and only if ¢, = (b), = 0.

We get the following expression for the rate function J: .#7 (M) — [0, «]: if
dk/dm = f with f/2 € HY(S') (the usual Sobolev space), then

(%
4

otherwise J(k) = . This follows from [3] since J(x) = {|X(FV/2)|?), + I¥(x)
with

J(x) = UX(fV2))n + K o XY oI )

1% (k) = sup{Yy ) — (IX¢1*)e: ¥ € C(S1))

sup{c,{ p~1, Xy — (I X¢|*): ¢ € C*(SY))

2
= XY = S = (oD oY)

b2
= <4>A {«f, p (PN - (Y, P~ h),
with
* = &T_ -1 —_ <p—_1>A_. 1
AT T A |

Next suppose that f = dk/dA € C7(S!) with f> 0. Then the correspond-
ing L, is of the form

L =-XoX+cf'X, L =-Xo°X-cf'X withc,=<bn{(f N,

where X' = —X — X(log f) and L, denote the k-adjoint of X and L,. Let J,

be the rate function associated with L,. Then we have

&%
4

if du/dk = g with g¥/% € HY(S'); J (u) = © otherwise.
Nextlet di, = (1 + sh)dk = g,dk, with (A} = 0 and g, = (1 + eh). Then

e, NI -(g?, f_1>)\_1}

J (1) =X (&%) +

d
—J(x,) = (X(8¥*), X(8:/*h))s

(&%

+
4

(<R, PN = Cgsh 07 K gk, £ 10
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and
2

d 1 1 B
(k) = 5 (X(g:V/7h), X(g /)~ 5<X(812), X(8%/%R))

(%
2

+ {<g;1’ f_1>/\_2<g;3h2, f_1>)\

—(g:t i Xeh, R}
Thus we get at ¢ = 0, (d/d&)J (k) |,_o = 0 and
2

d _ 1 X2
wJ(Ks)Is=0—§<‘ (R)1" X

(bR
2

+ {(f_1>;2<h27 f_1>/\_<f_1>)\_3<h7 f—1>A2}

1 X(h)?
§<I (R

(o%
O [ (A(x) = h(9))" <} (dx) kN (dy)
st/st

= (h, (G%) "B,

with k™ 1(dx) = (f1)x ' (x)Mdx) and
6‘(—1 = %(—f‘x - QK)
Here L, is the generator of the symmetrized diffusion L, = (—X'> X) and Q,
is the generator of the jump process
Quh(x) = O N2(x) [ (Aly) = h(x)) k" (dy).

Note the similarity with (5.2). Also it is interesting to see that although both
L, and (L)' are local operators, (G*)~! is nonlocal.

Take a C2%(S!) functional F with second derivative D2F. Then the nonde-
generacy condition is of the form

+

(b
4

1
D%F(k)[hk, hk] < §<|X(h)|2>K+ (Lt

(5.8)
X [ (B(x) = R(9)) k" (dx) < (dy),
for h € C*(S') with A # 0.
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