LAPLACE APPROXIMATIONS FOR LARGE DEVIATIONS OF NONREVERSIBLE MARKOV PROCESSES. THE NONDEGENERATE CASE

By Erwin Bolthausen, ¹ Jean-Dominique Deuschel ¹ AND YOZO TAMURA

Universität Zürich, Techninche Universität Berlin and Keio University

We are investigating Markov process expectations for large time of the form $\exp(TF(L_T))$, where L_T is the empirical measure of a uniformly ergodic Markov process and F is a smooth functional. Such expressions are evaluated up to a factor which converges to 1. In contrast to earlier work on the subject, it is not assumed that the process is reversible.

1. Statement of the result. Let E be a compact metric space and $\mathscr E$ its Borel field. C(E) is the set of continuous mappings $E \to \mathbb R$, and $\| \ \|_{\infty}$ is the supremum metric on C(E). $C^+(E)$ denotes the set of strictly positive functions on E. $\mathscr{M}(E)$ is the set of signed measures on $(E,\mathscr E)$ and $\mathscr{M}_1^+(E)$ is the set of probability measures. The path space $\Omega = D([0,\infty), E)$ is the set of right continuous functions $\omega:[0,\infty)\to E$ with left-hand limits. The well-known Skorohod metric gives Ω the structure of a Polish space whose Borel field $\mathscr F$ is generated by the evaluation mappings $X_t(\omega) = \omega(t), t \geq 0$. We also write \mathscr{M}_1^+, C, C^+ instead of $\mathscr{M}_1^+(E), \ldots$, if there is no danger of confusion.

write \mathscr{M}_1^+, C, C^+ instead of $\mathscr{M}_1^+(E), \ldots$, if there is no danger of confusion. We consider an \mathscr{E} -measurable family $(\mathbb{P}_x)_{x\in E}$ of time-homogeneous Markovian probability measures on (Ω, \mathscr{F}) with $\mathbb{P}_x(X_0=x)=1, x\in E$. We assume that the corresponding semigroup $(P_t)_{t\geq 0}$ is a semigroup of contractions on $(C(E), \|\cdot\|_{\infty})$. Furthermore, we make a strong uniform ergodicity assumption:

Assumption 1.1. There exists a (P_t) -invariant probability measure π , and for each t>0, there exist transition densities $(p_t(x, y))_{x,y\in E}$ of P_t w.r.t. π which satisfy $p_t\in C^+(E\times E)$.

Let $L_T: \Omega \to \mathcal{M}_1^+(E)$ be the empirical measure

$$L_T(\omega) = rac{1}{T} \int_0^T \! \delta_{X_s(\omega)} \ ds.$$

Under our assumptions, L_T satisfies a strong uniform large deviation principle with rate functions $J \colon \mathscr{M}_1^+ \to [0, \infty]$:

$$J(\mu) = \sup \left\{ -\int \frac{Lu}{u} d\mu \colon u \in C^+ \cap \mathscr{D}_L \right\},$$

236

Received December 1993.

¹Supported by the Swiss National Foundation Contract 21-29833.90.

AMS 1991 subject classifications. 60F10, 60J25.

Key words and phrases. Large deviations, Markov processes, Laplace approximations.

where L is the infinitesimal generator of (P_t) on C(E), and \mathcal{D}_L is its domain (see [9], Theorem 4.2.4). As a consequence, if $F: M_1^+ \to \mathbb{R}$ is bounded and continuous, then

$$\lim_{T\to\infty}\frac{1}{T}\!\log\mathbb{E}_{x}\!\!\left(\exp\!\left(T\!F\!\left(L_{T}\right)\right)\right)=\sup\!\left\{F\!\left(\right.\mu\right)-J\!\left(\right.\mu\right)\!:\mu\in\!\mathscr{M}_{1}^{+}\right\}\equiv b_{F}.$$

We define

$$K_F \equiv \{ \mu \in \mathcal{M}_1^+ : F(\mu) - J(\mu) = b_F \}.$$

 K_F is not empty and compact in \mathcal{M}_1^+ .

It is the aim of this paper to give a more precise evaluation of $\mathbb{E}_x(\exp(TF(L_T)))$ in the case where F is smooth. Such evaluations have recently been obtained in the reversible case, that is, when the P_t are self-adjoint on $L_2(\pi)$, by Brydges and Maya [7] for processes with finite state space, with the help of Berezin integration, and Kusuoka and Tamura [10] for more general cases, but still only for reversible processes. For sums of i.i.d. random variables, see [4] and [5].

To formulate the appropriate smoothness, we imbed $\mathcal{M}(E)$ in a suitable Hilbert space which is the same as that used in [10]:

Let $(\psi_n)_{n\in\mathbb{N}}$, $\psi_n\in C(E)$, be a complete orthonormal system in $L_2(E,\,\pi)$ and let $a=(a_n)_{n\in\mathbb{N}}$ be a sequence of strictly positive real numbers, satisfying

$$\lim_{n\to\infty}a_n=0$$

and

(1.3)
$$\sum_{n=1}^{\infty} a_n ||\psi_n||_{\infty}^2 = 1.$$

If ν , $\mu \in \mathcal{M}(E)$, let

$$\langle \nu, \mu \rangle_a = \sum_{n=1}^{\infty} a_n \int \psi_n \, d\nu \int \psi_n \, d\mu,$$

and $\|\mu\|_a \equiv \sqrt{\langle \mu, \mu \rangle_a}$. We will give concrete examples for the choices of (a_n) and (ψ_n) in the case of diffusions on compact manifolds in Section 5.

From (1.3), we immediately get

$$\|\mu\|_{a} \leq \|\mu\|_{\text{var}},$$

where $\| \ \|_{\mathrm{var}}$ is the total variation norm. Therefore $\| \ \|_a$ is finite on $\mathscr{M}(E)$. We denote by H_a the completion of $\mathscr{M}(E)$ w.r.t. $\| \ \|_a$. The imbedding $\mathscr{M}(E) \to H_a$ is continuous when $\mathscr{M}(E)$ is equipped with the weak topology, that is, the topology induced by $\mu \to \int f d\mu$, $f \in C$. As $\mathscr{M}_1^+(E)$ is compact in the weak topology, it is compact in H_a as well. Therefore, any continuous function $F \colon \mathscr{M}_1^+ \to \mathbb{R}$ can be extended to a bounded continuous function $\tilde{F} \colon H_a \to \mathbb{R}$. We will use the following smoothness and uniqueness conditions:

Assumption 1.5. F has an extension to H_a which is bounded, continuous and has two bounded and continuous Frechet derivatives. We will denote this extension by F, too.

(We will give conrete examples of (a_n) and (ψ_n) and differentiable F in the case of diffusions on compact manifolds in Section 5).

We denote by $DF(\mu) \in H_a$ and $D^2F(\mu) \in H_a \otimes H_a$ the first and second derivative at $\mu \in \mathcal{M}_1^+(E)$. We also need a nondegeneracy condition:

Assumption 1.6. F-J has nonvanishing curvature at κ , for any $\kappa \in K_F$.

As it stands, Assumption 1.6 is not a mathematically precise statement because J is not smooth at all. To state it in a precise form needs some preparation. The formal definition is given in Section 2 [cf. Assumption 2.26].

THEOREM 1.7. Under the Assumptions 1.1, 1.5 and 1.6, K_F contains at most finitely many points $\{\kappa_1, \kappa_2, \ldots, \kappa_n\}$ and there exists $h_{\kappa_i} \in C^+(E)$, $d_{F,\kappa_i} \in \mathbb{R}^+$, $i = 1, \ldots, n$, such that as $T \to \infty$,

$$\mathbb{E}_{x}(\exp(TF(L_T))) = \sum_{i=1}^{n} a_{x_i}(x) \exp(Tb_F)(1+o(1)),$$

where

$$a_{x_i}(x) = d_{F,x_i}h_{x_i}(x)\int_E \frac{1}{h_{x_i}(y)}x_i(dy), \quad i = 1,...,n, x \in E,$$

For $\kappa \in K_F$, the function h_{κ} is the unique $L^2(\kappa)$ -normalized eigenfunction associated with b_F , the principal eigenvalue of the operator $L + \phi^{\kappa}$, where $\phi^{\kappa} \in C^+(E)$ is given by

$$E \ni x \to \phi^x(x) \equiv \langle DF(x), \delta_x \rangle_a;$$

compare (2.4) below. $d_{F,\kappa} \in (0,\infty)$ can be described in terms of a determinant:

$$d_{F,\kappa} \equiv \left[\det(I - D^2 F(\kappa) \circ S_{\kappa})\right]^{-1}$$

where $D^2F(\kappa)$ is the second derivative of F at κ , interpreted as a bounded linear operator $H_a \to H_a$, and S_{κ} is a trace class operator, essentially the second derivative of J, which will be described in the next section [cf. (2.29)].

Associated with each $\kappa \in K_F$ and $x \in E$ we construct a Markovian law \mathbb{Q}_x^{κ} on (Ω, \mathscr{F}) , the h_{κ} -transform of \mathbb{P}_x :

$$\frac{\mathbb{Q}_{x}^{\kappa}(d\omega)}{\mathbb{P}_{x}(d\omega)}\bigg|_{\mathcal{F}} = \exp(-b_{F}t)\frac{h_{\kappa}(X_{t}(\omega))}{h_{\kappa}(x)}\exp\bigg[\int_{0}^{t}h_{\kappa}(X_{s}(\omega))\,ds\bigg];$$

compare Section 2, which has the property that L_T converges to κ under \mathbb{Q}_x^{κ} . Define the family of measures $\{\hat{\mathbb{P}}_x^T: T>0\}$ on (Ω, \mathscr{F}) :

$$\hat{\mathbb{P}}_{x}^{T}(\Gamma) = \frac{\mathbb{E}_{x}(\exp(TF(L_{T})); L_{T} \in \Gamma)}{\mathbb{E}_{x}(\exp(TF(L_{T})))}, \qquad \Gamma \in \mathscr{F},$$

where we use the notation $\mathbb{E}(X; B)$ for $\mathbb{E}(X|1_B)$.

In [6] we show that $\{\hat{\mathbb{P}}_x^T, T > 0\}$ is tight, and that any limit point can be expressed as a mixture of \mathbb{Q}_x^{κ} , $\kappa \in K_F$. In the nondegenerate case, we can identify the mixture coefficients explicitly in the following convergence theorem which is a direct consequence of Theorem 1.7; compare [6] and [10].

Theorem 1.8. With respect to the weak convergence on Ω we have

$$\lim_{T\to\infty}\hat{\mathbb{Q}}_x^T=\sum_{i=1}^n\alpha_{\kappa_i}(x)\mathbb{Q}_x^{\kappa_i},$$

where $\alpha_{\kappa_i}(x) = a_{\kappa_i}(x)/(\sum_{j=1}^n a_{\kappa_i}(x))$.

We fix some notations: If f_1 , f_2 are measurable real-valued functions defined on E, and $\mu \in \mathscr{M}(E)$, we write $\langle f_1, f_2 \rangle_{\mu}$ for $\int f_1 f_2 d\mu$ and $\langle f_1 \rangle_{\mu}$ for $\int f_1 d\mu$, if they are defined. This should not be confounded with the notation $\langle \mu_1, \mu_2 \rangle_a$ for $\mu_1, \mu_2 \in \mathscr{M}(E)$ introduced above.

We will use k, k_1 , k_2 ,... for generic positive constants, not necessarily the same along different computations.

The rest of the paper is divided into four sections. In Section 2 we give a precise form of the nondegeneracy Assumption 1.6. The argument is based on a perturbation of the rate function J at the equilibrium points κ_i . In Section 3 we derive the Gaussian behavior of L_T near κ_i . In particular, we prove a uniform moderate deviation result; compare Proposition 3.2. Section 4 gives the proof of Theorem 1.7, following the argument of Bolthausen in [4]. Finally in Section 5 we present a few examples focusing on the computation of the rate function J and the nondegeneracy condition 1.6.

2. Perturbations. We recall some facts discussed in [6] and give a precise form of Assumption 1.6 and the trace class operator S_{κ} associated with $\kappa \in K_F$. If $\varphi \in C(E)$, let

$$P_{t}^{\varphi}(x, A) = \mathbb{E}_{x}\left(\exp\left(\int_{0}^{t} \varphi(X_{s}) ds\right); X_{t} \in A\right),$$

 $A \in \mathscr{E}$;

(2.1)
$$\Lambda(\varphi) = \sup \left\{ \int \varphi \, d\mu - J(\mu) \colon \mu \in \mathcal{M}_1^+(E) \right\}$$

is the logarithmic spectral radius of (P_t^{φ}) :

(2.2)
$$\Lambda(\varphi) = \lim_{t \to \infty} \frac{1}{T} \log \|P_t^{\varphi}\|_{\text{op}},$$

where $\| \|_{\text{op}}$ is the operator norm on $(C(E), \| \|_{\infty})$. Furthermore, one has the following duality relation:

(2.3)
$$J(\mu) = \sup \left\{ \int \varphi \, d\mu - \Lambda(\varphi) \colon \varphi \in C(E) \right\}.$$

There exist right- and left-hand principal eigenfunctions $h^{\varphi},\ l^{\varphi}\in C^+(E)$ of

 P_t^{φ} , that is,

$$(2.4) P_t^{\varphi} h^{\varphi} = \exp(\Lambda(\varphi)t) h^{\varphi}, t \ge 0,$$

(2.5)
$$\int \pi(dy) l^{\varphi}(y) P_t^{\varphi}(y, dz) = \exp(\Lambda(\varphi)t) l^{\varphi}(z) \pi(dz);$$

 h^{φ} , l^{φ} are unique if they are appropriately normed. We require

$$(2.6) \qquad \qquad \int (h^{\varphi})^2 d\pi = 1,$$

(2.7)
$$d\pi^{\varphi} \equiv l^{\varphi}h^{\varphi} d\pi \in \mathcal{M}_{1}^{+}(E).$$

 $\Lambda(\varphi)$, h^{φ} , l^{φ} depend continuous on φ . For proofs of these facts, see [6], Section 2. From (2.5) and (2.7) it follows that π^{φ} is the stationary measure of the transition kernels

$$Q_t^{\varphi}(x, dy) \equiv \exp(-\Lambda(\varphi)t) \frac{1}{h^{\varphi}(x)} P_t^{\varphi}(x, dy) h^{\varphi}(y).$$

We write \mathbb{Q}_x^{φ} for the corresponding Markov measure on (Ω, \mathscr{F}) . Q_t^{φ} has continuous strictly positive transition densities $q_t^{\varphi}(x, y)$ w.r.t. π , and therefore

$$\|q_{t}^{\varphi}(x,\cdot)-l^{\varphi}h^{\varphi}\|_{\infty}\to 0$$

exponentially fast, as $t \to \infty$, uniformly in x.

We set

$$g^{\varphi}(x, y) = l^{\varphi}(x)h^{\varphi}(x)\int_0^{\infty} (q_t^{\varphi}(x, y) - l^{\varphi}(y)h^{\varphi}(y)) dt$$

and

$$\bar{g}^{\varphi}(x, y) = g^{\varphi}(x, y) + g^{\varphi}(y, x).$$

If $\varphi = 0$, then we write just g and \overline{g} . G is the operator on C(E) defined by $Gf(x) \equiv \int g(x, y) f(y) \pi(dy)$, and $G^*f(x) \equiv \int g(y, x) f(y) \pi(dy)$, $\overline{G} \equiv G + G^*$. Note that they are bounded operators on C(E).

We will need some information about how these quantities behave for $\varphi \sim 0$. Let $f \in C(E)$ satisfy $\int f d\pi = 0$. We set $\Lambda(\varepsilon) \equiv \Lambda(\varepsilon f)$, $h^{\varepsilon} \equiv h^{\varepsilon f}$ and so forth. We also set

$$\Lambda_{T,x}(\varepsilon) \equiv \frac{1}{T} \log \mathbb{E}_x \exp \left(\varepsilon \int_0^T f(X_s) \ ds \right).$$

LEMMA 2.8. There exists K > 0 such that for $0 < \varepsilon \le 1$ and $T \ge 1$,

$$\left|\Lambda_{T,x}(\varepsilon) - \frac{\varepsilon^2}{2} \langle f, \overline{G}f \rangle_{\pi}\right| \leq K \left(\frac{\varepsilon \|f\|_{\infty}}{T} + \frac{\varepsilon^2}{T} \|f\|_{\infty}^2 + \varepsilon^3 \|f\|_{\infty}^3 (1 + \exp(K\varepsilon \|f\|_{\infty}))\right).$$

PROOF. For $y \in E$ set

$$\Lambda_{T,x,y}(\varepsilon) \equiv \frac{1}{T} \log \mathbb{E}_x \left[\exp \left[\varepsilon \int_0^T f(X_s) \ ds \right] \middle| X_T = y \right].$$

It is enough to show that

(2.9)
$$\left|\Lambda_{T,x,y}(\varepsilon) - \frac{\varepsilon^2}{2} \langle f, \overline{G}f \rangle_{\pi} \right| \leq r_T(\varepsilon),$$

where

$$r_T(\varepsilon) \leq K \left(\frac{\varepsilon}{T} \|f\|_{\scriptscriptstyle{\infty}} + \frac{\varepsilon^2}{T} \|f\|_{\scriptscriptstyle{\infty}}^2 + \varepsilon^3 \|f\|_{\scriptscriptstyle{\infty}}^3 (1 + \exp(K\varepsilon \|f\|_{\scriptscriptstyle{\infty}})) \right).$$

By Assumption 1.1, $\{P_t: t > 0\}$ is uniformly mixing in the sense that

$$P_t(x, dy) = p_t(x, y)\pi(dy), \qquad \|\log p_t\|_{\infty} < \infty \quad \text{for } t > 0.$$

By Lemma 2.5 of [6] we have

$$\|\log h^{\varepsilon}\|_{\infty} \leq 2\varepsilon \|f\|_{\infty} + \log c_1,$$

where $c_t = \exp(\|\log p_t\|_{\infty})$. (Note that c_t in [6] should be replaced by e^{c_t} .) The corresponding semigroup $\{Q_t^{\varepsilon}: t>0\}$ is uniformly mixing with invariant distribution $\pi^{\varepsilon}(dx) = \rho^{\varepsilon}(x)\pi(dx)$, where $\rho^{\varepsilon} = h^{\varepsilon}l^{\varepsilon}$, and $Q_t^{\varepsilon}(x, dy) = q_t^{\varepsilon}(x, y)\pi(dy)$ with

$$\|\log q_1^{\varepsilon}(x,\cdot)\|_{\infty} \leq 6\varepsilon \|f\|_{\infty} + 3\log c_1.$$

In particular we have the uniform exponential convergence estimate

$$\|q_{t}^{\varepsilon}(x,\cdot)-\rho^{\varepsilon}\|_{\infty}\leq K_{\varepsilon}\exp(-\alpha_{\varepsilon}t), \qquad t\geq 1,$$

where

$$(2.10) K_{\varepsilon} = 2\exp(3c_1)\exp(6\varepsilon||f||_{\infty}), \alpha_{\varepsilon} = \exp(-8\varepsilon||f||_{\infty} - 4c_1).$$

For these estimates, see the proof of Lemma 2.5(h) in [6].

We will prove Lemma 2.8 in several steps. Let

$$A_T = \int_0^T f(X_s) \ ds$$

and

$$\mathbb{E}_{x,y}^{\varepsilon,T}[\cdot] = \mathbb{E}_{\mathbb{Q}_x^c}[\cdot | X_T = y].$$

Note that if F is bounded \mathcal{F}_T measurable, then

$$\mathbb{E}_{x,y}^{\varepsilon,T}[F] = \frac{\mathbb{E}_{x,y}^{0,T}[Fe^{\varepsilon A_T}]}{\mathbb{E}_{x,y}^{0,T}[e^{\varepsilon A_T}]}.$$

A simple computation yields the next lemma.

LEMMA 2.11. Set
$$\phi_T(\varepsilon) = \mathbb{E}_{x,y}^{0,T}[\exp(\varepsilon A_T)]$$
. Then

$$\Lambda_{T,x,y}(\varepsilon) = \frac{1}{T}\log\phi_T(\varepsilon)$$

and

$$\begin{split} & \Lambda_{T,x,y}(\varepsilon) = \frac{d}{d\varepsilon} \Lambda_{T,x,y}(\varepsilon) = \frac{1}{T} \frac{\phi_T'(\varepsilon)}{\phi_T(\varepsilon)} = \frac{1}{T} \mathbb{E}_{x,y}^{\varepsilon,T} [A_T] \\ & A_{T,x,y}''(\varepsilon) = \frac{1}{T} \left\{ \frac{\phi_T''(\varepsilon)}{\phi_T(\varepsilon)} - \left(\frac{\phi_T'(\varepsilon)}{\phi_T(\varepsilon)} \right)^2 \right\} = \frac{1}{T} \mathbb{E}_{x,y}^{\varepsilon,T} [\left(A_T - \mathbb{E}_{x,y}^{\varepsilon,T} [A_T] \right)^2 \right] \\ & \Lambda_{T,x,y}'''(\varepsilon) = \frac{1}{T} \left\{ \frac{\phi_T'''(\varepsilon)}{\phi_T(\varepsilon)} - 3 \frac{\phi_T''(\varepsilon)}{\phi_T(\varepsilon)} \frac{\phi_T'(\varepsilon)}{\phi_T(\varepsilon)} + 2 \left(\frac{\phi_T'(\varepsilon)}{\phi_T(\varepsilon)} \right)^3 \right\} \\ & = \frac{1}{T} \mathbb{E}_{x,y}^{\varepsilon,T} [\left(A_T - \mathbb{E}_{x,y}^{\varepsilon,T} [A_T] \right)^3 \right]. \end{split}$$

LEMMA 2.12. There exists a constant K > 0 such that for $T \ge 1$,

(2.13)
$$|\Lambda_{T,x,y}(0)| \leq \frac{K}{T} ||f||_{\infty},$$

PROOF. By Lemma 2.11,

$$|\Lambda_{T,x,y}(0)| = \frac{1}{T} |\mathbb{E}_{x,y}^{0,T}[A_T]| \le \frac{\|f\|_{\infty}}{T} + \frac{1}{T} |\mathbb{E}_{x,y}^{0,T}[A_{T-1}]|.$$

Next, let $\{P_t^*: t > 0\}$ be the π -adjoint of $\{P_t: t > 0\}$. Then

$$\begin{split} |p_T(\,x,\,y)\mathbb{E}_{x,y}^{\,0,T}[\,A_{T-1}\,]| &\leq \int_0^{T-1} & \|P_s\big(\,f\!p_{T-s}(\,\cdot,\,y\,)\big)\|_{\scriptscriptstyle \infty}\,ds \\ \\ &\leq \int_0^{T-1} & |\langle\,f,\,p_{T-s}(\,\cdot,\,y\,)\rangle_\pi |\,ds + k_1 \!\int_0^{T-1} \!\!e^{-\alpha_0 s}\,ds \|f\|_{\scriptscriptstyle \infty} \\ \\ &\leq \int_0^{T-1} & |P_{T-s}^*f(\,y)|\,ds + k_2 \|f\|_{\scriptscriptstyle \infty} \leq k_3 \|f\|_{\scriptscriptstyle \infty}, \end{split}$$

where we have used (2.10) and the fact that (2.10) holds for $\{P_t^*: t > 0\}$ with $\varepsilon = 0$. Finally we get (2.13) since $p_T(x, y) \ge 1/c_1$ for $T \ge 1$.

The proof of (2.14) goes along the same lines:

$$\Lambda'_{T,x,y}(0) = \frac{1}{T} \mathbb{E}_{x,y}^{0,T} [A_T^2] - \frac{1}{T} \mathbb{E}_{x,y}^{0,T} [A_T]^2.$$

By (2.13) we know

$$\frac{1}{T} \mathbb{E}_{x,\hat{y}}^{0,T} [A_T]^2 \le \frac{K^2}{T} ||f||_{\infty}^2$$

and

$$\left| \mathbb{E}_{x, X_{T-1}}^{0, T-1} [A_{T-1}] \right| \leq k_3 \|f\|_{\infty}.$$

This together with the Markov property imply

$$\left| \mathbb{E}_{x,y}^{0,T} \left[A_T^2 \right] - \mathbb{E}_{x,y}^{0,T} \left[A_{T-1}^2 \right] \right| \le k_4 \|f\|_{\infty}^2$$

Next we have

$$p_{T}(x, y)\mathbb{E}_{x, y}^{0, T}[A_{T-1}^{2}] = 2\int_{0}^{T-1} ds \int_{s}^{T-1} dt P_{s}(fP_{t-s}(fp_{T-t}(\cdot, y)))(x).$$

By the first part of the proof,

$$\sup_{0 < s < T-1} \int_{s}^{T-1} ||P_{t-s}(fp_{T-t}(\cdot, y))||_{\infty} dt \le k_{5} ||f||_{\infty},$$

this shows that

$$\begin{split} \left| p_T(x, y) \mathbb{E}_{x, y}^{0, T} \left[A_{T-1}^2 \right] - 2 \int_0^{T-1} \! ds \int_s^{T-1} \! dt \langle f, P_{T-s} (f p_{T-t} (\cdot, y)) \rangle_{\pi} \right| \\ \leq k_6 \int_0^{T-1} \! e^{-\alpha_0 s} \, ds \|f\|_{\infty}^2 \leq k_7 \|f\|_{\infty}^2. \end{split}$$

Also we have

$$\langle f, P_{T-s}(fp_{T-t}(\cdot, y)) \rangle_{\pi} = P_{T-t}^*(fP_{t-s}^*(f))(y)$$

and

$$\begin{split} \left| \int_{0}^{T-1} ds \int_{s}^{T-1} dt \left\{ P_{T-t}^{*} (f P_{t-s}^{*}(f))(y) - \langle f, P_{t-s}^{*} f \rangle_{\pi} \right\} \right| \\ & \leq k_{8} \|f\|_{\infty}^{2} \int_{0}^{T-1} ds \int_{s}^{T-1} \exp(-\alpha_{0}(T-t)) \exp(-\alpha_{0}(t-s)) dt \leq k_{9} \|f\|_{\infty}^{2}. \end{split}$$

Finally we have

$$\left| \int_0^{T-1} \! ds \int_s^{T-1} \! dt \langle f, \, P_{t-s}^* f \rangle_\pi - \int_0^{T-1} \! ds \int_0^\infty \! dt \langle f, \, P_t^* f \rangle_\pi \right| \leq k_{10} \|f\|_\infty^2$$

with

$$\int_0^{T-1}\!ds\!\int_0^\infty\!\!dt\langle f,\,P_t^*f
angle_\pi=(T-1)\langle f,G^*f
angle_\pi=(T-1)\langle f,Gf
angle_\pi.$$

Putting things together we get

$$|p_T(x, y)\Lambda'_{T,x,y}(0) - 2\langle f, Gf \rangle_{\pi}| \le \frac{k_{11}}{T} ||f||_{\infty}^2$$

which implies (2.14) since $|p_T(x, y) - 1| \le K_0 e^{-\alpha_0 T}$. \square

Lemma 2.15. There is a constant K > 0 such that

$$|\Lambda_{T,x,y}''(\varepsilon)| \leq K(1 + \exp(\varepsilon \|f\|_{\infty}K)) \|f\|_{\infty}^{3}.$$

Proof. Basically we can use the same ideas as above with K_{ε} and α_{ε}

instead of K_0 and α_0 . In particular one can first show that

$$\begin{split} |\Lambda_{T,x,y}(\varepsilon)| &\leq k_1 \big(1 + \exp(\varepsilon \|f\|_{\infty} k_1)\big) \|f\|_{\infty}, \\ |\Lambda_{T,x,y}'(\varepsilon)| &\leq k_2 \big(1 + \exp(\varepsilon \|f\|_{\infty} k_2)\big) \|f\|_{\infty}^2. \end{split}$$

and it is enough to prove that

$$\frac{1}{T} \Big| \mathbb{E}_{x,y}^{\varepsilon,T} \Big[\big(A_{T-1}^{\varepsilon} \big)^3 \Big] \Big| \leq k_3 \big(1 + \exp(\varepsilon \| f \|_{\infty} k_3 \big) \big) \| f \|_{\infty}^3,$$

where $A_{T-1}^{\varepsilon}=\int_0^{T-1}f^{\varepsilon}(X_s)\,ds$ with $f^{\varepsilon}=f-\langle\,f\,\rangle_{\pi^{\varepsilon}}.$ Note first that

$$q_T^{\varepsilon}(x,y)\mathbb{E}_{x,y}^{\varepsilon,T}[(A_{T-1}^{\varepsilon})^3]$$

$$=6\int_0^{T-1}ds\int_s^{T-1}dt\int_t^{T-1}du\,Q_s^{\varepsilon}(f^{\varepsilon}Q_{t-s}^{\varepsilon}(f^{\varepsilon}Q_{u-t}^{\varepsilon}(f^{\varepsilon}q_{T-u}^{\varepsilon}(\cdot,y))))(x).$$

As above we may replace Q_s^{ε} by π^{ε} , since by induction

$$\frac{1}{T} \int_s^{T-1} \! dt \int_t^{T-1} \! du \|Q_{t-s}^\varepsilon \big(f^\varepsilon Q_{u-t}^\varepsilon \big(f^\varepsilon q_{T-u}^\varepsilon(\cdot,\,y)\big)\big)\|_\infty \leq k_4 \big(1 + \exp \big(\varepsilon \|f\|_\infty k_4\big)\big) \|f\|_\infty^2.$$

Next we have

$$\langle f^{\varepsilon}, Q_{t-s}^{\varepsilon}(f^{\varepsilon}Q_{u-t}^{\varepsilon}(f^{\varepsilon}q^{\varepsilon}(\cdot,y)))\rangle_{\pi^{\varepsilon}} = Q_{T-u}^{\varepsilon,*}(f^{\varepsilon}Q_{u-t}^{\varepsilon,*}(f^{\varepsilon}Q_{t-s}^{\varepsilon,*}(f^{\varepsilon})))(y),$$

where $\{Q_t^{\,\varepsilon,*}\colon t>0\}$, the $\pi^{\,\varepsilon}$ adjoint of $\{Q_t^{\,\varepsilon}\colon t>0\}$, is also uniformly mixing and satisfies Assumption 1.1. Moreover,

$$egin{aligned} \|Q^{arepsilon,*}_{T-u}ig(f^arepsilon Q^{arepsilon,*}_{u-t}ig(f^arepsilon Q^{arepsilon,*}_{t-s}ig(f^arepsilon)ig)\|_{\infty} \ &\leq \|Q^{arepsilon,*}_{T-u}ig(f^arepsilon Q^{arepsilon,*}_{u-t}ig(f^arepsilon Q^{arepsilon,*}_{t-s}ig(f^arepsilon) - \langle f^arepsilon, Q^{arepsilon,*}_{t-s}ig(f^arepsilon, Q^{arepsilon,*}_{t-s}ig) - \langle f^arepsilon, Q^{arepsilon,*}_{t-s}ig(f^arepsilon, Q^{arepsilon,*}_{t-s}ig(f^arepsilon, Q^{arepsilon,*}_{t-s}ig(f^arepsilon, Q^{arepsilon,*}_{t-s}ig) - \langle f^arepsilon, Q^{arepsilon,*}_{t-s}ig(f^arepsilon, Q^{arepsilon,*}_$$

However, this implies

$$\left|rac{1}{T}\int_{0}^{T-1}\!ds\int_{s}^{T-1}\!dt\int_{t}^{T-1}\!du |\langle\,f^arepsilon,\,Q^arepsilon_{t-s}ig(f^arepsilon Q^arepsilon_{u-t}ig(f^arepsilon q^arepsilon_{T-u}ig(\cdot,\,y)ig)ig)
angle_{\pi^arepsilon}| \le k_7ig(1+\exp(arepsilon\|f\|_\omega k_7ig)ig)\|f^arepsilon\|_{\infty}^3$$

and the lemma is proved. \Box

PROOF OF (2.9). By the mean value theorem we know that there exist $\tilde{\varepsilon} \in [-\varepsilon, \varepsilon]$ such that

$$\Lambda_{T,x,y}(\varepsilon) = \varepsilon \Lambda'_{T,x,y}(0) + \frac{\varepsilon^2}{2} \Lambda''_{T,x,y}(0) + \frac{\varepsilon^3}{3!} \Lambda'''_{T,x,y}(\tilde{\varepsilon})$$

and the result follows from the above lemmas. \Box

COROLLARY 2.16. We have that

$$\Lambda(\varepsilon) = \frac{\varepsilon^2}{2} \langle f, \overline{G}f \rangle_{\pi} + O(\varepsilon^3).$$

LEMMA 2.17. (a) $h^{\varepsilon} = 1 + \varepsilon G f + r_1(\varepsilon)$.

- (b) $l^{\varepsilon} = 1 + \varepsilon G^* f + r_2(\varepsilon)$.
- (c) $\pi^{\varepsilon} = (1 + \varepsilon \overline{G} f + r_3(\varepsilon))\pi$.
- (d) $J(\pi^{\varepsilon}) = \varepsilon^2/2\langle f, \overline{G}f \rangle_{\pi} + o(\varepsilon^2), \text{ where } ||r_i(\varepsilon)||_{\infty} = o(\varepsilon)||f_i||_{\infty}.$

PROOF. First note that by (2.4) and (2.5), h^{ε} and $l^{\varepsilon} \in C_b(E; \mathbb{R}^+)$ are $L^2(\mu)$ -normalized positive eigenfunctions:

$$(2.18) (L + \varepsilon f)h^{\varepsilon} = \Lambda(\varepsilon)h^{\varepsilon}, (L^* + \varepsilon f)l^{\varepsilon} = \Lambda(\varepsilon)l^{\varepsilon}.$$

Next, by continuity,

(2.19)
$$h^{\varepsilon} = 1 + o(1), \quad l^{\varepsilon} = 1 + o(1).$$

Also since $\varepsilon \langle f, h^{\varepsilon} \rangle_{\pi} - \Lambda(\varepsilon) \langle h^{\varepsilon} \rangle_{\pi} = 0$, we have from (2.18),

$$L(h^{\varepsilon} - \langle h^{\varepsilon} \rangle_{\pi} - \varepsilon G f) = \varepsilon (f(1 - h^{\varepsilon}) - \langle f, 1 - h^{\varepsilon} \rangle_{\pi}) + \Lambda(\varepsilon) (h^{\varepsilon} - \langle h^{\varepsilon} \rangle_{\pi}).$$

This yields

$$h^{arepsilon} - \langle h^{arepsilon}
angle_{\pi} - arepsilon Gf = arepsilon G(f(1-h^{arepsilon}) - \langle f, 1-h^{arepsilon}
angle_{\pi}) \ + \Lambda(arepsilon) G(h^{arepsilon} - \langle h^{arepsilon}
angle_{\pi}) \equiv q(arepsilon).$$

From Corollary 2.16 we know that

(2.20)
$$\Lambda(\varepsilon) = \frac{\varepsilon^2}{2} \langle f, (G+G^*)f \rangle_{\pi} + o(\varepsilon^2).$$

Also, since $\{P_t: t>0\}$ and $\{P_t^*: t>0\}$ are uniformly mixing, G and G^* are bounded:

$$(2.21) ||Gf||_{\infty} \le K||f||_{\infty}, ||G^*f||_{\infty} \le K||f||_{\infty}.$$

Now by (2.18), (2.19) and (2.21) we see that $||q(\varepsilon)||_{\infty} = o(\varepsilon)||f||_{\infty}$. From this and $\langle q(\varepsilon)\rangle_{\pi} = 0$ we also get

$$1 = \langle (h^{\varepsilon})^{2} \rangle_{\pi} = \langle h^{\varepsilon} \rangle_{\pi}^{2} + \varepsilon^{2} \langle (Gf)^{2} \rangle_{\pi} + o(\varepsilon^{2});$$

thus,

$$\langle h^{\varepsilon} \rangle_{\pi} = 1 + o(\varepsilon)$$

and

$$h^{\varepsilon} = \langle h^{\varepsilon} \rangle_{\pi} + \varepsilon G f + q(\varepsilon) = 1 + \varepsilon G f + r_1(\varepsilon),$$

where $r_1(\varepsilon)$ has the required property. Using a similar argument one shows

$$l^{\varepsilon} = 1 + \varepsilon G^* f + r_2(\varepsilon).$$

Finally we have $d\pi^{\varepsilon} = l^{\varepsilon}h^{\varepsilon}$ and $d\pi = (1 + \varepsilon(Gf + G^*f) + r_3(\varepsilon))d\pi$ with

$$J(\mu^{\varepsilon}) = \langle -\frac{Lh^{\varepsilon}}{h^{\varepsilon}} \rangle_{\mu^{\varepsilon}} = \langle l^{\varepsilon}, (-L)h^{\varepsilon} \rangle_{\mu^{\varepsilon}} = \varepsilon \langle f \rangle_{\mu^{\varepsilon}} - \Lambda(\varepsilon);$$

compare [6]. This yields

$$egin{aligned} J(\mu^arepsilon) &= arepsilon \langle f
angle_{\mu^arepsilon} - \Lambda(arepsilon) \ &= arepsilon \langle f, 1 + arepsilon (G + G^*) f + r_3(arepsilon)
angle_{\pi} - rac{arepsilon^2}{2} \langle f, (G + G^*) f
angle_{\pi} + o(arepsilon^2) \ &= rac{arepsilon^2}{2} \langle f, (G + G^*) f
angle_{\pi} + o(arepsilon^2). \end{aligned}$$

Let $F: \mathcal{M}_1^+(E) \to \mathbb{R}$ be smooth in the sense of Assumption 1.5. If $\mu \in \mathcal{M}_1^+$, the first derivative of F at μ is denoted by $DF(\mu) \in H_a$. We define

$$\varphi^{\mu}(x) \equiv \langle DF(\mu), \delta_x \rangle_a$$
.

As $E \ni x \to \delta_x \in H_a$ is continuous, we have $\varphi^{\mu} \in C(E)$. By a slight abuse of notation, we write $\Lambda(\mu)$, h^{μ} , π^{μ} , and so forth, instead of $\Lambda(\varphi^{\mu})$, $h^{\varphi^{\mu}}$, $\pi^{\varphi^{\mu}}$,

LEMMA 2.22. If $\mu \in K_F$, then $\pi^{\mu} = \mu$.

PROOF. If $\varphi \in C(E)$, let J^{φ} be the rate function corresponding to $(Q_t^{\varphi})_{t\geq 0}$. Using (2.3), one sees

$$J^{\varphi}(\mu) = J(\mu) - \int \varphi \, d\mu + \Lambda(\varphi).$$

It is well known that $J^{\varphi}(\mu) = 0$ if and only if $\mu = \pi^{\varphi}$.

If $F(\mu) - J(\mu) = b_F$, then by the convexity of J, we have

$$\int \varphi^{\mu} d\mu - J(\mu) = \sup_{\nu \in \mathscr{M}_{1}^{+}} \left(\int \varphi^{\mu} d\nu - J(\nu) \right).$$

Therefore, the function $\mathcal{M}_1^+ \ni \nu \to J^{\mu}(\nu)$ is minimal at μ and so $\mu = \pi^{\mu}$. \square

Another important property of the elements in K_F is that F-J has nonpositive curvature at points in K_F . Because J is not differentiable, the formulation needs some care. An appropriate formulation is given in the following proposition.

PROPOSITION 2.23. Let $\kappa \in K_F$. Then for any $f \in C(E)$, (2.24) $\langle f, \overline{G}^{\kappa} f \rangle_{\pi} \geq D^2 F(\kappa) \left[\left(\overline{G}^{\kappa} f \right) \pi, \left(\overline{G}^{\kappa} f \right) \pi \right]$.

Here, if $g \in C(E)$, then $g\pi$ is the measure $g(x)\pi(dx)$. $D^2F(\kappa)$ is interpreted as a bilinear form on $\mathscr{M}(E) \subset H_a$.

PROOF. It is convenient to write everything in terms of the densities w.r.t. $\kappa(=\pi^{\kappa})$: Let $\hat{q}_t^{\kappa}(x, y)$ be the densities of Q_t^{κ} w.r.t. κ ; that is, $\hat{q}_t^{\kappa}(x, y) = q_t^{\kappa}(x, y)/l^{\kappa}(y)h^{\kappa}(y)$, and let

$$egin{aligned} \hat{g}(x,y) &\equiv \int_0^\infty (q_t^{\,\kappa}(x,y)-1)\,dt + \int_0^\infty (q_t^{\,\kappa}(y,x)-1)\,dt \ &= ar{g}^{\,\kappa}(x,y)/l^{\,\kappa}(x)l^{\,\kappa}(y)h^{\,\kappa}(x)h^{\,\kappa}(y). \end{aligned}$$

Then

$$\langle f, \overline{G}^{\kappa} f \rangle_{\pi} = \langle f, \hat{G}^{\kappa} f \rangle_{\kappa},$$

where, by an abuse of notation,

$$\hat{G}^{\kappa}f = \int \hat{g}^{\kappa}(x, y) f(y) \kappa(dy).$$

Furthermore

$$(\overline{G}^{\kappa}f)\pi=(\hat{G}^{\kappa}f)\kappa.$$

Replacing F by the function

$$(2.25) F^{\kappa}(x) = F(x) - F(\kappa) - \langle DF(\kappa), x - \kappa \rangle_{\alpha},$$

we see that, for the sake of proving the proposition, we may assume that

$$\kappa = \pi \in K_F.$$

From Corollary 2.16 and Lemma 2.17, Proposition 2.23 follows.

We can now give a precise formulation of our nondegeneracy assumption:

Assumption 2.26. For any $f \in C(E)$ with $\overline{G}^{\kappa} f \neq 0$,

$$(2.27) \langle f, \overline{G}^{\kappa} f \rangle_{\pi} > D^{2} F(\kappa) \left[(\overline{G}^{\kappa} f) \pi, (\overline{G}^{\kappa} f) \pi \right]$$

We will interpret the quadratic form $f \to \langle f, \overline{G}^{\kappa} f \rangle_{\pi}$ as one coming from a symmetric positive trace class operator on H_a . Note that

(2.28)
$$\langle f, \overline{G}^{\kappa} f \rangle_{\pi} = \lim_{T \to \infty} \operatorname{var}_{\mathbb{Q}^{\kappa}} \left(\int f dl_{T} \right),$$

where $l_T \equiv \sqrt{T}(L_T - \kappa)$. If $f \in C(E)$, we would like to write the mapping $u \to \int f d\mu$ in the form $\langle \hat{f}, \mu \rangle_a$ for some $\hat{f} \in H_a$. This is not always possible, as $\int f d\mu$ may not be continuous in μ on H_a . However, $\hat{\psi}_n$ is certainly well defined and just

$$\hat{\psi}_n = \frac{1}{a_n} \psi_n \pi.$$

We write $C_0(E)$ for the set of finite linear combinations of the ψ_n . Then, if $f \in C_0(E)$, \hat{f} is well defined. We put

$$l_n = \frac{1}{\sqrt{a_n}} \psi_n \pi, \qquad n \in \mathbb{N},$$

which obviously is a complete orthonormal system in H_a and we define the bounded linear operator S_κ on H_a by

$$(2.29) S_{\kappa}l_{n} = \sum_{m} s_{\kappa}(n, m)l_{m},$$

where $s_{\kappa}(n, m) = \sqrt{a_n a_m} \langle \psi_n, \overline{G}^{\kappa} \psi_m \rangle_{\pi}$.

LEMMA 2.30. Let $\kappa \in K_F$. Then:

(a) S_{κ} is a symmetric, positive semidefinite trace class operator on \mathcal{H}_a .

(b) If $f \in C_0(E)$, then $S_{\kappa} \hat{f} = (\overline{G}^{\kappa} f) \pi$ and therefore $\langle f, \overline{G}^{\kappa} f \rangle_{\pi} = \langle \hat{f}, \overline{S}_{\kappa} \hat{f} \rangle_{a}$.

(c) $\langle x, S_{\kappa} x \rangle_a \ge \langle S_{\kappa} x, D^2 F(\kappa) S_{\kappa} x \rangle_a$ for all $x \in H_a$.

PROOF. The lemma is obvious from the definition and Proposition 2.23.

If $x \in H_a$, let $\Gamma(x) = \inf\{|y|_a^2 : x = \sqrt{S}y\}$, where we drop κ in the notation and where $\inf \emptyset = \infty$.

$$H_{\Gamma} \equiv \{ x \in H : \Gamma(x) < \infty \}$$

is a linear subspace of H_a and Γ is a Hilbert norm on H_{Γ} . $\Gamma: H_a \to [0, \infty]$ is convex, lower semicontinuous and has compact level sets, that is, $\{x: \Gamma(x) \le c\}$ is compact for $c \in (0, \infty)$. Obviously, SH is a dense subspace in (H_{Γ}, Γ) . From Lemma 2.30(c), we therefore obtain

(2.31)
$$\Gamma(x) \ge \langle x, D^2 F(\kappa) x \rangle_a$$

for all $x \in H_{\Gamma}$, and therefore also for $x \in H_a$.

LEMMA 2.32. Assume (2.27). Then $\Gamma(x) > \langle x, D^2 F(\kappa) x \rangle_a$ for all $x \in H_{\Gamma}$ with $\Gamma(x) \neq 0$.

PROOF. Assume that for some $x \in H_{\Gamma}$,

$$\Gamma(x) = \langle x, D^2 F(\kappa) x \rangle_a = 1.$$

We claim that for some $\alpha \in \mathbb{R} \setminus \{0\}$,

$$(2.33) x = \alpha SpD^2 F(\kappa) x,$$

where p is the projection of H_a on the closure \overline{H}_{Γ} of H_{Γ} in H_a .

To prove this, let $y \in H_{\Gamma}$ satisfy

$$\langle y, D^2 F(\kappa) x \rangle_a = 0.$$

We put $x_t \equiv (x+ty)/[1+t^2\langle D^2F(\kappa)y, y\rangle_a]^{1/2}$, t in a neighborhood of 0. Then

$$\langle x_{\perp}, D^2 F(\kappa) x_{\perp} \rangle_{\alpha} = 1$$

and therefore $\Gamma(x_t) \ge 1$. It follows that $\Gamma(x, y) = 0$, where $\Gamma(x, y)$ is the inner product in H_{Γ} . Using this, (2.33) follows. We now put

$$g(\xi) \equiv \alpha \langle pD^2F(\kappa)x, \delta_{\xi}\rangle_a,$$

which is in C(E) and satisfies $\hat{g} = \alpha p D^2 F(\kappa) x$. Therefore,

$$x = S\hat{g}$$

and using Lemma 2.30, we have

$$\langle g, \overline{G}^{\kappa}g \rangle_{\pi} = \langle \overline{G}^{\kappa}g\pi, D^{2}F(\kappa)\overline{G}^{\kappa}g\pi \rangle_{a} = D^{2}F(\kappa)\Big[\overline{G}^{\kappa}g\pi, \overline{G}^{\kappa}g\pi\Big],$$

which contradicts (2.27). \Box

3. Gaussian behavior near π . It will suffice to discuss the limiting behavior of the law of L_T near π . As S is a trace class operator, there exists a unique centered Gaussian measure γ on H_a satisfying

$$\int \langle x, \xi \rangle_a \langle y, \xi \rangle_a \gamma(d\xi) = \langle x, Sy \rangle_a.$$

Proposition 3.1. (l_T, X_T) converges weakly to $\gamma \otimes \pi$ for $T \to \infty$ on $H_a \times E$.

PROOF. $l_T=1/\sqrt{T}(\int_0^T \delta_{X_s}\,ds-T\pi)$, and $E\ni \xi \to \delta_\xi \in H_a$ is a bounded continuous function. The proposition then follows by standard central limit theorems for Markov processes. \Box

Proposition 3.2. If $A \subset H_a$ is closed, then

$$\limsup_{c\to\infty} \sup_{t,T} \left\{ \frac{1}{t^2} \log \mathbb{P}_x(l_T \in tA) : c \le t \le \sqrt{T}/c \right\} \le -\Gamma(A),$$

where $\Gamma(A) = \inf_{x \in A} \Gamma(x)$.

PROOF FOR A COMPACT. Let A be compact, and satisfy $\Gamma(A) < \infty$. We may assume $\Gamma(A) > 0$. If $0 < \varepsilon < \Gamma(A)$, then

$${x \in H_a: \Gamma(x) > \Gamma(A) - \varepsilon}$$

is open and contains A. As Γ is lower semicontinuous, we may cover A with finitely many balls

$$U_i = B_r(x_i) \equiv \{ y \in H_a : ||y - x_i||_a < r_i \}, \quad 1 \le i \le m,$$

with

$$\Gamma(U_i) > \Gamma(A) - \frac{\varepsilon}{2}.$$

Let

$$C_i \equiv \left\{ x : \Gamma(x) \le \Gamma(U_i) - \frac{\varepsilon}{2} \right\}, \qquad 1 \le i \le m,$$

which is compact and convex. Therefore, there exists $y_i \in H_a$ with

$$U_i \subset \{x: \langle x, y_i \rangle_a > 1\} \subset \{x: \Gamma(x) > \Gamma(U_i) - \frac{\varepsilon}{2}\}.$$

By continuity, we may assume that $y_i = \hat{f}_i$ with $f_i \in C_0(E)$, and therefore

$$\big\{\,\mu\in\mathscr{M}\colon\!\langle\,\mu,\,y_i\,\rangle_a>1\big\}=\bigg\{\,\mu\in\mathscr{M}\colon\!\int\!f_i\;d\,\mu>1\bigg\}.$$

From this we get

$$\mathbb{P}_{x}(l_{T} \in tA) \leq \sum_{i=1}^{m} \mathbb{P}_{x}\left(\int f_{i} dl_{T} > t\right).$$

By Lemma 2.8 and the standard exponential estimates, this yields

$$\limsup_{c\to\infty}\sup\left\{\frac{1}{t^2}\log\sup_x\mathbb{P}_x(\,l_T\in tA)\colon c\le t\le\,\frac{\sqrt{T}}{c}\right\}\le\,-\,\frac{1}{2}\,\min_{1\le i\le m}\langle\,f_i,\,\overline{G}f_i\rangle_\pi^{-1}.$$

Using

$$\{x:\langle \hat{f}_i, x\rangle_a > 1\} \subset \{x:\Gamma(x) > \Gamma(U_i) - \varepsilon\} \subset \{x:\Gamma(x) - \varepsilon\}$$

and Lemma 2.30, this proves the claim in the case where A is compact and $\Gamma(A) < \infty$. The case $\Gamma(A) = \infty$ follows by an obvious modification (replacing the condition $\Gamma(U_i) > \Gamma(A) - \varepsilon/2$ by $\Gamma(U_i) > 1/\varepsilon$, etc.).

It remains to consider the case where A is only closed. This needs some preparation. Let $b=(b_n)$ be a sequence of strictly positive real numbers, satisfying $b_n \to 0$,

$$\lim_{n \to \infty} b_n / a_n = \infty$$

and

$$\sum_{n} b_n \|\psi_n\|_{\infty}^2 = 1.$$

The Hilbert space H_b is a subspace of H_a , and by (3.3), the imbedding $H_b \subset H_a$ is compact.

LEMMA 3.4.

$$\varrho(\,b\,) \equiv \,-\limsup_{c\,\rightarrow\,\infty}\, \sup_{t,T} \left\{\frac{1}{t^2} {\rm log} \sup_x \mathbb{P}_x\big(\|l_T\|_b > t\big) \colon c \leq t \leq \,\frac{\sqrt{T}}{c}\right\} > 0.$$

We prove the lemma in several steps.

Lemma 3.5. Let
$$\{f_n, n \in \mathbb{Z}^+\} \subseteq C(E)$$
 satisfy (3.6)
$$\sup \|f_n - \langle f_n \rangle_{\pi}\|_{\infty} \equiv M < \infty$$

and set

$$\Lambda_{\pi}(f) \equiv \log \int_{E} \exp(f - \langle f \rangle_{\pi}) d\pi.$$

Then

$$\sup\{\Lambda_\pi(\,arepsilon f_n)\,ee\,\Lambda_\pi(\,-arepsilon f_n)\colon n\in\mathbb{Z}^+\}\leq rac{arepsilon^2}{2}L+arepsilon^3K(\,arepsilon\,)\,,$$

where $L = \sup_n \|f_n - \langle f_n \rangle_{\pi}\|_{L^2(\pi)}^2 \le M^2$ and $K(\varepsilon) = 8M^3 e^{2\varepsilon M}/6$.

PROOF. Write
$$\phi_n(\varepsilon) = \Lambda_{\pi}(\varepsilon f_n)$$
 and $\bar{f}_n = f_n - \langle f_n \rangle_{\pi}$. Then $\phi_n'(0) = 0$,
$$\phi_n''(0) = \int_{\mathbb{F}} \left(\bar{f}_n\right)^2 d\pi \le L$$

and

$$|\phi_n'''(\varepsilon)| = \left| \frac{\int_E \left(\bar{f}_n^{\varepsilon}\right)^3 e^{\varepsilon \bar{f}_n} d\pi}{\int_E e^{\varepsilon \bar{f}_n} d\pi} \right| \leq 8M^3 e^{2\varepsilon M} = 3!K(\varepsilon),$$

where

$$ar{f}_n^{arepsilon} = ar{f}_n - rac{\langle ar{f}_n, e^{arepsilon ar{f}_n}
angle_\pi}{\langle e^{arepsilon ar{f}_n}
angle_\pi}.$$

Now the result follows from the mean value theorem. \Box

LEMMA 3.7. There exists $2 < \beta < \infty$ such that

$$\Lambda_T(f) \equiv \frac{1}{T} \log \mathbb{E}_{\pi} \bigg[\exp \bigg(\int_0^T \! f(X_s) \ ds \bigg) \bigg] \leq \frac{1}{\beta} \Lambda_{\pi}(\beta f), \qquad f \in C(E).$$

PROOF. By Hölder's inequality we have

$$T\Lambda_T(f) \leq \frac{\big[T\big]\Lambda_{[T]}(2f)}{2} + \frac{\big(T-\big[T\big]\big)\Lambda_{T-[T]}(2f)}{2}.$$

Note that $\{P_t: t>0\}$ is π -hypercontractive (cf. [9]). Thus by Jensen's inequality,

$$\begin{split} [T] \Lambda_{[T]}(2f) &= \log \mathbb{E}_{\pi} \Bigg[\exp \Bigg(\int_{0}^{1} \bigg(\sum_{k=0}^{[T]-1} 2f(X_{s+k}) \bigg) \, ds \Bigg) \Bigg] \\ &\leq \log \int_{0}^{1} \mathbb{E}_{\pi} \Bigg[\exp \bigg(\sum_{k=0}^{[T]-1} 2f(X_{s+k}) \bigg) \Bigg] \, ds \\ &= \log \mathbb{E}_{\pi} \Bigg[\prod_{k=0}^{[T]-1} \exp (2f(X_{k})) \Bigg] \\ &\leq \frac{[T]}{\beta'} \Lambda_{\pi}(2\beta'f) \end{split}$$

for some $1 < \beta' < \infty$ (cf. [9]). On the other hand, again by Jensen's inequality we have

$$\begin{split} (T-\left[T\right])\Lambda_{T-\left[T\right]}(2f) &= \log \mathbb{E}_{\pi} \Bigg[\exp \bigg(\frac{1}{T-\left[T\right]} \int_{0}^{T-\left[T\right]} (T-\left[T\right]) 2f(X_{s}) \; ds \bigg) \Bigg] \\ &\leq \Lambda_{\pi} \big(2(T-\left[T\right])f \big) \leq \frac{T-\left[T\right]}{\beta'} \Lambda_{\pi}(2\beta'f) \end{split}$$

since $\beta'/(T-[T]) > 1$. This proves the lemma. \Box

Set
$$b_n' = b_n \|\psi_n\|_{\infty}^2$$
, $\psi_n' = \psi_n / \|\psi_n\|_{\infty}$ and $\overline{\psi}_n' = \psi_n' - \langle \psi_n' \rangle_{\pi}$. Then
$$\|m\|_b \equiv \left(\sum_n b_n' \langle \psi_n' \rangle_m^2\right)^{1/2}.$$

LEMMA 3.8. Under the above assumptions,

$$\mathbb{E}_{\pi}ig[\expig(arepsilon T\|L_T-\pi\|_big)ig]\leq \expigg[Tigg(rac{arepsilon^2}{2}L'+arepsilon^3K'(arepsilon)igg)+1igg],$$

where $L' = 4\beta L$ and $K'(\varepsilon) = 8\beta^2 K(\varepsilon)$. In particular, for each t > 0 we have

$$(3.9) \qquad \frac{1}{Tt^2} \log \mathbb{P}_{\pi} (\|L_T - \pi\|_b \ge t) \le -\frac{1}{2L'} + \frac{tK'(t/L')}{(L')^3} + \frac{1}{t^2T}$$

and

(3.10)
$$\limsup_{c \to \infty} \sup_{T,t} \left\{ \frac{1}{t^2} \log \mathbb{P}_{\pi} (T^{1/2} || L_T - \pi ||_b > t) : c \le t \le \frac{T^{1/2}}{c} \right\} \\ \le -\frac{1}{2L'} < 0.$$

PROOF. Note that $t \to \Psi(t) \equiv e^{t^{1/2}}$ is convex on [1, ∞). Thus, by Jensen's inequality we have

$$\begin{split} \mathbb{E}_{\pi} \big[\exp \big(\varepsilon T \| L_T - \pi \|_b \big) \big] &= \mathbb{E}_{\pi} \big[\exp \big(\| \varepsilon T (L_T - \pi) \|_b \big) \big] \\ &= \mathbb{E}_{\pi} \bigg[\Psi \Big(\sum_n b_n' \varepsilon^2 T^2 \langle \overline{\psi}_n' \rangle_{L_T}^2 \Big) \bigg] \\ &\leq \mathbb{E}_{\pi} \bigg[\Psi \Big(\sum_n b_n' \varepsilon^2 T^2 \langle \overline{\psi}_n' \rangle_{L_T}^2 \vee 1 \Big) \bigg] \\ &\leq \sum_n b_n' \mathbb{E}_{\pi} \Big[\Psi \Big(\varepsilon^2 T^2 \langle \overline{\psi}_n' \rangle_{L_T}^2 \vee 1 \Big) \bigg] \\ &\leq \sum_n b_n' \mathbb{E}_{\pi} \Big[\exp \Big(\varepsilon T |\langle \overline{\psi}_n' \rangle_{L_T} | + 1 \Big) \bigg] \\ &= e^1 \sum_n b_n' \mathbb{E}_{\pi} \Big[\exp \Big(\varepsilon T |\langle \overline{\psi}_n' \rangle_{L_T} | \Big) \bigg] \,. \end{split}$$

Using the above lemmas and Hölder's inequality, we have

$$\begin{split} \mathbb{E}_{\pi} \Big[\exp\! \left(\varepsilon T |\langle \overline{\psi}_{n}' \rangle_{L_{T}} | \right) \Big] &\leq \mathbb{E}_{\pi} \Big[\exp\! \left(2 \varepsilon T \langle \overline{\psi}_{n}' \rangle_{L_{T}}^{+} \right) \Big]^{1/2} \mathbb{E}_{\pi} \Big[\exp\! \left(2 \varepsilon T \langle \overline{\psi}_{n}' \rangle_{L_{T}}^{-} \right) \Big]^{1/2} \\ &\leq \mathbb{E}_{\pi} \Big[\exp\! \left(2 \varepsilon T \langle \overline{\psi}_{n}' \rangle_{L_{T}} \right) \Big]^{1/2} \mathbb{E}_{\pi} \Big[\exp\! \left(-2 \varepsilon T \langle \overline{\psi}_{n}' \rangle_{L_{T}} \right) \Big]^{1/2} \\ &= \exp\! \Big[T \Big(\Lambda_{T} \Big(2 \varepsilon \overline{\psi}_{n}' \Big) + \Lambda_{T} \Big(-2 \varepsilon \overline{\psi}_{n}' \Big) \Big) / 2 \Big] \\ &\leq \exp\! \Big[T \Big(\Lambda_{\pi} \Big(2 \beta \varepsilon \overline{\psi}_{n}' \Big) + \Lambda_{\pi} \Big(-2 \beta \varepsilon \overline{\psi}_{n}' \Big) \Big) / (2 \beta) \Big] \\ &\leq \exp\! \Big[T \Big(\frac{1}{2} \varepsilon^{2} 4 \beta L + \varepsilon^{3} 8 \beta^{2} K(\varepsilon) \Big) \Big] \\ &= \exp\! \Big[T \Big(\frac{1}{2} \varepsilon^{2} L' + \varepsilon^{3} K'(\varepsilon) \Big) \Big]. \end{split}$$

Finally note that for each $\varepsilon > 0$ we have

$$egin{aligned} \mathbb{P}_{\pi}ig(\|L_T-\pi\|_b \geq tig) & \leq \exp(-Ttarepsilon)\mathbb{E}_{\pi}ig[\expig(arepsilon T\|L_T-\pi\|_big)ig] \ & \leq \expigg[-Tig(tarepsilon-rac{arepsilon^2}{2}L'-arepsilon^3K'(arepsilon)ig)+1igg]. \end{aligned}$$

Choosing $\varepsilon = t/L'$ yields (3.9), and (3.10) follows from (3.9). \square

PROOF OF LEMMA 3.4. By assumption there exists $R < \infty$ such that $P_1(x, dy) \le R\pi(dy)$, $x \in E$. Note that $\|m\|_b \le \|m\|_{\mathrm{var}}$ and since $\|L_T - L_T \circ \theta_1\|_{\mathrm{var}} \le 2/T$, where $L_T \circ \theta_1(\omega) = (1/T) \int_1^{T+1} \delta_{X_s(\omega)} ds$, we have

$$\begin{split} \mathbb{P}_x \big(\| L_T - \pi \|_b > t \big) &\leq \mathbb{P}_x \bigg(\| L_T \circ \theta_1 - \pi \|_b > \left(t - \frac{2}{T} \right) \bigg) \\ &= \int_E P_1(x, dy) \mathbb{P}_y \bigg(\| L_T - \pi \|_b > \left(t - \frac{2}{T} \right) \bigg) \\ &\leq R \mathbb{P}_\pi \bigg(\| L_T - \pi \|_b > \left(t - \frac{2}{T} \right) \bigg). \end{split}$$

From (3.10) we get

$$(3.11) \quad \limsup_{c \to \infty} \sup_{T,t} \left\{ \frac{1}{t^2} \log \sup_{x \in E} \mathbb{P}_x \big(T^{1/2} \| L_T - \pi \|_b > t \big) : c \le t \le \frac{T^{1/2}}{c} \right\} < 0. \quad \Box$$

PROOF OF PROPOSITION 3.2 FOR CLOSED A. Let $D_t \equiv \{x \in H_a: \|x\|_b > t\}$. D_t^c is compact in H_a :

$$\begin{split} \sup & \left\{ \frac{1}{t^2} \log \sup_x \mathbb{P}_x (l_T \in tA) \colon c \le t \le \frac{\sqrt{T}}{c} \right\} \\ & \le \frac{\log 2}{c^2} + \sup \left\{ \frac{1}{t^2} \log \sup_x \mathbb{P}_x (l_T \in t (A \cap D_r^c)) \colon c \le t \le \frac{\sqrt{T}}{c} \right\} \\ & \vee \sup & \left\{ \frac{r^2}{t^2} \log \sup_x \mathbb{P}_x (l_T \in D_t) \colon rc \le t \le \frac{r\sqrt{T}}{c} \right\}, \end{split}$$

for an arbitrary r > 0. Therefore,

$$\limsup_{c\to\infty} \sup_{t,T} \left\{ \frac{1}{t^2} \log \sup_{x} \mathbb{P}_x(l_T \in A) : c \le t \le \frac{\sqrt{T}}{c} \right\} \le -\Gamma(A \cap D_r^c) \wedge r^2 \varrho(b)$$

$$\le -\Gamma(A) \wedge r^2 \varrho(b).$$

Finally, letting $r \to \infty$ gives the desired result. \square

4. Proof of the theorem. Besides Assumption 1.5, we assume that all elements $\kappa \in K_F$ satisfy (2.27). As remarked before, this implies that K_F is finite. In fact, if K_F is infinite, then there exists $\kappa \in K_F$ which is an accumulation point of other elements in K_F , and this κ clearly would not satisfy (2.27). By splitting $\mathbb{E}(\exp(TF(L_T)))$ into the contribution coming from small neighborhoods near the elements in K_F , we easily see that we may assume that K_F contains just one element, $K_F = \{\kappa\}$. If we introduce

$$\tilde{F}(\mu) = F(\mu) - F(\kappa) - \langle DF(\kappa), \mu - \kappa \rangle_a$$

and the Markovian measure $\tilde{\mathbb{P}}_r \equiv \mathbb{Q}_r^{\kappa}$ on (Ω, \mathcal{F}) , we have

$$\mathbb{E}_{x} \Big(\exp \big(TF(L_{T}) \big) \Big) = \exp \big(Tb_{F} \big) h(x) \tilde{\mathbb{E}}_{x} \Bigg(\exp \big(T\tilde{F}(L_{T}) \big) \frac{1}{h(X_{T})} \Bigg),$$

where $h = h^{\kappa}$. $\tilde{\mathbb{P}}$ has the same properties as \mathbb{P} and the stationary measure is κ . Therefore, w.l.o.g., we may assume that $K_F = \{\pi\}$ and

$$F(\pi)=0, \qquad DF(\pi)=0,$$

but we have to investigate slightly more general expressions

$$\mathbb{E}_x(\exp(TF(L_T))\varphi(X_T)),$$

with $\varphi \in C(E)$.

If $c_1, c_2 > 0$, let

$$egin{aligned} I_1(c_1,T) &\equiv \mathbb{E}_xig(\expig(TF(L_T)ig)arphi(X_T); \|l_T\|_a \leq c_1ig), \ I_2(c_1,c_2,T) &\equiv \mathbb{E}_xig(\expig(TF(L_T)ig)arphi(X_T); c_1 < \|l_T\|_a \leq c_2\sqrt{T}ig), \ I_3(c_2,T) &\equiv \mathbb{E}_xig(\expig(TF(L_T)ig)arphi(X_T); c_2\sqrt{T} \leq \|l_T\|_aig), \end{aligned}$$
 where $l_T = \sqrt{T}(L_T - \pi).$

LEMMA 4.1. $\lim_{T\to\infty} I_3(c_2, T) = 0$ for all $c_2 > 0$.

PROOF. By the large deviation principle for L_T , we have

$$\limsup_{T \to \infty} \frac{1}{T} \log I_3(c_2, T) \leq \sup \bigl(F(\mu) - J(\mu) \colon \lVert \mu \rVert_a \geq c_2 \bigr) < 0. \qquad \Box$$

Lemma 4.2. We have that

$$\hat{I}_1(c_1) = \lim_{T \to \infty} I_1(c_1, T)$$

exists for all but countably many $c_1 > 0$, and

$$\lim_{c_1\to\infty} \hat{I}_1(c_1) = \left[\det \bigl(I - D^2 F(\pi) \circ S\bigr)\right]^{-1/2} \langle\,\varphi\,\rangle_\pi.$$

PROOF. On $||l_T|| \le c_1$, we have

$$TF(L_T) = \frac{1}{2} \langle D^2 F(\pi) l_T, l_T \rangle_a + o(1).$$

Therefore, by Proposition 3.1, we have for all but countably many $c_1 > 0$,

$$\lim_{T\to\infty} I_1(c_1,T) = \int_{\{x: \|x\|_{\alpha} \le c_1\}} \exp(\langle D^2 F(\pi)x, x \rangle_a) \gamma(dx) \langle \varphi \rangle_{\pi},$$

and therefore

$$\begin{split} \lim_{c_1 \to \infty} \hat{I}_1(\,c_1) &= \int \! \exp\! \big(\tfrac{1}{2} \langle D^2 F(\pi) \, x, \, x \rangle_a \big) \gamma(\,dx) \langle \, \varphi \, \rangle_\pi \\ &= \left[\det(I - D^2 F(\pi) \circ S) \right]^{-1/2} \langle \, \varphi \, \rangle_\pi. \end{split} \quad \Box$$

The most delicate part is the treatment of I_2 .

Lemma 4.3. If $c_2 > 0$ is small enough, then

$$\lim_{c_1\to\infty}\sup_T I_2(c_1,c_2,T)=0.$$

PROOF. We first claim that if $\varepsilon > 0$ is small enough, then

(4.4)
$$\Gamma(\left\{x \in H_a: \langle D^2F(\pi)x, x \rangle_a + \varepsilon ||x||_a^2 \ge 1\right\}) > 1.$$

Let $A_{\delta} = \{x \in H_a: \langle D^2 F(\pi) x, x \rangle_a \ge 1 - \delta \}$. For any r > 0,

$$\Gamma(\left\{x:\langle D^2F(\pi)x, x\rangle_a + \varepsilon \|x\|_a^2 \ge 1\right\}) \ge \Gamma(\left\{x:\|x\|_a \ge r\right\}) \wedge \Gamma(A_{r\delta}).$$

Obviously, $\Gamma(A_{r\delta})=(1-r\delta)\Gamma(A_0)$ and $\Gamma(\{x:\|x\|_a\geq r\})\to\infty$ for $r\to\infty$. It therefore suffices to prove that $\Gamma(A_0)>1$. This, however, is immediate from Lemma 4.3.

Assume now that $\varepsilon>0$ is such that (4.4) holds true. Then, if c_2 is small enough and $\|l_T\|_a\leq c_2\sqrt{T}$, we have

$$TF(L_T) \leq \frac{1}{2} \langle D^2 F(\pi) l_T, l_T \rangle_a + \frac{1}{2} \varepsilon ||l_T||_a^2$$

Therefore,

$$\begin{split} I_2(\,c_1,\,c_2\,,\,T\,) &\leq \mathbb{E}_x\Big(\exp\!\left(\tfrac{1}{2}\langle\,D^2F(\,\pi\,)\,l_T\,,\,l_T\,\rangle_a\,+\,\tfrac{1}{2}\varepsilon\,\|l_T\|_a^2\right);\,c_1 \leq \|l_T\|_a \leq c_2\sqrt{T}\,\Big) \\ &= \int_{-\infty}^\infty\!dt\,e^t\mathbb{P}_x\!\left(\tfrac{1}{2}\langle\,D^2F(\,\pi\,)\,l_T\,,\,l_T\,\rangle_a\,+\,\tfrac{1}{2}\varepsilon\,\|l_T\|_a^2 \geq t\,\right) \\ &= \int_{-\infty}^\infty\!dt\,e^t\mathbb{P}_x\!\left(l_T \in \sqrt{t}\,C_\varepsilon;c_1 \leq \|l_T\|_a \leq c_2\sqrt{T}\,\right), \end{split}$$

where $C_{\varepsilon} = \{x \colon \frac{1}{2} \langle D^2 F(\pi) x, x \rangle_a + \frac{1}{2} \varepsilon \|x\|_a^2 \ge 1\}$. Note that if $k = \sup\{\langle D^2 F(\pi) x, x \rangle_a \colon \|x\|_a = 1\}$, then $\inf\{\|x\|_a \colon x \in C_{\varepsilon}\} \ge \sqrt{2/(k+\varepsilon)}$. According to Proposition 3.2, there exists c > 0 and q > 1 such that

$$\mathbb{P}_{\mathbf{x}} \big(l_T \in \sqrt{t} \, C_{\varepsilon} \big) \leq \exp(-qt)$$

for $c \le \sqrt{t} \le \sqrt{T} \, / c$. If $c_2 < (1/c) \sqrt{2/(k+\varepsilon)}$, then

$$(\sqrt{t} C_{\varepsilon}) \cap \{x : ||x||_a \le c_2 \sqrt{T}\} = \emptyset$$

if $\sqrt{t} \ge \sqrt{T}/c$. Therefore, if d > c, we have

$$I_2(c_1, c_2, T) \le e^d \mathbb{P}_x(\|l_T\|_a \ge c_1) + \int_d^\infty e^{t(1-q)} dt.$$

Letting first $c_1 \to \infty$ and then $d \to \infty$ yields

$$\lim_{c_1 \to \infty} \sup_{T} I_2(c_1, c_2, T) = 0$$

if $c_2 > 0$ is small enough. \square

PROOF OF THE THEOREM.

$$\lim_{T\to\infty}\mathbb{E}_x\big(\exp\big(TF(L_T)\big)\varphi(X_T)\big)=\langle\,\varphi\,\rangle_\pi\big(\det\big(I-D^2F(\pi)\circ S\big)\big)^{-1/2}$$

is an immediate consequence of Lemma 4.1-4.3, in the case $F(\pi)=0$, $DF(\pi)=0$, $K_F=\{\pi\}$ and π is nondegenerate.

As remarked at the beginning of this section, this suffices for the proof. \Box

5. Examples. In this section we present a few examples. We focus on the computation of the rate function J and on the nondegeneracy condition Assumption 1.6. [more precisely (2.27)].

EXAMPLE 5.1. The finite-dimensional situation. Let E be a finite set with |E| = n and let \mathbb{P}_x be the law of the (time continuous) Markov chain on E starting at $x \in E$ with infinitesimal generator given by the matrix Q:

$$Q(x, y) \ge 0,$$
 $x \ne y,$ and $Q(x, x) = -\sum_{y \ne x} Q(x, y).$

We write $Qf(x) = \sum_{y \neq x} Q(x, y)(f(y) - f(x))$. We will assume that the chain is irreducible and denote by $\pi \in \mathcal{M}_1^+(E)$ the invariant distribution. Let $J: \mathcal{M}_1^+(E) \to [0, \infty)$ be the rate function

$$J(\kappa) = \sup \left\{ \int_{E} -\frac{Qu}{u} d\kappa : u > 0 \right\}$$

$$= \sup \left\{ \sum_{x} \sum_{y \neq x} \kappa(x) Q(x, y) \left(1 - \frac{u(y)}{u(x)} \right) : u > 0 \right\}$$

$$= \sum_{x} \sum_{y \neq x} \kappa(x) Q(x, y) - \inf \left\{ \sum_{x} \sum_{y \neq x} \kappa(x) Q(x, y) \frac{u(y)}{u(x)} : u > 0 \right\}.$$

Assume that $\kappa > 0$, then the supremum is obtained at a regular point u > 0 and a simple computation of the gradient shows that u is unique up to multiplication by a positive constant and satisfies

$$(5.2) \quad \sum_{y \neq z} \left(\kappa(y) Q(y, x) \frac{u(x)}{u(y)} - \kappa(x) Q(x, y) \frac{u(y)}{u(x)} \right) = 0 \quad \text{for all } x \in E.$$

If Q^{κ} denotes the transformed transition matrix

$$Q^{\kappa}(x, y) = Q(x, y) \frac{u(y)}{u(x)}, \qquad x \neq y,$$

then (5.2) is equivalent with the κ -invariance of Q^{κ} . $(Q^{\kappa})'$, the κ -adjoint of Q^{κ} , is of the form

$$(Q^{\kappa})'(x, y) = Q(y, x) \frac{l(y)}{l(x)}, \qquad x \neq y \quad \text{where } l(x) = \frac{\kappa(x)}{u(x)}.$$

If Q is π -symmetric we simply have $u(x) = l(x) = \sqrt{\kappa(x)/\pi(x)}$ and

$$J(\kappa) = \frac{1}{2} \sum_{x} \sum_{x \neq y} \pi(x) Q(x, y) (u(x) - u(y))^{2}.$$

Let Π_{κ} be the projection from the \mathbb{R}^n to $\mathfrak{W}_{\kappa} = \{f: \langle 1, f \rangle_{\kappa} = 0\}$ and define on \mathfrak{W}_{κ} , $G^{\kappa} = (-Q^{\kappa})^{-1}$, $(G^{\kappa})'$ the κ -adjoint of G^{κ} and $\overline{G}^{\kappa} = G^{\kappa} + (G^{\kappa})'$ the symmetrized. Next take $F \in C^2(E)$ with second derivative D^2F viewed as a symmetric matrix. The nondegeneracy condition is of the form

$$\langle h, (\overline{G}^{\kappa})^{-1}h \rangle_{\kappa} > \langle h, D^2 F h \kappa \rangle_{\kappa}, \qquad h \in \mathfrak{W}_{\kappa}, h \neq 0,$$

or equivalently for $f \neq 0$ with $\sum_{x} f(x) = 0$,

$$\sum_{x,y} f(x) (\overline{G}^{\kappa})^{-1}(x,y) \frac{1}{\kappa(y)} f(y) > \sum_{x,y} f(x) D^{2}(x,y) f(y).$$

EXAMPLE 5.3. Random walk on the torus. In general it is quite difficult to compute J explicitly. For example, let $E = \{1, 2, ..., n\}$ be a discrete one-dimensional torus and let Q be the generator of a Markov chain with jumps to the nearest neighbor only, that is,

(5.4)
$$Q(x, y) = \begin{cases} -(r(x) + l(x)), & x = y, \\ r(x), & y = x + 1, \\ l(x), & y = x - 1, \\ 0, & |x - y| \ge 2. \end{cases}$$

The chain is irreducible if and only if $\prod_x r(x) \neq 0$ or $\prod_x l(x) \neq 0$. We will assume $\prod_x r(x) \neq 0$. The invariant distribution π is the solution to the equation

$$\pi(x+1)l(x+1)+\pi(x-1)r(x-1)-\pi(x)(r(x)+l(x))=0, \quad x\in E.$$
 Also the chain is π reversible if and only if

$$\pi(x)r(x) = \pi(x+1)l(x+1), \quad x \in E$$

and this is the case if and only if

$$\prod_{x} r(x) = \prod_{x} l(x).$$

Next take $\kappa \in \mathcal{M}_1^+(E)$ with $\kappa > 0$. Then in the computation of $J(\kappa)$, (5.2) is equivalent with

$$\kappa(x+1)l(x+1)\frac{1}{\alpha(x)} - \kappa(x)r(x)\alpha(x)$$

$$= \left(\kappa(x)l(x)\frac{1}{\alpha(x-1)} - \kappa(x-1)r(x-1)\alpha(x-1)\right), \quad x \in E_1$$

where we set $\alpha(x) = (u(x+1))/(u(x))$. Thus

$$-\kappa(x+1)l(x+1)\frac{1}{\alpha(x)}+\kappa(x)r(x)\alpha(x)=2\Delta, \qquad x\in E,$$

for some constant $\Delta = \Delta(\kappa) \in \mathbb{R}$. Since r > 0, we have

$$\alpha(x) = \frac{\Delta + \sqrt{\Delta^2 + \kappa(x)\kappa(x+1)r(x)l(x+1)}}{\kappa(x)r(x)},$$

where Δ is chosen such that $\prod_{x} \alpha(x) = 1$, which is equivalent with

$$\Phi(\Delta) = \sum_{x} \log \left(\Delta + \sqrt{\Delta^2 + \kappa(x)\kappa(x+1)r(x)l(x+1)} \right) - \sum_{x} \log \kappa(x) - \sum_{x} \log r(x) = 0.$$

Note that Φ is a continuous strictly monotone increasing function with $\lim_{\Delta \to -\infty} \Phi(\Delta) = -\infty$ and $\lim_{\Delta \to \infty} \Phi(\Delta) = +\infty$. Thus the above equation has a unique solution. Also

$$\prod_{x} r(x) = \prod_{x} l(x) \text{ if and only if } \Delta = 0,$$

and this is equivalent with the π -symmetry of Q. In general we have

$$\prod_{x} r(x) < \prod_{x} l(x) \quad \text{if and only if } \Delta < 0,$$

$$\prod_{x} r(x) > \prod_{x} l(x) \quad \text{if and only if } \Delta > 0.$$

Once Δ is identified we have

$$J(\kappa) = \sum_{x} \left(\kappa(x)(r(x) + l(x)) - 2\sqrt{\Delta^2 + \kappa(x)\kappa(x+1)r(x)l(x+1)} \right)$$

$$\geq \sum_{x} \left(\sqrt{\kappa(x)r(x)} - \sqrt{\kappa(x+1)l(x+1)} \right)^2,$$

where equality holds if and only if $\Delta = 0$ which corresponds to the symmetric case. The corresponding Q^{κ} is given in the form (5.4) with

$$r^{\kappa}(x) = \frac{\Delta + \sqrt{\Delta^2 + \kappa(x)\kappa(x+1)r(x)l(x+1)}}{\kappa(x)},$$
$$l^{\kappa}(x) = \frac{-\Delta + \sqrt{\Delta^2 + \kappa(x-1)\kappa(x)r(x-1)l(x)}}{\kappa(x)}$$

In the degenerate case where $\kappa(x_0)=0$ for some $x_0\in E$, we can compute J explicitly: One can take $\alpha(x_0)=\infty,\ \alpha(x_0-1)=0,\ \Delta=0$ and get

$$J(\kappa) = \sum_{x} \left(\sqrt{\kappa(x)r(x)} - \sqrt{\kappa(x+1)l(x+1)} \right)^{2}.$$

Finally consider the explicit example of a random walk on E with jump to the right only: r>0 and l identically 0. Then $\pi(x)=c/(r(x))$, where $c=(\sum_x 1/(r(x)))^{-1}$ and \cdot

$$J(\kappa) = \sum_{x} \kappa(x) r(x) - 2n\Delta(\kappa) \quad \text{with } \Delta(\kappa) = \frac{1}{2} \Big(\prod_{x} \kappa(x) r(x) \Big)^{1/n}.$$

Also we have the following expressions for the transition matrix Q^{κ} and $G^{\kappa} = (-Q^{\kappa})^{-1}$ and $(G^{\kappa})'$ on \mathfrak{B}_{κ} :

$$r^{\kappa}(x) = \frac{2\Delta(\kappa)}{\kappa(x)}, \quad l_{\kappa}(x) = 0, \quad G^{\kappa} = \Pi_{\kappa} \cdot A_{\kappa} \cdot \Pi_{\kappa}, \quad (G^{\kappa})' = \Pi_{\kappa} \cdot A_{\kappa}' \cdot \Pi_{\kappa},$$

where

$$A_{\kappa}(x,y) = \frac{\kappa(y)}{2\Delta(\kappa)} 1_{\{x \geq y\}}, \quad A'_{\kappa}(x,y) = \frac{\kappa(y)}{2\Delta(\kappa)} 1_{\{x \leq y\}}.$$

This yields

$$\overline{G}^{\kappa} = G_{\kappa} + (G^{\kappa})' = \Pi_{\kappa} \cdot (A_{\kappa} + A_{\kappa}') \cdot \Pi_{\kappa} = \Pi_{\kappa} \cdot \tilde{A}_{\kappa} \cdot \Pi_{\kappa}$$

with

$$\tilde{A}_{\kappa}(x,y) = \frac{\kappa(x)}{2\Delta(\kappa)} 1_{\{x=y\}}.$$

The rate function J_{κ} associated with Q^{κ} is given by

$$J_{\kappa}(\mu) = 2\Delta(\kappa) \left\{ \sum_{x} \frac{\mu(x)}{\kappa(x)} - n \left(\prod_{x} \frac{\mu(x)}{\kappa(x)} \right)^{1/n} \right\}.$$

If $\kappa_{\varepsilon}(x) = (1 + \varepsilon h(x))\kappa(x)$ with $\langle h, 1 \rangle_{\kappa} = 0$, then a simple computation shows $(d/d\varepsilon)J_{\kappa}(\kappa_{\varepsilon})|_{\varepsilon=0} = 0$,

$$\begin{split} \frac{d^2}{d\varepsilon^2} J_{\kappa}(\kappa_{\varepsilon}) \mid_{\varepsilon=0} &= 2\Delta(\kappa) \left\{ \sum_{x} h^2(x) - \frac{1}{n} \left(\sum_{x} h(x) \right)^2 \right\} \\ &= \frac{\Delta(\kappa)}{n} \sum_{x,y} (h(x) - h(y))^2. \end{split}$$

If we compute the inverse of \overline{G}_{κ} on \mathfrak{B}_{κ} we see that

$$\frac{d^2}{d\varepsilon^2}J_{\kappa}(\kappa_{\varepsilon})\mid_{\varepsilon=0}=\langle h,\overline{G}_{\kappa}^{-1}h\rangle_{\kappa}$$

as it should. Take $F \in C^2(\mathbb{R}^n)$ with second derivative D^2F . Then the nondegeneracy condition is of the form

$$\langle h, D^2 F(\kappa) \kappa h \rangle_{\kappa} = \sum_{x,y} \kappa(x) h(x) D^2 F(\kappa)(x,y) \kappa(y) h(y)$$

$$< \frac{\Delta(\kappa)}{n} \sum_{x,y} (h(x) - h(y))^2,$$

for $h \in \mathfrak{W}_{\kappa}$ with $h \neq 0$.

EXAMPLE 5.5. Diffusion on a compact manifold. Another situation of interest is when L is the generator of a diffusion on a compact N-dimensional manifold M. Let X_0, X_1, \ldots, X_d be a collection of smooth vector fields and consider the operator $L: C^\infty(M) \to C^\infty(M)$ in Hörmander form

$$L = \sum_{i=1}^d X_i \circ X_i + X_0.$$

We will assume the strong Hörmander hypothesis:

$$\operatorname{Lie}(X_1,\ldots,X_d)(x)=T(M)(x), \quad x\in M,$$

that is, the Lie algebra generated by X_1, \ldots, X_d is the full tangent bundle over M at each $x \in M$. Let \mathbb{P}_x be the law of the diffusion generated by L.

Then the rate function is given by

$$\begin{split} J(\kappa) &= \sup \biggl\{ -\int_{M} \frac{Lu}{u} d\kappa \colon u \in C^{\infty}_{+}(M) \biggr\} \\ &= \sup \biggl\{ \int_{M} \biggl(L\psi - \sum_{i=1}^{d} |X_{i}\psi|^{2} \biggr) d\kappa \colon \psi \in C^{\infty}(M) \biggr\}, \end{split}$$

where $C^{\infty}_{+}(M) \equiv C^{\infty}(M) \cap C^{+}(M)$. For $u \in C^{\infty}_{+}(M)$ define

$$L^{u}(\psi) \equiv \frac{L(u \cdot \psi)}{u} - \frac{Lu}{u} \cdot \psi = L\psi + 2\sum_{i=1}^{d} X_{i}(\log u)X_{i}\psi, \qquad \psi \in C^{\infty}(M).$$

Then

$$J(\kappa) = -\int_{M} \frac{Lu^*}{u^*} d\kappa$$

with $u^* \in C^\infty_+(M)$ if and only if L^{u^*} is κ -invariant. Let $\pi \in \mathscr{M}_1^+(M)$ be a fixed smooth reference measure. For a vector field X, let $X^* = -X + g_X$, $g_X \in C^\infty(M)$, denote the π -adjoint of X, that is,

$$\langle \psi, X \phi \rangle_{\pi} = \langle X^* \psi, \phi \rangle_{\pi}, \quad \phi, \psi \in C^{\infty}(M).$$

We can rewrite L as the sum of a π -symmetric part $\tilde{L} = -\sum_{i=1}^{d} X_i^* \circ X_i$ and a drift $Y = X_0 - \sum_{i=1}^d g_{X_i} X_i$:

$$L = \tilde{L} + Y.$$

We will assume that π is the (unique) invariant distribution for the process. This is equivalent with $g_Y = 0$ or $Y^* = -Y$, and L^* , the π -adjoint of L, is of the form

$$L^* = \tilde{L} - Y$$

The process is π -symmetric if and only if Y = 0.

In the more general situation we had in Section 2, it is not clear if $J((1+\varepsilon h)\pi)$ is smooth in ε near 0, for a sufficiently rich class of functions h satisfying $\langle h \rangle_{\pi} = 0$. For this reason, we had to resort to a slightly more delicate perturbation argument. In our more concrete situation here, the above expression is in fact smooth if $h \in C^{\infty}(M)$. It may be instructive to calculate the derivatives. Let $h \in C^{\infty}(M)$ with $\langle h \rangle_{\pi} = 0$ and set

$$\pi_{\varepsilon}(dx) \equiv (1 + \varepsilon h(x))\pi(dx) \equiv f_{\varepsilon}(x)\pi(dx).$$

Take ε small enough such that $f_{\varepsilon} \in C^{\infty}_{+}(M)$. Next for a given smooth vector field X, let X_{ε}^* be the π_{ε} -adjoint of X:

$$X_{\varepsilon}^*(\psi) \equiv X^*(\psi) - X(\log f_{\varepsilon})\psi, \quad \psi \in C^{\infty}(M),$$

and set

$$\tilde{L}_{\varepsilon} \equiv -\sum_{i=1}^{d} X_{i,\varepsilon}^* \circ X_i.$$

 $ilde{L}_{arepsilon}$ is $\pi_{\!\scriptscriptstyle arepsilon}$ symmetric and we can define the corresponding Green operator

 $\tilde{G}_{\varepsilon}=(-\tilde{L}_{\varepsilon})^{-1}$ on $\mathfrak{W}_{\pi_{\varepsilon}}=\{\psi\in L^{2}(\pi_{\varepsilon}):\langle\psi\rangle_{\pi_{\varepsilon}}=0\}$. With this notation we have

$$egin{aligned} J(\pi_{arepsilon}) &= \sup \left\{ \int_{M} \left(L\psi - \sum\limits_{i=1}^{d} |X_{i}\psi|^{2}
ight) d\pi_{arepsilon} \colon \psi \in C^{\infty}(M)
ight\} \ &= \sup \left\{ \left\langle \frac{L^{st}(f_{arepsilon})}{f_{arepsilon}}, \psi
ight
angle_{\pi_{arepsilon}} - \sum\limits_{i=1}^{d} \langle |X_{i}\psi|^{2}
angle_{\pi_{arepsilon}} \colon \psi \in C^{\infty}(M)
ight\} \ &= rac{1}{4} \left\langle \frac{L^{st}(f_{arepsilon})}{f_{arepsilon}}, \left(- ilde{L}_{arepsilon}
ight)^{-1} \left(rac{L^{st}(f_{arepsilon})}{f_{arepsilon}}
ight)
ight
angle_{\pi_{arepsilon}} \ &= rac{arepsilon^{2}}{4} \left\langle L^{st}h, ilde{G}_{arepsilon} \left(rac{L^{st}h}{f_{arepsilon}}
ight)
ight
angle_{\pi_{arepsilon}} \end{aligned}$$

Note that

$$\lim_{arepsilon o 0} \left\langle L^*h \, , \, ilde{G}_arepsilon \! \left(rac{L^*h}{f_arepsilon}
ight)
ight
angle_\pi = \langle L^*h \, , \, ilde{G}(L^*h)
angle_\pi = 2 \langle h \, , \, \overline{G}^{-1}h
angle_\pi \, ,$$

where $\overline{G}=G+G^*=(-L)^{-1}+(-L^*)^{-1}$ on \mathfrak{B}_{π} . This shows that $(d/d\varepsilon)J(\pi_{\varepsilon})\mid_{\varepsilon=0}=0$ and

$$rac{d^2}{darepsilon^2}J(\pi_{arepsilon})\mid_{arepsilon \, = \, 0} = \langle h, \overline{G}^{-1}h
angle_{\pi}.$$

We describe now a possible choice for the sequences (a_n) and (ψ_n) and the Hilbert space H_a of Section 1. We take the operator $(-\tilde{L})$ as reference: let $\{\psi_n \colon n \in \mathbb{N}\}$ and $\{\lambda_n \colon n \in \mathbb{N}\} \subseteq \mathbb{R}^+ \cup \{0\}$ be the eigenfunctions and eigenvalues of $-\tilde{L}$. Denote by $\{\tilde{P}_t \colon t > 0\}$ the corresponding symmetric semigroup. Then it is well known that there exist $\nu \in (0, \infty)$ and $c \in (0, \infty)$ such that

(5.6)
$$\tilde{p}_t(x, x) \leq \frac{c}{t^{\nu/2}}, \quad t \in (0,1],$$

see [1]. In the elliptic case where $d=N, \ \nu=N$ is the dimension of the manifold. In the hypoelliptic case, $\nu>N$, is the maximal graded dimension of the operator; cf. [1].

The estimate (5.6) is equivalent to the Sobolev type inequality

$$||f||_{L^{2}(\pi)}^{2+4/\nu} \le A\tilde{\mathscr{E}}(f,f)||f||_{L^{1}(\pi)}^{4/\nu}, \qquad f \in C^{\infty}(M),$$

for some constant $A \in (0, \infty)$; where $\tilde{\mathscr{E}}(f, f) = \sum_{i=1}^{d} \langle |X_i f|^2 \rangle_{\pi}$ is the Dirichlet form associated with $(-\tilde{L})$ (cf. [8]). In particular, if $\nu > 2$, (5.6) is equivalent with the usual Sobolev inequality

$$||f||_{L^{p}(\pi)}^{2} \leq A' \tilde{\mathscr{E}}(f,f), \qquad f \in C^{\infty}(M), \langle f, 1 \rangle_{\pi} = 0,$$

for some constants A', $\delta \in (0, \infty)$ with $p = 2\nu/(\nu - 2)$. From (5.6) we have

and using Weyl's formula one gets

$$(\lambda_k)^{\nu/2} \ge c_1 k, \qquad k \to \infty,$$

for some constants $c_1 \in (0, \infty)$. Also (5.6) implies the following estimate of the supremum norm of the eigenfunctions:

$$\|\psi_k\|_{\infty}^2 \leq c_3(\lambda_k)^{\nu/2}, \qquad k \to \infty,$$

for some $c_3 \in (0, \infty)$; cf. (48), page 155 of [11]. Now take $\{a_k \colon k \in \mathbb{Z}^+\}$ of the form $a_k = \operatorname{const.}(\lambda_k)^{-\theta}$, where $\theta > 0$ is chosen such that $\sum_k a_k \|\psi_k\|_\infty^2 = 1$. In view of the above, we may take any $\theta > \nu$.

Let F be a C^2 functional on \mathcal{M} with second derivative D^2F of the form

$$D^{2}F(\pi)(\nu,\nu) = \iint_{E\times E} V_{\pi}(x,y)\nu(dx)\nu(dy),$$

where $V_{\pi} \in C(E \times E; \mathbb{R})$ is a symmetric function of the form

$$V_{\pi}(x, y) = \int_{\Sigma} v(x, \tau) v(y, \tau) \sigma(d\tau).$$

where σ is a finite signed measure on a compact space Σ , and $v \in C_b(M \times \Sigma; \mathbb{R})$; cf. [2].

Now differentiability in H_a requires that

$$|D^2F(\pi)(\nu, \nu)| \leq K||\nu||_a^2$$

for some $K \in (0, \infty)$. Expressing ν in terms of the basis $\{l_n : n \in \mathbb{Z}^+\}$ and using Schwarz's inequality we see that

$$K \leq \int_{\Sigma} \sum_{n \in \mathbb{Z}^+} \frac{1}{a_n} \langle v(\cdot, \tau), \phi_n \rangle_{\pi}^2 |\sigma| (d\tau) = \int_{\Sigma} \langle (-\tilde{L})^{\theta} v(\cdot, \tau), v(\cdot, \tau) \rangle_{\pi}^2 |\sigma| (d\tau).$$

In particular the r.h.s. is finite if $v(\cdot, \tau) \in W_2^{(r)}(\mathbf{X}; \pi)$ for $r = [\theta/2] + 1$, where $W_2^{(r)}(\mathbf{X}; \pi)$ is the closure of $C^{\infty}(M)$ with respect to the Sobolev norm

$$\|g\|_{r,2} \equiv \sum_{0 \leq |\alpha| \leq r} \|X_{\alpha}g\|_{L^2(\pi)}$$

where, for $\alpha=(\alpha_1,\ldots,\alpha_k)$, $X_{\alpha}g=X_{\alpha_1}\circ\cdots\circ X_{\alpha_k}g$ (cf. [3]). The situation is especially simple when the function V is diagonizable with respect to $\{\psi_n\colon n\in\mathbb{Z}^+\}$, that is, if

$$V(x, y) = \sum_{n \in \mathbb{Z}^+} \beta_n \psi_n(x) \psi_n(y)$$

for some $\{\beta_n\} \subseteq \mathbb{R}$ with $\sum_n |\beta_n| ||\psi_n||_{\infty}^2 < \infty$. Then $K < \infty$ if

$$\sum_{n\in\mathbb{Z}^+}|\beta_n|\lambda_n^{\theta}<\infty.$$

Things simplify considerably if L and L^* commute or equivalently if Y and \tilde{L} commute. Then L is a normal operator, and we will denote by $\{f_n:n\in\mathbb{N}\}$ and $\{\mu_n:n\in\mathbb{N}\}\subseteq\mathbb{C}$ the eigenfunctions and eigenvalues of -L. Due to the normality of -L, we know that $\psi_{2n}=\Re(f_n)/\|\Re(f_n)\|_{L^2(\kappa)}$ and $\psi_{2n+1}=$

 $\mathfrak{F}(f_n)/\|\mathfrak{F}(f_n)\|_{L^2(x)}$ are (real) eigenfunctions of $-\tilde{L}$ with positive eigenvalues $\lambda_{2n}=\lambda_{2n+1}=\mathfrak{R}(\mu_n)$. A direct computation shows

$$egin{aligned} \langle h\,,\,\overline{G}h
angle_\pi &= \sum\limits_{n\,\in\,\mathbb{Z}^+} \left(rac{\mu_n\,+\,\overline{\mu}_n}{\mu_n\,\overline{\mu}_n}
ight)\!ig(\langle h\,,\,\psi_{2\,n}
angle_\pi^2 + \langle h\,,\,\psi_{2\,n\,+\,1}
angle_\pi^2ig) \ &= \sum\limits_{n\,\in\,\mathbb{Z}^+} rac{2\,\lambda_n}{\lambda_n^2 +
ho_n^2} \langle h\,,\,\psi_n
angle_\pi^2, \end{aligned}$$

where $\rho_{2n} = \rho_{2n+1} = \mathfrak{F}(\mu_n)$. Thus

$$egin{aligned} \langle h\,,\,\overline{G}^{-1}h
angle_\pi &= rac{1}{2}\sum_{n\,\in\,\mathbb{Z}^+}\left(\lambda_n\,+\,rac{
ho_n^2}{\lambda_n}
ight)\!\langle\,h\,,\,\psi_n
angle_\pi^2 \ &= rac{1}{2}\langle\,h\,,\,(- ilde{L})h
angle_\pi\,+\,rac{1}{2}\langle\,h\,,\,(-\overline{Q})h
angle_\pi\,. \end{aligned}$$

Here $-\tilde{Q}$ is the operator with eigenfunctions $\{\psi_n\colon n\in\mathbb{Z}^+\}$ and eigenvalues $\{\rho_n^2/\lambda_n\colon n\in\mathbb{Z}^+\}$. For a diagonizable functional F of the nondegeneracy condition reads

$$eta_n < rac{\lambda_n^2 +
ho_n^2}{2\,\lambda_n}, \qquad n \in \mathbb{Z}^+,$$

and we get the explicit expression

$$d_{F,\pi} = \det ig(I - D^2 F(\kappa) \circ Sig) = \prod_{n \in \mathbb{Z}^+} igg(1 - rac{2 \, \lambda_n \, eta_n}{\lambda_n^2 +
ho_n^2}igg).$$

Consider the concrete example where $M=T_N=(-\pi,\ \pi]^N$ is the N-dimensional torus:

$$X_i = \frac{\partial}{\partial x_i}$$
, $i = 1, ..., N$ and $X_0 = Y = \sum_{i=1}^N b_i X_i = b \cdot \nabla$,

for some constant vector $b=(b_1,\ldots,b_N)\in\mathbb{R}^N\setminus\{0\}$. In this case we simply have $\pi(dx)=(2\pi)^{-N}\,dx$, the normalized Lebesgue measure on $T_N,\ X_i^*=-X_i,\ \overline{L}=\Delta$, the Laplacian operator, $L=\Delta+b\cdot\nabla$ and $L^*=\Delta-b\cdot\nabla$. L and L^* commute and

$$\{f_k(x) = \exp(ix \cdot k) : k = (k_1, \dots, k_N) \in \mathbb{N}^N\}, \{u_k = (|k|^2 - ik \cdot b) : k \in \mathbb{N}^N\}$$

are the eigenfunctions and eigenvalues of -L. The corresponding eigenvalues and eigenfunctions of $-\tilde{L}=-\Delta$ are $\{|k|^2:k\in\mathbb{N}^N\}$ and $\{\cos(k\cdot),\sin(k\cdot):k\in\mathbb{N}^N\}$. Note that the eigenfunctions are uniformly bounded; thus $\theta>N/2$ would be sufficient. Further we get

$$\langle h\,,\, \overline{G}h
angle_\pi = 2\sum_{k
eq 0}rac{|k|^2}{|k|^4+ig(b\cdot kig)^2}ig(\langle h\,,\cos(k\,\cdot)
angle_\pi^2+\langle h\,,\sin(k\,\cdot)
angle_\pi^2ig)$$

and

$$egin{aligned} \langle h, \overline{G}^{-1}h
angle_\pi &= rac{1}{2} \sum_{k
eq 0} \left(|k|^2 + rac{(k \cdot b)^2}{|k|^2}
ight) \! \left(\langle h, \cos(k \cdot)
angle_\pi^2 + \langle h, \sin(k \cdot)
angle_\pi^2
ight) \ &= rac{1}{2} \langle (-\Delta)h, h
angle_\pi + rac{1}{2} \langle h, (- ilde{Q})h
angle_\pi, \end{aligned}$$

where $\tilde{Q}h = b \cdot \nabla (b \cdot \nabla \tilde{G}h)$. Note that this is a nonlocal operator. Next take the quadratic functional

$$F(\nu) = -\beta \int_{T_N} \int_{T_N} ||\Xi(x) - \Xi(y)||^2 \nu(dx) \nu(dy),$$

where $\beta > 0$ and, in polar coordinates, $\Xi_i(x) = (\cos(x_i), \sin(x_i)), i = 1, ..., N$. Thus F is diagonizable,

$$F(\nu) = -\beta N + \beta \sum_{i=1}^{N} \left\{ \left(\int_{T_N} \cos(x_i) \nu(dx) \right)^2 + \left(\int_{T_N} \sin(x_i) \nu(dx) \right)^2 \right\}$$

with

$$V_{\pi}(x, y) = 2\beta \sum_{i=1}^{N} {\cos(x_i)\cos(y_i) + \sin(x_i)\sin(y_i)}.$$

For sufficiently small $\beta > 0$, π is the unique solution of the variational problem. In view of the above we get

$$d_{F,\pi} = \detig(I - D^2 F(\kappa) \circ Sig) = \prod_{i=1}^N igg(1 - rac{4eta}{1 + b_i^2}igg)^2.$$

EXAMPLE 5.7. Diffusion on the circle. Let $E=\mathbf{S}^1$ be the unit circle and dx be the Lebesgue measure on \mathbf{S}^1 . In this special case we can compute J explicitly. Let $a,\ b\in C^\infty(\mathbf{S}^1)$ with a>0 and $\int_{\mathbf{S}^1}a^{-1}(y)\,dy=1$. Define the vector field $X=a(\partial/\partial x)$ and the measure $\lambda\in\mathbf{S}^1$, $\lambda(dx)=a^{-1}(x)\,dx$. Consider the diffusion operator L on $C^\infty(\mathbf{S}^1)$:

$$Lf = (X \circ X + bX)f = a^2f'' + a(a' + b)f'.$$

Next let $\{\mathbb{P}_x : x \in \mathbf{S}^1\}$ be the Markovian family associated with the diffusion process generated by L. The density of the invariant measure $\rho = d\pi/d\lambda \in C^{\infty}(\mathbf{S}^1)$ is the solution of the divergence equation

$$(X\circ X)(\rho)-X(\rho b)=0,$$

that is,

$$X(\rho) = \rho b - c_{\pi}$$
 with $c_{\pi} = \langle b \rangle_{\lambda} \langle \rho^{-1} \rangle_{\lambda}^{-1}$.

This gives the following explicit solution: set $B(x) = \int_0^x b(y)a^{-1}(y) dy$. Then

$$\rho(x) = \rho(0)e^{B(x)}\left\{1 - \frac{1 - e^{-\langle b \rangle \lambda}}{\langle e^{-B} \rangle_{\lambda}} \int_{0}^{x} e^{-B(y)} a^{-1}(y) dy\right\},\,$$

where $\rho(0)$ is chosen such that $\langle \rho \rangle_{\lambda} = 1$.

Let X^* be the π -adjoint of X. Then $X^* = -X - X(\log \rho)$. If L^* denote the π -adjoint of L and $\tilde{L} = (L + L^*)/2$ denote the symmetrized, then we have

$$L = -X^* \circ X + c_{\pi} \rho^{-1} X, \qquad L^* = -X^* \circ X - c_{\pi} \rho^{-1} X, \qquad \tilde{L} = -X^* \circ X,$$

that is, referring to the previous example, $Y = c_{\pi} \rho^{-1} X$ and the process is π -symmetric if and only if $c_{\pi} = \langle b \rangle_{\lambda} = 0$.

We get the following expression for the rate function $J: \mathcal{M}_1^+(M) \to [0, \infty]$: if $d\kappa/d\pi = f$ with $f^{1/2} \in H^1(\mathbf{S}^1)$ (the usual Sobolev space), then

$$J(\kappa) = \langle |X(f^{1/2})|^2 \rangle_{\pi} + \frac{\langle b \rangle_{\lambda}^2}{4} \{ \langle f, \rho^{-1} \rangle_{\lambda} \langle \rho^{-1} \rangle_{\lambda}^{-2} \langle f^{-1}, \rho^{-1} \rangle_{\lambda}^{-1} \};$$

otherwise $J(\kappa)=\infty$. This follows from [3] since $J(\kappa)=\langle |X(f^{1/2})|^2\rangle_\pi+I^Y(\kappa)$ with

$$\begin{split} I^{Y}(\kappa) &= \sup \bigl\{ \langle Y\psi \rangle_{\kappa} - \langle |X\psi|^{2} \rangle_{\kappa} \colon \psi \in C^{\infty}(\mathbf{S}^{1}) \bigr\} \\ &= \sup \bigl\{ c_{\pi} \langle \ \rho^{-1} \ , \ X\psi \rangle_{\kappa} - \langle |X\psi|^{2} \rangle_{\kappa} \colon \psi \in C^{\infty}(\mathbf{S}^{1}) \bigr\} \\ &= \langle |X\psi^{*}|^{2} \rangle_{\kappa} = \frac{c_{\pi}^{2}}{4} \bigl\{ \langle \ \rho^{-2} \rangle_{\kappa} - \langle \ \rho^{-1} \rangle_{\lambda}^{2} \langle \ f^{-1} \ , \ \rho^{-1} \rangle_{\lambda}^{-1} \bigr\} \\ &= \frac{\langle b \rangle_{\lambda}^{2}}{4} \bigl\{ \langle \ f \ , \ \rho^{-1} \rangle_{\lambda} \langle \ \rho^{-1} \rangle_{\lambda}^{-2} - \langle \ f^{-1} \ , \ \rho^{-1} \rangle_{\lambda} \bigr\}, \end{split}$$

with

$$X\psi^* = \frac{c_{\pi}}{2}\rho^{-1}\left(1 - \frac{\langle \rho^{-1}\rangle_{\lambda}}{\langle f^{-1}, \rho^{-1}\rangle_{\lambda}}f^{-1}\right).$$

Next suppose that $f = d\kappa/d\lambda \in C^{\infty}(S^1)$ with f > 0. Then the corresponding L_{κ} is of the form

$$L_{\kappa} = -X' \circ X + c_{\kappa} f^{-1} X, \qquad L'_{\kappa} = -X' \circ X - c_{\kappa} f^{-1} X \quad \text{with } c_{\kappa} = \langle b \rangle_{\lambda} \langle f^{-1} \rangle_{\lambda}^{-1},$$

where $X' = -X - X(\log f)$ and L_{κ} denote the κ -adjoint of X and L_{κ} . Let J_{κ} be the rate function associated with L_{κ} . Then we have

$$J_{\kappa}(\mu) = \langle |X(g^{1/2})|^2 \rangle_{\kappa} + \frac{\langle b \rangle_{\lambda}^2}{4} \{ \langle g, f^{-1} \rangle_{\lambda} \langle f^{-1} \rangle_{\lambda}^{-2} - \langle g^{-1}, f^{-1} \rangle_{\lambda}^{-1} \}$$

if $d\mu/d\kappa = g$ with $g^{1/2} \in H^1(\mathbf{S}^1)$; $J_{\kappa}(\mu) = \infty$ otherwise. Next let $d\kappa_{\varepsilon} = (1 + \varepsilon h)d\kappa = g_{\varepsilon}d\kappa$, with $\langle h \rangle_{\kappa} = 0$ and $g_{\varepsilon} = (1 + \varepsilon h)$. Then

$$\begin{split} \frac{d}{d\varepsilon}J_{\kappa}(\kappa_{\varepsilon}) &= \langle X\big(g_{\varepsilon}^{1/2}\big),\, X\big(g_{\varepsilon}^{-1/2}h\big)\rangle_{k} \\ &+ \frac{\langle b\rangle_{\lambda}^{2}}{4}\big\{\langle h,f^{-1}\rangle_{\lambda}\langle f^{-1}\rangle_{\lambda}^{-2} - \langle g_{\varepsilon}^{-1},f^{-1}\rangle_{\lambda}^{-2}\langle g_{\varepsilon}^{-2}h,f^{-1}\rangle_{\lambda}\big\} \end{split}$$

and

$$\begin{split} \frac{d^2}{d\varepsilon^2} J_{\kappa}(\kappa_{\varepsilon}) &= \frac{1}{2} \langle X \big(g_{\varepsilon}^{-1/2} h \big), \, X \big(g_{\varepsilon}^{-1/2} h \big) \rangle_{\kappa} - \frac{1}{2} \langle X \big(g_{\varepsilon}^{1/2} \big), \, X \big(g_{\varepsilon}^{-3/2} h^2 \big) \rangle_{\kappa} \\ &+ \frac{\langle b \rangle_{\lambda}^2}{2} \big\{ \langle g_{\varepsilon}^{-1}, \, f^{-1} \rangle_{\lambda}^{-2} \langle g_{\varepsilon}^{-3} h^2, \, f^{-1} \rangle_{\lambda} \\ &- \langle g_{\varepsilon}^{-1}, \, f^{-1} \rangle_{\lambda}^{-3} \langle g_{\varepsilon}^{-2} h, \, f^{-1} \rangle_{\lambda}^2 \big\}. \end{split}$$

Thus we get at $\varepsilon = 0$, $(d/d\varepsilon)J_{\nu}(\kappa_{\varepsilon})|_{\varepsilon=0} = 0$ and

$$\begin{split} \frac{d^2}{d\varepsilon^2} J(\kappa_{\varepsilon}) \mid_{\varepsilon=0} &= \frac{1}{2} \langle |X(h)|^2 \rangle_{\kappa} \\ &+ \frac{\langle b \rangle_{\lambda}^2}{2} \big\{ \langle f^{-1} \rangle_{\lambda}^{-2} \langle h^2, f^{-1} \rangle_{\lambda} - \langle f^{-1} \rangle_{\lambda}^{-3} \langle h, f^{-1} \rangle_{\lambda}^2 \big\} \\ &= \frac{1}{2} \langle |X(h)|^2 \rangle_{\kappa} \\ &+ \frac{\langle b \rangle_{\lambda}^2}{4} \langle f^{-1} \rangle_{\lambda}^{-1} \int_{\mathbf{S}^1} \int_{\mathbf{S}^1} (h(x) - h(y))^2 \kappa^{-1} (dx) \kappa^{-1} (dy) \\ &\equiv \langle h, (\overline{G}^{\kappa})^{-1} h \rangle_{\kappa}, \end{split}$$

with $\kappa^{-1}(dx) = \langle f^{-1} \rangle_{\lambda}^{-1} f^{-1}(x) \lambda(dx)$ and

$$\overline{G}_{\kappa}^{-1} = \frac{1}{2} (-\tilde{L}_{\kappa} - Q_{\kappa}).$$

Here L_{κ} is the generator of the symmetrized diffusion $\tilde{L}_{\kappa}=(-X'\circ X)$ and Q_{κ} is the generator of the jump process

$$Q_{\kappa}h(x) = \langle b \rangle_{\lambda}^{2} \langle f^{-1} \rangle_{\lambda}^{-2} f^{-2}(x) \int_{\Omega} (h(y) - h(x)) \kappa^{-1}(dy).$$

Note the similarity with (5.2). Also it is interesting to see that although both L_{κ} and $(L_{\kappa})'$ are local operators, $(\overline{G}^{\kappa})^{-1}$ is nonlocal.

Take a $C^2(S^1)$ functional F with second derivative D^2F . Then the nondegeneracy condition is of the form

(5.8)
$$D^{2}F(\kappa)[h\kappa, h\kappa] < \frac{1}{2}\langle |X(h)|^{2}\rangle_{\kappa} + \frac{\langle b\rangle_{\lambda}^{2}}{4}\langle f^{-1}\rangle_{\lambda}^{-1} \times \int_{\mathbf{S}^{1}}\int_{\mathbf{S}^{1}}(h(x) - h(y))^{2}\kappa^{-1}(dx)\kappa^{-1}(dy),$$

for $h \in C^{\infty}(\mathbf{S}^1)$ with $h \not\equiv 0$.

Acknowledgment. We would like to thank the referee for a number of suggestions which helped to improve the manuscript in many ways.

REFERENCES

 BEN AROUS, G. (1989). Développement asymptotique du noyan de chaleur hypoelliptique sur la diagonale. Ann. Inst. Fourier 39 73-99.

- [2] BEN AROUS, G. and BRUNAND, M. (1990). Méthode de Laplace: étude variationelle des fluctuations de diffusion de type champs moyen. Stochastics 31 79-144.
- [3] BEN AROUS, G. and DEUSCHEL, J. D. (1994). The rate function of hypoelliptic diffusions. Comm. Pure Appl. Math. 47 843-860.
- [4] BOLTHAUSEN, E. (1986). Laplace approximations for sums of independent random vectors. Probab. Theory Related Fields 72 305-318.
- [5] BOLTHAUSEN, E. (1987). Laplace approximations for sums of independent random vectors. Part II. Probab. Theory Related Fields 76 167-205.
- [6] BOLTHAUSEN E., DEUSCHEL, J. D. and SCHMOCK, U. (1993). Convergence of path measures arising from a mean field and polaron type interaction. *Probab. Theory Related Fields* 95 283-310.
- [7] BRYDGES, D. C. and MAYA, I. M. (1991). An application of Berezin integration to large deviations. J. Theoret. Probab. 4 371-390.
- [8] CARLEN, E., KUSUOKA, S. and STROOCK, D. (1987). Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23 (Suppl.) 245-287.
- [9] DEUSCHEL, J. D. and STROOCK, D. (1989). Large Deviations. Academic Press, New York.
- [10] KUSUOKA, S. and TAMURA, Y. (1991). Precise estimates for large deviations of Donsker-Varadhan type. J. Fac. Sci. Univ. Tokyo 38 533-565.
- [11] CHAVEL, I. (1984). Eigenvalue in Riemannian Geometry. Academic Press, New York.

E. BOLTHAUSEN
INSTITUT FÜR ANGEWANDTE MATHEMATIK
DER UNIVERSITÄT ZÜRICH
WINTERTHURERSTRASSE 190
CH-8057 ZÜRICH
SWITZERLAND

J.-D. DEUSCHEL
FACHBEREICH MATHEMATIK
TECHNICHE UNIVERSITÄT BERLIN
STRASSE DES 17. JUNI 126
D-10623 BERLIN
GERMANY

Y. TAMURA
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND TECHNOLOGY
KEIO UNIVERSITY
3-14-1, HIYOSHI, KOHOKUKU, YOKOHAMA 223
JAPAN