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OPTIMAL SWITCHING BETWEEN TWO RANDOM WALKS

BY R. CAIROLI AND ROBERT C. DALANG!

Ecole Polytechnique Fédérale and Tufts University

This paper is motivated by remarkable results of Mandelbaum, Shepp
and Vanderbei concerning an optimal switching problem for two Brownian
motions. In this paper, the discrete form of this problem, in which the
Brownian motions are replaced by random walks, is studied and solved
without any restriction on the boundary data. The method proposed here
involves uncovering the structure of the solution using combinatorial and
geometric arguments, and then providing a characterization for the two
types of possible solutions, as well as explicit formulas for computing the
solution. The extension of these methods and results to the continuous time
problem will be considered in a subsequent paper.

1. Introduction. This paper arose from an attempt at understanding
some remarkable recent work of Mandelbaum [8] and Mandelbaum, Shepp
and Vanderbei [9]. These authors studied and solved a particular optimal
switching problem under certain regularity assumptions on the boundary
data. The problem is an interesting and highly nontrivial generalization of
the classical optimal stopping problem for a single Brownian motion on an
interval [2] and can be described as follows.

Consider two independent Brownian motions X' = (X%, ¢! € R;) and
X% = (X%, t* € Ry) killed at the endpoints of the intervals [0, N1] and
[0, N2], respectively, where N! and N2 are positive numbers. Imagine that an
observer can control the evolution of X! and X2 separately, that is, can leave ¢!
fixed and let ¢2 increase or leave 2 fixed and let ¢! increase. This determines
a process ((X}, X%),(t!,¢2) € R?) which evolves in D = [0, N'] x [0, N2].
Assume that the observer can choose the switching strategy and the time at
which the evolution ends, knowing that at that time he will receive a reward
which only depends on the state of the process. This reward is represented by
a nonnegative real-valued payoff function f defined on the boundary D, and
the objective is to maximize the expected reward.

This problem fits into the well-developed theory of stochastic control [3],
[5] and [7] which tells us that the solution goes through the determination
of the value function. The basic result of the general theory is that the value
function satisfies the so-called Hamilton—Jacobi-Bellman equation, which in
this case is a second order nonlinear partial differential equation. Since the
smoothness of v is not known in advance, it is already nontrivial to give a
meaning to the equation and to decide in which space one should prove ex-
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istence and uniqueness, but this is now handled by the recently developed
theory of viscosity solutions. Analytic aspects of this particular problem were
studied by Evans and Friedman [4].

Of course, writing the equation and proving existence of the value function
does not give much insight into the nature of the solution or of the optimal
control. In this particular problem, which has a very special form, the objec-
tive is to determine the optimal solution explicitly. The solution in [9] relied on
the so-called principle of smooth fit, which suggests that the expected reward
can be found by solving certain differential equations. The authors carried
out this resolution, which involves a significant amount of calculations and
a discussion of several cases. It turns out that the behavior of the optimally
controlled process is particularly intricate and involves a complicated switch-
ing phenomenon along certain curves, which can be described by a Brownian
local time.

While the direct calculations in [9] do lead to the solution (under regularity
assumptions), they do not explain why the solution has the remarkable struc-
ture obtained, and while this problem presents many interesting technical dif-
ficulties related to the fact that it is a continuous-time problem, the essential
features are already captured by its discrete analogue, in which the Brown-
ian motions are replaced by random walks. This discrete problem (which is in
fact equivalent to the continuous problem with piecewise linear data) has the
advantage that its statement is completely elementary. On the other hand, for
discrete control problems, the only available tool is to write the dynamic pro-
gramming equation, which is typically equivalent to a problem of optimization
under constraints that can only be solved numerically. From this point of view,
the discrete problem might be considered harder than the original problem,
in which tools from differential equations such as the principle of smooth fit
are available. »

In this paper, we solve the discrete form of the problem above, with the
Brownian motions replaced by random walks. Since the state space is now
finite and no differential equations can be written, we rely on significantly
different methods from those of [9]. We characterize the value function as
the biconcave envelope of the payoff function (see Proposition 2.1), and then
use a purely combinatorial and elementary (though intricate) argument to
determine the structure of the solution essentially without computations and,
in particular, without first computing the value function. The solutions can
be of two types, according to whether or not there is a central subrectangle
of D where all directions of motion are optimal (see Theorem 3.5). In this
indifference region, the biconcave envelope of the payoff function is actually
bilinear; that is, its graph is a hyperbolic paraboloid.

Somewhat surprisingly, it turns out that this qualitative study can be com-
pleted by an explicit determination of the optimal switching strategy in terms
of the payoff function. Given the structural results above, the main problem re-
duces to determining certain switching curves. This is achieved in Theorem 4.2
by using a geometric argument. Conditions are then provided on the bound-
ary data for the solution to be either of the two possible types (Theorem 4.4)
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and provide an explicit solution valid in essentially all cases (Theorems 4.6
and 4.7).

A geometric interpretation of the solution can be given as follows. In each
square of an integer grid in D, the graph of the value function can be thought of
as a hyperbolic paraboloid. These hyperbolic paraboloids are pieced together in
such a way that the value function is biconcave. This is similar to constructing
a concave function by piecing together straight line segments. In the original
continuous-time problem, the integer grid must conceptually be replaced by
an infinitesimal grid.

This continuous-time extension will be considered in a future paper. We
also anticipate that the methods developed here will be useful in solving the
three-dimensional version of this problem, which to date has only been solved
for very special forms of the payoff function [11]. It should also be mentioned
that it is an open problem to solve the optimal switching problem when the
Brownian motions evolve in any domain other than a rectangle (with boundary
segments parallel to the directions of motion), such as a triangle.

The main results of this paper were announced in [1].

2. Stating the problem. Fix two integers N1, N2 > 2. For m < n, the
interval {m,...,n} of N will be denoted [m,n], and when m <n —2, ]m,n[
denotes the interval [m + 1,n — 1].

Let (Q,,P) be a complete probability space. For i = 1,2, let X! =
(X, t' € N) be a simple random walk on [0, N'] with absorption at the
endpoints; in particular, given X!, = m, where 0 < m < N’, X!, | equals
m + 1 or m — 1 with probability 1/2 each. We assume that X! and X2 are
independent.

Imagine that an observer can control the evolution of X! and X? separately,
that is, can leave ¢! fixed and let ¢2 increase or leave 2 fixed and let ¢! increase.
This determines a process X = (X}, X%), (#',£%) € N2) which evolves in D =
[0, N1] x [0, N2] that we term a switched process. As in the continuous-time
problem described in the Introduction, we assume that the observer can choose
the switching strategy and the time at which the evolution ends, knowing
that at that time he will receive a reward which only depends on the state of
the process. This reward is represented by a nonnegative real-valued payoff
function f defined on D which vanishes in the interior D° =10, N[ x 10, N%[
of D, and the objective is to maximize the expected reward.

Notice that once the switched process (X ;) reaches one of the four boundary
segments of D, it cannot leave this segment. So from that time on, the problem
reduces to the classical optimal stopping problem for a single random walk
absorbed at the endpoints of an interval. The solution to this classical problem
[2] involves computing the concave envelope of the payoff function (i.e., the
smallest concave function larger than the payoff function) and stopping the
random walk the first time the random walk visits a state where the concave
envelope is equal to the payoff function. It is therefore convenient to eliminate
this last phase of the evolution, which can be achieved simply by assuming
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that f is concave on each boundary segment of D, that is,
(1) f(-,0), f(N1,.), f(-,N?) and £(0,-) are concave functions.

Under this assumption, the evolution of the switched process terminates at
the time of the first visit of X to D = D\ D°, and therefore the problem is
to determine a switching strategy that maximizes the expected reward.

To formulate this problem precisely, let ! = o(X’,, 0 < s < t),i =1,2.
For x = (x1,x2), the conditional distribution of X given X (o,0) = x will be
denoted P, with corresponding expectation operator E,. For ¢ = (¢!,#2) € N2,
we set 7, = ;1 v F2. The family (7, ¢ € N?) is then a filtration indexed by
N; (cf.2[10], Section 2), that is, F is complete and Fy 2 C Fu e if s* < ¢! and
§° < tA.

For t = (¢1,1%) e N?, let |t| = ¢! +£2. A predictable increasing path (p.i.p.) (or
switching strategy) is a family (Z,, n € N) of random variables with values
in N? such that Z, = 0, Zi < ZfH_l fori=1,2,|Z,,1— Z,] =1 and, for all s
and t,{Z, =s, Z,.1 =t} € &, for all n € N. Observe that |Z,| = n and that,
for i = 1,2, Z represents the number of times that we have let X evolve up
to time n. The switched process is now the process X% = (Xz,, n € N), and
we often write XZ instead of X z,. This process evolves in the rectangle D.

Given a p.i.p. Z, we set

Z =inf{n eN; Xf € dD}.

Assume that a nonnegative real-valued function f defined on 4D is given.
As mentioned above, there is no loss of generality in assuming that the restric-
tion of f to each segment of dD is concave, i = 1,...,4. The optimal switching
problem is now to find a p.i.p. Z* such that

E.(f(X%.)) = g(x), where g(x) = Sup E.(f(X%))

and the supremum is over all p.i.p.s Z. As will become apparent, the key to
solving this problem is understanding the structure of the function g. For this,
we need some definitions.

A real-valued function % defined on D is v-concave (resp. h-concave) if
h(x1,.) [resp. h(-,x?)] is concave for all x! € [0, N1] (resp. for all x2 € [0, N2]).
Recall that a real-valued function ¢ defined on an interval [m,n] of N is con-
cave if and only if, for each & € Jm,n[,

(2) 1o(k—1)+ (k+1) < ¢(k).

A v-linear or h-linear function is defined by replacing “concave” by “linear”
above and the inequalities by equalities in (2) (“linear” as defined here is
sometimes termed “affine” in the literature). A real-valued function % defined
on D is biconcave if it is both v-concave and h-concave. Such a function is
bilinear if it is both v-linear and A-linear.

We say that h: D — R is a biconcave majorant of f if h is biconcave in D
and A(x) > f(x) for all x € 9D. When the set of biconcave majorants of f has
a smallest element, we term this element the biconcave envelope of f.
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PROPOSITION 2.1. (a) The function g is the biconcave envelope of f.
(b) Let

&1={xe D% jg(x'— 1,2 + Tg(x* + 1,2%) = g(x', x%)},
o ={xe D% Lg(x!,x® — 1)+ 1g(x!, x* +1) = g(a', x?)}.

Then &1 U & = D°, and an optimal switching strategy is to leave t? fixed
and let X' evolve if (X}, X%) € &1 and to leave t! fixed and let X? evolve if

(X;NX?z) € &.

ProOOF. This proposition is a special case of a theorem of Mandelbaum and
Vanderbei. According to [10], Theorem 3, g is the smallest multiexcessive ma-
jorant of the function f defined on D which coincides with f on D and which
vanishes in D°. In the terminology of [10] adapted to the present context, a
function A: D — R is multiexcessive if

h(x',2%) = h(x! - 1,2%) + jh(x' + 1,2%)
and
h(x', %) > Lh(x!, 2% — 1) + Lh(x, 2% + 1).

Therefore statement (a) follows from comparing the definitions.
Statement (b) is equivalent to the description of the optimal strategy pro-
vided in [10], Section 3.1. O

The main objective of this paper is now to describe the sets &; and &%
explicitly. Their structure is described in the next section, and in Section 4.3
we will show how these sets are determined by the payoff function f.

3. The structure of the solution. We are going to determine the struc-
ture of the solution to the optimal switching problem without first evaluating
the biconcave envelope g. For this, it is necessary to introduce some definitions
and to make a few crucial observations.

3.1. Propagation of linearity. Given two points a = (al,a?) and b = (b1, b2)
of D such that a! < b! and a? < b2, the rectangle [a!,b'] x [a2,b%] will also
be denoted [a,b]. If a® = b? (resp. al = bl), this rectangle is degenerate and
is a horizontal (resp. vertical) segment. The notions of boundary d[a,b] and
interior [a,b]° are defined in the same way as for the rectangle D itself.

A subset F of D is h-convex (resp. v-convex) if it contains all horizontal (resp.
vertical) segments [x, y] whose extremities x and y belong to F; a subset is
biconvex if it is both h-convex and v-convex.

A real-valued function f defined on D is A-concave on an h-convex subset F'
of D if the function f(-,x2) is concave on [x!, y1] for each horizontal segment
[x!, 1] x {2} C F. One defines similarly the properties “f is h-linear on F”
and “f is v-concave or v-linear on a v-convex subset F of D.” The function
[ is bilinear on a biconvex subset F of E if it is both A-linear and v-linear
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on F. Moreover, we will say that f is strictly h-concave at a point (x1, x2) e
10, N[ x[0, N2] if

Gt =L, + Li(xt + 1,42) < f(x!, 52)
and strictly v-concave at a point (x!,x?) € [0, N1]x 10, N2[ if
Tf(xt, 22— 1)+ LAt %% 4+ 1) < f(x!, x2).
The following proposition establishes a property of “propagation of linearity

and of strict concavity” that will be the key to the structure of the solution to
the optimal switching problem.

PROPOSITION 3.1. Let [a,b] C D be a rectangle with nonempty interior.

(a) If g is linear on the horizontal (resp. vertical) boundary segments of
[a,b], then g is h-linear (resp. v-linear) in [a, b].

(b) If in addition, g is strictly v-concave (resp. h-concave) at some point
(a',x%) or (b',x%) for some x% € la2,b?[ [resp. (x',a?) or (x1,b%) for some
x! €Jal,bl[], then g is strictly v-concave (resp. h-concave) at (x1, x2) for all
xt € Jal, bl [resp. for all x2  Ja2, b2[].

PROOF. (a) We only consider the case where g is linear on the horizontal
boundary segments of [a, b], as the other case is similar. Let &1 be the function
defined on D by

a(xh)gal, x?) + B(x1)g(b, x2), if (x1,x2) € [a,b]°,

1 .2y _
3 gz, x*) = {g(xl,x2), otherwise,

where a(x!) = (b —x!)/(b* —a?) and B(x!) = (x! —al)/(b! —al). Then g1<g
since g is h-concave. Moreover, g; is clearly h-concave. We now prove that g,
is v-concave. Since g coincides with g outside [a,b]°, g1(x!,-) is concave for
x! ¢Jal,bI[. If x! € Ja!, b'[, then g1(x!,.) is v-concave at x2 if x2 ¢ [a?, b2]. If
x% € Ja2,b?[, then since g(al,-) and g(bt,.) are concave,

2(g1(x, 2 — 1) + gi(x!, 22 + 1))
= a(x)3(gla', x* — 1) + g(al, 2% + 1))

@ + B (8B, 2% — 1) + g(bL, 2% + 1))
< a(xhg(a', x?) + B(x!) g(b', x?)
= gi(x', x?).

Therefore g1(x',-) is concave at x2. If x2 € {a2,b2}, then definition (2) and
the fact that g1 < g imply that g;(x?,.) is concave at x2. Therefore, g1isa
biconcave majorant of f and so g, > g. We have shown that g1 = g and the
conclusion in (a) follows.

(b) Assume, for example, that in addition g(al,.) is strictly v-concave at
(a', x%) for some x2 € Ja2, b%[. Then for x! e Jal,b![ the inequality in (4) be-
comes strict, so g is strictly v-concave at (x!,x2). O
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REMARK 3.2. (a) Let [a,b] be as in Proposition 3.1. If g is linear on the
horizontal boundary segments of [a,b], then for all (x!, x?) € [a,b],

(5) (x! 2_b1—x1 1.2
glx’,x%) = py—y gla’,x") +

xl _ al
1 801, 2%).

Similarly, if g is linear on the vertical boundary segments of [a,b], then for
all (x1,x2) € [a,b],

=b2_

1,2 x? 1 gy, X —d? 12

(6) g(x", x%) o3 8x,a%) + 50 8(x7,b ).

If g is linear on all four boundary segments of [a,b], then g is bilinear in
[a,b]. Replacing g(al, x2) and g(b!,x?) in (5) by the expression furnished in

(6), we get (after rearranging the terms)

1_,1
g(x!,x%) = gla',a?) + T (g(b",a*) - gla’,a?)
2 _ 42
- + o (g(a',b?) - g(a’,a?)

1_ 1 2 _ 42
+(x a N a2; (g(v',6%) — g(b',a?)

B —a) (% —a
- g(al,b2) + g(al’a2))'

This formula shows that the graph of g on [a,b] is the restriction to [a,b] of
the hyperbolic paraboloid generated by the quadrilateral of R® with vertices
given in the canonical coordinate system Oe'e?e® by

Al = (a15a2,g(a17a2))’ A2 = (b17a2,g(b17a2))’

Az = (b%, 0%, g(b', 7)), Ay = (a', 0%, g(al,b%)),
that is, the restriction of the quadric surface generated by lines parallel to the
plane Oe'e? which meet the line segments A; A4 and ApAj (this surface is
also generated by the lines parallel to the plane Oe?e® which meet the line
segments A; Ay and AgAy).

(b) Assume a! < b! and a? < b%. Given a quadruple (c1,cg,cs,cq) of real
numbers, there is exactly one bilinear function g defined on [a, b] such that

glah,a?)=c1;, gbt,a®)=c;, gd, %) =c5, gla',b®) =cq.

The values of g in [a,b] are given by (7). Notice that if g is the bilinear
function associated to the quadruple (é1, ¢, c3, ¢4), then

c1<é & glxl x?) < g(xt,x?) for all (x1, x2) € [al, b[ x[a?, b?[.

This equivalence remains true if < is replaced by <, > or >.
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3.2. Vertical and horizontal convexity. The conclusion of Proposition 3.1
leads to important geometric properties of &3 and &%.

PROPOSITION 3.3. &1 is v-convex and &5 is h-convex.

PROOF. Let x and y be two points in &; such that x! = y! and y2 —x? > 1.
By the definition of &3, g is A-linear on the horizontal boundary segments of
the rectangle [(x!—1,x2), (x!+1, y2)]. By Proposition 3.1, we deduce that g is
h-linear on this rectangle. Again by the definition of &1, the vertical segment
[x,y] is therefore contained in &;. It follows that & is v-convex. The proof
that & is h-convex is similar. O

We will say that a function £ defined on [0, N?] with values in [0, N!]
is unimodal of type 1 (resp. unimodal of type 2) if there exists n € [0, N2]
such that ¢ is nondecreasing (resp. nonincreasing) on [0, n] and nonincreasing
(resp. nondecreasing) on [n, N2].

The following proposition establishes the existence of two particularly im-
portant unimodal functions.

PROPOSITION 3.4. Assume that one of the two following hypotheses is satis-
fied:

(a) There exists x' € ]0, N[ such that (x!,x2) € & for all x* € 10, N2[.
(b) For all x% € 10, N2[, there exists x' € 10, N[ such that (x1,x2) € &\ &1

Then there exist two unimodal functions &1 and &3, respectively of type 1 and
type 2, such that £1(0) = £1(N?) = 0, £2(0) = £2(N?) = N' and 0 < é1(n) <
£9(n) < N1 for all n €10, N?[, which give rise to the inclusions

(8) Fcé& and D°\F C &,

where F denotes the set {(x!,x%) € D°: x! < £1(x2) or x! > &3(x%)}.

PrOOF. For all n € ]0, N?[, set

inf{m € [0,N']: (m,n) € &}, ifne]0,N?[,
pi(n) = : 9
0, if n € {0, N?},
9)
(n) = sup{m € [0, N']: (m,n) € &2}, ifne]0,N?[,
HE= A, if n € {0, N2}.

Notice that 0 < u1(n) < ue(n) < N1 for all n € ]0, N2[ . Moreover, set

(10) pl= sup pi(n) and ¢'= inf ua(n).
ne[0,N2] ne[0,N2]
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Clearly, 0 < p! < N! and 0 < gq' < N'. Choose p? and ¢? in ]0, N2[ such that
(11) p1(p?) =p' and p2(q®) =q"
Let ¢ and & denote the two functions defined, respectively, on [0, N2] by

sup mi1(k), ifne[0,p?],

_}J kelo,n]
(12) gl(n) - Sup l“'l(k)7 if n e [p27N2]7

ke[n,N2]

inf /*L2(k)7 ifne [07 q2],
(13) e =10 k), i e (gt N?)
ke[n,N2]M2 ’ 7 '
Clearly, £1 and &5 are two unimodal functions, respectively of type 1 and type 2,
independent of the choice of p? and ¢ and such that &;(0) = &;(N?%) = 0,
£2(0) = £(N?) = N1, 0 < pi(n) < £1(n) and &2(n) < pa(n) < N for all
n €10, N?[ . Moreover, these two functions satisfy

&1(p?) = sup £1(n) = ui(p?) = p,
(14) ne[0,N2]

£2(q%) = ne%(f)l’fl;z] &2(n) = pa(g®) = g~

Define F as in the statement of the proposition and let us prove that the
inclusions in (8) hold. By Proposition 3.3, &3 is h-convex; therefore, &3 =
{(x,x2) € D°: pw1(x2) < x! < pa(x2)}. Consequently, D°\ F = {(x!,x2) €
D°: £1(x?) < a1 < £9(x%)} C &2, which establishes the second inclusion in (8).
In order to establish the first inclusion, it suffices by Proposition 2.1(b) and (9)
to show that if (x!, x2) € D° is such that u1(x2) < x! < &1(x2) or &9(x?) < x! <
“uez(x2), then (x!,x2) belongs to &;. Assume that the first alternative holds,
since the proof in the other case is analogous. Since wi(p?) = &1(p?), we
conclude that x2 # p2. Assume, for example, that x? < p?. Then there exists
n €10, x2[ such that &;(x2) = £1(n) = u1(n). However, x! < &1(x2) = ui(n)
and x! < £1(x2) < &1(p?) = w1(p?); therefore, (x!,n) and (x!, p?) belong to
&1. By Proposition 3.3, (x!, x2) also belongs to &;.

It remains to prove that £; < £3. Assume that hypothesis (a) is satisfied.
Then w;(x2) < x! < ug(x?) for all x? € ]0, N2[ and, therefore, §; < &s. As-
sume now that hypothesis (b) is satisfied. If there exists x% € ]0, N2[ such that
£1(x2) > €9(x2), then (x1, x2) belongs to F, therefore to &1, for all x' e 10, N[,
which contradicts the hypothesis; consequently, &1 < &2. O

3.8. The two types of structures. Denote the optimal switching problem by
(7). In order to explain the structure of the solution of (7), it is convenient to
be able to replace (7) by an equivalent problem (7) obtained by symmetry.
Denote by ®; and ®,, respectively, the reflection with respect to the vertical
line x! = N1/2 and the reflection with respect to the first diagonal, that is,
the line whose equation is x2 = x!. Let us also denote by D, & and & the
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respective images of D, &; and &3 (resp. D, &5 and &) under ®; (resp. ®3).
Obviously D = D if i =1 and D = [0, N2] x [0, N'] if { = 2. Let (7) denote
the optimal switching problem relative to the function f = f o ®; on 9D. It
is easy to check that § = g o ®; is the biconcave envelope of f and that &;
and &, are the regions where the optimal directions for (7) are, respectively,
horizontal and vertical. It follows that the structure of the solution of (7) can
be deduced from the structure of the solution of (7), and conversely.

The results that we are about to formulate rely on the conclusions of Propo-
sition 3.4. It is therefore necessary to make sure that one of the two hypotheses
of this propos1tlon is satisfied. If hypothesis (b) is not satisfied, that is, there
exists x? € ]0, N?[ such that (x!,x2) € &; for all x! Jo, N[, then it suffices
to transform (7) by applying ®; to see that (x2, y2) € & for all y2 € ]0, N[
and therefore that hypothesis (a) is satisfied for the transformed problem. Af-
ter possibly transforming () by applying ®2, we can therefore assume that
one of the two hypotheses of Proposition 3.4 is satisfied and therefore that the
conclusions of this proposition apply. In particular, we will make use of the
integers p!, ¢!, p? and ¢ defined in (10) and (11).

The inclusions in (8) can be expressed by saying that the horizontal direction
is optimal in F' and that the vertical direction is optimal in D°\ F. Of course, it
is possible that in a portion of F or of D°\ F, both directions are optimal. In the
case where p! < ¢!, there is nothing to add to what has just been explained.
On the other hand, in the case where p! > ¢!, we are going to show that
there exists an indifference rectangle around which are four regions in which
the horizontal and vertical directions are alternately optimal (cf. Figure 1; the
arrows there represent the optimal direction of motion in each region).

In the sequel, we will say that the solution is of type 1 (resp. type 2) if after
possibly having transformed () by applying ®2, one of the two assumptions
of Proposition 3.4 is satisfied and the inequality p! < ¢! (resp. p! > ¢!) holds.

The structure of the solution of type 2 will be described in the following
theorem. Notice that this type of solut1on 1s only possible in the case where
N'! > 2 and N? > 2. Moreover, since p! > g, it is clear that p? # g2. In order

Fi1g. 1. Solutions of type 1 (left) and type 2 (right).
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to avoid dealing with two cases, we will assume that p? < ¢2. If this condition
is not satisfied, then it will be after applying the transformation ®;.

THEOREM 3.5. Assume that one of the two hypotheses of Proposition 3.4 is
satisfied, and define p', q', p? and q? by (10) and (11), with p? and q? chosen
such that the value |p? — q?| is as small as possible. Moreover, define &1 and
&9 by (12) and (13). If p' > q' and p? < ¢2, then

(15) é1(n) <q' forallnelp®, N’[,  &(n)=p' forall nel0,q’[.

Moreover, the structure of the solution to the optimal switching problem is
described by the following conclusions: The horizontal direction is optimal in
F and Fs3, where

Fi={(«',2%) e D°: ' < £1(x?)},
F3={(x',x%) e D°: x' > &(x?)},
the vertical direction is optimal in Fe and Fy, where

Fp={(x',2%) € D*: 2 < p* and £1(x?) < x' < £5(2?)
or p2 < x2 < q2 and pl =< x! =< 52(3‘:2)}:

Fy={(x',x%) e D°: p?2 <x? < q? and &1(x?) <x! < ¢'
or x% > g% and £1(x?) < x! < £9(x?)},

and both directions are optimal in the (possibly empty) rectangle 1q*, p[ x
1%, ¢°[.

PrROOF. By hypothesis, the conclusions of Proposition 3.4 apply. By this
proposition, the segments [q?, p![ x{p?} and ]g!, p*]x {q?} are both contained
in &1. As & is v-convex by Proposition 3.3, it follows that 1q?, p![ x[ p?, ¢%] C
£1.

We now prove (15). Since £1(n) < £1(q?) < €2(q?) = ¢! for all n e [¢2, N?]
and &3(n) > &(p?) > €1(p?) = p! for all n € [0, p?], it is sufficient to prove
that £1(n) < q' and ¢2(n) > p! for all n € 1p?,q?[. If ¢% — p2? = 1, there is
nothing to prove. Assume that g2 — p? > 1. If p! — q! = 1, then £;(n) < q; for
all n € 1p?, ¢2[, since ¢1(n) < p' for all n € ]p?, ¢?[ because g2 — p? is minimal.
Similarly, we see that &x(n) > p! for all n € ]p?,¢%[. If p* — ¢* > 1, assume
that &;(n) > g for some n € ]p?, ¢%[. Since £1(q?) < £2(q2) = g%, there exists
k € 1p?, q?[ such that &;(k) = u1(k) > ¢*. Consequently (¢, k) € &%, in other
words, g is strictly v-concave at (q!, k). Taking into account the fact that
£1(k) < p! due to the minimal character of g2 — p?, by applying Proposition
3.1(b) to the rectangle [q', p']1x [k — 1,k + 1], we deduce that (£1(k), k) & &%.
This contradicts the second inclusion in (8). We therefore conclude that ¢1(n) <
q' for all n € ]p?, ¢?[. Similarly, we see that &;(n) > p! for all n € ]p2,¢?[.
Assertion (15) is therefore established. The final conclusions of the theorem
follow directly from (8) and from the inclusion ]q!, p![x 1p%,¢%[ C &1N&,. O
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REMARK 3.6. It is now possible to describe the evolution of the optimally
switched process. Fix x2 €0, p?[, assume that £;(x?) < p! and let y? =
inf{n e€]x2, p?]: &1(n) > &1(x2)). If 22 €]0, y%[, then on the set {X, =
(¢1(x2),2%)}, the optimal strategy is as follows. Initially, leave ¢! fixed and
equal to 0 and let #? evolve until either X visits (£1,0), in which case the
evolution stops and the payoff is f(£1(x2),0), or X visits (£1(x2), ¥2). In this
case, leave ¢? fixed and let ¢! evolve until either X visits (0, y2), in which
case the evolution stops and the payoff is £(0, y2), or X visits (£1(y?), y2).
In this case, proceed as above as though the starting point were (£1(y?), y2).
If X ever visits (p!, p?), then the optimal strategy depends on whether the
solution is of type 1 or 2.

If the solution is of type 1, then from this time on leave ¢! fixed and let 2
evolve until X visits (p!,0) or (p!, N2), at which time the evolution terminates
and the payoff is, respectively, f(p!,0) or f(p', N?).

If the solution is of type 2 and p? < ¢2, then leave ¢! fixed and let ¢? evolve
until either X visits (p!,0), at which time the evolution terminates and the
payoff is f(p',0), or X visits (p!, ¢%). In this case, leave ¢? fixed and let ¢!
evolve until either X visits (N1, g?), at which time the evolution terminates
and the payoff is f(N1,q?), or X visits (q!,q?). The direction of evolution
switches each time X visits one of the four states (q!,¢?), (¢!, p?), (p!, p?) or
(p',q?), until X finally visits one of the four states (p!,0), (N1, q2), (¢!, N?)
or (0, p?), at which time the evolution terminates and the payoff is f(p?!,0),
f(N1,q%), f(g', N?) or f(0, p?), respectively.

4. Computing the solution. Theorem 3.5 provides a complete descrip-
tion of the structure of the solution, and our objective is now to show how the
solution is determined by the boundary data. This is a two-step process, which
involves first determining whether the solution is of type 1 or 2 and finding
the integers p!, q!, p? and g2 which satisfy (10) and (11), and then providing
a formula for the functions ¢; and ¢; defined in (12) and (13). We shall proceed
in reverse order; that is, we assume in this section that the values of p!, ¢!,
p? and q¢? are given and determine a formula for £; and &;. This will provide
considerable insight which will be useful in Section 4.3, where we will then
provide an explicit and essentially complete solution to the problem.

4.1. Constructing the switching curves. Consider the two functions ¢! and
¢? defined, respectively, on [0, N[ and [0, N?[ by

pl(x!) = (x' + D f(x1,0) — 2 f(x! +1,0),
$*(x?) = (x® + 1) F(0,x%) — x2£(0,x% + 1).

Notice that ¢1(0) = $2(0) = £(0,0).

REMARK 4.1. (a) The quantity ¢!(x!) is precisely the value at 0 of the
unique linear function 4 defined on [0, N!] which coincides with f(-,0) at x!
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and x! + 1. As such, ¢!(x!) can be thought of geometrically as the intercept
on the x3-axis of R3 of the “line tangent at x! to the graph of f(-,0).” An
analogous relationship exists between ¢2 and f(0,-).

(b) Since f(-,0) and f(0,-) are concave, it follows immediately that ¢! and
¢? are nondecreasing.

As in the statement of Theorem 3.5, we assume without loss of generality
that the conclusions of Proposition 3.4 are satisfied. The theorem below indi-
cates how to compute the values of ¢; on the interval ]0, p?[. The values of &;
on ]p?, N2[, or of &3, can be computed analogously.

THEOREM 4.2. Let &1 be the function defined in (12). Then, for all x% ¢
10, p?[,
inf{x' €10, p']: ' (x!) = $*(x?)}, if{ } # O,

1

2y —
a9 = i) =2.

PROOF. We assume that p! > 1; otherwise, there is nothing to prove. It is
sufficient to show that

(17) ' (£1(x?)) > $2(x?) if £1(x?) < p',
and
(18) 1 (£1(x?) — 1) < ¢2(x?) if £1(x?) > 1.

Assume that £;(x%) < p! and set
y* =inf{n € 1«2, p?]: £1(n) > &1(x?)).

Let h; denote the bilinear function on D which coincides with g at each of the
four vertices of the rectangle R = [(£1(x2), y2 —1),(¢é1(x2) + 1, y2)] and by hq
the bilinear function on D whose value at (£1(x2), y2 — 1) is

£1(x?)
&1(x2) +1 &

and which coincides with g at the three other vertices of R. By Proposition 3.3,
the rectangle [£1(x2), &1(x%) + 1]x ]0, y?[ is contained in &%; in other words,
g(£1(x?%),-) and g(&1(x?) + 1,-) are both linear on [0, y2]. It follows that

h1(€1(x%),0) = g(£1(2?),0) = f(£1(x?),0)

; 2 _ 2 2 _
(19) HG T 1 800,y - 1)+ (£1(=%) +1,5" - 1)

and
h1(é1(x*) +1,0) = g(&1(x?) 4+ 1,0) = f(£1(x?) + 1,0).

Similarly, again by Proposition 8.3, 0, £1(y2)[ x{y?} is contained in & there-
fore, g(-, y?) is linear on [0, &1(y?)], which implies that A, ks, g and f co-
incide at (0, y?). On the other hand, given the way in which Ay is defined,
it is easy to see that h3(0,y% — 1) = g(0,y% — 1) = £(0, y2 — 1). It follows
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that £1(0,0) = ¢1(£1(x2)) and h3(0,0) = ¢p?(y% — 1). Since g(-, y? — 1) is con-
cave, hi(£1(x2), ¥ — 1) > ha(£1(x%), y2 — 1), by (19). Consequently, since A;
and Ay coincide at the other three vertices of R, Remark 3.2(b) implies that
h1(0,0) > h3(0,0) and, therefore, ¢p1(£1(x2)) > ¢%(y% — 1) > ¢2(x2). This
proves (17).

We now prove (18). Consider first the case where x? = 1. In this case, the
point (£1(1) — 1,1) does not belong to &% by (12); therefore, g is strictly v-
concave at this point. Let A; denote the bilinear function on D whose value
at (£1(1)—-1,1) is

18(£1(1) —1,0) + 2 g(£1(1) - 1,2)

and which coincides with g at each of the three other vertices of the rectan-
gle [(£1(1) — 1,1),(£1(1),2)], and let Ay denote the bilinear function which
coincides with g at all four vertices of this same rectangle. By Proposition 3.4,
g(£1(1),-)is linear on [0,2], whereas g(-,1) and g(-,2) are linear on [0, £1(1)],
80 hi, hy and f coincide at (£1(1),0) as well as at (0,2). Taking into ac-
count the way in which A1(£¢1(1) — 1,-) is defined, we conclude as above that
h1(0,0) = ¢1(£1(1)—1) and A2(0,0) = ¢%(1). Given that g is strictly v-concave
at (£1(1)—1,1), we conclude that A{(£1(1)—1,1) < he(&1(1)—1,1) and, there-
fore, that 1(0,0) < hs(0,0) by Remark 3.2(b). It follows that ¢1(£1(1) - 1) <
¢?(1), which was to be proved.

Assume now that the statement in (18) is true for x2 = n — 1, where
n €]1, p?[. We show that it is also true for x2 = n. If £1(n — 1) < &1(n),
then the point (£1(n) — 1,n) does not belong to &%, by (12); therefore, g is
strictly v-concave at this point. Using the vertices of the rectangle [(£1(n) —
1,n),(&1(n),n+1)], we conclude that (18) is true, exactly in the same way as
when x2 = 1. If £1(n — 1) = £1(n), then the same conclusion follows directly
from the hypothesis according to which ¢1(¢1(n — 1) — 1) < ¢p?(n — 1), using
the fact that ¢%(n — 1) < ¢%(n). O

REMARK 4.3. If (x1,x2) €10, p![ x 10, p?[, then

d)l(xl) > ¢%(x?) implies (x1,x%) € &,

dl(x!) < ¢p2(x?) implies (x!,x2) € &4.

4.2. Characterizing the type of the solution. In this section, we are going
to give a necessary and sufficient condition on the payoff function f for the
solution of the optimal switching problem to be of type 1 or of type 2. This
condition is geometric, and will be translated into an analytic condition in
Section 4.3.

Recall that a function A: D — R is a majorant of f if A(x) > f(x) for all
x € dD. If h is a bilinear majorant of f, then the contact sets of h with f are the
four sets €41,..., €4 defined as follows: €; (resp. €3) is the set of x! € ]0, N[
such that A(x1,0) = f(«x!,0) [resp. such that A(x!, N2) = f(x!, N?)] and ¢»
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(resp. €4) is the set of x? € ]0, N?[ such that A(N?, x2) = f(N?!, x2) [resp. such
that A(0,x%) = f(0,x2)]. Note that &1,..., €, are always intervals and may
be singletons or empty. We shall say that this bilinear majorant of f has a
type 1 contact with f if

either €1N€3#T or €3N €y #D,
and that it has a type 2 contact with f if €1 #@,..., €4 # & and either

(20) sup€3 <inf ¢; and sup €y <inf €5
or
21 sup €1 <inf €3 and sup €2 < inf €4.

Notice that the property “A is a bilinear majorant of f with a type 1 (resp.
type 2) contact with f” is invariant under the reflections ®; and ®,. Moreover,
if h is a bilinear majorant of f, then

(22) x'e €1N €5 implies {x'}x ]0, N2[ C &.

Indeed, if x! € €1 N ¢3 and if g is the biconcave envelope of f,then g < h
since & is a biconcave majorant of f, and g(x!,.) > h(x!,-) since g(x!,-) is
concave, h(x!,-) is linear and g and /4 agree at (x!,0) and (x!, N2). Therefore,
g(xl,.) = h(x1,.), which proves (22).

THEOREM 4.4. The solution to the optimal switching problem is of type 1
(resp. of type 2) if and only if there exists a bilinear majorant of f which has
a type 1 (resp. type 2) contact with f.

PROOF. We begin by proving that the condition concerning the type 1 so-
lution is sufficient. Without loss of generality, we suppose that there is a bi-
linear majorant 4 of f and x! €]0, N[ such that A(x!,0) = f(x!,0) and
h(x', N?) = f(x!, N?). By (22), hypothesis (a) of Proposition 3.4 is satisfied
and p' = sup p; < x! <inf up = p?, where w1 and uy are defined in (9). The
solution is therefore of type 1.

We now prove that the condition is necessary. Assume the solution is of type
1 and let g be the biconcave envelope of f. After possibly transforming the
problem by applying ®;, we can assume that hypothesis (a) of Proposition 3.4
is satisfied.

The case where there exists x! € [0, N![ such that both g(x!,-) and g(x!+
1,) are linear on [0, N?] is quite straightforward. In this case, let A be the
bilinear function defined on D that agrees with g at each of the four vertices
of the rectangle [x1, x! + 1] x [0, N2]. Since g is h-concave, we conclude that
h > g on D. Therefore, h is a bilinear majorant of f with a type 1 contact
with f, since either x! or x! + 1 belongs to ]0, N'[.

In the general case, there is x! €]0, N'[ such that g(x!,-) is linear on
[0, N2]. Let k be the function defined for x2 € [0, N2] by

k(x?) = %g(xl —-1,2%) + %g(x1 +1,x%).
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Then % is concave and since g is h-concave, g(x!,x2) > k(x2?) for all x2 ¢
[0, N2].

Let « be the linear function defined on [0, N?] such that « > £, the functlon
g(xl,.) — k() is constant and « agrees with & at at least one element x2 ¢
[0,N 2]

In the case where x2 € ]0, N2[, define numbers x3, x3 2,2 and y2 by

xi=g(x +1,x%2 - 1), yi=2g(x +1,2%) — g(a £1,22 + 1).

For (x_,x;) € [x3,y3] x [«3, 3], let h,_,, be the bilinear function defined
on D such that

hx~,x+(x1 +1,x2-1) = Xy, hx_,x+(x1 +1,x%) = g(x1 +1,x2).
Since x4 < y3, observe that
e (2L 4+ 1) =2g(x" £1,4%) —xp > 2 g(x' £1,2%) — 58
=g(xt+1,x2+1),

therefore, A, , (x'+1,) > g(x'£1,.) since g(x'+1,-) is v-concave. Moreover,
using A-linearity, we see that

Ry o (2,22 — 1) = k(2% = 1) < k(2? - 1)
and

hysy (2, 2% +1) = k(2® +1) < k(52 + 1);
therefore,

23) hpa(x',a® 1) <k(x®-1) and hup s(xt,2® — 1) > k(x? - 1).

By the intermediate value theorem of calculus, there is (x_,x,) e [x3,y3] x
[x+,y+] such that A, , (x},22 — 1) = k(x® — 1), or equivalently [since

hy_x,(x',x%) = k(x?)], such that A, _ x+(x -) = k(-). Now let 4 be the bilinear
function equal to Ax_, +con D, where c is the constant value of g(x , ) —k(+).
Then A(x!,.) = g(x',-) and A(x' £ 1,) > h,_ x+(x +1,-)> g(x'+1,-). Since
g is h-concave, h > g on D and 4 is, therefore, a b111near majorant of f with
a type 1 contact with f.

In the case where x2 = N2, we let 23 be defined as above, but we set
y3 = oo Then (23) remains valid, as do the arguments that follow. The case
where x2 = 0 can be handled in a similar way.

We now prove that the condition concerning the solution of type 2 is nec-
essary. Suppose that the solution is of type 2, and without loss of generality
we assume that the hypotheses and conclusions of Proposition 3.4 are sat-
isfied. Let p!, ¢!, p? and q¢? be defined as in (10) and (11), and let g be
the biconcave envelope of f. Then N! > p! > ¢' > 0 and after possibly
transforming the problem by applying ®;, we can assume, in addition, that
0 < p? < ¢® < N2 Let h be the unique bilinear function which coincides with
g on the four vertices of the rectangle [q!, p'] x [ p2, g?]. By Theorem 3.5 and
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Remark 3.2(b), & and g coincide in this rectangle. Since g is v-concave, & > g
in [¢', p'] x [0, p?]. However, since & = g on the segment {pl} x [0, g2] by
Theorem 3.5, the h-concavity of g implies that 2 > g in [0, p'] x [0, p2]. No-
tice also that A(p!,0) = g(p!,0) = f(p',0). By a similar argument, one shows
that & > g on each of the rectangles [ p!, N1]x[0,4¢%], [¢!, N']x [¢?, N2] and
[0,9'] x [ p%, N2], which implies that 2 > g in D and, therefore, & > f on 9D.
Since & and f agree at the four points (p!,0), (N, ¢?), (¢*, N2) and (0, p?),
h is a bilinear majorant of f and ¢; # @,..., €4 # &, where ¢4,..., €, are
the contact sets of A with f. Since p! > ¢!, hypothesis (a) of Proposition 3.4
cannot hold. Together with (22), this implies that

(24) €1NE€3=03.

Since p' € €1, q' € €3 and both of these sets are intervals, we conclude
from (24) that sup €3 < inf €. Since assumption (b) of Proposition 3.4 must
hold, we conclude from an argument similar to the one used to prove (24) that
€2 N €4 = Q. Since p? € €4 and ¢? € €3, we conclude that inf €5 > sup €4.
Therefore, 4 has a type 2 contact with f.

We now prove that the condition concerning the solution of type 2 is suffi-
cient. Assume that there exists a bilinear majorant 4 of f with a type 2 con-
tact with f, and let €7,..., €4 be the contact sets of & with f. Set x! = inf ¢;,
y' = sup €3, x2 = sup ¢, and y? = inf £;. Notice that x!, y! €]0, N[ and
x%, y2 € 0, N2[. Without loss of generality, we can assume that

(25) yl<al and x? < y2

Note that the inequality 2 > f holds at the two points (x! — 1,0) and (y! +
1, N?).
In order to establish that the solution is of type 2, we first show that

(26) {x'3x 10, * [ DU ({¥'}x 123, N?[) C &%.

Let S denote the set on the left-hand side and set A; = (x', x2), Ay = (x!, y2),
Az = (91, 5%), Ay = (y1,2?), A5 = A and & = (x1,0), & = (N1, y2), & =
(y', N?), ¢4 = (0,x2). Since g is a biconcave majorant of f, the four numbers
A; = g(A;) satisfy the system of inequalities

(27) Ai >0 f(€)+ pi Aig1, i=1,...,4,

where 0; = d(A;, Ai11)/d(Ais1, €1, pi =1— 0; and d(-,-) denotes Euclidean
distance. On the other hand, it is easy to check that the determinant of the
system of equations

(28) a; =0;f(&)+ pi ait, i=1,...,4,

where aj,..., a4 are the unknowns and a5 = @; by convention, is equal to
1 — p1p2p3ps. Since p1papsps < 1 by (25), this system has a unique solution,
which is @; = A(A;) since h is bilinear. Subtracting (28) from (27), we see that,
fori=1,...,4,

Ai—a; > pi(Ajp1 — aip1) = -+ > p1pepsps(A; — a;)
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and it follows that A; > ;. Therefore, g(A;) > h(A;). Since A is a biconcave
majorant of f, g < h and so g(A;) = h(A;). Since g(&;) = h(&;),i=1,...,4,
and g is v-concave, this implies that g = 4 on S and, therefore, S C &%. For

future reference, we point out that we have also shown that

(29) (10, 2" [ x{x*H U (Iy", N [ x{»*Hh c &1
and, by Proposition 3.3, that
(30) g=h on[y,x']x[x%y2].

We now show that hypothesis (b) of Proposition 3.4 is satisfied. If it were
not, then there would exist n € ]0, N?[ such that ]0, N[ x{n} C &i; that is,

1_
g(m,n) = N—Nlﬂf(o,n) + %f(Nl,n) for all m € [0, N'].

Suppose n € ]0,x2]. Then f(0,n) < h(0,n) since k is a majorant of f, and
f(NY,n) < h(N1,n) since n < x2 < y2 = inf &,. Since (x1,n) € S,

1

1 1
g(x17n) < _J—YNTx h(O’n) + % h(Nl, n) = h(xl’n) = g(xl’n)>

a contradiction. The cases n € ]x%, y?[ and n € [y%, N?[ lead in a similar way
to a contradiction.

Consider now the functions u; and ug defined in (9) and the integers p?,
q', p? and g2 defined in (10) and (11). Since S C &%, we conclude that p; < x!
and us > y'. We are going to show that

(31) supur =x' and inf uy = y?,

which will complete the proof that the solution is of type 2. By hypothesis,
h(x! —1,0) > f(x' —1,0) = g(x! — 1,0), while A(x! — 1,x2) = g(x! — 1,x2)
by (30). There exists, therefore, n € ]0, x%] such that g is strictly v-concave at
(x! — 1,n); in other words, (x! — 1,n) ¢ &. Since & is h-convex by Propo-
sition 3.3 and since (x1,n) € &, it follows that (m,n) ¢ & for 0 < m < x!.
Consequently, u1(n) = x! and, therefore, sup u; = x'. Similarly, one shows
that inf uy = y!, and (31) is proved. O

4.3. Determining the type of the solution. In this section, we give analytic
conditions on the payoff function f which ensure the existence of a bilinear
majorant of f with a contact of type 1 or a contact of type 2 with f. By
Theorem 4.4, these conditions will tell us whether the solution is of type 1 or
2. We shall also show how to construct this bilinear majorant and integers p!,
q', p? and q¢? that satisfy (10) and (11).

We let

P;=(0,0), Py=(N'0), P3=(N',N?, Ps=(0,N?)

denote the four vertices of D. By convention, P5 = P; and Py = Pj.
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Define eight functions d)ij ,i=1,...,4, j = 1,2, as follows. First, the func-
tions ¢ are the functions previously denoted ¢/, j = 1,2:

1(x!) = (21 + 1) f(x1,0) — x!f(x1 +1,0) if x! e [0, N[,
d2(x?) = (22 + 1)£(0,22) — x2£(0,x% + 1) if x% € [0, N?[.

(32)

Next, in order to define ¢{, i = 23,4, j = 1,2, we first apply to D the
transformation ®;, ®; o 3 or ®; o $3 0 @, to bring P; to the origin and then
apply the formulas (32) to the transformed problem. For instance,

¢4(x%) = (N? — 2 + 1)f(0,x%) — (N? - x*)£(0,2* - 1) if x* €10, N?],
é3(x!) = (N — 2! + 1)f (2!, N?) — (N! —2)f (2! =1, N?) ifx' €]0,N'].

Notice that the subscript i in the symbol ¢! refers to the vertex P; and the
superscript j to the horizontal direction (j = 1) or vertical direction (j = 2).
Also, the geometric interpretation already mentioned in Remark 4.1 of the
functions ¢! is important. For example, ¢} (x!) is the value at N! of the unique
linear function defined on [0, N1] whose value at x! is f(x!, N2) and at x1 -1
is f(x! — 1, N2).

We now define four sets 91,..., 24 as follows. The set 2, (resp. Z3) is the
set of all x! € [0, N[ (resp. x! € ]0, N1]) such that the linear function defined
on [0, N2] with value ¢1(x!) at 0 and value ¢}(x!) at N2 [resp. value ¢}(x?)
at 0 and value ¢}(x!) at N?]is larger than f(0,-) [resp. f(N',-)]. The set 9,
(resp. 94) is the set of all x2 € [0, N2[ (resp. x2 € ]0, N2]) such that the linear
function defined on [0, N'] with value ¢%(x2) at 0 and value ¢3(x%) at N?
[resp. 2value ¢2(x?) at 0 and value ¢2(x2) at N'] is larger than f(-,0) [resp.
f(, N1

Notice that if x! € 2, then y! € 9; whenever y! > x!. An analogous
property holds for 2;, i = 2,3,4. We use the convention inf 9, = N1 if 9, =
@, inf 99 = N2 if 99 =&, sup D3 =0if 93 =F and sup 94 =0if 9, = .
Given the payoff function f, the infima and suprema of 21,..., 9, are easy
to determine.

REMARK 4.5. Let x! = inf 2; and suppose x! > 1. Then the set {x? €
10, N2[: ¢2(x?) > ¢l(x! — 1)} is not empty and the infimum y?2 of this set
satisfies

$3(5*) > pi(x = 1).

Indeed, the set in question contains N2 — 1, since otherwise ¢2(N% — 1) <
d){(xl — 1) and, therefore, the linear function A defined on [0, N3] with value
¢1(x'—1) at 0 and value ¢1(x!—1) at N? would dominate £ (0, ), contradicting
the fact that x! — 1 ¢ 9. Now if ¢2(y?) < ¢1(x! — 1), then since ¢p?(y? ~1) <
¢}(x! — 1), the function h would dominate £(0,-), a contradiction.
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Given the four sets 921,..., 94, we consider two cases.
CASE A. inf 927 <sup 23 or inf 95 < sup 4.
CASE B. inf 2, > sup 235 and inf 93 > sup 4.

In either Case A or B, we shall show how to determine the type of the
solution. If neither Case A nor Case B holds, then inf 2 > sup 93, inf 25 >
sup 24 and one or both of these two inequalities is an equality. This is a critical
case, in which determining the type of the solution requires additional work.

The next theorem shows how to solve the optimal switching problem when
Case A holds.

THEOREM 4.6. If Case A holds, then the solution to the optimal switching
problem is of type 1. In this case, after possibly transforming the problem by
applying ®,, the inequality inf 91 < sup 93 holds and hypothesis (a) of Propo-
sition 3.4 is satisfied. In addition, the integers p', q', p? and q? defined by

pl = inf _@1

oo
P2=inf{xze]0,N2[:¢%<x2>>¢1(p1—1)}] Hint

(33)
p'=
if inf 9, =0,
pPP=1
1
q' = sup 73
if sup 23 < N1,
30 q® = sup{x? €10, N2[: $%(x?) > ¢p(¢' + 1)} ] ’
ql =N'_-1
. if sup 93 = N1,
¢“=1

satisfy (10) and (11).

PrOOF. Ifinf 95 < sup 94, then inf 2, < sup 23 for the transformation
of the problem under ®;. So we let p! = inf 21, §! = sup 23 and assume that
pt < @b For x! € [p',G'[, let & be the unique bilinear function on D that
agrees with f at the four vertices of the rectangle [x!, x! + 1] x [0, N2]. Since
x' € 91, h dominates f on [0,x'] x [0, N2]. Since 2! + 1 < §! and §! € 93,
we conclude that x! + 1 belongs to 23, which means that 4 also dominates f
on [x! 4+ 1, N'] x [0, N2]. Since either x! or x! + 1 belongs to 10, N[, & is a
bilinear majorant of f with a type 1 contact with £, so the solution is of type
1 by Theorem 4.4.

These considerations and (22) also show that the biconcave envelope g of f
is v-linear on [ p', §']x [0, N2]. In particular, hypothesis (a) of Proposition 3.4
is satisfied and the integer p! defined in (10) satisfies 1 < p! < plif pl > 1
and p! = 1if p! = 0. When p! = 1, p? = 1 satisfies (11). In order to prove
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that p! = p! when p! > 1, we only need to show that if p! > 1, then there is
x2 €10, N?[ such that (p!—1, x2) € &1\ &%. Let h be the bilinear function which
agrees with f at the four vertices of the rectangle R = [p! — 1, p'] x [0, N2].
Notice that A does not dominate g on R. Indeed, otherwise, A~ would agree
with g on this rectangle, and since g is A-concave, 2 would dominate g in
D; therefore, h(0,-) would dominate £(0,-). Since ~(0,0) = ¢}(p! — 1) and
h(0,N?) = ¢3(p'—1), this would contradict the fact that 5!—1 does not belong
to 2;. It follows that A < g at some point of the segment { 5! — 1}x 10, N2[,
so g(p! — 1,-) is not linear. This means that there is x? € ]J0, N2[ such that
(Pp' —1,x2) & &. Since &1 U & = D°, this element belongs to &7 \ &s.

To complete the proof of (33), assume inf 2; > 0 and let p? denote the
right-hand side of the second equality in (33). Notice that the set over which
the infimum is taken is not empty, by Remark 4.5. All we now need to show
is that w1(p%) = p', where u; is the function defined in (9). Let p? be as in
(11). If p%2 = p?, then this is true by the choice of p2. If p? < p?, then since
$2(p?) > ¢1(p*—1) and p2(p%—1) < p1(p' — 1), we see that £1(p?) = p! and
£1(p% — 1) < p! — 1 by Theorem 4.2. By (12), it follows that u;(p%) = p'. To
complete the proof, it suffices to establish that the inequality p? > p2 holds.
Since p! =inf 2, > 1, we conclude from Remark 4.5 that

(35) #3(5%) > d3(p' - 1).

Assume now that p? < p2. Applying the statement analogous to The-
orem 4.2 for the interval ]p?, N2[, we see from (35) that &;(p%) = pl;
therefore, 10, p![ x{p?} C &1. Since 10, p'[ x{p?} C & and &; is v-convex
by Proposition 3.3, 10, p![ x[ p?, p?2] C &1. Therefore, g would be A-linear on
[0, p'] x [p?, p?]. In particular, the bilinear function A which agrees with
g on [0, p'] x [ p? — 1, p?] would dominate g on [0, p'] x [0, p%] since g is
v-concave. Since g is strictly v-concave at (p! — 1, p?) by (11), the inequality
f(p' —1,0) < A(p! — 1,0) would hold, or equivalently, £(0,0) > ¢1(p* — 1)
[since f(p',0) = h(p?,0)]. Since A(0,0) is also equal to ¢p2(p2—1) < ¢ (p'-1)
by definition of 52, we have derived a contradiction from the assumption.
The proof of (34) is similar and is left to the reader. O

To handle Case B, we now define for i = 1,...,4 a transformation
T;: [f(P;),o0o] - R. We give the definition for T, since Ts, T3 and T4 are
defined analogously. For x3 € [f(P;),o[, let A denote the linear function
defined on [0, N1] such that & > f(-,0), A(0) = x® and A(x!) = f(x!,0) for at
least one x! € 10, N1] [if x3 = f(P;), then x! may be taken equal to 1]. Then
T1(x3) is by definition equal to A(N1).

It is clear that T'; is continuous, nonincreasing and even strictly decreasing
on the interval [f(P;), m;], where m; = ¢}(N! — 1), mg = ¢p2(N? — 1), mg =
$3(1) and mg = ¢2(1). Also, observe that

Ti(o}(xh)) = d(x' +1),  Ta(¢3(x?)) = p2(x® + 1),

(36)
Ts(dd(xh)) = dph(a? 1),  Ta(¢3(x?)) = ¢3(x? - 1).
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Another property of the transformation T'; is that
37) 0 < x? < inf 9, implies ¢%(x2) < T;1(¢§(x2)).

Indeed, if $2(x?) were greater than or equal to 77 (¢2(x?)), then T1(¢3(x?)) <
$2(x?), which would imply that x2 € 95, a contradiction.
The transformation

(38) T=T40T30Ts0T,

will play an important role below. Indeed, if x3 is a fixed point of T' and if

x? = Ti(x3), i = 1,2,3, then the unique bilinear function » whose value at
P; is x? ,i=1,...,4, s termed the bilinear function associated with this fixed
point. It is a bilinear majorant of f and if xf’ > f(P;), i =1,...,4, then all
four contact sets of A with f are nonempty.

The following theorem shows how to solve the optimal switching problem

when Case B holds.

THEOREM 4.7. In Case B, the solution to the optimal switching problem
is of type 2. Let bl = inf 91 and b2 = inf 9,. The transformation T has a
unique fixed point x% in the interval Iy = [¢1(b} — 1), TT'(¢2(b3 — 1))] and
the bilinear function h associated with x® is a bilinear majorant of f with a
type 2 contact with f. This fixed point is characterized by the property that,
for y1 € Iy, 3 > T(y1) > y1if y1 < 23, and 3 < T(y1) < y1if y1 > 23 If
€1, ..., €4 are the contact sets of h with f, then after possibly transforming the
problem by applying ®; the inequality inf €1 > sup €3 holds and hypothesis
(b) of Proposition 3.4 is satisfied. In addition, the integers p', q', p? and q*
defined by

p'=inf¢1, q'=supds, p’=inf&y, ¢ =sup &y,
satisfy (10) and (11).

PROOF. Assume Case B holds and define four subsets of D by setting
Dy = {(x', 2®): ¢3(x%) > ¢pi(x') and ¢F(x?) > bi(xh)},
Dy = {(x',2%): ¢1(x') > ¢3(x?) and ¢j(x") > $3(x?)},
Ds = {(a',2%): $3(x?) > ¢p3(x') and $3(x?) > ¢3(x1)},
Dy = {(a',2%): $3(x') > ¢3(x?) and ¢j(x') > ¢F(x?)}.
Notice that
B89) DinNnDy=g, DynN D3 =0, DsnDy =6, DyNnD; =6.
Since each function qSij is monotone, it is easy to check that

(40) each set D; is enclosed by the graph of a unimodal function
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(and by a segment of 9D). Let bl = sup 23 and b2 = sup Z4. Given that
inf 21 > sup 23, then in particular, b} > 1 and b} < N! — 1 since N! > b} >
bl > 0. Similarly, b2 > 1 and b2 < N2 — 1. Set

b2 = inf{.vc2 €10, N?[: ¢%(x?) > d)i(b} -1)},

b; = sup{x' €10, N'[: ¢3(x') > ¢3(b5 — 1)},

b2 = sup{x2 €10, N%[: ¢2(x?) > d)é(bé +1)},

b; = inf{x' €10, N'[: ¢i(x!) > ¢5(bF +1)}.

41)

For reasons similar to the one which showed that the set appearing in Re-
mark 4.5 is not empty, the sets on each right-hand side above are nonempty.
Notice that

(b% — l,b%) € Dl, (b;,b% — 1) € D2,

(42)

(b3 +1,b3) € Ds, (61,05 + 1) € Dy.
Indeed, the first relation is true since $2(62) > ¢1(b1 — 1) by the definition of
b? and ¢2(b3) > ¢L(b} — 1) by Remark 4.5. The other three relations can be
checked in a similar way.

Figure 2 shows a possible disposition of the sets Dy, ..., Ds. Since b2 > b2,
D; cannot intersect D3 by (39) and (40). Similarly, Dy cannot intersect Dy,
and so Ds,..., D4 are disjoint. From the figure, notice that we can assume
that b2 < b2, since otherwise this would be the case after applying ®;. Also
from the figure and (40), notice that the inequalities b1 > b} and b2 < b2 imply
that b} < b3, bl < b}, b? < b? and b3 < b3 and, therefore,

(43) 0<bl<bl<bl<bl<N' and 0<b?<b2<bl<b2<N2

D,

b, 1

b, b, b, b,
FiG. 2. The sets Dy,...,Dy.
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Since b} < b} and $1(b}) > ¢p2(b2 — 1), it follows from (36) that
T1($1(b1 — 1)) = b3(b1) > é3(b3) > ¢5(b5 — 1)
and, therefore, that
(44) 1(b1 — 1) < T1(45(65 - 1)),
and one checks in a similar way that
$5(b3 — 1) < T3 ($3(65 + 1)),
(45) $5(05+1) < T3 (¢5(65 + 1),
¢5(6F +1) < Ty (41(61 - 1)).
Define four intervals of R by setting
Li=[¢i(b; - 1), TT ($5(63 — 1)}, T2 =[45(83 - 1), T3 (¢43(b5 + 1)),
Iy =[$3(b5+1), T3 ($5 (65 + 1)), Iu=[4] i
Moreover, set I5 = I;. Since b} < bl,
T1($1(b1 - 1)) < Ta(e1(b3) = 3(b3 +1) < T3 (63(b5 + 1)),

where the equality follows from (36) and the last inequality from the property
of T'9 analogous to (37). Similarly,

T2(43(b3 - 1)) < T3 (45(b% + 1))
(46) Ts(p3(b) +1)) < T2 (0] - 1))
Ts(#3(b%+1)) < T7(45(65 - 1)-

Since T'; is nonincreasing, we conclude that 7';(I;) C I;;1,i = 1,...,4. Con-
sequently, T(I;) c I; and so T admits a fixed point x% in I;. Let A be the
bilinear function associated with x% and set x4 = %, x? | = T (x3),i =1,2,3.
Notice that x‘;’ e Ty(l4), so

x3 < Ta(p3(b5 + 1)) < TT (d3(0% - 1))
by (46) and, therefore,

’

~ —

’

A = Ti(x9) > #3(63 - 1)
Similarly, one shows that
< TyH (4505 +1)),  af < T3 (#4065 +1)),  f < Ty (4i(b1—1))
and
x3 > p3(b3 +1), x§ > ¢2(b3+1), x> ¢1(b] — 1).
Therefore, the contact sets €1,..., ¢ of A with f are nonempty and satisfy
(47)  inf&, >b], inf&y>b3, supds<bi, supéy<bl.
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By (43), this implies that A has a type 2 contact with f, and so the solution is
of type 2 by Theorem 4.2. Using the argument which follows (30), we see that
assumption (b) of Proposition 3.4 is satisfied.

We shall now prove that T has a unique fixed point in I;. Fix y; € I;.
Consider the linear function defined on [0, N1] which is equal to y; at P; and
to T1(y1) at N1, and suppose that the interval on which this linear function
agrees with f(-,0) is [a1(y1), B1(y1)] [this interval may only contain a single
point, in which case a1(y1) = Bi(y1)]. It is not difficult to deduce from the
definition of T'; that

(y1),0) — y1
B1(y1) '

Since B1(-) is constant on the interval [y, y1 + ] for some & > 0, the right
derivative D, T;(y1) is equal to

(48) T1(y1) = y1+ N*! f (B

Nl
Bi(y1)

Similarly, the left derivative of T at y; is D_T1(y1) = 1 — N1/a;i(y;). If for
yi € I; we define intervals [a;(¥;), Bi(y;)] relative to T'; by analogy with the
above, then similar formulas hold for D.T;(y;), i =2,3,4.

Since the T; are decreasing, the chain rule for derivatives, applied to T,
yields

D,Ti(y1)=1-

D,T(y1) = D_T4(ys) D T3(ys) D_To(y2) D:T1(y1),

and this is equal to

1 —N2 1 —Nl 1 N 1 N
( _NZ—B4(y4))( _Nl—as(y3)>( _012(3’2))( _Bl(yl))’

which, after reducing each factor to a common denominator, equals

a3z(y3) N1 — Bi(y1) Ba(ys) N2 —as(y2)
Bi1(y1) N'—a3(ys) as(yz) N2 - Bs(ys)
_ by N'—b} B2 N2 b}
=% NT_bl b N2 02

<1

since y; € I; and since we are in Case B. Consequently, D, T < 1 in I; and
so T has at most one fixed point x2 in I;. Since T is nondecreasing, this also
shows that, for y; € Iy, 2 > T(y1) > y1 if y1 < 22, and x® < T'(y;) < y; if
y1 > x3. Clearly, this property can only be satisfied by the (unique) fixed point
of T.

Set p! = inf €y, g1 = sup €3, p? = inf €4 and q®> = sup&a. If p2 —1> 0
and g2 + 1 < N2, then

(49) h(0,p>—1)> f(0,p? —1) and A(N',¢*+1)> f(N',¢®>+1).
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By (30), g = h on [¢%, p'] x [ p?, 2], and by (26) and (29),

(50) ({pl}X]O,q2[)U({q1}X]p2,N2[)C<fz
and
(51) (10, p'[ x{p*}) U (1¢', N[ x{q?}) c &1.

Let w1 and ug be the functions defined in (9). By (31), p! = sup u; and ¢! =
inf ug, so (10) is satisfied. By (50), ui(n) < q* for n > p? and so there is
n €10, p?] such that u1(n) = pl. If n = p2, then u1(p?) = p!; in other words,
p? satisfies (11). Suppose n € ]0, p?[. To conclude that u;(p?) = p!, we must
show that (p! — 1, p?) ¢ &. Indeed, since (p!, p?) € & and &, is h-convex
by Proposition 3.3, we will be able to conclude that (m, p?) ¢ & for m €
10, p![, which implies that u1(p?) = p'. Suppose that (p! — 1, p?) € &5. Then
g(p'—1,p%—1) = h(p' -1, p?— 1), and since (m,n) € & for m € 10, p![ and
&1 is v-convex by Proposition 3.3, we conclude from (51) that (m, p2 —1) € &;
for m €]0, p'[. In particular, g is h-linear on [0, p'] x {p% — 1} and agrees
with h at (p! — 1, p?2 — 1) and at (p!, p% — 1), so g agrees with A at (0, p? — 1);
therefore, A and f agree at this point, contradicting (49).
The proof that g2 satisfies (11) is similar and is left to the reader. O

5. Examples. In this section, we illustrate the techniques developed in
Section 4 by explicitly solving three concrete examples.

PROBLEM 1. Solve the optimal switching problem on D = [0,20] x [0,20]
with the following payoff function:

f(u,0) = f(u,20) = 40u — 2u?, u € {0,...,20},
£(0,v) = £(20,v) = 20v — v?, ve{0,...,20}
[and f(u,v)=0ifl<u<19and 1 <v < 19].

Since max f(0,-) = max £(20,-) = 100, it is clear that the constant func-
tion A(u,v) = 200 is a bilinear majorant of f with a type 1 contact with £,
the two nonempty contact sets being ¢; = {(10,0)} and ¢3 = {(10,20)}. By
Theorem 4.4, the solution is of type 1. Applying the formulas in (32), we see
that

d)i(u) =2u(u+1) and d)%(v) =v(v+1).

The values of ¢1(u) and ¢2(v), 0 < u, v < 10, are tabulated in Table 1.

Let 21,...,9,4 be the sets defined in Section 4.3. Given the symmetric
nature of f, ¢}(u) = ¢}(u); therefore, the linear function defined on [0, N2]
(where N? = 20) with value ¢}(x) at 0 and value $}(u) at N? is constant,
equal to ¢}(u). Since ¢1(6) = 84 < max f(0,-) = 100 < 112 = ¢1(7), we
conclude that inf 2; = 7 and, by symmetry, sup 23 = 13. Therefore, Case A .
of Section 4.3 holds.
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TABLE 1
The functions ¢1 and ¢? for Problem 1

uorv 0 1 2 3 4 5 6 7 8 9 10

¢%(u) 0 4 12 24 40 60 84 112 144 180 220
#2(v) 0 2 6 12 20 30 42 56 72 90 110

By Theorem 4.6, p! = 7 and from (33) and Table 1 we see that p? = 9,
since ¢2(8) = 72 < 84 = ¢}(p! — 1) < 90 = $?(9). By symmetry, ¢g* = 13 and
2
g° =11.
Using Table 1, we now apply Theorem 4.2 to determine ¢;(v), v=1,...,8.
On the interval ]p?, N?[, the analogue of formula (16) is

inf{x! €10, p1: ¢i(x!) > ¢5(x?)}, if{ } #0,
o, if{ }=2.

Since ¢}(x!) = ¢l(x!) and ¢2(x2) = $2(20 — x2), we can determine &1(v),
v = 10,...,19. The values of &,(v) for v = 0,...,10 are shown in Table 2.
The values of ¢1(v), v = 11,...,19, are determined by the relation &1(v) =
£1(20 —v).

£1(x?) = {

TABLE 2
The function &1 for Problem 1

v 0 1 2 3 4 5 6 7 8 9 10

&(v) 0 1 2 2 3 4 5 5 6 7 17

Given the symmetry properties of f and Proposition 3.4, this is enough to
determine the regions where the vertical and horizontal directions are opti-
mal. These regions are shown in Figure 3. In this figure, we have drawn a
short segment through each grid point of the square ]0,20[ x ]0,20[ to indi-
cate the optimal direction. If both directions are optimal, two perpendicular
segments are drawn. The dots that surround the square provide a “flat rep-
resentation” of the graph of f restricted to ¢ D: the distance from each dot to
the nearest point on the square [e.g., (i,0)] is proportional to the value of f at
that point [e.g., f(Z,0)]. [Note that since ¢%(2) = 4)%(3), it is possible to verify
that both directions are optimal at (2, 3). The same is true for (18, 3), (18,17)
and (2,17).]

PROBLEM 2. Let & = 1. Solve the optimal switching problem on D =
[0,20] x [0,20] with the following payoff function:
f(u,0) = 26u — u?, f(u,20) = £(20 — u,0), uef{l,..., 19},
£(20,v) = b(26v —v?),  f(0,v) = (20,20 — v), vell,..., 19},
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FIG. 3. The solution to Problem 1.

£(0,0) = £(20,0) = £(20,20) = £(0,20) =0 [and f(u,v) =0if1 <u <19
and 1 <v <19].

Since b = 1 and sup f(-,0) = sup f(20,-) = sup f(-,20) = sup f(0,-) = 169,
it is clear that the constant function A(u,v) = 169 is a bilinear majorant of
f with a type 2 contact with f, the four contact sets being ¢; = {(13,0)},
€9 = {(20,13)}, €3 = {(7,20)} and €4 = {(0,7)}. Therefore, the solution is of
type 2 by Theorem 4.4, and by Theorem 4.7,

pt =13, ¢t =1, p>=7 and ¢*=13.
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Using (32), the formulas for the functions ¢! and ¢? are seen to be ¢l(u) =
u(u+1) and qS%(v) = v2 + v + 120. These are easily tabulated. In view of the
symmetric nature of f, Theorem 4.2 leads to the solution to the problem. We
leave the details to the reader, since we prefer to solve a harder problem.

PROBLEM 3. Let b = 0.9. Solve the optimal switching problem as defined
in Problem 2, but with this new value of b.

This problem is quite interesting, since it is no longer clear whether the
solution is of type 1 or 2 and, in addition, we must determine the fixed point
of the transformation T' defined in (38). One might expect that determining
this fixed point would require some sort of iteration scheme, but in fact it
turns out that the solution to Problem 3 can be determined by a finite number
of elementary computations. ‘

Using (32) and analogous formulas for ¢, one finds that

b1 (1) = u(u+1), bL(u) = u? — 41u + 540,
$2(v) =09 v(v+1), $2(v) = 0.9 (v% — 41v + 540).
Given the symmetry properties of f, we can now tabulate the eight functions

i’ , J=1,2,i=1,2,3,4. The values of these functions for certain values of u
and v are shown in Table 3.

TABLE 3
The functions [ and ¢; for Problem 3

u 8 9 10 11 12 13

f(u,0) 144 153 160 165 168 169
f(u,20) 168 165 160 153 144 133
di(u) 72 90 110 132 156 182
di(w) 276 252 230 210 192 176
$i(w) 156 132 110 90 72 56
éi(w) 192 210 230 252 276 302

v 11 12 13 14 15 16

f(0,v) 1877 1296 119.7 108.0 945 792
f(20,v) 1485 1512 1521 1512 1485 144.0
$2(v)  226.8 2484 271.8 297.0 3240 3528
$2(v)  118.8 1404 163.8 189.0 216.0 244.8
$2(v)  189.0 1728 158.4 1458 1350 126.0
$2(v) 81.0 648 504 378 270 18.0
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With tedious but elementary computations, one finds that
inf 2, =11, sup 93 =9, inf 99 =12, sup 94 =8

and so, by Theorem 4.7, the solution to Problem 3 is of type 2. Let T and
T1,...,T4 be the transformations defined in (38). Given the symmetry prop-
erties of f, observe that T'3(-) = T'1(-) and T4(:) = T2(.).

Let «;(-) and B;(-), i = 1,...,4, be the functions defined in the proof
of Theorem 4.7. By Theorem 4.7, the transformation T has a unique fixed
point x3 in the interval [110,402.8] [since ¢1(10) = 110, $2(11) = 118.8 and
T7'(118.8) = 402.8].

Notice that T1(¢}(11)) = ¢1(12) = 192. Since $2(14) = 189 < 192 < 216 =
¢§(15), a2(192) = B2(192) = 15; so, by a formula analogous to (48),

£(20,15) — 192

T2(192) =
2(192) =192 + 20 15

= 134.

Similarly, T'5(134) = 190.67 (numerical results are rounded to the second
decimal) and T'4(190.67) = 134.44. In the same way, we find that

T1($1(12)) = ¢3(13) = 176, T5(176) = 140.57,
T5(140.57) = 186.28, T,(186.28) = 136.17.

In conclusion,

134.44 = T(¢1(11)) > $1(11) = 132
and
136.17 = T(¢1(12)) < ¢1(12) = 156.

By Theorem 4.7, 134.44 < x% < 136.17.

In view of the tabulated values of ¢ij in Table 3, we see that a;(134.44) = 12
and B1(186.17) = 12, from which we conclude that a;(x®) = B1(x®) = 12 and,
therefore, p! = inf ¢; = 12 by Theorem 4.7. Note that T,(134.44) = 190.37
and T'1(136.17) = 189.22. Since a3(189.22) = B2(190.37) = 15, we conclude
that ag(T1(x2)) = Ba(T1(x%)) = 15 and, therefore, that g% = sup £, = 15 by
Theorem 4.7. The symmetry properties of f imply that p?2 = 5 and q; = 8.
Using Theorem 4.2, it is now straightforward to determine the graph of ¢; and
to complete the solution of Problem 3. This solution is represented in Figure 4,
using the same conventions as in Figure 3.

Acknowledgment. Section 5 was added at the request of an Associate
Editor.
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FI1G. 4. The solution to Problem 3.
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