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SMOOTH DENSITIES FOR DEGENERATE STOCHASTIC
DELAY EQUATIONS WITH HEREDITARY DRIFT

By DENIS R. BELL! AND SALAH-ELDIN A. MOHAMMED?

University of North Florida and
Southern Illinois University at Carbondale

We establish the existence of smooth densities for solutions of R%-val-
ued stochastic hereditary differential systems of the form

dx(t) = H(t, x) dt + g(t, x(t — r)) dW(¢).

In the above equation, W is an n-dimensional Wiener process, r is a
positive time delay, H is a nonanticipating functional defined on the space
of paths in R% and g is an n X d matrix-valued function defined on
[0,) X RY, such that gg* has degeneracies of polynomial order on a
hypersurface in R? In the course of proving this result, we establish a
very general criterion for the hypoellipticity of a class of degenerate
parabolic second-order time-dependent differential operators with space-
independent principal part.

1. Introduction. In an earlier paper [2], the authors used the Malliavin
calculus to establish the existence of smooth densities for R%-valued stochas-
tic differential delay equations of the form

(1.1) dx(t) =g(x(t —r))dW(e).

Here r denotes a strictly positive time delay, W is an n-dimensional Wiener
process and g is an n X d matrix-valued function defined on R¢, such that
gg* has a single point of degeneracy of linear order. The novelty of this result
lies in the fact that, in contrast to a classical (i.e., nondelayed) diffusion, the
solution process x in (1.1) is non-Markov. In fact, if we define x,, ¢t > 0, by
x,(s) =x(t +s), —r <s <0, then {x,: ¢ > 0} is a Feller process with values
in the space C([—r,0],R?) of initial paths ([9], Chapters 3 and 4). The
infinitesimal generator of the trajectory process {x,: ¢ > 0} is a second-order
differential operator on infinite-dimensional space whose principal part de-
generates on a surface of finite codimension. Thus (1.1) does not correspond
to a differential operator on R? (cf. [9]), and the result in [2] cannot be
obtained via existing techniques from partial differential equations.

Received July 1994.

'Research supported in part by NSF Grant DMS-91-21406.

%Research supported in part by NSF Grants DMS-89-07857 and DMS-92-06785.

AMS 1991 subject classifications. Primary 60H07, 60H30, 34K50; secondary 60H10, 60H20,
34F05.

Key words and phrases. Hereditary delay systems, Malliavin calculus, smooth densities.

1875

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to (S 2
The Annals of Probability. STOR ®

%3

.ﬁ',

WWWw.jstor.org



1876 D. R. BELL AND S.-E. A. MOHAMMED

The Malliavin calculus is a powerful tool for studying the regularity of
measures induced by stochastic differential equations. When applied to clas-
sical diffusions, it has been made to yield very sharp criteria for the existence
of smooth densities (see, e.g., Kusuoka and Stroock [8] and Bell and
Mohammed [3, 4]). The crucial part of this work consists of the derivation of
probabilistic lower bounds on the Malliavin covariance matrix of the underly-
ing diffusion process. However, the delicate analysis developed to obtain
these lower bounds for degenerate Markovian systems is heavily dependent
on the existence of an invertible stochastic flow. This does not hold for
stochastic delay equations such as (1.1), where the coefficients in the equation
depend on the past history of the solution process x. In fact (1.1) does not
admit a stochastic flow on the state space C([ —r,0],R%) [9, 10]. As a result of
this pathological behavior, little is known about the existence of densities for
degenerate non-Markov stochastic differential equations. Indeed, as far as we
are aware, [2] is the first result of this nature (although Kusuoka and Stroock
[7] have solved the problem under strong ellipticity hypotheses on the
hereditary process).

In view of this dearth of information concerning regularity of non-
Markovian systems, it is interesting to develop new methods to extend the
highly specific result in [2] to the more general setting

(A) du(t) = H(t, x) dt + g(t, x(t — r)) dW(¢).

This is the object of the present article.
The main ideas in our analysis of (A) are as follows:

1. We reduce the stochastic hereditary equation (A) to an equation of a more
elementary form (2.5), by conditioning on the past history of the solution
process.

2. We use the Malliavin calculus to derive a new result (Theorem 2.2)
concerning the existence of smooth densities for (2.5). As a by-product of
this analysis we obtain a new and very general mean-ellipticity criterion
for hypoellipticity of second-order time-dependent parabolic operators with
space-independent principal terms (Theorem 2.3). It is not clear to us how
this result could be obtained using existing techniques from the field of
partial differential equations.

3. Introducing a process of partial integration by parts over the Wiener
space, we show (Lemma 4.1) that the existence of smooth densities for (A)
follows from an invertibility condition (4.3) on the Malliavin covariance
matrix corresponding to the conditioned system (2.5).

4. Our main result is Theorem 2.1. This theorem asserts that the solution
process in (A) admits smooth densities at all positive times, under hy-
potheses that allow the noise covariance to degenerate on a moving
hypersurface in R¢. The initial datum for (A) is a deterministic path
defined on the time interval [ —r,0]. We assume that the initial path has
only limited contact with the degeneracy surface, in a sense made precise
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in condition (2.4). We then use the delay structure of the equation to
propagate forward a probabilistic analogue of condition (2.4) (Lemma 4.2).
This procedure yields probabilistic lower bounds on segments of the solu-
tion process x that allow us to establish condition (4.3). Theorem 2.1 then
follows as indicated above in statement 3.

2. Statement of results. We will extend the result discussed above in
the following directions:

1. A general class of equations of type (A) is considered, incorporating a drift
term of hereditary type, which may depend arbitrarily on the history of the
solution path «x.

2. The function g is allowed to be time-dependent. Furthermore, the “single
point degeneracy” hypothesis on g in [2] is relaxed to allow gg* to
degenerate anywhere on a large class of moving hypersurfaces in R% In
particular, degeneracy is allowed to occur on obstacles, such as the bound-
aries of moving spheres in R%

3. The function R? > x — det gg*(x) is allowed to vanish at any polynomial
rate as x approaches the degeneracy hypersurface.

The following set of hypotheses and notation will be used throughout.

HypoTHESES H. (1) W: [0,0) X Q —» R" is a standard n-dimensional
Wiener process, defined on a complete filtered probability space
(Q,7,(F); 50, P).

(i) g: [0,%) X R? — R4*" is a continuous map into the space of d X n
matrices, with bounded Fréchet derivatives in the space variables of all orders.
The space R**" is furnished with the Hilbert—Schmidt norm.

(iii) r is a positive real number and . [—r,0] = R? is a continuous initial
path.

(iv) C is the space of all continuous paths & [—r,») > R given the
compact-open topology. For every t > 0 we will denote by C((—r,t],R?) the
Banach space of all continuous paths & [—r,t] > R® furnished with
the supremum norm

[€lle = sup [1£(w)ll.

—r<u<t

H:[0,2) X C — R? is a globally bounded continuous map such that, for every
t >0 and £ € C, H(t, £) depends only on {£(s): —r < s < t} and has partial
Fréchet derivatives of all orders with respect to ¢ € C(—r,t], R%), which are
globally bounded in (t, £) € (0,) X C. The symbol H.(t, ¢) will denote the
partial Fréchet derivative of H with respect to ¢. Set

a, = sup{llH,(u, §)I: u € [0,¢], € C([-r,u],RY)}, ¢>0,
and

a, = sup{IIH,f(u, El:w e [0,0), é€C([—-r, u],Rd)},
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where ||H (u, £)Il stands for the operator norm ong(u, £):C(-r,ul,R%) -
R<.

Under the above hypotheses, it is known that the stochastic differential
equation
dx(t) =H(t,x)dt +g(t,x(t—r))dW(t), ¢>0,

21 x(t) = n(t), -r<t<o0,

has a unique continuous (%), ,-adapted solution x: [—r,%) X O - R? (cf.
[7,9]. Our main result is the following theorem.

THEOREM 2.1. Assume Hypotheses H. Suppose there exist positive con-
stants p, 8, an integer p > 2 and a function ¢:[0,°) X R¢ > R satisfying the
following conditions:

(i) For (t,x) € [0,%) X R?,

lp(¢, x)I°1, lo(¢, %)l < p,
oI, ld(t, x)| = p.

Gi) ¢(¢, %) is C! in t and C? in x, with bounded first derivatives in (¢, x)
and bounded second derivatives in x € R
(iii) There is a positive constant ¢ such that

(2.3) IVo(¢, x)Il = c > 0,

for all (t, x) € [0,2) X R?, with |¢(¢, x)| < p. In (2.3), V denotes the gradient
operator with respect to the space variable x € R<.

(iv) There is a positive number 8, such that 8, < (8a,)”* A r and for every
Borel set J c [—r,0] of Lebesgue measure 8, the following holds:

(2.2) g(t,x)g(t,x)" =

(2.4) fJ¢(t+r,n(t))2 dt > 0.

Define s, € [—r,0] by

So == sup{s e[-r,0]: f_srd)(u +r,m(w))’ du = 0}.

Then for all t > s, + r the solution x(¢) of (2.1) is absolutely continuous with
respect to the d-dimensional Lebesgue measure and has a C* density.

REMARK. If we take a, = 0, we see that Theorem 1 of [2] is a special case
of the above theorem.

The remainder of the paper is laid out as follows. In Section 3 we set up
the machinery needed to prove Theorem 2.1. This requires the computation of
the Malliavin covariance matrix corresponding to the Itd6 map W — x(¢). This
computation is effected by exploiting the delay structure of (2.1) and by
conditioning on the past history of the solution process x. The problem is
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thus reduced to the computation of a covariance matrix C(¢) arising from a
simpler equation of the form

dy(t) =H(t,y)dt+ F(t)dW(t), t>a,

y(t) =x(t), O0<t<a,
where a is a fixed conditioning time, F: [a,®) — R%*" is a deterministic map
and x is a deterministic initial path. In the sequel, (2.5) will be referred to as

the conditioned equation. This equation will be analyzed under the following
hypotheses which are analogous to H.

(2.5)

HypoTHESES H'. (i) W satisfies H(i).

(ii) The maps F: [a,©) -» R?*" and x: [0, a] = R? are continuous.

(iii) C' is the space of all continuous paths ¢: [0,0) —» R? given the
compact-open topology. H: [a,») X C' — R? is a globally bounded continuous
map such that for every t > a and £€ C', H(t, £) depends only on {£(s):
0 < s <t} and has partial Fréchet derivatives of all orders with respect to
£ € C(0,t],R?), which are globally bounded in (t,¢) € (a,») X C'. Denote
the partial Fréchet derivative of H with respect to ¢ by H,(¢, ). Set

a; = sup {IIHg(u, E)l:uela,t], £ C([O, u],Rd)}, t>a,
where ||H,(u, £)|| stands for the operator norm of H(u, £): C((0, u], R%) —» R4

Our analysis of (2.5) yields the following result.

THEOREM 2.2. Assume that (2.5) satisfies Hypotheses H'. Let t > a and let
a; be defined as in Hypothesis H'(iii). Suppose there exists 6* < 1/(3a;) such
that

(2.6) Ik (s) ds >0,

where u(s), s > a, denotes the smallest eigenvalue of the nonnegative definite
matrix F(s)F(s)*. Then the solution y(t) of (2.5) has an absolutely continuous
distribution with respect to d-dimensional Lebesgue measure and has a C”
density.

In the special case when the drift H(¢, y) in (2.5) has the form B(z, y(2)),
for some Lipschitz function B: R*X R? — R, then y is a (time-inhomoge-
neous) diffusion process. In this case the methods used to prove Theorem 2.2
yield the following (apparently new) result in partial differential equations:

THEOREM 2.3. For each t > 0, let A(t) = [a;(t)]¢ ;_, denote a symmetric
nonnegative definite d X d matrix. Let p,(t) be the smallest eigenvalue of
A(t). Assume the following:

(1) The map t — A(t) is continuous.
(ii) There exists T > 0 such that

(2.7) jOTMZ(s) ds > 0.
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(iii) The functions b;, i =1,...,d, c: R"X R? > R are bounded, jointly
continuous in (t, x) and have partial derivatives of all orders in x, all of
which are bounded in (t, x).

Let Ty = sup{T > 0: [Ju,(s) ds = 0} and let L, . denote the differential opera-
tor
(92

(28) Lt,x =

d 9
+ b(t,x)— +c(t,x).
L bi(t, 2) 5 +e(t,x)

13 1

d
Z aij(t)
j=1

N =

dx; 9x;

Then the parabolic equation du/dt =L, ,u has a fundamental solution
I'(t, x,y) defined on (T,,©) X R*?, which is C' in t and C* in (x,y).
Furthermore, if the coefficients a;(t), b,(¢, x) and c(¢, x), i,j=1,...,d, are
C” in (¢, x) and

(2.9) lim (¢ — To)log<ft 15(5) ds} -0,
t- Ty T,
then 9/dt — L, , is a hypoelliptic operator on (T,, ) X R%.

We note that the mean-ellipticity hypothesis (2.7) is much weaker than the
pointwise-ellipticity condition which often appears in the classical literature
on partial differential equations.

The proof of Theorem 2.1 is completed in Section 4. The crucial part of the
argument consists of obtaining a probabilistic lower bound for the Malliavin
covariance matrix arising from the conditioned form of (2.1). We obtain this
lower bound from the following asymptotic estimate, which we establish for
the solution process x in (2.1):

(2.10) P('/;t lp(u, x(u—r))Pdu < e|=o0(s"),

t—8y)VO0

as e—> 0+ forall t >s,+randall 2 > 1.

Lemma 4.2 in Section 4 plays a key role in the derivation of (2.10). This
lemma enables us to exploit the time delay in (2.1) to propagate condition
(2.4) from the initial path 5 to the segment {x(w): t — §, < u < t}.

The existence of the asymptotic estimate (2.10) is interesting because we
have no reason to expect an analogous result to hold for classical diffusions.

3. Analysis of the conditioned equation. Proofs of Theorems 2.2
and 2.3. We begin by introducing the basic terminology and machinery of
the Malliavin calculus. Our presentation of this subject is succinct and
assumes the results in [2], Section 2. The reader is referred to Bell [1] (also
Stroock [11]) for a comprehensive introduction to the Malliavin calculus.

Let L: D — L?(Q,R) denote the number operator with domain D C
L?(Q,R), and let {-,-): D X D — L*(Q,R) be an associated bilinear form,
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defined as the unique closed bilinear extension of the following form (which is
denoted by the same symbol):

(fi, fo? = L(f1f2) — F1L(f2) — f2L(f1), fi,f; € D: fif; €D.
See [11] and [1].

Assume Hypotheses H' throughout this section. Consider the stochastic
differential equation (2.5), where F:[a,*) — R?*" is a fixed continuous map.
This equation has a unique (%),. ,-adapted pathwise continuous solution
y e L*(Q,C(~-r,T1,R%) for every 0 < T < . This solution can be con-
structed by the standard Picard iteration scheme (Itd and Nisio [6], Theorem
11; cf. Mohammed [9], pages 36-39). Furthermore, if we write y = (y,,..., y4),
then it follows from the work of Kusuoka and Stroock ([7], Lemma 2.9) that,
for each 1 <i < d and T > a, the process (y,(¢),a <t < T) lies in the class of
Malliavin smooth processes R, introduced in [2], page 79. Let ¢ > a denote a
fixed time satisfying the hypothesis of Theorem 2.2. The Malliavin covariance
matrix associated with the random variable y(¢) is defined to be the random
d X d-matrix.

d
(3.1) C(t) = [<yi(t)’yj(t)>]i,j=1-
Our object is to prove that y(¢) admits a smooth density with respect to

Lebesgue measure on R?. As is well known, it suffices to prove that C(¢) is
a.s. invertible and

(3.2) detC(t) ' € N LY(Q,R)
g=1
(cf. Stroock [11] and Bell [1], Section 2.3, Theorem 2.5).

We begin by deriving a suitably tractable integral representation for C(#).
This will require some further notation. Denote by K™(¢) c C([0, t],R") the
n-dimensional Cameron—Martin space. This is the Hilbert space consisting of
all absolutely continuous paths k: [0,¢] > R" such that k(0) =0 and
JEIE' )? du < . The inner product on K™X(t) is defined by

Ckyy By Yrm) = /O‘kfl(u)-k;(u) du, ky,ky € K™(t),

where the dot (-) denotes the Euclidean inner product on R".
In the sequel we will identify K")(¢) with the following subspace of
C(-r, tl,R"):

{g: ¢eC([-r,t],R"),&(s) =0forall s €[ -r,0],

£ is absolutely continuous on [0, ¢] and ft||§'(s)||2 ds < oo}.
0

This identification gives a continuous linear embedding K™(t) —
C(—r,t],R"). The Cameron-Martin space K‘¥(¢) - C(—r,t],R?) is de-
fined similarly. In view of this embedding, we will consider H,(u, z) as a
continuous linear map H,(u, 2): K@(¢) - R4, for each (u,z) € [0,t] X
C(—r,¢t],R%). Using the identifications K¥(¢) = K‘¥(¢)* and R¢ = R%, we
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let H,(u, z)*: RY > K“(t) represent the corresponding Hilbert space adjoint
of H.(u, 2).

The precise form of the covariance matrix C(¢) in (8.1) is determined by
the action of the map Y: W — y on the subspace K™(¢), where y is the
pathwise solution of (2.5). More specifically, consider the Fréchet smooth map
X: K™(t) » K9(t), v = z, where z solves the equation

dz(s) = {H(s,z) + F(s)v'(s)}ds, a<s<t,
z2(s) =x(s), O<s<a.

Define the map X,: K™(¢) > R? by X, = e,0 X, where e, denotes evalua-
tion at time ¢. Let X/, 1 <i < d, be the ith component of X,. If D denotes
Fréchet differentiation of C! functions on K(¢), then for each o € K"(¢),
we will identify DX/ (o) € K™(¢)*, with its image in K™(¢) under the
canonical isomorphism K™(¢)* = K™)(t). Following the method developed in
[1], Chapter 4, the Malliavin covariance C(¢) corresponding to y(¢) will be
obtained as a stochastic extension of the map B(¢): K™(t) - R%*? defined
by

(34)  [B(t)(v)];; = (DX/(v), DX{(v))kery, v € KM(t).

Our computation of (3.4) will require the following lemma. In the state-
ment of the lemma and its proof, the dot () indicates the unspecified
argument of a function.

(3.3)

LEMMA 3.1. For all v,k € K"X¢), the path DX(v)*k is given by
(3.5) DX(v)*k = [*"F(s)* o (s) ds,

where F(s)* denotes the transpose of the matrix F(s) and o satisfies the
Volterra integral equation

(3.6) o(s) = k'(s) +fst[Hg(u,X(v))*(a(u))]/(s) du, a<s<t.

PrROOF. Let h,v € K)(t) and set z := X(v). Differentiating with respect
to v in equation (3.3), we observe that n:= DX(v)h satisfies the integral
equation

n(s) = [*(H(u,2)n + F(w)k (w)}du, 0<s<t.
a
Thus for p € K@(¢),

(n, PYr@) = Lt{Hg(u, 2)n + F(u)k (u)} - p' () du

- <n,f:H§(u,z)* p'(u) du>

K@)¢)

+ [ W () (F(u)* p'(w) du.
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This gives
t aVv-
<1],p— [ He(u,2)" p'(u) du> = <h[ F(u)* p'(u) du> :
a K)t) a K")(¢)
Defining % = p — [[H,(u, 2)*'(u) du € K‘Y(t) and o == p, we have
(3.7) (DX (v)h, kg, = <h,[“V'F(u)*a(u) du> ,
a K(™M(¢)
where

(3.8) o(s)=k(s)+ ft[Hg(u,z)*(a'(u))]'(s) du, a<s<t.

The nonanticipating property of H implies that the integrand in (3.8) is zero
if u < s. The lemma now follows from (3.7) and (3.8). O

Let {e;,...,e,;} denote the standard orthonormal basis of R¢. Lemma 3.1
implies that [ DX/}(v)]* is the path
(3.9) J* F(u)* oy () du,
a
where

(310)  oy(s) = e +j:[H§(u,z)*a'i(u)]'(s) du, a<s<t.

From (3.9) and (3.10), we deduce the following representation for the matrix
B(t) in (3.4):

(3.11) B(t) = [‘M(s)F(s)F(s)* M(s)" ds,
where M is the d X d matrix-valued function satisfying the equation
(3.12) M(s) =I+ [M(w)[{H,(u,2)" ()} ()] du, as<s<t.

In the above equation, the term [{ Hg(u, 2)*()Y(s)]* is the transpose of the
linear map

R? 5w~ {H,(u,z) (w)](s) € R?

regarded as a d X d matrix with respect to the canonical basis in R?.
Equations (3.11) and (3.12) yield the following integral representation for
the Malliavin covariance C(¢) defined in (3.1).

LEMMA 3.2. Let C(t) be the Malliavin covariance matrix of the solution
y(t) of (2.5). Then

(3.13) C(t) = EZ(S)F(S)F(S)*Z(S)* ds,
where

(3.14) Z(s) =I+fstZ(u)[{Hg(u,y)*(~)}/(s)]* du, as<s<t.
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ProoF. For each w e Q, let {w,);_; € K™(¢) denote the sequence of
piecewise-linear approximations to w defined by

w,(u) =[(j+1) — mu/t]o(jt/m) + [mu/t —Jjle((j + 1)t/m),
for u € Gt /m,(j + Dt/m), j=0,1,2,....m — 1, m > 1.
Then as m — », W,, » W a.s. in C([0, ¢],R") and z,, = X(W,,) -» Y(W) =
y in the space C([0,¢],R?) in L? for every p > 1. Furthermore, it follows
from work of Kusuoka and Stroock [7] (see [2], page 81) that

(3.15) C(t) = lim B()(W,,)

in L'. Now replace z in (8.12) by z,, and denote the corresponding solution
process by M,,. A standard convergence argument shows that M,, —» Z in the
space C([0,t],R?*?) in LP” for every p > 1, where Z is as defined in (3.14).
The result now follows from (3.11) and (3.15). O

We note that in, general, the matrix-valued process Z(s) in (3.14) need not
be invertible for all values of s € [a, t]. This reflects, at an analytic level, the
non-Markovian character of the solution process y in (2.5). For this reason, it
is possible to obtain lower bounds on the integrand in (3.13) only for values of
s close to ¢ [where Z(s) will be invertible]. The next two lemmas will be used
to produce these lower bounds.

LEMMA 3.3. Fix u €[0,¢t] and £ € C((—r, t], R?). Recall that IIHg(u, Ol
denotes the uniform operator norm of the Fréchet derivative H.(u, ¢) €
L(C(~r,u),R%),R?). Then, for all v € R? and a.e. s € [0, t], we have

"[Hg(u, 5)*(0)]/(8)" < (1 Hg(u, £)Iv].
PrOOF. Let 6 € L*([—r,t],R?). Define ¢ € K‘D(¢) by
$(s) = [0(u)du, Osxs<t.
0
Then

[, €0 ()] (5) - 6(5) ds| = K (1, €7 (0), @
(3.16) = lv-Hy(u, £)($)|
< Ioll(| H, (2, €)1)l16]l,
where [|0]|; denotes the L'-norm
61l = jo 6(u)ll du

on L}(0,¢],R?). Define a continuous linear functional u: L2([0, ], R%) - R
by

w(0) = ['[He(w, €)' ()] (s)  6(s) ds,
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for all € L*([0,¢],R?). Since L?([0,¢],R?) is dense in L'(0,t],R?), it
follows from (3.16) that u has a unique continuous linear extension A €
[L}(0, ¢], RD* with

1A= 1l < [ B (e, €)F (0)] ()] < (1 Cae, €))0l
It follows by the duality [ L}([0, ], R)]* = L*(0, t], R?) that [H,(u, £)*(0)]'(s)
is essentially bounded in s € [0, ¢] and
esssup{"[Hﬁ(u, f)*(v)]'(s)": s € [O,t]} =l pll < (1H, (u, &)I)lvl.
Hence the lemma is proved. O
LEmMMA 3.4. Let K: [0,¢] X [0,¢] » R**? be a Borel measurable essen-
tially bounded d X d matrix-valued function with
I Kl == esssup{llK(u,s)l:(u,s) €[0,¢] x[0,¢]}.

Then the matrix-valued integral equation
(3.17) M(s) =1+ [K(u,s)M(u)du, sel0,t],
s

has a unique solution M € L*([0,¢],R%*%). If 0 <t —t, < 1/l Kl|l.), then
for all s € (ty,t), M(s) is invertible and ||M(s)7!| < 2.

The proof of the above lemma is elementary.

Proor oF THEOREM 2.2. Fix ¢ > a and let 6* > 0 be as in the statement
of the theorem. Lemmas 3.3 and 3.4 imply that Z(u)* is invertible for all
u e (t—6*1t)and ||Z(w)* || < 2, where Z is the d X d matrix-valued pro-
cess in (3.14). Let A denote the smallest eigenvalue of the matrix C(¢) in
(3.13). Using (2.6), we obtain

A2 %ftis*ul(u) du > 0.

Thus C(¢) satisfies (3.2) and we conclude that y(¢) has a smooth density with
respect to d-dimensional Lebesgue measure. O

PROOF OF THEOREM 2.3. Since, for each ¢ > 0, the matrix A(¢) is symmet-
ric and nonnegative definite, there exists a unique d X d nonnegative defi-
nite symmetric matrix F(¢) such that A(¢) = F(¢)?. Let T > 0 be given.
Define functions

O(t) =F(Ty+T-1),
U(t,x) =c(Ty+T—t,x),
h(t,x) = (by(Ty + T —t,%),...,b4(To + T — ¢, x))",
forall0 <t < T and x € R%
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Consider the stochastic differential equation
dx®*(t) = h(t,x>2(t)) dt + O(¢) dW(t), s<t<T,
x?(s) =z € R,
where W: [0,T] X Q —» R? is the d-dimensional standard Wiener process.
Denote by C3(R? R) the space of all C*-functions ¢: R% - R, which vanish

at infinity and have all derivatives globally bounded. For each ¢ € C;(R%,R)
define V: [0,T] X R? - R by

V(s,2) = E{qb(xs'Z(T))exp{ [t 2o ()},

for s €[0,T] and z € R Define L, , == Ly, p_, ,. Then the smoothness of
h(t,-), y(¢,-) and the continuity of ¢ imply that V is C! in the first variable,
C” in the second variable and satisfies the forward equation

dV(s, z)
(3.19) Js

(3.18)

+L, ,V(s,2) =0, 0<s<T,

V(T,z) = ¢(2), zeR4

Equation (3.19) is an easy consequence of Itd’s formula and the Markov
property of the process x in (3.18) (cf. Gihman and Skorohod [5], Theorem 5,
page 297). Let v(s, 2, ¢, - ) denote the family of finite Borel measures

exp{/:c,lf(u, x%%(u)) du} dP,

for 0 <s <t, z € R? and any Borel subset B of R% Note that the function V
can be expressed in terms of these measures by the formula

(320)  wv(s,2,t,B) = [
x5%(t)"Y(B)

(321)  V(s,2) = [ &(y)v(s,2,T,dy), 0<s<T,zeR
R
Now let C(s, z, T') denote the Malliavin covariance matrix of x* #(T), for each
0 <s < T. Applying Lemma 3.2 in the context of (3.18) yields the following
integral representation for C(s, z, T'):
(3.22) C(s,2,T) = ['Z2*(u)®(u)O()* 2°*(u)* du,
S
where
22 (u) =T+ [ Z°*(0)h (v, x*(v)) dv, s<us<T.
Here h, denotes the Fréchet derivative of % in the space variable. It is easy
to see that for each s < u < T the matrix Z*?(«) is invertible with inverse

Y **(u) given by the equation

vor(u) =1 [Th(v, %)Y () dv, s<u=<T.
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Since %, is bounded on R* X R¢, it follows from this equation that Y'*?(u) is
uniformly bounded in 0 <s <u < T, z € R?, w € Q. Let N denote a deter-
ministic upper bound for Y*?(u), and let A(s,z,T) denote the smallest
eigenvalue of C(s, z,T'). From (3.22) we obtain
1 .7 1 r+7-5

3.23) A(s,z,T) =2 — Ty,+T—-u)du=— du,
(323) As,2.T) > g [(wa(To+ T -wydu = gz [ 7 “a(u) d
where w,(u) is the smallest eigenvalue of A(w). It follows that for every s < T

there exists an interval (s;, s,) containing s and a deterministic positive
constant & such that

(3.24) inf{A(u,2,T): u € (s1,8;), 2 € R} 2 8.

Using (3.24) and a modification of the proof of Theorem 3.17 in Kusuoka
and Stroock [8], we deduce that the measure »(s, z,T, - ) defined in (3.20) has
a density p(s, z,T, y) for each 0 <s < T, z € R?, with the property that
p(s,z,T,y) is C' in s €(0,T) and C* in (z,y) € R? X R% We may now
write (3.21) in the form

(3.25) V(s,2) = [ #(y)p(s,2,T,y)dy.
R

Now define I': (T,), T, + T) X R¢ x R¢ - R by

(3.26) I'(t,z,y) =p(Ty+T~-1t,2,T,y).

Note that ' is C! in ¢ and C”* in (z, y). We will now show that T is a
fundamental solution for the parabolic equation du/Jdt = L, ,u. First, by an
argument of Kusuoka and Stroock ([8], proof of Theorem 3.17), the inequality
(3.24) implies that

dP(s,z,T,y)
(3.27) sup{ |~ 15 €(8,8),2,y €ER} <
and
(3.28) sup{|L, ,p(s,z,T,y)l: s € (s1,8;), 2,y €R?} <0

for every interval (s;,s,) € (0,7). Then (3.27) enables us to compute
dV(s, z)/ds by differentiation with respect to s under the integral sign in
(3.25). Similarly, by (3.28), we may compute L, ,V(s, z) by applying L, , to
the integrand in (3.25). Using (3.19), we then obtain

p(s,z,T,y)
fRdd’(y){T— + L, ,p(s, z,T,y)} dy =0,

for all ¢ € C5(R%,R), z € R? and s € (0,7). This implies

ip(s,z,T,y) )
S -L, ,p(s,2,T,y),

for all s €(0,T), z,y € R% In view of the definition of T [i.e., (3.26)], the
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above relation immediately gives

(3.29) OB g, Ktz
at ’
for all t € (T, T, +T1, y,z € R¢. Thus T is a fundamental solution for
du/dt = L, ,u, and the first part of Theorem 2.3 is proved.
To prove the hypoellipticity assertion, we note that (2.9) and (3.23) imply
that, for every positive integer q,

lim (¢ = T,)ldet C(To, z,t) ll, =0,
t->Tg

where ||-||, denotes the L_-norm. It now follows from a straightforward
extension of Theorem (8.13) of [8] that /¢ — L, , is hypoelliptic on R™ X R
O

4. Proof of Theorem 2.1. Throughout this section, we assume the
hypotheses and notation of Theorem 2.1. Let ¢ > 0 be arbitrary, choose n to
be the integer such that ¢ € (nr,(n + 1)r] and denote nr by R. Conditioning
(2.1) on F, we denote by C®(¢) the covariance matrix generated by the map
WI[R,t] — y(t), where y is defined by (2.5) with a =R and F(s) =
g(s, x(s — r)), s € [R, t]. According to the result of Section 3,

(41)  CR(t) = fI:Z(s)g(s, x(s —r))g(s, x(s — r)) Z(s)* ds,
where
(42) Z(s) =1+ fstZ(u)[{Hg(u, O] du, Rss<t

The next result enables us to prove Theorem 2.1 by what may be consid-
ered a process of partial integration by parts over the Wiener space.

LEMMA 4.1. Suppose that CE(t) € GL(d) and
(4.3) (det CR(£)) " e M L”.

p=1

Then x(¢) in (2.1) has a C* density with respect to Lebesgue measure on R

PrROOF. Let n > 1 and let h,,..., h, denote arbitrary unit vectors in R
For any C” test function ¢: R? - R,

[E(D(x(£)) (hys ., k) =| E[E(D"¢(2(£)) (s, -, b))
(4.4) ~|E[E(6(2(6)) X1, 15)]|
(4.5) <plE[IXp, ... 51
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where (4.4) is obtained by integrating by parts with respect to the conditioned
Wiener space. Note that X,  , is a multilinear form in CE(#)™! and
random variables obtained by a finite number of applications of the opera-
tions L and ( -, - ) to the map W|[R, t] — y(¢). The hypotheses of the lemma,
together with the fact that H and g have bounded space derivatives of all
orders, imply that E|X,  , | <. Thus (4.5) implies that x(¢) has a C*
density (cf., e.g., [1], Lemma 1.14). O

For the remainder of this section, we let ¢: [0,%) X R? —» R denote the
function introduced in the statement of Theorem 2.1. Let £(#) denote the
process ¢(t + r, x(¢)), t > —r.

In the sequel, we will adopt the following notation regarding the probabil-
ity P(E) of an event E €.#. We shall write

P(E) = o(&")
if
P(E) = o(&")
as ¢ = 0 + for every integer 2 > 1.
The next result plays a key role in our verification of (4.3).

LEmMA 4.2. Suppose that, for some —r <a < b, ¢ satisfies

(4.6) P(fabf(t)2 dt < a) — o(&").
Then
(4.7) P(f::’g(t)z dt < a) = o( ).

The proof of Lemma 4.2 will require the following preliminary result.
LEMMA 4.3. Fix b>a > 0. Let y: [0,0) X Q > R be a measurable

stochastic process such that E sup,_,_,|y(&|” is finite for every positive
integer p. Suppose that y satisfies

P(faby(t)2 dt < e) =o(&h).

Then for every positive constant «,

P(f”{y(t)2 A a}dt < e) — o(e).

a

ProOOF. This result was proved by the authors as Lemma 3 in [2], pages
91-94. We give here another, more elementary proof.
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Let A and B denote, respectively, the sets {s € [a, b]: y(s)?® < a} and
{s €la, b]: y(s)? > a}. Then

P(ja"{y(t)2 A a}dt < a) = P(fAy(t)2 dt + aA(B) < e)
< P(fAy(;:)2 dt < &, ar(B) < e)

=P(faby(t)2 dt < e+ fo(t)2 dt, A(B) < 8/a)

<P, + P,.
Here

P, = P([”y(t)2 dt < &+ fo(t)2 dt, \(B) < g/a, sup y(t)* < 1/%2)

a<t<b

and

p, :=P( sup y(t)2 > 1/\/;).

a<t<b

Note that
P, < P(fby(t)2 dt <e+Ve/a| =o0(e")

by hypothesis.

Using the finite-moment hypothesis on y and applying the Markov—
Chebyshev inequality to the probability P,, we obtain P, = o(&*). This
completes the proof of the lemma. O

ProOF OF LEMMA 4.2. Write g = (g, - g,), where g;, 1 <i <n, are
column d-vectors. Computing £(s) = ¢(s + r, x(s)), s > 0, by Itd’s formula
gives

dE(s) = X V(s +7,2(3)) 8i(5,%(5 ~ ) AWi(5)

+G(s) ds, s>0,

where G is a bounded (%), , ;-adapted real-valued process. We may write

(4.8)

P(fbﬂg(s)2 ds <e| =P, + Py,
a+r
where

p, = P(f::g(sf ds < e,
)y

i=1"atr

b+r

[Vo(s + 7, x(s)) -&gi(s, x(s — r))]2 ds > /18
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and

(f "£(s)’ds < ¢,

a+

n

Z

b+r

[V¢(s+r x(s)) -g:(s, x(s—r))] ds < e1/18).

In view of (4.8), an inequality of Kusuoka and Stroock (cf. [1], Lemma 6.5)
implies that P; = o(&*). Thus it is sufficient to show that P, also has this
property.

Write

ofs) = ¥ [%o(s +7,5(5)) (5, x(s = )]

Then, by (2.2) and (2.3), it follows that a(s) > c¢2(|£(s — r)IP A 8)if [£(s)] < p.
Define

A={se[a+r,b+r]:1&(s)l <p}

and
B:=={se[a+r,b+r]:1£(s)l> p}.
Then
(fb+r§ (s)ds<af a(s)ds<al/18)
< (fbﬂ‘f (s)ds < e, fcz(lf(s—r)lp/\8)ds<81/18)

_ (fb+r§ (s)ds<6‘f ’2(|§(s_r)|1’/\8)ds

a+tr

<el/18 4+ fc2(|§(s -l A 8)ds)

sp(j””g (s)ds < &, j TTe2(1£(s — r)IP A 8)ds < &¥/18 + 026/\(3))

at+r

b+r

However, [b}7¢2%(s)ds < & implies A(B) < &/p®. Thus the preceding proba-
bility is

< P(fb+rcz(|§(s —r)P A8)ds < &'/ + 0288/p2)
a+r

< P(fb(lg(s)llJ A 8)ds < ce'/1®

for some positive constant ¢’ and for small enough &. Assumption (4.6),

Lemma 4.3 and Jensen’s inequality allow us to conclude that the probability

on the right-hand side of the above inequality is o(&*). This implies that
= o(&*), and the proof of Lemma 4.2 is complete. O
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COMPLETION OF THE PROOF OF THEOREM 2.1. Let s, be as defined in
Theorem 2.1(Giv). Fix ¢ > s, + r. Then ¢ € (nr,(n + 1r] for some integer
n > 0. Choose §, so that condition (iv) of the theorem is satisfied. Let A
denote the smallest eigenvalue of C%(¢), where R = nr. By Lemmas 3.3 and
3.4 it follows that Z(u) in (4.2) is invertible a.s. for all u € [(¢ — §,) Vv 0, ¢]
and || Z(x) 71| < 2. It follows from (4.1) and (2.2) that

(4.9) Az i {1€(u = )P A 8} du.
(t—8)V0

We will show that
(%) P(A< &) =o(e").

Since it is easy to check that () implies (4.3), the theorem will then follow
from Lemma 4.1.

We break the verification of (%) into the following exhaustive cases:

Case A: n = 0. (1) ¢ > §,. By hypothesis (iv) of the theorem, we have

o(u + r,’r;(u))2 du > 0.

t—r
4.10
(4.10) I,
It follows from the above inequality and the continuity of ¢ and 7 that
t
(4.11) J© {le(u=1)IP A 8}du > 0.
t- 8,
From (4.11) and (4.9) we have

(4.12) P(A <€) =0,
for sufficiently small £ > 0. Thus (%) trivially holds for this case.
(i1 t < 8,. Then from (4.9)
(4.13) Az 3 [Hlg(u,n(u )P A 8} du
0

a.s. Now, by hypothesis, ¢t — r > s,. Hence [*,’¢p(u + r,n(w))?>du > 0. To-
gether with (4.13), this implies (4.12), and (%) follows as before.
Case B: n > 1. (1) ¢t — §, > nr. Then by hypothesis (iv) of the theorem,

(4.14) ft_(nH)r é(u +r,m(u))’ du > 0.
t—8y—(n+1Dr

Using Lemma 4.2 we now propagate this condition forward through (n + 1)
delay periods so as to obtain

(4.15) P(ftt_slg(u_,)pduq — o(&h).
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Applying Lemma 4.3, Jensen’s inequality and (4.9) to the above inequality,
we obtain ().
(i) (n — Dr < ¢ — §, < nr. By hypothesis (iv), we either have

(4.16) [° é(u+rm(u)’ du>0
t—38g—nr

or

(4.17) ft—(nH)rd)(u +r,m(u))? du > 0.

-r

In case (4.16) holds, we can propagate it forward through n delay periods
using Lemma 4.2. Together with Lemma 4.3, this gives

P(fm (1€(u - r)I® A 8)du < g) — o(*).

t- 8,

Thus
! —r 2 u E|l =0 6‘k .
(4.18) P(ft_ﬁo{lé(u )P A 8} du < ) (e*)

Hence by Jensen’s inequality and (4.9), (%) holds. On the other hand, if
(4.17) holds, then a similar propagation argument through (n + 1) delay
periods gives

(4.19) P(j:r{lg(u —r)* A8} du < a) =o(&").

This implies (4.18) and (%) holds in this case too.
The proof of Theorem 2.1 is now complete. O

In conclusion, we note that the conditioning argument used above leads to
a very simple proof of the existence of densities for the solution of (2.1) in the
special case where gg* is uniformly positive definite. Consider first the
zero-drift version of the equation

dz(t) = g(t,z(t —r))dW(t), ¢>0,

and assume that gg* > 81, for some 8 > 0. Then, conditioned on %,,, the
segment {z(¢), mr <t < (m + 1)r} has a Gaussian distribution, with mean
z(mr) and a nondegenerate covariance matrix

f,;,g(s’z(s —r))g(s,2(s —r))" ds.

Thus z(¢) can be shown to have a smooth density by integrating the condi-
tional Gaussian density. Furthermore, by the Girsanov theorem, the random
variable x(¢) in (2.1) has a distribution equivalent to that of z(¢). It follows
that x(¢) has a positive density with respect to Lebesgue measure on R?
(although it is not clear that the density is smooth).
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Since Theorem 2.1 allows the matrix function gg* to have points of
degeneracy, the drift term H(¢, x) in (2.1) might assume values which lie
outside the range of the matrix g(¢, x(¢ — r)). Thus the above application of
the Girsanov theorem is no longer valid. In this situation the Malliavin
calculus appears to be the only technique currently available for establishing
the existence of smooth densities.
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