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THE LAW OF LARGE NUMBERS FOR FREE IDENTICALLY
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Indiana University

Let X1,X2, . . . be a sequence of free identically distributed random

variables, with common distribution µ. It was shown by Lindsay and Pata,

in a more general context, that a sufficient condition for the weak law of

large numbers to hold for the sequence X1,X2, . . . is that

lim
t→∞

tµ({x: |x| > t}) = 0.

We show that this condition is necessary as well as sufficient. Even though

the condition is identical with the corresponding one for commuting inde-

pendent variables, the proof of the result uses the analytical techniques of

free convolution theory, and it is quite different from the proof of the com-

mutative theorem due to Kolmogorov [cf. Feller (1971). An Introduction to

Probability Theory and Its Applications. Wiley, New York].

1. Introduction. The basic object of noncommutative probability theory

is a replacement of the classical concept of probability space. Thus, a non-

commutative probability space is a pair (A,w), where A is a unital complex

algebra and w is a linear functional on A satisfying w(1) = 1. The algebra

A corresponds in the classical case to some algebra of random variables with

finite moments of all orders, and w corresponds to integration against the

probability measure.

A specifically noncommutative analogue of independence, based on free

products, was introduced by Voiculescu (1985). Namely, he called a family of

unital subalgebras {Ai}i∈I ⊂ A free algebras (relative to w) if w(X1 · · ·Xn) =
0 whenever w(Xj) = 0, Xj ∈ Aij and i1 6= i2 6= · · · 6= in. If {Ai}i∈I ⊂ A

are free algebras and Xi ∈ Ai, then the variables {Xi}i∈I are said to be free.

A general exposition of free probability theory can be found in Voiculescu,

Dykema and Nica (1992).

In order to deal with unbounded random variables which do not necessarily

have finite moments, we need to consider a particular class of probability

spaces. A probability space (A,w) is called a tracial W∗-probability space if

A is a von Neumann algebra and w is a normal faithful trace [Voiculescu,

Dykema and Nica (1992)]. Note that the von Neumann algebra A is a finite

algebra in this case.

For the remainder of the Introduction, we will assume that (A,w) is a

tracial W∗-probability space. We recall that a self-adjoint operator X is said
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to be affiliated with A if u(X) ∈ A for any bounded Borel function on the real

line R. A self-adjoint operator affiliated with A will also be called a random

variable. The notion of freeness extends naturally to this context. Thus, if

{Ai}i∈I ⊂ A is a free family of unital von Neumann subalgebras and Xi is

a self-adjoint operator affiliated with Ai for each i ∈ I, then the variables

{Xi}i∈I will be said to be free.

Given a self-adjoint operator X affiliated with A, the distribution of X is

the unique probability measure µX on R satisfying

w(u(X)) =
∫ ∞

−∞
u(t)dµX(t)

for every Borel bounded function u defined on R.

A sequence of random variables {Xn}
∞
n=1 affiliated with A is said to con-

verge in distribution to a probability measure ν if µXn
converges to ν weakly.

We can now state the main result of this paper.

Theorem 1. Let {Xn}
∞
n=1 be a free sequence of random variables with com-

mon distribution µ. The following conditions are equivalent:

(i) There exist real constants M1,M2, . . . such that the sequence

X1 + · · · +Xn

n
−Mn

converges to the Dirac measure δ0 at zero.

(ii) The measure µ satisfies

lim
t→∞

tµ({x: |x| > t}) = 0.

Moreover if (ii) is satisfied, the constants Mn in (i) can be chosen to be

Mn =
∫ n

−n
t dµ(t).

The implication (ii) ⇒ (i) was proved by Lindsay and Pata (1994), but a

new proof based on the techniques of this paper will be provided.

The main tool used here is the free convolution of probability measures

and the analytic apparatus used to calculate it. The classical convolution of

probability measures on R is related to the addition of independent random

variables. In an analogous manner, one can define a free convolution related to

the addition of free random variables. If µ and ν are probability distributions

on R and {X,Y} is a free pair of random variables with µX = µ and µY = ν,

then the free convolution µ� ν of µ and ν is simply the distribution of the ran-

dom variable X+Y. This convolution was first defined by Voiculescu (1986) for

compactly supported measures and then extended by Maassen (1992) to mea-

sures with finite variance and by Bercovici and Voiculescu (1993) to arbitrary

measures.
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2. Analytic theory of free additive convolution. The calculation of

free additive convolution is based on an analogue of the Fourier transform first

introduced by Voiculescu (1986). We need the version of this apparatus which

is suitable for the convolution of arbitrary probability measures [Bercovici and

Voiculescu (1993)].

First, some notation. Let C denote the complex field, C
+ and C

− the upper

and lower half plane, respectively, and set

Γα = {z = x+ iy ∈ C: y > 0 and |x| < αy},

Γα,β = {z ∈ Γα: y > β},

where α and β are positive numbers.

Given a probability measure µ on R, its Cauchy transform Gµ: C
+ → C

− is

defined as

Gµ(z) =
∫ +∞

−∞

1

z− t
dµ(t), z ∈ C

+.

The Cauchy transform is analytic and

lim
|z|→∞
z∈Γα

zGµ(z) = 1

for every α > 0. The reciprocal Fµ(z) = 1/Gµ(z) maps C
+ to C

+ and

lim
|z|→∞
z∈Γα

Fµ(z)

z
= 1

for every α > 0. By the Nevanlinna representation, there exist a ∈ R and a

finite positive measure σ on R such that

(†) Fµ(z) = a+ z+
∫ +∞

−∞

1 + tz

t− z
dσ(t), z ∈ C

+.

It is also clear from the above representation formula that

=Fµ(z) ≥ =z, z ∈ C
+.

For every α > 0 there exists β > 0 such that Fµ has an inverse (relative

to composition) F−1
µ defined on Γα,β. The φ -function of µ, φµ: Γα,β → C

−, is

defined as

φµ(z) = F−1
µ (z)− z, z ∈ Γα,β.

The main feature of the φ -functions is that, given two probability measures

µ1 and µ2, we have φµ = φµ1
+ φµ2

if µ = µ1 �µ2. Thus the φ -function is

the noncommutative analogue of the logarithm of the characteristic function

in classical probability [see also Nica (1995)].

The dependence of φµ on µ is continuous, as shown by Bercovici and

Voiculescu [(1993), Proposition 5.7]. We need a somewhat sharper result

which we state and prove below.
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Proposition 1. Let {µn}
∞
n=1 be a sequence of probability measures on R.

The following assertions are equivalent:

(i) The sequence {µn}
∞
n=1 converges weakly to a probability measure µ.

(ii) There exist α, β > 0 such that the sequence {φµn
}∞n=1 converges uni-

formly on the compact subsets of Γα,β to a function φ, and φµn
(z) = o(|z|)

uniformly in n as z → ∞, z ∈ Γα,β.

(iii) There exist α′,β′ > 0 such that the functions φµn
are defined on Γα′,β′ for

every n, limn→∞ φµn
(iy) exists for every y > β′, and φµn

(iy) = o(y) uniformly

in n as y → ∞.

Moreover, if (i) and (ii) are satisfied, we have that φ = φµ in Γα,β.

Proof. The equivalence (i)⇔(ii) and the last assertion are in Bercovici and

Voiculescu (1993). It is apparent that (ii)⇒(iii), so we only need to prove that

(iii)⇒(i). Assume indeed that (iii) is satisfied. There is no loss of generality in

assuming β′ > 1. Let y > β′ and define

ωn = F−1
µn
(iy) = iy+ φµn

(iy) = iy+ ξn(y)+ iηn(y),

where ξn(y) = <φµn
(iy) and ηn(y) = =φµn

(iy). Then ξn(y), ηn(y) = o(y)

uniformly in n as y → ∞. Thus

Fµn
(ωn) = iy = ωn + o(y)

uniformly in n as y → ∞, from which it follows that ωnGµn
(ωn) − 1 = o(1)

uniformly in n as y → ∞. Taking the real part we have

−<(ωnGµn
(ωn)− 1) = Jn(y)−In(y),

where

Jn(y) =
∫ +∞

−∞

t2

(t− ξn(y))2 + (y+ ηn(y))2
dµn(t),

In(y) =
∫ +∞

−∞

tξn(y)

(t− ξn(y))2 + (y+ ηn(y))2
dµn(t).

Let N > 0 be large enough such that for t ≥ y > N,

|t− ξn(y)| ≥ |t| − |ξn(y)| ≥ |t| −
y

2
≥

|t|
2

,

|y+ ηn(y)| ≥ y− |ηn(y)| ≥
y

2

for every n. Then

|In(y)| ≤
∫

IN

|tξn(y)|
(t− ξn(y))2 + (y+ ηn(y))2

dµn(t)+ 4

∫

∆N

|tξn(y)|
t2 + y2

dµn(t)

≤
4N |ξn(y)|

y2
+

2 |ξn(y)|
y

= o(1)
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as y → ∞. Here we used the fact that the function g(t) = |t|/(y2+t2) achieves

its maximum value for t = y. Moreover observe that for y large enough and

t > 1,

|t− ξn(y)| ≤ 2t,

|y+ ηn(y)| ≤ 2y

for every n. For such values of y,

−<(ωnGµn
(ωn)− 1)+In(y) = Jn(y)

≥
1

4

∫

{t: |t|>y}

t2

t2 + y2
dµn

≥
1

8
µn({t: |t| > y}),

which implies the tightness of {µn}
∞
n=1. Let µ be a weak cluster point of

{µn}
∞
n=1. Then there exists a subsequence {µnj

}∞j=1 which converges weakly

to µ. Using (i)⇒(iii), φµ(iy) = limj→∞ φµnj
(iy) for all y > β′. Since {φµnj

}∞j=1

is a normal family, we may assume, dropping to a subsequence, that φµnj
con-

verges uniformly on the compact subsets of Γα′,β′ to an analytic function φ.

By the identity theorem φ = φµ on Γα′,β′ . Hence φµ is uniquely determined

and therefore so is µ. Thus µ is the weak limit of {µn}
∞
n=1. 2

3. Proof of the main result. First, we would like to formulate the the-

orem in terms of free convolutions rather than random variables. To do this,

observe that given a self-adjoint random variable X affiliated with some W∗-

tracial probability space, and a scalar c > 0, we have

µcX = Dc µX,

where the dilation Dc of a measure µ is defined by Dc µ(B) = µ(c−1B) for

every Borel subset B ⊂ R. This relation can be translated into

φµcX
(z) = cφµX

(
z

c

)

at the level of φ -functions. Our result can now be restated as follows.

Theorem 1′. Let µ be a probability measure on R. The following conditions

are equivalent:

(i) There exist real constants M1,M2, . . . such that the sequence of measures

{νn}
∞
n=1 converges weakly to δ0, where

νn = D1/nµ� · · · �D1/nµ
︸ ︷︷ ︸

n times

� δ−Mn
.

(ii) The measure µ satisfies

lim
t→∞

tµ({x: |x| > t}) = 0.
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Moreover if (ii) is satisfied, the constants Mn in (i) can be chosen to be

Mn =
∫ n

−n
t dµ(t).

We first establish some preparatory lemmas. The following result is related

to Proposition 4.5 in Bercovici and Voiculescu (1993).

Lemma 2. Let µ be a probability measure on R. Given a truncated cone

Γα,β, there exists a truncated cone Γα′,β′ such that Fµ(Γα′,β′) ⊂ Γα,β.

Proof. Fix a number α′ ∈ (0, 1) such that

q = tan−1(α′) ≤ 1
2

tan−1(α),

and choose β′ > 0 so large that

|Fµ(z)− z| ≤ sin(q) |z|

for =z > β′ and

β′ >
β

1 − α′ .

This is possible because Fµ(z)/z → 1 as |z| → ∞, z ∈ Γα′ . Now the disk

Dz = {w: |w− z| < sin(q) |z|}

is easily seen to be contained in Γα,β if z ∈ Γα′,β′ [to see this one must just

consider the extreme cases z = β′(i±α′)]. The lemma follows because Fµ(z) ∈
Dz for z ∈ Γα′,β′ . 2

In the sequel we will use the following notation. For y ≥ 0, we denote

Iy = [−y,y] and ∆y = (−∞,−y) ∪ (y,+∞).

Lemma 3. Let µ be a probability measure on R satisfying condition (i) of

Theorem 1′. Then

lim
y→∞

(=Fµ(iy)− y) = 0.

Proof. By Proposition 1(ii), weak convergence of νn to δ0 implies that

there exist α0,β0 > 0 such that φνn(z) converges to zero uniformly on the

compact subsets of Γα0,β0
. However, φνn(z) = φµ(nz)−Mn. In particular

(∗) lim
n→∞

=φνn(z) = lim
n→∞

=φµ(nz) = 0,

uniformly on the compact subsets of Γα0,β0
. By Lemma 2, there exist positive

numbers α2,α3,β2,β3 (with α0 > α2 and β0 < β2) such that Fµ has an inverse

on Γα2,β2
, and Γα0,β0

⊃ Γα2,β2
⊃ Fµ(Γα3,β3

). Therefore for any z ∈ Γα3,β3
it

follows that

Fµ(z) = z− φµ(Fµ(z)).
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In particular, defining α1,β1 such that α0 > α1 > α2 and β0 < β1 < β2,

relation (∗) holds for every z in the compact set

K = Γα1,β1
∩ {ω = ξ+ iη: η ≤ 2β1}.

Since

∞⋃

n=1

nK = Γα1,β1
,

it is immediate now that

lim
|z|→∞
z∈Γα1

=φµ(z) = 0.

Since Fµ(z)/z → 1 as |z| → ∞, z = x+iy ∈ Γα, we conclude that |Fµ(iy)| → ∞
as y → ∞, and hence

lim
y→+∞

=φµ(Fµ(iy)) = 0.

The lemma follows because

=Fµ(iy)− y = −=φµ(Fµ(iy))

for sufficiently large y. 2

Parts (ii) and (iii) of the following lemma are well known. For the reader’s

convenience we will provide a proof of (ii).

Lemma 4. Let σ be a finite positive measure on R such that

limy→∞ yσ(∆y) = 0. Then the following hold:

(i) lim
y→∞

y
√
y

∫ +∞

−∞

|t|
y2 + t2

dσ(t) = 0;

(ii) lim
y→∞

1

log(y)

∫

Iy

|t|dσ(t) = 0;

(iii) lim
y→∞

1

yk

∫

Iy

|t|k+1 dσ(t) = 0, k > 0.

Proof. In order to prove (i) let us set

fy(t) =









y
√
y |t|

y2 + t2
, if t ∈ [−√

y,
√
y],

0, otherwise.

Then limy→∞ fy(t) = 0 for every t ∈ R, and for every y > 1 we have

|fy(t)| ≤
y2

y2 + |y|
≤ 1 ∈ L1(σ).



460 H. BERCOVICI AND V. PATA

Indeed, the function g(t) = |t|/(y2 + t2) is even and increasing for t ∈ [0,
√
y]

and y > 1. The Lebesgue dominated convergence theorem implies that

lim
y→∞

∫ +∞

−∞
fy(t)dσ(t) = 0.

The result now follows because

y
√
y

∫ +∞

−∞

|t|
y2 + t2

dσ(t) =
∫ +∞

−∞
fy(t)dσ(t)+ y

√
y

∫

∆√
y

|t|
y2 + t2

dσ(t)

and

y
√
y

∫

∆√
y

|t|
y2 + t2

dσ(t) ≤
1

2

√
yσ(∆√

y).

To prove (ii) we integrate by parts. At all continuity points of the function

t 7→ σ(∆y) we have
∫

Iy

|t|dσ(t) = −yσ(∆y)+
∫ y

0
σ(∆t)dt.

Thus, for y > 1,

1

log(y)

∫

Iy

|t|dσ(t) ≤
yσ(∆y)

log(y)
+

1

log(y)

∫ y

0
σ(∆t)dt.

It is clear that (yσ(∆y))/ log(y) = o(1) as y → ∞. Select « > 0 and choose

N > 0 large enough such that tσ(∆t) < « for t ≥ N. Then, as y → ∞,

1

log(y)

∫ y

0
σ(∆t)dt =

1

log(y)

∫ N

0
σ(∆t)dt+

1

log(y)

∫ y

N
σ(∆t)dt

≤
Nσ(R)

log(y)
+

1

log(y)

∫ y

N

«

t
dt

= «+ o(1),

and this implies the result. 2

We will use the notation My =
∫

Iy
t dµ(t) even when y is not an integer.

Lemma 5. Let µ be a probability measure on R such that limy→∞ yµ(∆y)=
0. Then Fµ(iy) = iy−My + o(1) as y → ∞.

Proof. We will prove the estimate

Gµ(iy) =
1

iy
−

My

y2
+

1

y2
o(1)

as y → ∞, which yields

Fµ(iy) = iy

(

1 +
My + o(1)

iy

)−1

= iy−My + o(1)
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as y → ∞, as desired. We can estimate separately the real and the imaginary

parts of Gµ(iy). For the real part we have

<Gµ(iy) =
∫ +∞

−∞

−t

y2 + t2
dµ(t)

=
∫

Iy

−t

y2 + t2
dµ(t)+

∫

∆y

−t

y2 + t2
dµ(t)

= −
My

y2
+

∫

Iy

t3

y2(y2 + t2)
dµ(t)+

∫

∆y

−t

y2 + t2
dµ(t).

By Lemma 4(iii),

∣
∣
∣
∣

∫

Iy

t3

y2(y2 + t2)
dµ(t)+

∫

∆y

−t

y2 + t2
dµ(t)

∣
∣
∣
∣

≤
∫

Iy

|t|3

y2(y2 + t2)
dµ(t)+

∫

∆y

|t|
y2 + t2

dµ(t)

≤
1

y4

∫

Iy

|t|3 dµ(t)+
1

2y
µ(∆y)

=
1

y2
o(1)

as y → ∞. Finally, for the imaginary part,

=Gµ(iy) =
∫ +∞

−∞

−y

y2 + t2
dµ(t)

= −
1

y
+

1

y

∫ +∞

−∞

t2

y2 + t2
dµ(t)

= −
1

y
+

1

y

∫

Iy

t2

y2 + t2
dµ(t)+

1

y

∫

∆y

t2

y2 + t2
dµ(t).

Using again Lemma 4(iii),

1

y

∫

Iy

t2

y2 + t2
dµ(t)+

1

y

∫

∆y

t2

y2 + t2
dµ(t)

≤
1

y3

∫

Iy

t2 dµ(t)+
1

2y
µ(∆y)

=
1

y2
o(1)

as y → ∞. 2
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Lemma 6. Let µ be a probability measure on R such that limy→∞ yµ(∆y) =
0 and let z ∈ Γ1/4. Then

d

dz
Fµ(z) = 1 +

1
√
|z|

o(1)

as |z| → ∞ in Γ1/4.

Proof. The Nevanlinna representation (†) of Fµ(z) yields for y > 0,

=Fµ(iy) = y+ η(y),

with

η(y) =
∫ +∞

−∞

y(1 + t2)

y2 + t2
dσ(t).

By Lemma 5, η(y) = o(1) as y → ∞. Observe that, for |t| ≥ y > 0,

yt2

y2 + t2
≥

1

2
y,

and hence

η(y) ≥
∫ +∞

−∞

yt2

y2 + t2
dσ(t) ≥

∫

∆y

yt2

y2 + t2
dσ(t) ≥

1

2
yσ(∆y).

Therefore yσ(∆y) = o(1) as y → ∞. Again by the Nevanlinna representa-

tion (†) we get

d

dz
Fµ(z) = 1 +

∫ +∞

−∞

1 + t2

(z− t)2
dσ(t).

Now for z = x+ iy ∈ Γ1/4 we have |x| < y/4, and hence

∣
∣
∣
∣

∫ +∞

−∞

1 + t2

(z− t)2
dσ(t)

∣
∣
∣
∣
≤

∫ +∞

−∞

1 + t2

(x− t)2 + y2
dσ(t)

≤
∫ +∞

−∞

1 + t2

t2 + y2 − (|t|y)/2
dσ(t)

≤ 2

∫ +∞

−∞

1 + t2

t2 + y2
dσ(t).

Furthermore, notice that

∫

I√y

1 + t2

t2 + y2
dσ(t) ≤

1 + y

y+ y2
σ(R) =

1

y
σ(R) =

1
√
y
o(1)

as y → ∞ [here we used the fact that the function r(t) = (1 + t2)/(t2 + y2) is

even, and increasing for t > 0, y > 1] and

∫

∆√
y

1 + t2

t2 + y2
dσ(t) ≤ σ(∆√

y) =
1
√
y
o(1)
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as y → ∞ by the first observation. Since y ≤ |z| < (
√

17/4)y for z ∈ Γ1/4, we

get the desired estimate. 2

Lemma 7. Let µ be a probability measure on R such that limy→∞ yµ(∆y) =
0. Then φµ(iy) = My + o(1) as y → ∞.

Proof. By Lemma 5, Fµ(iy) = iy − My + h(y), with limy→∞ h(y) = 0.

Since by Lemma 4(ii) My = o(log(y)), it follows that Fµ(iy) ∈ Γ1/4 for y large

enough. Thus for y large enough,

F−1
µ (Fµ(iy)) = iy = F−1

µ (iy−My + h(y)).

By Lemma 6 and since F−1
µ (z) = z+ o(|z|) as |z| → ∞, z ∈ Γα, it follows that

d

dz
F−1

µ (z) = 1 +
k(z)
√
|z|

with k(z) = o(1) as |z| → ∞ in Γα if α < 1/4. Therefore

F−1
µ (iy−My + h(y))−F−1

µ (iy) = −My + h(y)+
∫

γ

k(ω)
√
|ω|

dω,

where γ is the segment joining the points iy and iy−My + h(y). We get that
∣
∣
∣
∣

∫

γ

k(ω)
√
|ω|

dω

∣
∣
∣
∣
≤ length(γ) sup

ω∈γ

k(ω)
√
|ω|

≤ (My + |h(y)|) sup
ω∈γ

k(ω)
√
|ω|

=
(My + o(1))

√
y

o(1)

= o(1)

as y → ∞. Hence

φµ(iy) = F−1
µ (iy)− iy

= F−1
µ (iy−My + h(y))+My − iy+ o(1)

= My + o(1)

as y → ∞, which concludes the proof. 2

We are now ready to prove our main result.

Proof of Theorem 1′(i)⇒(ii). Assume that µ satisfies condition (i) of the

theorem. The Nevanlinna representation (†) of Fµ(z) yields for y > 0,

=Fµ(iy) = y+ η(y),

<Fµ(iy) = a+ ξ(y),
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with η(y) as in Lemma 6, and

ξ(y) =
∫ +∞

−∞

(1 − y2)t

y2 + t2
dσ(t).

By Lemma 3, η(y) = o(1) as y → ∞, and the same argument used in Lemma 6

shows that yσ(∆y) = o(1) as y → ∞. This estimate along with Lemma 4(i)

allows us to conclude that ξ(y) = o(
√
y) as y → ∞. Indeed

|ξ(y)|
√
y

≤ y
√
y

∫ +∞

−∞

|t|
y2 + t2

dσ(t)

for y > 1. We can now estimate the imaginary part of Gµ as follows:

=Gµ(iy) =
−=Fµ(iy)

|Fµ(iy)|2

=
−y+ o(1)

(y+ o(1))2 + (o(
√
y))2

=
−y+ o(1)

y2 + o(y)

= −
1

y
+

1

y2
o(1)

as y → ∞. Since

=Gµ(iy)+
1

y
=

∫ +∞

−∞

t2

y(y2 + t2)
dµ(t),

we have

∫ +∞

−∞

yt2

y2 + t2
dµ(t) = o(1).

Therefore, by the argument applied in Lemma 6 to σ,

lim
y→∞

yµ(∆y) = 0,

as desired.

(ii)⇒(i). Suppose that µ satisfies condition (ii) of the theorem. We have

φνn(z) = φµ(nz)−Mn,

where the νn are defined as in condition (i) of the theorem. Notice that the

functions φνn are defined on a certain truncated cone Γα,β for every n. By

Lemma 7, for every fixed y > β,

φνn(iy) = Mny −Mn + o(1)
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as n → ∞ or y → ∞. Assuming without loss of generality that β > 1, the

argument used in Lemma 4 gives the following estimate:

|Mny −Mn| ≤ nyµ(∆ny)+ nµ(∆n)+
∫ ny

n
µ(∆t)dµ(t)

≤ nyµ(∆ny)+ nµ(∆n)+ sup
t∈[n,ny]

tµ(∆t)

∫ ny

n

1

t
dµ(t)

= nyµ(∆ny)+ nµ(∆n)+ sup
t∈[n,ny]

tµ(∆t) log(y)

= o(1)

as n → ∞. Moreover, denoting k = supt≥0 tµ(∆t), the above estimate leads

also to

|Mny −Mn| ≤ 2k+ k log(y)

for every n and every y > β. Therefore

lim
n→∞

φνn(iy) = 0.

Moreover

lim sup
y→∞

∣
∣
∣
∣

φνn(iy)

y

∣
∣
∣
∣
≤ lim sup

y→∞

k+ k log(y)

y
= 0

uniformly as n → ∞. Hence by Proposition 1(iii), νn converges weakly to a

measure ν and φν(iy) = 0 for every y > β. The identity theorem then implies

that φν(z) = 0 for every z ∈ Γα,β, which in turn implies that ν = δ0. 2

REFERENCES

Bercovici, H. and Voiculescu, D. (1993). Free convolution of measures with unbounded support.

Indiana U. Math. J. 42 733–773.

Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Wiley, New York.

Lindsay, J. M. and Pata, V. (1994). Some weak laws of large numbers in non-commutative prob-

ability. Preprint.

Maassen, H. (1992). Addition of freely independent random variables. J. Funct. Anal. 106 409–

438.

Nica, A. (1995). A one-parameter family of transforms linearizing convolution laws for probability

distributions. Comm. Math. Phys. To appear.

Voiculescu, D. (1985). Symmetries of some reduced free C∗-algebras. Operator Algebras and

Their Connections with Topology and Ergodic Theory. Lecture Notes in Math. 1132.

Springer, New York.

Voiculescu, D. (1986). Addition of certain noncommuting random variables. J. Funct. Anal. 66

323–346.

Voiculescu, D., Dykema, K. and Nica, A. (1992). Free Random Variables. CRM Monograph Series

1. Amer. Math. Soc., Providence, RI.

Department of Mathematics

Indiana University

Bloomington, Indiana 47405

E-mail: bercovic@indiana.edu


