The Annals of Probability
1996, Vol. 24, No. 1, 438-452

SMALL GAPS IN THE RANGE OF STABLE PROCESSES

By T. S. MounTFORD! AND S. C. PORT

University of California, Los Angeles

We examine the structure of the range of a stable process with drift
near its initial position and derive an integral test to determine the rate of
growth of the size of intervals in the complement of the range. This
integral test depends on the random number of excursions that the
process makes away from the initial point.

0. Introduction. We consider processes
X, = bt +X,,

where X is a strictly stable process with index « € (0,1), X, = X, = 0 and b
is a strictly positive constant; that is to say, X is a stable process with drift.
We examine the structure of the range of X close to the origin. The range of
X has positive Lebesgue measure [see, e.g., Kesten (1969) or Bretagnolle
(1971)]. However, if the Lévy measure puts infinite mass on (0, «), the range
is a.s. nowhere dense [see, e.g., Mountford and Port (1991)]. Therefore there
must be open intervals in the complement of the range arbitrarily close to the
origin both to the right and left of the origin. This paper answers the question
of how large these intervals can be as we approach the origin.

THEOREM 0.1. Let X be a stable process with positive drift and Lévy
measure which puts mass on (0,°). Let h be a continuous, increasing function
satisfying h(0) = 0. Define the event

A, = {there exists x € (0,27") so that (Range (X)) N [x,x + h(x)] = &}.

Given that X makes r excursions from the origin, the event N, A, has
probability 0 or 1 according to whether

fmh(y)*“rdy

is finite or infinite.

Here the number of excursions is equal to the number of times the process
leaves the origin, which is equal to the number of returns to the origin plus 1.
It should be noted that as % is continuous the event A, is equal to the union
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over rational numbers ¢ less than 27" of the events A(q) = {[q, ¢ + h(g)] N
(Range (X)) = J}. Consequently no measurability problems arise.

In the last section we will show that an excursion of X, conditioned to
return to the origin, is the time reversal of an excursion of the dual of X, also
conditioned to return to the origin. This and the proof of Theorem 0.1 makes
the following immediate.

THEOREM 0.2. Let X and h be as in Theorem 0.1. Define the event
B, = {there existsx € (—27",0) so that Range(X) N [x — h(—x), x] = &}

Given that X makes r excursions from the origin, the probability of N, B, is
equal to 0 or 1 according to whether

[ H " ay

is finite or infinite. If r = 1, then there must be an interval (—y,0) which is
disjoint from the range of X.

REMARK. This result is uninteresting if X has no jumps to the left.

This work follows previous work by Erickson (1983) and Mountford, O’'Hara
and Port (1995) examining large-scale structures of gaps.

The paper is organized as follows: Section 1 gathers some bounds on
probabilities; these bounds show that, for small x, outside of a set of small
probability, X enters the interval [x,2x] at x and leaves through 2x and
does not return to the interval before hitting the origin; Section 2 establishes
inequalities for the probability of a certain sized gap in the range of r
excursions from 0, a given distance from the origin; Section 3 completes the
proof of Theorem 0.1. The last section is devoted to showing that the time
reversal of an excursion of X from 0 which returns to the origin is equal in
law to the law of such an excursion from the origin by the dual of X. Theorem
0.2 is immediate given this result and the proof of Theorem 0.1, and no
further comment is required. The rest of this section is spent introducing
terms and giving definitions.

Definitions. For a process Y and a time interval I, R(Y, I) or Y(I) will
denote the closure of the set {x: x = Y, for some s € I}.

If the interval I = [0, ), then we drop I from the notation.

An interval (p,q) is a gap for a process Y if (p,q) N R(Y) = and
q < sup, Y,. The interval is called a gap for a family of processes {Y '} if it is a
gap for each Y. Given a function %4 on an interval containing 0 and a family
of processes, an interval (p, g) is an h-gap if it is a gap and q — p > h(p).
Given a process or family of processes {Y’} and an increasing, continuous
function %, we say that A is a.s. a gap function for {Y'} if, for each x > 0,
there exists an A-gap c [0, x], with probability 1. We will use the phrase A is
a.s. not a gap function in a similar manner.
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An interval (p,q), p # q, is called a jump at time t for Y if Y,_=p,
Y, = q. The interval is a jump of Y if it is a jump of Y for some ¢. Obviously,
given processes Y' an interval (p, q) can be a gap only if there are jumps
(p;, q,) for each Y, so that (p, q) < (p,, q,) for each i. A jump or gap (p, q) is
said to be in interval I if p € L.

Given a process Y, the process Y* will represent the process Y killed on
hitting (— o, 0].

Given a process Y (X by default), T, will denote the first hitting time of
the set A, and T} will denote the first hitting time of A by the process Y *;
Q4 (resp., @%) will denote the quitting time of A by the process Y (resp., Y*);
S, (resp., S%) will denote the first time after T, (resp., ) that the process
leaves A.

For simplicity, throughout the paper we will assume that b, the drift of the
process X, is equal to 1.

1. We use potential theory to establish some probability bounds.

LEMMA 1.1. There exists K < «© such that, for all x small and positive,
P[Ty, <T, <] <Kx'~“

ProOOF. Define
px=PO[Tx<TOSOO]’ qx=PO[TO<TxSOO]'

Let L, be the (random) number of times the point y is hit for strictly positive
times. Then

g(x) :E[Lx] :pr[LxlTx < TO] + qu[LxlTO < Tx]

=p.(1+g(0-)) +q.8(x)
[see Fitzsimmons and Port (1989)]. Similarly,
g(0—-)=E(Ly) =pr[LO|Tx < To] + qu[LolT0 < Tx]

=p.(8(—x)) +q,(1+g(0-)).
Solving, we obtain

_8(0-)A+g(0-)) —g(x)g(—%)
(1+8(0-))" ~g(x)g(~x)
Port (1989) gives the bounds
18(0—) —g(—2) +1g(0 —) +1 —g(x)l < Kx'" ",
for some K. The result follows. O

X

Similar arguments give the following lemma.

LEMMA 1.2. There exists K < « such that, for all x sufficiently small but
positive,
P°[Ty, <T_,] <Kx'"“
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COROLLARY 1.3. There exists K < o such that, for all x sufficiently small
but positive,

Po[Ty y o <T_,] < Kx'"c.

ProOF. The point y is irregular for (-, y); also, for each £ > 0, P?[T, <
gl > 1 — £ for x — y sufficiently small but positive; therefore there exists &
such that P’[T, <T,_. ,]> 1 for x — y € (0, 8). Thus, applying the strong
Markov property at T,_, (;, we obtain Py[T, <T_,]=> %PO[T[,x,O] <T_.l
The corollary now follows from Lemma 1.2. O

COROLLARY 1.4. There exists K < o such that, for all x sufficiently small
but positive,

PO[T|, 5, <T,] <Kx'""
ProoF. By the strong Markov property,

P[T, < T,] zf( .

-

> %PO[XT[

PO[X

Tiz 2]

€ dy|P*[T, < Ty, ]

PO[X

Tix,22)

o € dy|P[T_, < T;_, o

]e(x,2x]].

x,2x

The corollary follows from Corollary 1.3 (if x is small enough) and Lemma
1.1. O

LEMMA 1.5. There exists K < « such that, for all x sufficiently small but
positive,

03 1-—
PL3ax A Tigp ) < Tiy ony] < Kx'™.
Proor. We have

PO[T[2x7°°) < T[x,Zx]] < P[ng/z & [x,2x]] + P

T 3x
< —|.
[2x,0) = 2

Using the decomposition X, =¢ + X't, these last two probabilities can be
bounded by

. X
sup X, > 3

- x
P°[|X3x/2| > —] + P°
2 O0<s<x/2

~ X
< K’P0[|X3x/2| > 5] <Kx'"*. O

LEMMA 1.6. We have P[T,_,. o < x] < Kx'~® for some K < .
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ProOF. Let A(n) be the event {inf{X,: s € [27"x,2 " " !x]} < 0}. Clearly,
as the event {T =,0] < «x} is equal to U, A(n), we have P| 0] <x] <
- _1P[A(n)]. Now

P[A(n)]sP[ inf X, <-2"x

0<s<2 "ty

and so the lemma follows. O

Lemmas 1.6 and 1.5 enable us to extend the previous results to X*, the
process obtained by killing X when it hits (—, 0].

PROPOSITION 1.7. Let X* be the process X killed upon hitting the negative
half-line. Let T, be stopping times analogous to T, for process X. There
exists finite K such that, for all x positive and sufficiently small, the following
hold:

(@) P(TF = (xoc)<00)> 1—Kx1 B
(b) P(TZ*x = [2x o) Q[x 2x] [x 2x] < Oo) = 1- leia‘

Proor. We prove (a):

. . 3x 3x
(T =T, . <= c(T: =Tk . <=} U {Tx > —} ¥ {T(M) < 7}.

2
Thus
" 3 3x
P(T} =T, . <*)=P[T, = T(xv)<°°]_PTx>§ _;171(700,()]<7
> P[T(, 20 < Do )] = P[T(a 20y < Ti]
3x 3x
- P|T, > —} —P[T(m o < —}.
2 ’ 2

The result now follows from Lemma 1.5, Corollary 1.4, Lemma 1.5 again and
Lemma 1.6. Inequality (b) is proved in essentially the same way but also uses
Corollary 1.3. O

2. The aim of this section is to prove two propositions.

PROPOSITION 2.1. Let X!, fori = 1,2,3,...,r, be independent copies of X,
killed on hitting the negative half-line. There is a constant k, so that, for x
and h sufficiently small,

P[El gap (p,q) € [0, x] of length greater than h for theXi] <k,xh™ .
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PROPOSITION 2.2. Let X' fori =1,2,3,...,r, be independent copies of X,
killed on hitting the negative half-line (or killed on leavingl[O, x]). There is a
constant k, so that, for x and h sufficiently small and h®" < x/2.

P[EI gap (p,q) C [0, x] of length greater than h for the Xi]
> ko (xh~ A 1).

Note that the event in question implies the existence of an A-gap in [0, x].

Before proving these propositions, we require some preparatory lemmas
and definitions.

Given r independent excursions from the origin killed upon entering the
negative axis, X!, X2,..., X", and an interval, or collection of intervals, I, we
define JX(k,i) to be the collection of (random) jumps (p, q) such that the
following hold:

l.g—pe@ 127
2. pel,
3. there exists ¢ so that X! =p and X} =q.

If the interval I is of the form [0, ¢], we write J!(k, i) instead.

LEMMA 2.1. Let I be an interval or union of intervals. Then E[|J(E, )| <
KMI)2'®. Here | | denotes cardinality and A ) denotes Lebesgue measure.

PrOOF. Let N’(x, A) = #{t; X} — X} >«x, X! € A}. Then it follows
from elementary properties of Lévy processes that

E[N*(x, A)] = v(x,2)G*(4),
where v is the Lévy measure of X and G*(A) is the expected occupation time
of A for X*.
From the definition of N and J we have

JI(k,i) < NH©2771 1),

SO

E[JI(k,i)] < v(2*i*1,°o)flg*(y)dy
<v(277h) [g() dy
<v(27771,2)g(0 +)MI)

=K'(277Y) M)
=K2%')\(I). ]
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PROOF OF PROPOSITION 2.1. Let A(r,h,t), 0 < h,t < 1, be the event that
there exists an interval (p, g) so that the following hold:

(@) p €10,t];
(b)) p—p>h; .
© (p,g) N U/_;R(X") = .

The event A is decreasing in A, so it will be sufficient to consider the case
h = 27! for some i.

If A occurs and (p, q) is a corresponding interval, then for each &
{1,2,...,r) there exists an interval I, € J'(k,i,) with i, <i so that (p,q) C
I,,. Therefore,

A(r,27,ty c U U B (m,iq,09,.-451,),
7E€S(r) i1<ig< -+ <i,<1
where S(r) is the set of permutations on {1,2,...,r} and

Bi(m,iy,19,...,1,) ={for & =1,2,...,r, there exist jumps V, €
J!(w(k),i,) such that Vi NV, --- V_+ ).

By symmetry, the events

U B (m,iy,09,...51,)
11<ip< =+ <i,<1
have equal probability as = varies, and so,
P[A(r,27,t)] <r!P U B'(id, iy, i5,...,1,) |,
11<ipg< ** <i,<1i

where id is the identity permutation. Henceforth we suppress id, writing
Bi(iy,i,,...,1,) for B'Gd, iy,i9,...,1,).

Given an interval I = (r,¢) with ¢t — r € [27("*D 27"] we say the en-
largement of the interval, e(I), is the interval (r — 27", ¢ + 27"). Define a
relation R between two intervals as follows:

forI=(p,q),Jd =(r,t), IRJ ifree(l).

Then B'(iy,iy,...,i,) € C'(iy,iy,...,1,), where C'(iy,i,,...,i,) is the
event

{there exist I, € J'(k,i,) so that, for all £, I, RI,,}.

Our proposition will follow from Lemma 2.2.

LEMMA 2.2. We have

P U Cl(iy,ig,...,i,)| <k, t2' for some finitek,.
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Proor. We prove this lemma by induction on r and Lemma 2.1.

First, if » = 1, then the lemma follows directly from Lemma 2.1. We now
assume that Lemma 2.2 has been established for less than or equal to r — 1
independent excursions. First note that, by the inductive hypothesis,

o nad - .
P U Cl(iy,ig,...,0,) | <k;jt(2'C —j) <k;jt2' forj<r.
ij<ia”/
i1<ig< =+ <i,.<1i

Therefore it remains to show

P U C'(iy,ig,...,i,)| <V t2'“ for some finite V,.
i;>ia" IV
11<ig< =+ <i,<1

However, in this case we can use the obvious bound

P . toe .
p U Cl(iy,ig,...50,) | < Y P[C (ll,lz,...,lr)].
i>ia"IVj i>ia"IV ]
i1<ig< o <ip<i i1<ip< - <i,<i
Obviously,

P[C!(iy,iy,...,i,)] < E[IN'(iy,ig,...,1,)],
where N'(iy,i,,...,i,) is the collection of all r-tuples (I,,...,I,) such that
the following hold:

(a) I, € J(k,1i,) for each k;
(b) I, RI,,, foreach 2 <r — 1.

Furthermore, iterated use of Lemma 2.1 yields
E[IN!(iy,iy,...,0,)|] < (Kt2eh) (K2 129%2) ... (K2 ir1200)
= Kt QA-oig-0-a)iy ... 9-(1-a), 19ai,
Thus
Y P[C'(iy,igs---si,)]
i;>ia”IV
11<ip< -+ <i,
< Z K"tZ*(lfa)i12*(1*a)iz ...2*(1*0‘)%—120‘”
i>ia"IVj
i1<ip< - <i,
< K(r)t2'*" for some K(r)'. O

If we know that our process X makes r excursions from 0, then these
excursions, while independent, are not iid. The first » — 1 will be distributed
as excursions conditioned to return to 0, while the last will be distributed as
an excursion conditioned never to return. Accordingly we require Corol-
lary 2.4.
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COROLLARY 2.1. Let X', X2,..., X" be independent excursions of X from
the origin. Suppose each X" is (separately) conditioned either to return to the
origin or not to return to the origin. Then

P[EI interval (p,q) C [0, x] of length greater than h so that
(p,q) N (UR(X")) =] <u"kxh™,
where k is the constant of Proposition 2.1 and
g(0) 1
g(0+) g(0+))

u = min(P°[T, < =], P’[T, = *]) = min

We also require some preparatory lemmas before proving Proposition 2.2.
The two lemmas below are elementary and so are stated without proof.

LEMMA 2.3.  Let X be an excursion from 0. There exists ¢, > 0 so that, for
each x €[0,1], P[T, = T, .,] = c;.

LEMMA 2.4. Let X be an excursion from 0. There exists c, > 0 such that,
for all x € [0,1], P*[Ty < T}y ] = c,.

The following lemma is crucial to the proof of Proposition 2.2.

LEMMA 2.5. Let I be a subinterval of [0, %]. Then, for X* ¢ an excursion
from zero killed on hitting the negative half-line,

P[ there exists an h-gap for X*:¢ in I]

<cs( MDA “ A1) — e, (M),
for h < 3.

Proor. Let I = (x, y). Lemma 2.3 states that, with probability at least c;,
T, = Ti,, ., < «; furthermore, by the strong Markov property,

[x,
Y, = XTx+s - XTX
is a stable process independent of 7 . Let V = inf{s > 0; Y, — Y,_€ (h,2h)}.
Mountford and Port (1991) show that
W, =Y, -Y,_,, 0<s<V,
is a Lévy process killed at rate v*(k, 2h), where v¥ is the Lévy measure of X
with unit drift and Lévy measure given by v"(dy) = v¥(dy)I,, c . 2ny;-
Thus the probability of the event
{R(Y,V) n(Yy_,Yy) =2} n{V<A(I)/2}

is greater than the probability of the event {W does not hit the negative
axis} N {V < MI)/2}. This last term is at least c(1 — (expX[—\I)/
QvX(h,2h))) for

¢ = P[W does not hit (—=,0)|V = A(I)/2].
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Let the event A(I, k) be the intersection of the following events:

(a) {T[x’oc) = Tx < oo}’
© {RY,V)n (Yy_,Y,) =T}

and
(b) {V < MI)/2}, where V is as defined above.

The above paragraph demonstrates that

A1)
P[A(I,h)] =c|1 - (exp[——})) <d(MI)h > A1)

20%(h,2h)

for some ¢'. Let B(I) be the intersection of the following events:
@ (T,
and
(e {Xp ., — Xp_ €0, MD)] for s € [0, MI)/2]}.

Lemmas 1.5 and 1.6, the strong Markov property applied at T, and the fact
that X is a Lévy process imply that P[B(I)‘] < KA(I)'~ ¢ for some K.
On the event C(I, h) = A(I, h) \ B(I)° we have the following:

() Ty>T, + MI)/2;
(b) (‘X(Tx+V)—7 XT]L-FV) N R(X, Tx + V) = @;
© (Xp,ovy—> Xpv) C L

The bounds given above for the probabilities of the respective events imply
that P[C(I,h)] = /(MDA “ A1) — KXI)'™°.

Let C*(I, h) be the event corresponding to C(I, h) for the excursion X*
killed on hitting the negative axis. Since, on C(I, h), T_.. oy > T, + MI)/2,
we have P[C*(I, h)] = P[C(I, h)]. The random time T + V* (for X*) is a
stopping time; and, on the event C*(I, h), Xy v, — X7 .y is a Lévy process
killed on hitting (%, — X7 . ] but otherwise independent of 7 .. So (if I is
small),

=Tx<oo}

x, )

P[ X} € (X v)-» Xi ov) fors > T, + VIC(I,h)| > ¢,
for some strictly positive ¢’. The result follows. O

ProOF OF PROPOSITION 2.2. We use induction on r. The result follows
directly from Lemma 2.5 above if r = 1. Suppose now that the result holds
Wher}izthe mgrllber of excursions is less than or equal to r — 1. Let v = A®
Xv* ~=h%  <x/2; so, by the inductive hypothesis, with probability at
least k£, (tv=*"" A1) =k, ,(th " A 1), there is a gap I for the processes
X2, X3,..., X" oflength at least v completely contained in the interval [0, x].
Applying Lemma 2.5 to the process X' and the interval I, we obtain the
result. O
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3. In this section we establish Theorem 0.1.
We will decompose the process X into a collection of independent excur-

sions X'. Define a sequence of stopping times by

To=0; fori>0, T =inf{¢t>T,_ ;:X,=0}.
Let R be the random number of excursions from 0: R = inf{i: T, = o}.
Conditionally if r = 1, then X simply has the law of an excursion from the
origin conditioned never to return. If R > 1, then, for i < R — 1, the pro-

cesses Y defined by
. X fors <T,-T,_,,
Y= S, fors>T,-T,_,,
where 6 is some graveyard state, are independent processes each with law

equal to that of an excursion by X from 0, conditioned to return to 0. The
process Y® defined by

i—1ts?

ro_
Ys _XTR,1+s? 3207

is independent of the Y, ..., YE~! but has law equal to that of an excursion
from 0, conditioned never to return.

It is well known that, for every s > 0 and all i < R(w), there exists a
random &£(w) > 0 so that

R(Y[s,»)) N [0,e(w)) =T foreachi <r(w).

Therefore, if X' are the processes obtained by killing the Y upon hitting the
negative axis, then % is a gap function for {Y} if and only if 2 is a gap
function for (X’}. Given R > 1, the X' processes, while independent, are not
identically distributed.

It follows that Theorem 0.1 will be proved by the following pair of proposi-
tions.

PrOPOSITION 3.1. Let h be a continuous increasing function, zero at the

origin, and let X', i = 1,2,...,r, be independent stable processes with posi-
tive drift, killed on hitting the negative axis. Then
dx

o0

LH»h(x)w

implies that a.s. there do not exist arbitrarily small x with

(x,x+h(x)) N R(Xi)) = .
i=1
PROPOSITION 3.2.  Let h be a continuous increasing function, zero at the
origin, and let X*, i = 1,2,...,r, be independent stable processes with posi-
tive drift, killed on hitting the negative axis. Then
dx

L+fo’=m

implies that a.s. h is a gap function for {X'}.
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PRrROOF OF PROPOSITION 3.1. As A is increasing,

fl dx 1
o h(x)" =9

i nh(2fn)ar

So finiteness of the integral implies finiteness of the sum. Corollary 2.1
implies that if X!, i = 1,2,...,r — 1, are excursions from the origin, condi-
tioned to return to the origin, while X" is an excursion conditioned not to
return and all r excursions are independent, then P(A,) < K, h(27 ") *'27",
where

A, = {thereexists (p,q), p € [27""V,27"],q —p = h(27""D)

such that (p,q) N UR(X)—
i=1

The event {A is a gap function} is clearly contained in the event limsup A,
but, by the Borel-Cantelli lemma and the finiteness of the relevant integral,
the latter event has probability zero. O

PrROOF OF PROPOSITION 3.2. Augmenting the probability space if necessary,
we assume the existence of independent stable processes Z"" which in
addition are independent of our r excursions from 0, X*. Say an index (i, n) is
good if the following holds:

for the process X', Tyn = Tign ...
Define the processes Wi " by
Xy, +s— 27", if(i,n)isgood,

win =i I
zon, if (i, n) is not good,

S

and the processes Wi " are killed on exiting [27",27""1]. The W processes
are all independent. By Proposition 1.7 and the Borel-Cantelli lemma for all
i, (i, n) is good for n large enough and for all i and, for n large enough,

27" + R(W") = R(X') n[27",27"+1].

Therefore 4 is a.s. a gap function for X’, i = 1,2,...,r, if A, occurs infinitely
often, where

A, = {there exists a gap of size h(2"" ') for (W""},i=1,2,...,1}.

By design, the events {A,} are independent.
The infiniteness of [y, A(x)~* dx implies that ¥,27"h(27""1)"*" = . Let
2777/

G = {n > 1: h(2‘”+1)°’r71 z —-
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and

1 277
B={n21:h(2”+1)a <= };

G (for good) denotes the n’s for which Proposition 2.2 yields information. The
sum

Z2fnh(2fn+1)7ar — Z2fnh(2fn+1)7ar + Z2fnh(2fn+1)7ar.
n B G

The first sum on the right-hand side is majorized by X,27"(27" /2)~*, which
is finite. Hence the infiniteness of [, ,h(x)"* dx implies that
Y2 "h(27 "t is infinite. This (and Proposition 2.2) implies that
Y, P[A,] = . The result now follows from the second Borel-Cantelli lemma.

O

4. To prove Theorem 0.2, we require the result that time reversals of
excursions of X (that remain) are equal in distribution to excursions of the
dual. This result follows (with elementary modifications) from Getoor and
Sharpe £1981). We include a short proof for completeness.

Let X, = —X, be the dual process of X,; quantities relative to this process
will be marked with a caret. Let T' be the stopping time inf{z > 0: X, = 0},
0<h;<hy< - <h,;let q,(¢, x, y) be the transition function for the pro-
cess X killed at time T'; and let f;, f,..., f, be bounded continuous func-
tions.

ProOPOSITION 4.1. We have

= Eo[li[fi()fhi); h, <T <o
i=1

To establish this proposition, we will need to recall some potential-
theoretic facts. These can be found in Port (1989). Let g’x) =
[oexp(—A#)q(¢,0, x) dt, where q is the unkilled transition probability func-
tion. Let gq(x, y) = [gexp(—At)qy(¢, x, y) dt. Let h'(x) = E*[exp(—At)], and
h(x) = P*[T < «]. Then h*(x) = C*g*(—x), h(x) = Cg(—x),C =C,C* = C*,
gMN—x) =8Mxn), 4(t,x,y) =q(t,y,x), 8}x,y)=gdly,x), g}0,x)=1-
h*0))g*(x) and

1-2%0) 1-A%N0) 1

c* (ol bl

where b is the drift, which in our case is 1. Using these facts, we find that

(4.2)  [1-R(0)]g(x)C'¢*(~y) = [1 - ~h*0)]g"(y)Cg(—x).
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To establish (4.1), note that
fxEO[ fi(Xp_y p);t+h, <T <olexp(—At)dt
0 1 '

1=

= [ Jeo0 5 Taath = by x,0)
X l_l[lfi(xi)ExO[exp(—)\T)] dx, dx, - dx,
=[] @ = mO)eg(x) Tanth = by, 1)
X l_lllﬁ(xi)cAgA( Xo) dxg dxy -+ dx,,.

By (4.2) and dual identities, this last expression is equal to

[ J (=R O)eg(=x)ee (x0) TTduhs = Ay 1, %)

X l_i[lfl(xl) dxg dxq - dx,,.

However, this is equal to

fxEO[]i[f(X'Hhi); t +h, <T < o|exp(—At) dt.
0 i=1

Therefore, t-a.e.,

EO[ - A Xn )it +h, <T <o
i=1

13

(4.3)

=E°[l_[fi(XT-t-h,); t+h,<T<w
i=1

Equation (4.1) now follows from (4.3) and the fact that X, and X; are
standard processes.

Proor oF THEOREM 0.2. If the process X makes r excursions from 0, then
r — 1 of these are excursions which return to the origin and the last is an
excursion that never returns. This latter excursion does not hit an interval
(—e(w), 0] for strictly positive, random &, and so is irrelevant to left gaps.
The r — 1 excursions that return to the origin are, by Proposition 4.1, time
reversals of independent excursions of X, again conditioned to return to the
origin; X is a process that drifts to the left. The arguments for Proposition 3.1
and 3.2 now imply Theorem 0.2. O
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