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In this paper we get some sufficient conditions for the finiteness or
nonfiniteness of the passage-time moments for nonnegative discrete pa-
rameter processes. The developed criteria are closely connected with the
well-known results of Foster for the ergodicity of Markov chains and are
given in terms of sub(super)martingales. Then, as an application of the
obtained results, we get explicit conditions for the finiteness or nonfinite-
ness of passage-time moments for reflected random walks in a quadrant
with zero drift in the interior.

1. Introduction. This paper is divided into two parts. In the first (Part
1), we consider nonnegative discrete parameter stochastic processes with
asymptotically small drifts. The problem which we take up here is to find
effective criteria for the finiteness or nonfiniteness of the moments of passage
times of these processes (here passage time means the first hitting time of a
compact set containing the origin). This question is particularly important for
the Markov chains in the case p = 1. In this situation it is equivalent under
suitable conditions to the question of determining whether a given Markov
chain is ergodic or not and in the latter setting has been thoroughly investi-
gated by many authors [see, e.g., Doob (1953), Foster (1953), Chung (1967)].
One of the possible techniques for studying the problem was initiated, as far
as we know, in Foster (1953) and is now called the method of Lyapunov
functions [for more details and references, see Fayolle, Malyshev and Men-
shikov (1994)]. The quintessence of this method consists in constructing a
suitable function, called a Lyapunov or test function, such that this function
applied to the original stochastic process is a sub(super)martingale. In fact in
this “stochastic” setting, the notion of Lyapunov function is close to the
well-known one for ordinary differential equations.

As was shown in Lamperti (1963), the method of Lyapunov functions also
works in the case of an integer p > 0 and permits us to obtain sufficient
conditions for the existence of the pth moments of passage times of Markov
chains in terms of their drifts. In our paper, we extend these results to cover
the case of non-Markovian processes and all positive real p > 0, and relax
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the hypothesis of Lamperti. Roughly speaking, our results state the following:
Under appropriate conditions, the pth moment of the passage time 7, of a
nonnegative process {X,, n > 0} into the interval [0, A] (A > 0) is finite
(resp., infinite) if the process {X?? .,» 1 =0} is a supermartingale (resp.,
submartingale). In terms of Lyapunov functions, this result can be stated as
follows: the function x2” is a suitable Lyapunov function for the problem of
existence of the pth moments of passage times. It should be mentioned that
the “martingale” methodology of the proofs of this part has been much
influenced by papers of Lamperti [see Lamperti (1960, 1963)]. Let us also
notice that although the development of the criteria in Part 1 was motivated
by the application to the reflected random walks studied in Part 2, we
feel these criteria are natural and may be usefully applied beyond this
application.

In the second part of the paper (Part 2), we get explicit conditions for the
finiteness or nonfiniteness of means of passage times for reflected random
walks in a quadrant with zero drift in the interior. The question is resolved in
terms of a real parameter @ which depends on the geometric data of the
problem. To demonstrate this, we first construct nonnegative stochastic
processes such that the existence (resp., nonexistence) of the pth moments of
their passage times will be equivalent to the existence (resp., nonexistence) of
the pth moments of the passage times for reflected random walks in a
quadrant. Then we apply the criteria of Part 1 to these one-dimensional
processes to get the desired result. An important role in the construction of
these processes is played by the properties of certain functions that were used
in Varadhan and Williams (1985) to prove the existence and uniqueness of
reflected Brownian motion in a wedge.

The results of Part 2 leave open the question of existence of the passage-
time moments of the critical order p = @/2. This question and refinements of
the results of Part 2 are treated in a forthcoming paper by Aspandiiarov and
Iasnogorodski (1994). In this paper we also obtain general results on exis-
tence and nonexistence of means of functions of first passage times and
partial analogues of the results of Part 2 for reflected Brownian motion.

Part 1. Passage-time moments for one-dimensional stochastic
processes.

2. Notation. Let (Q),.%, P) be a probability space equipped with a filtra-
tion {#,}, . ;- Let x and y be some positive reals and let {X,, n > 0} and {Y,,,
n > 0} be discrete-time {7, }-adapted nonnegative stochastic processes such
that X, = x and Y, = y. For any positive real number A, we will denote by 7,

and o, the following first passage times in the interval [0, A]:
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Next, for any real a and b, a A b = min(a, b), a V b = max(a, b), and [a]
stands for the integer part of a. The symbols (a)* and (a)” denote the
positive and negative parts of a. We also adopt the following convention: the
sign of 0 is equal to 0.

3. Finite moments. Our sufficient condition for existence of the pth
moments of 7,, which will be used in the sequel, is stated as follows:

THEOREM 1. Let A be some positive real number. Suppose that we are
given an {Z}-adapted stochastic process {X,, n > 0} taking values in an
unbounded subset of R,. Assume that there exist A > 0, p, > 0 such that for
any n, X?Po is integrable and

(1) E(X?2Pq — X2P0|F,) < —AX2P0"% on {7, > n}.

n+1
Then, for any positive p < p,, there exists a positive constant ¢ = é(A, p, p,)
such that for all x = 0 whenever X, = x with probability 1,
Et} < éx?Po.
Moreover, in the case when p, = 1, the last inequality also holds for p = p,
and for any p < p,,

Er}P < éx?F.

ProoF. Obviously, we need only to consider the case when X, = x > A.
We treat separately two subcases: p, > 1 and p, < 1.
Subcase 1. Let p, > 1. Using (1) and the simple inequality

(1-y)’>1-py forp>1land0<y<1,
it can be easily seen that

A Po
(2) E(Xffgl%) < (an - p_) on {1, > n}.
0

For each positive p < p, and n = 0 we set
p

A
U,fp)=(X2 + —(n AT .
by

nATy

Now we will show that the process {U'??, n > 0} is a supermartingale. In
fact, we have

f%’lz)(1m> w T 1o, < n))
Do

—-E 7|1

(Ta>n)

A
(Xf+1 + —(n+1)
Po

(3)

/\ bo
2
+ XTA + p—TA) 1(7_A£n).
0
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Next, using the L?° version of Minkowski’s inequality for conditional expec-
tations and (2), we get on {r, > n},

Do DPo

A A
E (X,f+1+—(n+1) 7, S(E(Xffgz)””u—(wrl)
by by
A Po
<|X}+ —n| .
Po

This and (3) imply that

E(U(Po)L?n) <

A Po A Do
2 2
n+1 Xn + p_n) 1(7A>n) + ‘X’TA + p_TA) 1(7A§n) = Un(‘DO)’
0

0

as was to be shown. Next, we recall the following easy consequence of
Jensen’s inequality:

LemMA 1. Suppose {U,, k > 0} is a supermartingale and f is concave and
nondecreasing. Then {f(U,), k > 0} is a supermartingale.

From this lemma and the fact that {U(*?, n > 0} is a supermartingale, it
follows that for each positive p < p,, the process {U{?), n > 0} is also a
supermartingale. Hence, for each positive p < p,,

A p
(—) E(n A 1y)" < E(UP) < E(UP) = x22,

Po

and applying the monotone convergence theorem, we get that
p p
E(TA)p < (TO) x2p.

Subcase 2. Let us turn to the case p, < 1. We fix some positive p < p,. For
any n > 0, we set

A P
U =X + —(n A1)
p

nATy

Let v be such that (1 — p)/(2 — 2p,) > v > p/2p,. Then, for all n such that
n’ > A, we have on {1, > n},

nATy

B(X20 pry = X220,0%) = B{(X208 = X220y, o a1

= E{(X2p0 — Xn2p0)1(X

nt1 e(A,n”»|=7n}

nATA

2 2
+E<(an[i _ano)l(x E[nu,w))|Zl}'

nATA

Next, for all n such that n” > A, we have from (1),
ey B(X224 — X2P0|5,) < 0.

1(X n+1

nATq
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So, using the simple inequality

(n+1)" —n?P<pnP~', Vnx1,

we obtain

E(U,,,~-U,) < E(l(X E(A,n”)){E(szo — X7P0l7,) + Anp’l})

nATA n+1

+ )\n"_lP(X >n’

nANTy = )
., € (A, n")},
E(X Py — X2P017,) < —AX2Po72,

n+1

Again, from (1) we have on {X,, ,

Hence, for all n such that n® > A,

EG.—U) < E(l(X cra,mp —AXZPT? + /\n"fl})

nATA

(4)
+AnP P(X, . =n") =1 +1L

Using the choice of v, v(2 — 2p,) < 1 — p, we obtain that for all n such that
n' > A,

(5) I< E(l(X cianyf —ARTVETEPO 4 /\npfl}) <0.

nATA

In order to estimate the second term in the RHS of (4) we notice that (1) and
Chebyshev’s inequality readily imply that

E(X2)  x?Po
<

nATy

(6) P(X

nATy

>n") < Vns>l.

n2pou - n2pou ’

Finally, joining together (4)—(6), we obtain that for all n such that n* > A,

AxZPo
E(U,.1-U,) < T Zpe il
Using again our choice of v (namely, 2p,v —p > 0) and x > A, it can be
easily deduced from the last bound that there exists ¢ = é(A, p, p,) such that
for all n,

E(U,) < éx?Po.

Similarly to the case p, > 1 the application of monotone convergence argu-
ments completes the proof. O

REMARK 1. As we will see in the next section, condition (1) is in some
sense necessary for the finiteness of pth moments of 7,.

4. Infinite moments. We start this section with a result that plays a
key role in the investigation of the nonexistence of pth moments of the
passage times.
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LemMmA 2. Let {Y,, n > 0} be an {%}-adapted stochastic process taking
values in an unbounded subset of R, . Suppose there exist positive constants
A, C and D such that for any n,

(7 E(Y?,-Y)%) = -C on{gy >n}
and, for somer > 1,
(8) E(Y), - Y>#)<DY> * on{a, > n}.

Then, for any v € (0, 1), there exist positive £ and 8 that do not depend on A
such that for any n,

(9) Ploy>n+eY? ,19)=1-v only,

nA oy nA oy

> A(1+ 6)}.

REMARK 2. This lemma is an improvement of Lemma 3.1 in Lamperti
(1963).
ProoOF. Let us set
o = 1(0A>n)((TA —n), Y, = Yn2+k T =Fpin-

Obviously, {Y,} is {#,}-adapted and ¢’ is a stopping time w.r.t. the filtration
{#.}). It is easy to see that to prove our lemma it suffices to show that for any
v € (0, 1), there exist &, § > 0 such that on {¢’ > 0} N {Y} > (A(1 + §))?} the
following holds:

P(o" > eYolFy) =1 — v,
Let us proceed. On {o’' > 0} N {Y} > (A(1 + §))%},
P(o' > sY|F5) = P(o' > [eY;]195) = P(Yoyyr o0 > A°1F5).

Let U = Y/,y; » »~ It can be easily obtained that for any r > 1,

E(UIF) < A* + (E(U"5) (P(U > A25)) 7,
whence
P(o’' > eY§l7y) = P(U > A%l5;)
(10) . (E(Y[,EY“MJ%,) —Az) v o r/(r—1)

v ! l/r
(E( [eYo] A 0'|Z) ))
We first estimate the numerator of the quotient in (10). We have
[eYy]—-1
E(if[,sYo’]/\(r’_YC’iL/TO’) =E Z E(if(,k+1)/\(r'_Yk,/\(r’|’/7k’)|‘j70, .
k=0
Then (7) implies that

— 2 2
E(Y(/kJrl)A o Yk//\a’|'7kl) - E(Y(k+1+n)/\ gy Y(k+n)/\ aA|'joTk+n) > —-C.
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Therefore,

E(Y[,SY(S]/\ o YO’L%) = _C[ gY(;] > _CSYé,
(11) , , , , )
E(Yv[leé]/\ o"l‘%) —A® > YO - CSYO — A=,

Next we bound the denominator. By assumption (8) we have that V & > 0,

E((Yhinyn o) 19%) < DY ) oy + (Y0 p)

Dl((r'> k) )

1+
Yk//\a"

= (Ykl/\a’)r

(12)

1+ —

,
D 1,54
r Y.~

= (Ykl/\a’)r

D r
= Ykl/\a"+71(o">k) .

[Here we use the elementary inequality (1 + y) < (1 + y/r)" for all r > 1 and
all y > 0.] Set ¢ = D/r. As will now be shown, (12) implies that for any fixed
m > 0 the function defined by

(13) fu(k) = E({Y], , +ém —é(k A o)) |5

is nonincreasing on [0, m] N Z.

Let us fix any positive integer m. We first notice that for any integer
[ €[0,m — 1], the quantity m — (I + 1) A ¢’) is positive and #'-measura-
ble. Then, using Minkowski’s inequality, (12) and the last remark, we obtain
that for any integer [ € [0, m — 1],

£a(l+1) = E{E((Y(’Hl),\g, +ém — (1 +1) A a'))’"|3/7)|z;}

IA

{(Y;A o sy + ém = (1 + 1) A a'))’Lz;}

E
E{(Y/, , +ém =&l A o)) 15} = Fu(l).

Therefore, the function f,, defined in (13) is nonincreasing on [0, m] N Z.
Hence, for any m > 0,

E((Y,, ) 175} < E{(Y}, 5 o + ém — &(m A o)) |57}

=f.(m) < £,,(0) = (Y§ + ém)".
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Putting together the last bound with m =[¢Y;], (11) and (10) we finally
obtain on {o’ > 0} N {Y} > (A1 + §))%},

’ ! r/(r—=1)
Plo'> e¥)I50) = (Y§ — CleY§] — A%) v 0}
0l<0) =

Y + ¢[ eY{]

(Y§ - Cleyy] —A%) vo|7 "
Y; + ésY

AZ r/(r—1)
> ((1—08—?) vo) (1+ég) /Y
0

1 r/(r—1)
> ((I—Cé‘—w) \/0) (1+58)7r/(r71).
+

We conclude the proof of Lemma 2 by choosing ¢ and 8 in such a way that

r/(r—1)
1-Ce — —— 1+ée) 7" V>1-y
(1+8)°
_|_

or, equivalently,
1-1/(1+8)° —(1— )" V7
C+é(1—w)r v

We can, for example, take § = N, ¢ = 1/(1 + N)? for some sufficiently large
N=N(,r,C,D). O

0<e<

REMARK 3. As can be seen from the last lines of the proof, the assertion of
Lemma 2 can be stated in the following form. For each & € (0, ) let us set
v;=1—(1—(1+8)2)/ 1 Then, for any § >0 and for any v € (y;,1)
there exists & > 0 such that the inequality (9) holds.

LEmMA 3. Let {X,, n = 0} and {Y,, n > 0} be discrete-time {Z,}-adapted
nonnegative stochastic processes. Suppose that there exists a positive constant
B such that for any n > 0, X, < BY,. Suppose in addition that there exist
positive constants A and K such that for any n > 0, EY? < K. Under these

nA oy

conditions there exists a constant K' > 0 such that for any n > 0,
(14) EX?, .. <K'

Proor. Using the simple inclusion {ryz >n}={V I <n, X,>AB}C
{VIi<n,Y > A} = {04 > n}, we have

EXY = EX? (l(TAB>n) + l(TABSﬂ)) = E(XYIL)]'(TAB>7L)) + (AB)p

nATap nATpp

<BPE(Y?,, )+ (AB)” <B’K + (AB)" = K,

nA oy

as was to be shown. O
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The main result of this subsection is the following theorem:

THEOREM 2. Let{X,, n = 0} and {Y,, n > 0} be discrete-time {Z,}-adapted
stochastic processes taking values in an unbounded subset of R,. Suppose
that {Y,, n > 0} satisfies the conditions of Lemma 2 with some constantsr, A,
C and D and suppose that Y, = y > A. Suppose in addition that there exists
B > 0 such that:

(i) AB <X, =x < By.
Gi) V n > 0, X, < BY,.

If for some positive p,, the process {anfom’ n = 0} is a submartingale, then for
any p > pg,
Eo isinfinite.

COROLLARY 1. Suppose that {X,, n > 0} satisfies the conditions of Lemma
2 with some constantsr, A, C and D and suppose that X, = x > A. If for some
positive p, the process {Xff(OTA, n > 0} is a submartingale, then for any
p > pO ’
Exf isinfinite.

Proor oF THEOREM 2. We need to separate two cases.

(a) If P(ryp = ©) > 0, then by our assumption (i), P(g; = «©) > 0, which
obviously implies that Egy’ is infinite.
(b) Let P-a.s. 7,5 < .

Suppose on the contrary that there exists some p > p, some that Eo,” is
finite. The statement of Lemma 2 with » = } yields the existence of positive &
and & such that for all n,
p
Eof > E{‘TApl(Y > A(1+8))} = %E{(n + Y7, aA) 1(Y,M(,A> A(1+6))}

nA oA

eP N P ) P 2p
= 7E{Yn/{)UA1(YnA”A> A(1+5))> = ?E{Yn/{)(rA} - ?(A(l + 8)) N
Using the assumption on the finiteness of Ec,’, we get from the last inequal-
ity the existence of some positive K = K(A, C, D, p) such that for all n > 1,
EY?P < K. By the statement of Lemma 3 there exists some K' =

nnAoy —
K'(A,B,C, D, p) such that for all n > 1, EX??_ < K'. It then follows that
the family {X’2o , n > 0} is uniformly integrable and as n — =,
2
(19 B(X3,) » B(X)  |= (aBye]
On the other hand, since {X?29, , n > 0} is a submartingale, we have
(16) E(X2e ) = E(X§P0) = x?Po.

The desired contradiction follows now from (15), (16) and the choice of «x,
x> AB. O
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REMARK 4. In the Appendix we will show that Theorems 1 and 2 of this
section improve the results of Lamperti [cf. Theorems 2.1, 2.2, 3.1 and 3.2 in
Lamperti (1963)].

Part 2. Passage-time moments for two-dimensional Markov chains
in wedges with boundary reflections.

5. Formulation of the problem and statement of the main results.
In the sequel G is the quadrant given by G = {(x, y) € [Rf; x>0, y=>0}
The two sides of the quadrant are denoted by ¢G, and JdG,, where dG, =
{(x,y) € G, x# 0,y =0}and 4G, = {(x,y) € G; y # 0, x = 0}. The interior
of G is referred to as G°.

Let (Q, 7, P) be a probability space equipped with a filtration {7}, . ,. We
are dealing with a discrete-time homogeneous irreducible aperiodic {Z,}-
adapted Markov chain {X,, n > 0} defined on (Q, F, P), with values in Z2.
Its transition mechanism is given as follows. The Markov chain starting from
the point Z = (x, y) of Z2 jumps to the point (x + i,y +j),i,j € Z,i,j = —1,
with the probability p};, i,j € Z, i,j > —1 (respectively, p},, p?;, p};
according as (x, y) € G° [respectively, G, dG2, dG*® = (0, 0)].

Regarding the transition probabilities we assume the following moment
conditions:

1. Forany i,j, p! ; =p*,;=p} 1=p>,,;=0.Next, forany £ = 0,1,2 we
set

(17) v = sup{y> 03 Tl +1i") bk, < =}.
i,J
We suppose that y, > 2, y; > 1, y, > 1 and denote y = min(y,, v;, v).
2. In the interior G° we assume that

(18) Zipio,jz ijlp,j:o
i,J i,J
Let us define A%, A% and R° by
(19) X?s = Zizpio,j, R = ZUPLOJ, 5\2 = ijpi(),j-
i, i, i,
30 RO

We assume that the matrix

3. On the boundary JG let

x
50 50
RO X9

) is positive definite.

(20) p; = Z'ipil,jy Dy = Xinl,jy q, = _Z_ipiz,j, qs = Z]plzj
i ] i,J i,j i,j

We suppose that p, # 0, ¢; # 0 and define ¢; € (0, 7) and ¢, € (0, w) by

p q
(21) tan¢1=——2, tan¢2=——1.

141 qs
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DEFINITION 1. Let F be any Borel subset of R”. For any Z € Z%, the first
passage time in F of the Markov chain {Z,, n > 0} with Z, = Z is defined by

n’

Ty = Tgy(F} = inf{n >0,Z, € F}
In particular, if F, = {z; |z| < A}, we define T‘A by
T, = T(FA) = inf{n > 0;12,| < A}.

The main goal of the rest of the paper is to establish effective criteria for
the existence or nonexistence of ET for positive p. In order to state our
principal results it will be quite useful to introduce a linear transformation ®
of G which opens it up to a wedge G of a different angle ¢ and turns the
differential operator

(., o° s 97 o 97 Y A
(22) Lf= Z(AxaxQ + 2R % dy +Ay(9y2 f, feCi(G)

into the Laplacian A, in the sense that, for any g € CX(G), L(g~®) =
1 Ag o ®. We can define such a mapping ® by

u=(bx—ry)a,

(23)
v=V1-r?ya,
where
(24) b=/ A R !
= ~_O ) r = Y i) Q= —FF—.
A Vix VAo - r2)
Then
(25) & = arccos(—r), £ (0,7).

Another effect of this coordinate change is that it transforms the angles of
boundary reflection &,, ¢, to new angles ¢, and ¢,, the values of which will
depend on old angles of reflection and coefficients of the operator L. More
precisely, they will be given by

T T
L1 = 5 T O, $o = 5 T g,

2 2
where the angles «;, a, € (—7/2, w/2) are defined by

1
a; = arctan{ﬁ(r + b cot {ol)},

(26)
1 1
Ay = arctan{ﬁ(r + ZCOt (Pz)}.
Let
G, =®(Z2%) = {(u,v) € R%*;u =a(bx —ry),
(27)

v=ayVl—-r?,(x,y) Eli}
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and
(28) G=(G), G'=d(G"), G, =>(G), G,=D(dG,).

Fix any Z ﬂli Then applying the mapping ® to the Markov chain {Zn,
n > 0} with Z, = Z we obtain a new Markov chain with state space G, and
initial value z = ®(2). It will be denoted {Z,, n > 0}. Next, we define a
characteristic of the Markov chains {Z,, n > 0} and {Z,, n > 0} which will
play the key role in our investigation. Namely, set

a; + ag
&

We are in a position to state the main results of the study:

(29) a=

THEOREM 3. Let {Zn, n > 0} be the Markov chain defined above. Suppose
y>a>0 and y> 2. If a> 2, then for any p < a/2 there exist positive
o, A such that for any A > AO, whenever Z =z € 72 satisfies |Z] > A,

(30) ET? < |27,

If a <2, then for any p < a/2 and for any v € (0, a/2 — p) there exist
positive ¢, A0 such that for any A > A whenever Z =2 € 7% satisfies
2] > A,

(31) ET? < é,z1>"*?".

REMARK 5. In fact, these results can be extended to the cases v < 2 and
a > y. Namely, the following result can be proved [see Theorem 4 in Chapter
B, Aspandiiarov (1994)]. Let {Z,, n > 0} be the Markov chain defined above.
Suppose a > 0. If min(«, y) > 2, then for any p < (min(ea, y))/2 there exist
positive ¢, A, such that for any A > A,, whenever Z, = 2 € Z2 satisfies
12] > A,

(32) ET? < éyl2*P.

If min(e, y) <2, then for any p < (min(a, y)/2 and for any v €
(0, (min(a, y))/2 — p) there exist positive ¢, Z, such that for any A > A,
whenever Z =z € 7% satisfies |2| > A

(33) ET? < élzI>"*?".
The converse statement is given by the following theorem.

THEOREM 4. Let {Z n = 0} be the Markov chain defined above. Suppose
0<a<vyandy>2. Then there exist positive constants Cl, A such that for
any A > A and for any p > a/2, whenever Z =ze7? satzsﬁes |Z] > C A,

(34) ET? is infinite.
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REMARK 6. In fact, it can be shown t~hat in the case 0 < y < «, if y > 2,
then there exist positive constants C,, A, such that for any A> A for any
P> v/2 (resp. p > y1/2 p > v,/2) whenever Z,=2¢€ G°n Z2 (resp.
€ dG, N Z%, € 3G, N Z2) satisfies || > C, A

(35) ETY? is infinite.

REMARK 7. As the reader might have noticed, these results do not treat
the critical case p = a/2. Notice also that Theorems 3 and 4 generalize
results in Fayolle, Malyshev and Menshikov (1992) on ergodicity of {Z,, n >
0}.

Looking at the statements of Theorems 3 and 4, a natural question arises.
What will happen if we drop the assumption «a > 0? A satisfactory answer
has been obtained in Asymont, Fayolle and Menshikov (1994), where the
following result is proved under the condition y > 2.

THEOREM 5. Let {Z , n > 0} be the Markov chain defined above.

no’

() If @ > 0, then it is recurrent.
(i) If a < 0, then it is transient.

We will remove the condition y > 2 and will give below a simple proof of
this result in the case a # 0.

REMARK 8. In fact, in Asymont, Fayolle and Menshikov (1994) the recur-
rence (resp. transience) of {Z,, n > 0} has been obtained under the condition

A% cot @, + Adcot ¢, + 2R° > 0 (resp., < 0).

However, it can be easily seen that this condition is equivalent to o > 0
(resp., < 0).

Let us discuss briefly the proof of these results. First, we establish the
analogues of Theorems 3 and 4 for the “transformed” Markov chains {Z,,
n > 0}. To this end we use some properties of “good” Lyapunov functions
¢3: G —>[0,) and the results of Part 1. Thereby, we reduce the two-
dimensional problem of existence of pth moments of first passage times to a
one-dimensional one. We will be able then to obtain the desired results on the
process {Z,, n > 0} by means of easy geometrical arguments. Using the same
ideas as in the proofs of Theorems 3 and 4, we also prove Theorem 5.

6. Proof of the main results.
6.1. “Transformed” setting. Let us detail the Markov chain {Z,, n > 0}. It

takes values in G, and is governed by the following transition mechanism.
For all integers i, j > —1, the Markov chain jumps from point (¢, v) € G, to
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(u + a(bl - r]) v+ ajV1l — r?) with probabilities pl s L,jEZ, i,j= —1
(resp., p} ;, p};, p} ;) according as (x,y) € G° [resp., &Gl ﬁGz 9GP = (0,0)].
These transition probablhtles pl L, jEZ, i,j= —1, k =0,1,2,3, satisfy
conditions 1-3 [cf. (17)—(21)] of Sectlon 5. Next, we 1mmed1ate1y see that
conditions 2 and 3 of Section 5 imply that:

2'. In the interior G°,
(36) Y (bi—r)pl ;= Xip); =0,
i,J

i, J
Ya?(bi —rj)’pl, =1,  X(bi—rj)ipd; =0,

i,j i, ]

37
47 202(1 —r)5*pl ;=

3. On the boundary ¢G let

P11 = Za(bi—rj)pil,j, P2 = Za\/l_"szil,j
i,J

i\
(38)
g, = ra(bi—rj)p?;, qy= raVl-rijp?,.
i i)
Then,

p q
(39) - L —tana,, —— =23T(¢é-a,),

Py qs

where a;, a,, ¢ were defined in (25) and (26). We denote P = (p,, p,) and
Q = (q,,95).

DEFINITION 2. Let F be any Borel subset of R% For any z € G,, the first
passage time of the Markov chain {Z,, n > 0} with Z, = z in F is defined by

no

Ty =Ty =inf{n > 0; Z, € F}.
In particular, if F, = {z; |z| < A}, we denote
Ty = Tz, = inf{n > 0;|Z,| < A}.

The first part of the proof of Theorems 3 and 4 will consist in proving
Theorems 6 and 7:

THEOREM 6. Let {Z,, n = 0} be the family of Markov chains defined
previously. Suppose y> a >0 and yv> 2. If a > 2, then for any p < a/2
there exist positive c,, A, such that for any A > A, whenever Z, =z € G,
satisfies |z| > A,

(40) ET? < colzl””.
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If a <2, then for any p < a/2 and for any v < (0, a/2 — p) there exist
positive ¢, A such that for any A > A, whenever Z, = z € G, satisfies |z| > A,

(41) ET? < 00|z|2p+2”.

THEOREM 7. Let {Z,, n > 0} be the Markov chain defined previously.
Suppose 0 < a <y and y> 2. Then for any p > a/2 there exist positive
constants C; A; such that for any A > A,, whenever Z, =z € G, satisfies
lz| > C{A,

(42) ET} is infinite.

The idea of the proofs of Theorems 6 and 7. In view of the results of Part 1
it suffices to construct some positive {Z,}-adapted stochastic processes such
that they will satisfy the conditions of Theorems 1 and 2 and, roughly
speaking, the existence (resp., nonexistence) of the pth moments of passage
times corresponding to these processes will be equivalent to the existence
(resp., nonexistence) of pth moments of the passage times T, corresponding
to the process {Z,, n > 0} (the precise meaning of this statement will become
clear during the proofs).

6.2. Some technical results. In order to prove the main results, we need to
introduce a family {¢;, 4 , B, By € (—m/2, m/2)} of nonnegative functions on
G which are defined in polar coordinates (r, §) as follows. For any B,, 8, €
(—m/2,7/2) such that B; + B, # 0 we set B =(B; + B,)/¢ and

rfcos( B0 — By), r>0,0€[0,¢],

r,0)=
Yor.p.(72 ) 0, r=0.

CONVENTION.

1. Whenever B; and B, are fixed, the function ) , will simply be denoted
Y-

2. From now on we will only consider the functions y; with g # 0.
3. For any positive functions f and A defined on G, the equality

f(z) = h(r, 6) should be understood as f(z) = h(r,,6,),
where (r,, 6,) are the standard polar coordinates of z.

Let us fix B; and B, € (—7/2,7/2) such that B; + 8, # 0. The following
properties of the functions ¢, will play a crucial role in the proofs of
Theorems 6 and 7:

1. ¢, is a harmonic function in G \ (0, 0).
2. The “monotonicity” property. For any z € G \ (0, 0),

cos( BY, — By) > cos(I Byl V | Bsl),

43
(43) 121P > g(2) = [21P cos(I Byl V | Bl).
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3. If we are given the inward pointing nondegenerate vector field {v(z),
z € G, U 9G,) defined by

(44)  v(z) = {

then

v, = (—sin a,,cos a,), if z € 9G,,
Vv, = (sin( € — ay), —cos( & — ay)), ifze€dG,,

Brf lsin( B, — a;), ifze dGy,
Bref-lsin( By, — ay), if z € dG,.
The last property of the function ¢j; is given by Lemma 4.

(45) (v(2), Vp(2)) = {

LEMMA 4. For any integers i,k such that 0 <i <k and for any s # 0
there exists a positive constant ¢ = ¢( B, By, S, k) such that for any z € G,

a* (i, (2
(iB—)li) <crsﬁfk‘
Ju’ dv

(46)

The proof can be carried out by induction and is easy. We omit it here.

In the next few paragraphs we will study the asymptotic behavior of
(Z, 1) — Y5 (Z,) with s # 0 as |Z,| > . This will be one of the compo-
nents of the proofs of our main results. We need to introduce some further
notation.

NoTATION. For any n > 0 we define A, =Z,,, — Z,. For any f € C%(G \
0,0, m = (n;, ny) € R? we write
2 52 92
D*f(z,m,m) = [mi——5 + 2mmy——— + my——5 | f(2).
For any ,, ;-measurable function F' the symbol E, F stands for E(F|Z,).
For B4, B, € (—7/2,7/2) such that B8, + B, # 0, £ (0,7) and A > 0, we
denote

(47) Fy g5 c={2€G, 4/ P(2) <A},
(48) c(B) =cos VE(| Byl V| B,l).

Let s be a fixed nonzero real number. By Taylor’s formula applied to
5(Z,, 1) — Y5(Z,) we have the first-order Taylor expansion

(49) lﬂ,EIS(Zn+1) - lﬂﬁs(zn) = S¢3871(Zn)(V¢B(Zn)> An) + Rn(ZrH An’ S, B7 1)
and the second-order Taylor expansion
‘//BS(Zn+1) - d/[;(zn)
= S¢B871(Zn)(vwﬁ(zn)aAn)

(50) +§(3 - 1)‘/’3372(Zn)(v‘/fﬁ(zn)’An)2

S
+§¢3871(Zn)D2¢B(Zn’An’An) + Rn(Zn’An’ S, B’2)’
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where the remainders R, (Z, ,A,, s, B, k) for k = 1,2 can be written in the
form
E+1

1 4 \ .
(51) Rn(Zn’Anasa B’k) = E'/(‘) W{IIIB(Z,L + tAn)}(l — t) dt,

k=12
We show first that under suitable conditions on the means of the increments
Z,., — Z, the asymptotic impact of the remainders R, (Z,,A,,s, B, k) is
negligible compared to that of the principal terms in the Taylor expansions
(49) and (50).

LEMMA 5. Suppose that for some n € (0,1) and k € {1,2} there exist a
positive constant ¢ = c(k,n) and an unbounded subset <, of G such that for
all n, EZn(IAnlsB VEEMY < ¢ on {Z, € o,}. Then there exists a positive constant
¢ = ¢(k,m) such that for all n, if Z, €2, and if |Z,| is large enough, then the
following estimate holds:

(52) E,(IR(Z,,A,,s, B, k)) <élz,*P7* .

Proor. Let n be any fixed nonnegative integer and let 2 be any fixed
number from {1,2}. We will split the term E, R, (Z,,A,,s, B, k) into two
terms handling, respectively, big and small jumps A,. More precisely, let
6 €(0,1) be a fixed real number. Then

EZan(Zn’ An’ S, B; k)
(53) =E; (R.(Z,,0,, 58, B k) {Lga, 1< a1z, + Loay> o1z,))
=T+ II.

To estimate the first term in (53) we notice that Lemma 4 implies the
existence of a positive constant ¢; such that

|I| = |EZ,,(Rn(Zn’ An’ S5 B’ k)1(|An|g 5|Z,,\))|

1 sB—h—
< clEZn{(lAnlkH fo 1Z, + tA, 1PN (1 - 1) dt)l(A”<5|Zn|)}.
Next, easy geometrical arguments show that for any ¢ € [0, 1],
1Z | +1A,1>1Z, +tA |>1Z, +t(A,) | —t(A,) |
> inf |Z, + Al —|(A,) |
(54) AeR2
. 71- -
sin( 5 v €12, - 14,) ),

where (A,)"= ((A7)",(A2)") and (A,)” = ((A7)7,(AY)7). Since the jumps of
the Markov chain {Z,, n > 0} toward the origin are bounded from below, then
the last inequalities imply that for any ¢ € [0, 1] and for all large enough |Z, |,

2

ar
(55) Z|+|A,|>1Z, +tA |> sin(E v g)|zn|/2.
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These inequalities yield that for any ¢ € [0,1] we have on {|A,| < 8|Z,[},

sB—k—-1

(21Z,)) , ifsp>k+1,
(56) 1Z, +tA, "1 <

T sB—k—-1
(sin(g \Y, §)|an/2) , ifsB<k+1.

Therefore, there exist positive constants c,, c; such that
(57) |I| < CZEZH{|An|k+ 1|Zn|sﬁfkfll(mn‘S Blzn‘)} < 03|Zn|85*k*77EZﬂ(|An|k+ "I)’

and by our assumption on 7 there exists a positive ¢, such that for all large
enough |Z, | with Z, e.w,,

(58) Ml < c,lz,|*F~Fm,

Let us bound the second term in (53) dealing with the big jumps. To this
end instead of working with the integral form of R, (Z,,A,,s, B, k), k = 1,2,
given by (51), we will look directly at their expressions that follow from (49)
and (50). Namely, applying again Lemma 4, it can be easily deduced from (49)
and (50) that there exists a positive constant c; such that

(59) | < c5EZ"(

k
Z, + AP+ 1 |Zn|sﬁ_l|An|L)1(A"> 8|Zn>)'
i=0

Let us consider the terms EZ,L(|An|i1(|An\> sz, L = 0,1,..., k. By the assump-
tion on n we get that there exists a positive constant ¢4 such that for any
i €[0, k] and for all large enough |Z,| such that Z, €.,

i i—k- k i—k-
(60) EZn(|An| Lia,> 8|Z"\)) = EZ"(lAn| A, +n1(m"\> a\z”p) < cglZ,| "

Next, let us investigate the term in (59) including |Z, + Anlsﬁ :
(a) If sB > 0, then obviously on {|A,| > 8|Z,[} we have

. 148\
1Z, + AP < (12,1 +14,)" < (T) 4,17,

and by the assumption on 7 there exist positive c;, cg such that for all large
enough |Z,| such that Z, €.,
e, <cl|Z PR ifsB>k 4+
s sB—k— k
(61) EZn(lAn| B]-(|A”\z 6|Z"\)) = EZn(|An| PrEmmiA +n1(\An|z ﬁ\Zn|))
<clZ PR ifsB <k + 7.

(b) Let sB < 0. Then, the inequality (55) shows that there exist positive
Cg,C1 such that for all large enough |Z,| such that Z, €.«

(62) E(1Z, + A 10 1o nizp) < €oEg (12,1 1a, 5 a12,) < €10l Z, 15
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Formulae (59)-(62) readily imply the existence of positive constant ¢;; such
that for all large enough |Z,| such that Z, € «,,

M| < cyy|Z, P74
Bringing together this, (53) and (58) we obtain the desired result (52). O

The last lemma permits us to prove the following result which plays a
crucial role in the proofs of our main results.

LEMMA 6. Let p, be any fixed real number such that 2p, < y. There exist
positive constants ¢, A such that for any n the following two statements hold:

(@) On{Z, € GYn{Z,] > A},
sgn(po(2p, — B))Ezn(%zm/ﬁ(znﬂ) - ‘ﬁﬁzPO/ﬁ(Zn))
> clpo(2py — B)IY*Po 2" F(Z,).
(b) For each i = 1,2 we have on {Z, € dG;} N{|Z,| > A},

Sgn(Po sin( B; — ai))EZn(lszpO/B(ZnJrl) - ¢g2p°/ﬁ(zn))
> c|pysin( B; — )Y~V P(Z,,).

(63)

(64)

Proor. (a) If p,(2p, — B) = 0, then (63) is trivial. So let us suppose that
Po(2p, — B) # 0. From the moment conditions (36) and (37) and the expres-
sion for the gradient of the function ¢j; we easily obtain that on {Z, € G,

E, (V5(Z,),A,) =0,
(65) EZ"(V¢B(Zn)’ A")2 = |V¢B(Zn)|2 = B2|Zn|23_27
E,(D%y(Z,,A,,A,)) = Ayy(Z,) = 0.

Therefore, from the second-order Taylor expansion (50) with s = 2p,/B we
have on {Z, € G},

EZn,(‘l/szO/ﬁ(ZnJrl) - ‘I’EZPO/H(Zn))
- - 2p-2
2
+EZRn Zn’An’ﬂ7B72 .
" B
Set ¢, = ((c(B)) P2 A 1)/2. By the “monotonicity” property of s

(67) 2Cou20 2/ B(Z,) = Y2/ 5-2(Z,)|2,15 72 = 2cyyr0 ' #(Z,).
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On the other hand, we recall that the statement of Lemma 5 applied with

Ay =G° =y, ~2)/2 A1) and s =2p,/B ensures the existence of posi-
tive ¢y, A, such that

< 50|Zn|2po*2*n

2
EZan(Zn’An’ goaﬁ’2)

(68)
on {IZnI > A~o} N {Ian S GO}.

Then, bringing together (66)—-(68) we see that there exists a positive A, such
that on {Z, € G°} N {|Z,] > A,} the desired estimate (63) holds with A = A,
and ¢ = c.

(b) We suppose that p, sin( 8; — «;) # 0. If not, (64) is obvious. First, from
(38), (39) and property 3 of y;;, we have on {Z, € dG}},

(69) By (Viy(Z,),A,) = d; BIZ,|° " sin( B; — a;),

where d~1 = [P| and d~2 =|Q|. Hence, we get from the first-order Taylor
expansion (49) with s = 2p,/8 that on {Z, € §G,},

Ezn(llfﬁgp"/ﬁ(znﬂ) — ll/32p°/B(Zn))
= 2p0d~i sin( B; — ai)|Zn|Bil‘r/’;;2p°/Bil(Zn)

(70)
+E,R,|Z,,A,, %, ,8,1).
" B
Set ¢, = (d; A dy)(c(B) P A 1). By the “monotonicity” property of s,
(71) Ji¢ﬁ2p°/ﬁil(zn)|zn|ﬁil = C1¢B(2p°71)/ﬁ(zn)-

Next, applying the statement of Lemma 5 with ., = dG;, n = ((y; — D/2 A 1)
and s = 2p, /B, we get the existence of positive ¢;, A; such that

<G|z, 2Pom 1

2
EZan(Z,L, A, % B, 1)

(72)
on {IZnI > Ai} N{Z, € dG,}.

The inequalities (70)—(72) obviously imply that there exists a positive con-
stant A; such that on {Z, € 9G,} N {|Z,| > A;}:

sgn( p, sin( B; — ai))Ezn(¢ﬁ2p°/B(Zn+1) - ¢B2PO/B(Zn))
> ¢yl pg sin( B; — a;) PPV B(Z,).

Therefore, letting A = max(A,, A,, A;, A,) and ¢ = ¢, A ¢, we complete the
proof of Lemma 6. O

CONVENTION. From now on by function ¢, we mean the function ¢, .,
with the angles «,, a, defined in (26).
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LEMMA 7. Ify> 2 and a # 0, then for any r € [1, y/2) there exist positive
A, C,, such that for any n on {1Z,| > A(r)},

(73) |EZ"{¢a2r/u(Zn+1) - lpazr/a(zn)“ < C(r)¢¢52r_2)/a(zn)'

PrOOF. Let us take any fixed r €[1, y/2). First, recalling the formulae
(65) and (69), we obtain from the second-order Taylor expansion (50) with
s=2r/a, B;=a; 1 =12,

EZ"(l/jazr/a(Zn+1) - lpaQr/a(Zn))
2r /-2 20-2 2r
=r(2r— a2/ % Z)IZ, +E,R|Z, ,A,,—, a,2|.
" [e%

Second, by our assumption 2r < y, 2 < . Therefore Lemma 5 is applicable
with some n < vy — 2, and the proof is terminated by referring to the “mono-
tonicity” property of ¢,. O

Let us define the process {Y,, n > 0} by
Y, =yt (Z,), Vn=0.

_ COROLLARY 2. If y> 2 and a # 0, then there exist positive constants
A, r,C, D such that for any A > A the process {Y,,, n > 0} satisfies the condi-
tions (7) and (8) of Lemma 2.

PrROOF. Let us take any fixed real number r € (1,7/2). We set A =
max(A ), A, C = C,, and D = C,,. Then (73) implies that for any A > A
and for such r, C, D the statements (7) and (8) hold. O

6.3. Proof of Theorems 3 and 6.

ProOF OF THEOREM 6. Let us take any fixed positive p such that p < a/2.
Let v be any fixed positive number such that v € (0, a/2 — p). It is easy to
see that there exist p,, B; = B(p, ay, ay, §) and By, = Bo(p, ay, ay, &), such
that:

@ B, e(—m/2,7/2) and B; < a;, for i = 1,2.
(i) p <po <(By + B)/2&< a/2.
(ii1) p, > 1 (resp. po =p + v)if @ > 2 (resp. a < 2).
Let us fix such p,, By, By. Set B = (B; + By)/¢&. For each n > 0 we also set
X, = Ui/ 5(Z,).

We claim that the process {X,, n > 0} satisfies the conditions of Theorem 1.
To verify this claim we have to show that there exist A > 0 and A > 0 such
that for any n,

(74) E(X?Py — X2P0|g) < —AX2P0"% on {7, > n}.

n+1



PASSAGE-TIME MOMENTS 953

Obviously,
E(X14 = X00019,) = Bg (057 F(Zy 1) = 4577 P(2,))-

n+1
Recall that because of the choice of 8; and B, we have
sin(a; — B;) > 0, sin(ay — By) > 0, 2p, < B <.

We set A = cpy min(( B — 2p,), sin(e; — B;), sin(a, — By)), with the constant
¢ defined in Lemma 6. Then Lemma 6 shows that there exists a positive
constant A such that

EZn(¢52p°/B(Zn+1) - l!’ﬁpo/B(Zn))
—AYEPD/B(Z ) on (Z, € G°) N {IZ,] > A)
— APV B(Z ) on{Z, € (9G, U 0Gy)} N {1Z,] > A}.

IA

IA

However, obviously there exists a positive A; such that on {|Z, > A,},
Y3/ P(Z,) > 1. Therefore, setting A, = A V A,, we obtain

(T5) By (42r/#(Z,.) —un/#(Z,)) < — M2 D/8(Z,) on {12, > A,).

Rewriting the last inequality in terms of {X,, n > 0} and using the obvious
inclusions {z € G; y;/#(2) > A} c {z € G; |z| > A} and {1, > n} C{X, > A}
we finish the verification of (74).

Then, by Theorem 1 we know that there exists a positive constant ¢ =

é(A, p, po) such that whenever X, = x satisfies x > A,,
cx?Po, if pg <1
éx?Po, i ,
Ery <{ _, . Po
2 cx*P,  if py = 1.

In other words, there exists a positive constant ¢ = ¢(A, p, v) such that
whenever Z, = z € G, satisfies |/ #(2)| > A,,

{5¢B<2P+2V>/B(z), if o <2,

76 ETE
(76) Gy2r/E(z), if &> 2.

Fay by pg e =
(Recall that we defined F ;5 , . as Fy 5 5 .={z €G, ¢/ P(2) <A})

The “monotonicity” property of j; and (76) imply that for any A > A,c(B)
whenever Z, = z € G, satisfies |z| > A,

|2p+2v
b

¢lz if o < 2,

ET} < ET? < ET¢ <

N {5|z|21’, if a> 2.

We complete the proof of Theorem 6 by setting A, = A,c(B), ¢, =¢. O
Now the proof of Theorem 3 is obvious.

ProOF OF THEOREM 3. We only treat the case o > 2. The same arguments
will work in the other case. Let p < a/2. Then by Theorem 6 there exist
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positive constants c,, A, such that for any A > A, whenever Z;, =z € G,
satisfies |z| > A,

(77) ET? < colz|2p.

Recall that the Markov chain {Z,, n > 0} was introduced as the image of the
Markov chain {Z,, n > 0} under the linear isomorphism ®: R? — R? defined
in (23)—(25). This implies that for any A > A, whenever Z, = £ € 7% satis-
fies |®(2)| > A,

ET 4, < | ®(2) 17,
where F(A) ={z € R?; |®(2)| < A}. Next, it is easy to see that there exist
constants ¢4, C,, such that for any positive A, {Z € R} ; 2] < Aé,} € {£ € RY;
|®(2)| < A} c {2z € R?:|2| < ACy)}. Hence for any A > A,, whenever Z, = €
7% satisfies |2| > AC,,

ETAPC-@ < Coé(%|§|2p.
This is the desired result with A, = A,C,, and é, = ¢,C2. O

6.4. Proof of Theorems 4 and 1.

PrOOF OF THEOREM 7. Let p > a/2. We fix any p, such that a/2 < p, <
(p A v/2). Then there exist B; = B py, ay, ay, &, v) and By = Bo(py, ay,
a,, &,v) such that:

(a) B e(—w/2,7m/2) and B; > «;, for i = 1,2.
(©) a/2 <(B; + By)/2& <py < /2.
Set B = (B; + By)/ & We define the processes {X,,, n > 0} and {Y,, n > 0} by

X,=4'"(2,), VYnx=0,
Y, =¢*(Z,), Vn=o0.

Obviously, the processes {X,, n > 0} and {Y,, n > 0} are {Z,}-adapted. More-
over, by the “monotonicity” property of ¢, we have for any n > 0,

(78) X, <c(a)yY,.
The proof is based on the two following facts:

(i) By Corollary 2 there exist constants A,r,C,D such that forall A > A
the process {Y,, n > 0} satisfies the conditions of Lemma 2.
(i1) There exists a positive A, such that for any A > A, whenever X, = x

satisfies x > Ac(a) the process {Xfﬁomm, n > 0} is a submartingale.

(To prove the latter fact it suffices to notice that by the choice of 8; and S,,

sin( B; — ay) >0, sin( By — ay) > 0, B<2p,<v,
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and by Lemma 6 there exists a positive A~2 such that for any A ZAZ,
whenever X, = x satisfies x > Ac(a), we have for any n,

E(XPq = X2P019,) 20 on {7y, > n})

n+1

Set A; = (A V A,). Let A > A,. Bringing together the facts (i), (i) and
(78) we see that the processes {X,, n >0} and {Y,, n > 0} satisfy the
conditions of Theorem 2 with the constants A, B = ¢(«),C, D, r, p,. There-
fore, applying the statement of Theorem 2, we obtain that for any ¢ > p,
whenever Y, = y satisfies y > A,

Eg/ is infinite.
It then follows that whenever Z, = z € G, satisfies ¢}/ “(z) > A,
ET,

Fa oy ap s 15 infinite.
Plainly, this implies that whenever Z, = z € G, satisfies |z| > AC(w),
ETY is finite,

as was to be shown. O

The proof of Theorem 4 can be carried over similarly to that of Theorem 3
and is omitted.

6.5. Proof of Theorem 5. We notice first that the transience (resp., recur-
rence) of the Markov chain {Z,, n > 0} implies the transience (resp., recur-
rence) of the Markov chain {Z,, n > 0} and vice versa.

To treat the latter question we are going to use the following criteria for
transience and recurrence of the arbitrary discrete-time irreducible aperiodic

Markov chain {U,, n > 0} with countable state space %:

LemMMA 8 [Proposition 5.3, Asmussen (1987)]. The Markov chain {U,,
n > 0} is recurrent, if there exist a function [ defined on % and a finite set
K c %, such that for any m,

(79) E{f(U,.,) - f(U,)IU, =) <0, Va&K,
and the set {a € #; f(a) < A} is finite for each A.

The next result is a slight modification of Proposition 5.4 in Asmussen
(1987). In order to formulate it we need to introduce the following definition:

DEFINITION 3. For any subset K of % let
JK = {z € K;3 x € # \ K such that P (U, =z) > 0},

where as usual 7 = infln > 0; U, € K}.
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LemMA 9. The Markov chain {U,, n > 0} is transient if there exist a
bounded function f(a), a € #, and a set K C %, such that for any m,

(80) E{f(U,.,) - f{U)IU,=a) <0, Vaek,

and f(a) <inf,. ,x f(a) for at least one @ & K.

Let us check the conditions (79) and (80) for the Markov chain {Z,, n > 0}:
We treat both cases a > 0 and a < 0 simultaneously. Suppose that « > 0
(resp. a < 0). Then there exist B; = B(ay, ay, &) and B, = By(ay, ay, £) such
that:

1. B,e(—m/2,7/2) and B; < «; (resp. B; > «;) for i = 1,2.
2.0 < (B +By)/E< a(resp. a<(B;+ By)/E<0).

Set B = (B; + By)/&. Let p, be any fixed real number of the same sign as 8
such that [p,| < (| Bl A y)/2. We define the function f: G - R, by

f(z) = wﬁzl’o/ﬁ(z), zeG.

Obviously, the set {z € G,; f(z) < A} is finite for each A [resp. f(z) is
bounded, the origin of the wedge does not belong to #z € G,; f(z) < A} for
all sufficiently large A, inf,, c ;. s.)< 4, f > 0 and f(2) — 0 as |z| — =«]. Next,
(79) [resp. (80)] follows from Lemma 6 and the choice of p,, B;, B5- Therefore,
applying the statements of Lemma 8 (resp. Lemma 9), we obtain the desired
result.

REMARK 9. In fact, the recurrence statement of Theorem 5 in the case
a > 0 follows from Theorem 3. To see this we notice that Theorem 3 implies
that for any Z, = Z such that [Z| > A with large enough A, T, <« with
probability 1. On the other hand, if {Z,, n > 0} is not recurrent, then it is
transient and for any Z, = Z such that |Z| > A, T, = « with positive probabil-
ity, which contradicts the former statement.

APPENDIX

A.1. Generalization of results of Lamperti. In this Appendix we will
show that the results of Lamperti on the existence and nonexistence of the
means of the passage times obtained in Lamperti (1963) follow from our
theorems of Part 1. We will also extend the results of Lamperti [see Theorems
2.1, 2.2, 3.1 and 3.2 in Lamperti (1963)] to cover the case of the means of
arbitrary (not necessarily integer) positive order.

Let {X,, n = 0} be a discrete-time nonnegative Markov chain. We will
write

E(X,,, - X)X, =x), ifr=1.

81 -
(81) ue(x) E(X,,, - X,/1X, =x), ifr+1.
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PROPOSITION 1. Let p > 0 and let A > 0. Suppose that for all x > A, u,(x)
exists and

(82) 2xpy(x) +(2p — Dpg(x) < —&
for some & > 0 and py(x) = O(1), as x — o,
(a) If p < 1, suppose in addition that for some q > 1,
(83) Rog(x) =0(x*77?) asx — .
(b) If p > 1, we also suppose that
(84) pop(x) =0(x?P72) asx — .
Then for any & > 0 there exists A, such that for all A > A, we have
O(XgP*?), ifp<1,

(85) Bri) = o(x2r), ifp=1.

PROPOSITION 2. Let p > 0 and let A > 0. Suppose that for all x > A,
(86) 2xp(x) + (2p = Dpy(x) 2> 0
for some &> 0 and
(87) (%) = 0(xY),  py(x) = O(1) asx — .
(a) If p < 1, suppose in addition that for some q > 1,
(88) pog(x) =0(x*77?) asx — .
(b) If p > 1, suppose in addition that
(89) pop(x) =0(x*P7%) asx — .
Then there exists A, such that for all A > A,, whenever X, > A,
(90) E(7]{) is infinite.

REMARK 10. In fact, Proposition 2 was proved in Lamperti (1963) under
the additional assumption g = 2.

To prove Propositions 1 and 2 we need to establish one preliminary result.
Let r be any positive real number. Let A, = X, ., — X,. By Taylor’s formula,
(91) X2, —-X}? = rXf”Z(ZXnAn +(2r-1)A) +R,(X,,A,,r),

n

where the remainder R, (X, A,, r) is given by

R,(X,,A,,r) = r(2r—1)(2r - 2)8, [ (X, +18,)" (1 - 1) dt.
0
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LEMMA 10. Suppose that
(92) Ha(x) =0(1) asx — .

(a) If r < 1, suppose in addition that for some q > 1,
(93) pog(x) =0(x*77%) asx — .

(b) If r > 1, suppose in addition that
(94) o (%) = 0(x27%) asx - .
Then for any & > 0 there exists A such that

E(IR,(X,,A,,r)IX,) < er(an”z)/Q on{X, > A}.

Proor. The proof is similar to that of Lemma 5 and we only give here the

principal steps, leaving details to the reader.

First, if r =1, then R, (X,,A, ,r) = 0. Suppose now r # 1. Since A, >
—X,, then for any 6 € (0, 1),

E(IR,(X,,8,, 1), < ox,) X0)
rl(2r — 1)(2r — 2)|
3

XE(IA,1X,).

Recall that by our assumption E(A?|X,) = O(1). Therefore there exists posi-
tive 8, such that for all § < §,

(95) E’(IRn(Xn, A, r)|1(|1An\55Xn)|Xn) <erX?%/4,
Next, we have from (91),

E(IR,(X,,A,,r) 1y s 5,x)X,)
(96) = E(((Xn +A,)" = X2 ), aoXn>|Xn)

—E(rX? 7 ?(2X,4, + (2r = A2) 1y s 30X”>|Xn).
Now, if r > 1, we easily get

E(|Rn(Xn’ A,, ")ll(mn|> SOX")an)

2r 1 2r r
< —| + 5=
80 802r—2

+
and assumption (94) implies that there exists A, such that on {X, > A},
E(IR (X, 8,5 1) Wga, 5 0,x,01 X)) < 61X 2 /4,

1+ 8,

E(IA,1”1X,)

60 0

2
— +2r — 1|
o

In the other case, r < 1, we have the following easy bound. For any s < 1,
E(mn'zsl(mw BoXn>|Xn) = E(|An|2872q|Anlzq1(\An\> éoXn>|Xn)
< (8,X,)* *E(1A,I*X,).
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Then, setting in this inequality s = 0,r,1/2,1 and putting the resulting
estimates into (96), we get that there exists a positive constant ¢ = ¢(§,, r)
such that

E(1R,(X,, 8, r)Ls, - 5,x,|X,) < X2 2E(1a, P7IX,).
It then follows from (93) that there exists A, such that on {X, > A},
E(IRn(Xn, NS 1 FINTS 50X”)|Xn) < erX??/4.

Finally, setting A = max(A,, A,) and taking into account the bound (95), we
obtain

E(IR,(X,,A,,r)1X,) < erX2""2/2 on{X, > A},

as was to be shown. O

ProoF OF PrROPOSITION 1. We are going to verify that the conditions of
Theorem 1 are satisfied. It suffices to check that

(97) E(X2, - X2P|7,) < —AX2P"% on{X, > A)

for some A > 0. Set r = p in (91). From (82) we have that the conditional
expectation w.r.t. ., of the first term in (91) is less than or equal to
—&epX 2P~ 2 and (97) is an immediate consequence of the last lemma. Apply-
ing then Theorem 1 we obtain the desired result. O

Proor OF PrOPOSITION 2. We first check that the process {X,, n > 0}
satisfies the conditions of Lemma 2 for all large enough A. We have to verify
that there exists a positive constant A, such that for all A > A, there exist
positive constants C, D such that

(98) E(an+1 —Xfl%) > —C on{X, > A}
and for some r > 1,
(99) E(Xfil —anrl,%) <DX?2% on{X, > A}.

The first condition here follows immediately from our assumptions (86) and
(87) and E(X?Z, , — X%7)=2X, u (X, + uy(X,). As far as (99) is con-
cerned, we set r =q (resp., r =p) in the case p <1 (resp.,, p > 1) and
consider the expansion (91) with such r. Then (99) follows from (86)—(89) and
the statement of the last lemma. If now we show that the processes {anﬁ;f”,
n > 0} are submartingales for all large enough A and for some small positive
7, then Corollary 1 will give the desired result. Let us check this submartin-
gale property. First, it follows from conditions (86) and (87) that there exists a

positive n < p such that
(100) 2xp(x) +(2p = 20— Dpy(x) > /2.
Let us set r = p — 0 in the expansion (91). From (87), (89) and Hoélder’s

inequality we easily have that if 2p — 2n > 1, then py, 5, (x) = o(x??~2772),
Then using again the assumptions (86)—(89) and the statement of the last
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lemma, we obtain that for all large enough A, the processes {Xfﬁ;f”, n > 0}
are submartingales. This concludes the proof. O
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