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BOUNDING d-DISTANCE BY INFORMATIONAL

DIVERGENCE: A METHOD TO PROVE

MEASURE CONCENTRATION1

BY K. MARTON

Mathematical Institute of the Hungarian Academy of Sciences

There is a simple inequality by Pinsker between variational distance

and informational divergence of probability measures defined on arbitrary

probability spaces. We shall consider probability measures on sequences

taken from countable alphabets, and derive, from Pinsker’s inequality,

bounds on the d-distance by informational divergence. Such bounds can

be used to prove the ‘‘concentration of measure’’ phenomenon for some

nonproduct distributions.

1. Introduction. Statement of the results. Let XX be a countable set

and let q n and pn be two probability measures on XX
n.

n nŽ .We denote by x the sequence x , x , . . . , x g XX and by d the normed1 2 n

Hamming distance on XX
n = XX

n:

n
n n y1d x , y s n d x , y ,Ž . Ž .Ý i i

is1

Ž .where d x , y s 1 if x / y and 0 otherwise.i i i i
n nThe d-distance between p and q is

n n n nˆd p , q s min Ed X , X ,Ž . Ž .

where the min is taken over all joint distributions with marginals pn s
ˆn n n ˆn nŽdist X and q s dist X . X and X denote random sequences with

n . n nvalues in XX . The informational divergence of p with respect to q is

p x nŽ .
n n n5D p q s p x log .Ž .Ž . Ý nq xŽ .nnx gXX

w Ž n. n Ž n. xThe right-hand side may be ` even if q x ) 0 for all x with p x ) 0.

There is a simple but powerful inequality by Pinsker between variational
w Ž .distance and informational divergence Pinsker 1964 ; Csiszar and Korner´ ¨

Ž .x Ž .1981 . In Marton 1986 this inequality was generalized to one between
n n y1 n nŽ . Ž 5 . Žd p , q and n D p q in the case when q is i.i.d. i.e., the product of n

.identical distributions .
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The aim of this paper is to generalize this inequality for certain nonprod-

uct distributions q n. More precisely, for some nonproduct distributions q n we

shall prove an inequality of the form

1r21
n n n n51.1 d p , q F c D p qŽ . Ž . Ž .

2n

for all n and all distributions pn and XX
n. Such bounds yield a proof of the

‘‘concentration of measure’’ phenomenon for some nonindependent processes
� 4 n w xX or distributions q. If A ; XX , then let A denote the «-neighborhood ofi «

A:

n n n n nw xA s y g XX : d x , y F « for some x g A .Ž .� 4«

It is known that if q is i.i.d., then it has the measure-concentration
Ž . nproperty. This means the following in the i.i.d case : if A ; XX , then

2
1 1

n w x1.2 q A G 1 y exp y2n « y logŽ . Ž .« ( nž /2n q AŽ .

wŽ .y1 Ž nŽ ..x1r2 w Ž .provided « G 2n log 1rq A cf. McDiarmid 1989 and Talagrand
Ž .x � 41995 . We shall prove a similar inequality for any process X or distribu-i

Ž . Ž .tion q satisfying inequality 1.1 Proposition 4 .

Measure-concentration inequalities can be used in various problems of

probability theory. A great variety of applications is given in a recent paper
Ž .by Talagrand 1995 . Talagrand only considers i.i.d. processes, but some of the

wproblems he treated are meaningful also for more general processes e.g., the

bin-packing problem and the problem of the longest increasing subsequence;
Ž .x Ž .see Talagrand 1995 . Let us mention that in Talagrand 1995 a more

Ž .powerful inequality than 1.1 is used, but only for the case of product
w Ž .xmeasures. In a forthcoming paper Marton 1995a we shall extend the

method of this work to generalize Talagrand’s inequality to the Markov case.

Now we proceed to the formulation of the results. If p and r are probabil-
< <ity distributions on XX , then p y r will denote their variational distance

n nŽ . Ž . < <divided by 2 . d p , q is a natural generalization of p y r , since

ˆ< < � 4p y r s min Pr X / X ,

ˆŽ .where the min is taken over all joint distributions dist X, X having
ˆmarginals p s dist X and r s dist X. Let us first recall Pinsker’s inequality.

FACT.

1r21< < 5p y r F D p rŽ .2

w Ž .cf. Pinsker 1964 , where this inequality was proved with a worse constant,
Ž .xand Csiszar and Korner 1981 .´ ¨
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n n Ž n. Ž . n Ž < .Let q be a Markov measure on XX , that is, q x s q x Ł q x x .1 1 is2 i i iy1

Ž . nWe denote by q ? the ith marginal distribution of q :i

i

<q x s q x q x x .Ž . Ž . Ž .Ý Łi i 1 1 j j jy1
js2iy1iy1x gXX

PROPOSITION 1. Let q n be a Markov measure on XX
n and assume that

1.3 max sup q ?N x y q ?N x s 1 y a, a ) 0.Ž . Ž . Ž .ˆi i
i x , xgXXˆ

Then for any probability measure pn on XX
n,

1r21 1
n n n n51.4 d p , q F D p q .Ž . Ž . Ž .

a 2n

Ž . nInequality 1.4 implies for a product measure q ,

1r21
n n n n5d p , q F D p q .Ž . Ž .

2n

Ž .In Marton 1986 this was proved, somewhat awkwardly, with a factor 2 on

the right-hand side.

Let XX
Z denote the set of doubly infinite sequences taken from XX . If

??? x , x , x , x ??? g XX
Z ,Ž .y1 0 1 2

k Ž . Ž .then we denote by x l - k the subsequence x , x , . . . , x . The indexl lq1 lq2 k
k Ž .l is omitted when 0, that is, x s x , x , . . . , x . If q is a stationary1 2 k

probability measure on XX
Z, that is, q is the distribution of some stationary

� 4̀ n nprocess X , taking values in XX , then we use the notation q s dist Xi isy`

and

< 0 < 0 0q ? x s dist X X s x .Ž . Ž .yN 1 yN yN

THEOREM 2. Let q be a stationary measure on XX
Z, and put

0 0g s sup sup q ?N x y q ?N y .Ž . Ž .k yN yN
0 0 0 0N x , y : y sxyN yN yk yk

If Ý` g s 1 y a, a ) 0, then for any n and any probability measure pn onks1 k

XX
n,

1r21 1
n n n n51.5 d p , q F D p q .Ž . Ž . Ž .

a 2n

Note that the condition Ý` g - 1 is a very strong mixing condition,ks1 k

much stronger than f-mixing.

Ž .Condition 1.3 may not hold for a segment of a stationary mixing Markov

chain. Still we have the following bound. The condition in the next proposi-

tion holds automatically if q is mixing and XX is finite; for a countable

alphabet it is called Doeblin’s condition.
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� 4̀PROPOSITION 3. Let q s dist X be a stationary Markov measure oni isy`

XX
Z and assume that for some k,

< <1.6 sup dist X X s x y dist X X s y s 1 y aŽ . Ž . Ž .k 0 k 0
x , ygXX

with a ) 0. Then for n s tk and any distribution pn on XX
n,

1r23r2k 2
n n n n5d p , q F D p q .Ž . Ž .

a n

ŽUnfortunately, the bound we get from this proposition for k s 1 is twice
.the bound of Proposition 1.

Ž .We state the measure-concentration inequality that follows from 1.1 in a

symmetric form.

Ž . n nPROPOSITION 4. If q satisfies 1.1 for all n and all distributions p on XX ,

then for any sets, A, B ; XX
n the Hamming distance between A and B satisfies

1r2 1r2
1 1 1 1

d A , B F c log q log .Ž . n nž / ž /2n q A 2n q BŽ . Ž .

Ž .Proposition 4 implies 1.2 with « replaced by «rc. To see this, one has to
w xtake the complement of A as B.«

Proposition 3 and Theorem 2 show that Markov processes with Doeblin’s

condition, as well as processes with a very fast and uniform decay of memory,

satisfy the condition of the above proposition.

REMARK 1. The concentration of measure phenomenon is a sharper form

of the blowing-up property, first proved for i.i.d. processes in Ahlswede, Gacs´
Ž . � 4and Korner 1976 . The process X or the distribution q has the blowing-up¨ i

property if for any « ) 0 there are d ) 0 and n such that for n G n and all0 0

A ; XX
n,

n n w xq A G exp ynd « q A G 1 y « .Ž . Ž . Ž .«

Ž .In Marton and Shields 1994 the blowing-up property was explored in more

detail and its connections with other ergodic properties were established. It

seems that the class of processes having the blowing-up property is much
Ž .wider than that of the processes satisfying an inequality of type 1.1 . We

shall come back to the characterization of processes having the blowing-up
w Ž .xproperty in a forthcoming paper Marton 1995b . The blowing-up property

for mixing Markov chains with finite alphabet follows also from the results in
Ž . Ž .Marton and Shields 1994 and Papamarcou and Shalaby 1993 .

Ž . Ž . Ž .REMARK 2. Talagrand 1995 proves 1.2 for a probability space XX , BB, q
Ž .obtained from a metric space XX instead of a countable alphabet . Our

warguments, too, carry over to metric spaces with a measurable diagonal cf.
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Ž .x w xMarton 1986 . In this case, the set A may not be measurable; therefore,«

Ž . w x nŽw x .in 1.2 one has to consider the inner measure of A instead of q A . A« «

way to circumvent this is to use the symmetric form given in Proposition 4.

w2. Proofs of the results. Although Proposition 1 or, more precisely, the
Ž .xcorresponding inequality 1.2 is known for the i.i.d. case, we separately

describe the proof for the case when q n is a product measure. The reason is

that this is the simplest application of a coupling idea based on the successive

use of Pinsker’s inequality. Also, this is a very short proof of Proposition 1 for

the case of product measures.

Moreover, we shall give a separate proof of Proposition 1, in spite of the

fact that it is a special case of Theorem 2. Our aim is to make the ideas of this

proof, and also of the proof of Theorem 2, clearer.

We shall use the notation

iy1 ˆ iy1 iy1 iy1 ˆ ˆ iy1 iy1< <p x s Pr X s x , p ? x s dist X X s x� 4Ž . Ž .ˆ ˆ ˆ ˆž /i i

and

iy1 < iy1 5 < iy1D x s D p ? x q ? x .Ž . Ž . Ž .ˆ ˆ ˆŽ .i i i

Ž . Ž n 5 n.We have then the following identity which expresses 1rn D p q as an
Ž iy1.average of the quantities D x :ˆi

n1 1
iy1 iy1 n n52.1 p x D x s D p q .Ž . Ž . Ž . Ž .ˆ ˆÝ Ý i

n niy1iy1is1 x gXXˆ

This identity is crucial in our proofs.

PROOF OF PROPOSITION 1 FOR THE INDEPENDENT CASE. We assume that q n

ˆn nis the product of distributions q . Let X and X denote random sequencesi

distributed according to pn and qn, respectively. Our goal is to define a joint
ˆn nŽ .distribution dist X , X so that

n1
n nˆ ˆEd X , X s Pr X / XŽ . � 4Ý i i

n is1

is sufficiently small.

By independence, we have now

iy1 < iy1 52.2 D x s D p ? x q .Ž . Ž . Ž .ˆ ˆŽ .i i i

ˆn nŽ .Now let us define a joint distribution dist X , X by induction as follows.
ˆ iy1 iy1Ž .Assume that for some i, 1 F i F n, dist X , X is already defined. Fix a

Ž iy1 iy1.pair of sequences x , x . We have to define the joint conditional distri-ˆ
bution

ˆ iy1 iy1<dist X , X x , x .ˆž /i i
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This distribution shall have marginals

ˆ iy1 iy1 iy1< <dist X x , x s p ? xŽ .ˆ ˆž /i i

and

< iy1 iy1dist X x , x s q .ˆŽ .i i

By Pinsker’s inequality, we can achieve

1r21iy1 iy1 iy1ˆ ˆ<Pr X / X X s x F D xŽ .ˆ ˆ½ 5i i i2

for all x iy1.ˆ
Ž . iy1Now we use identity 2.1 . Taking the average with respect to x and i,ˆ

and using the concavity of the square-root function, we get

1r2 1r2n1 1
n n iy1 iy1 n n5d p , q F p x D x s D p q . IŽ . Ž . Ž . Ž .ˆ ˆÝ

2n 2nis1

ˆn nPROOF OF PROPOSITION 1. Let X and X denote random sequences

distributed according to pn and qn, respectively. Our goal is to define a joint
ˆn nŽ .distribution dist X , X so that

n1
n nˆ ˆEd X , X s Pr X / XŽ . � 4Ý i i

n is1

is sufficiently small.

We have now

iy1 < iy1 5 <2.3 D x s D p ? x q ? x .Ž . Ž . Ž .ˆ ˆ ˆŽ .Ž .i i i iy1

ˆn nŽ . wLet us define a random sequence X , Y or, more precisely, a joint
ˆn nŽ .xdistribution dist X , Y as follows. The components Y , i s 1, 2, . . . , n, shalli

ˆnbe conditionally independent, given X , and shall satisfy

ˆ iy1 iy1< <2.4 dist Y X s x s q ? xŽ . ˆ ˆŽ .ž /i i iy1

and

iy1 iy1 iy1ˆ ˆ< < <Pr Y / X X s x s p ? x y q ? x .Ž .ˆ ˆ ˆŽ .½ 5i i i i iy1

Ž < iy1. Ž < .Applying Pinsker’s inequality to the measures p ? x and q ? x , weˆ ˆi i iy1

get

1r21iy1 iy1 iy1ˆ ˆ<Pr Y / X X s x F D x .Ž .ˆ ˆ½ 5i i i2

The above conditions do not uniquely determine the joint distribution of
ˆn nŽ .X , Y , but it is obvious that the definition can be completed and we can

have

1r21iy1 iy1 iy1 iy1 iy1ˆ ˆ<Pr Y / X X s x , Y s y F D xŽ .ˆ ˆ½ 5i i i2

for all x iy1, y iy1.ˆ
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ˆn n nŽ .Now let us define a joint distribution dist X , Y , X by induction as
ˆ iy1 iy1 iy1Ž .follows. Assume that for some i, 1 F i F n, dist X , Y , X is already

Ž iy1 iy1 iy1.defined. Fix a triple of sequences x , y , x . We have to define theˆ
joint conditional distribution

ˆ iy1 iy1 iy1<dist X , Y , X x , y , x .ˆž /i i i

This distribution shall have marginals

ˆ iy1 iy1 iy1 ˆ iy1< <dist X , Y x , y , x s dist X , Y xˆ ˆž / ž /i i i i

and

< iy1 iy1 iy1 <dist X x , y , x s q ? x .Ž .ˆŽ .i i iy1

Ž .Both distributions are given. By Pinsker’s inequality we can achieve

iy1 iy1 iy1<Pr Y / X x , y , x s q ?N x y q ?N xŽ .� 4 Ž .ˆ ˆi i i iy1 i iy1

and, consequently,

1r21iy1 iy1 iy1 iy1ˆ <Pr X / X x , y , x F D x q q ?N x y q ?N x .Ž . Ž .Ž .ˆ ˆ ˆ½ 5i i i i iy1 i iy12

iy1 Ž .Taking the average with respect to x and i, and using 2.1 and theˆ
concavity of the square-root function, we get

n n1 1 1
n nˆ ˆ5Pr X / X F D p q q 1 y a Pr X / X ,Ž .Ž .� 4 � 4Ý Ýi i iy1 iy1

n n nis1 is1

ˆ� 4where, by definition, Pr X / X s 0. Equivalently,0 0

1r2n1 1
n nˆ 5a Pr X / X F D p q . IŽ .� 4Ý i i

n 2nis1

ˆn nPROOF OF THEOREM 2. Let X and X denote random sequences dis-

tributed according to pn and q n, respectively. We shall imitate the proof of

Proposition 1.
ˆn nŽ .Define the joint distribution dist X , Y as in the proof of Proposition 1,

Ž .replacing 2.4 by

ˆ iy1 iy1 iy1< <dist Y X s x s q ? x .Ž .ˆ ˆž /i i

We have again

1r2n1 1
n n n nˆ ˆ 52.5 Ed X , Y s Pr X / Y F D p q .Ž . Ž . Ž .� 4Ý i i

n 2nis1

ˆn n nŽ .Now define the joint distribution dist X , Y , X by induction, similarly
Ž iy1 iy1 iy1.to the proof of Proposition 1. Given the triple of sequences x , y , x ,ˆ

Ž < iy1 iy1 iy1. Ž < iy1. Ž < iy1.we define dist Y , X x , y , x with marginals q ? x and q ? xˆ ˆi i i i

so as to minimize

< iy1 iy1 iy1 < iy1 iy1Pr Y / X x , y , x s Pr Y / X x , x .� 4 � 4ˆ ˆi i i i
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iy1 Ž .With the notation x s x , x , . . . , x , we shall haveˆ ˆ ˆ ˆj jq1 jq2 iy1

iy1
iy1 iy1ˆ ˆ� 4Pr Y / X s Pr X / X , X s XÝ ½ 5i i j j j j

js1

= ˆ ˆ iy1 iy1<Pr Y / X X / X , X s X½ 5i i j j j j

iy1

ˆF Pr X / X g .½ 5Ý j j iyj

js1

It follows that

n iy11
n n ˆEd Y , X F Pr X / X gŽ . ½ 5Ý Ý j j iyj

n is1 js1

ny1 n1
n nˆ ˆs Pr X / X g F 1 y a Ed X , X .Ž . Ž .½ 5Ý Ýj j iyj

n js1 isjq1

Ž .This, together with 2.5 , implies

1r2y1n n n nˆ 5a Ed X , X F 2n D p q . IŽ .Ž . Ž .

ˆn ˆ tk n tkPROOF OF PROPOSITION 3. Let X s X and X s X denote random

sequences distributed according to pn and q n, respectively. We imitate the

coupling construction of the proof of Proposition 1, but now we concatenate

k-length blocks defined as

ˆ ik ik ik ˆX , Y , X s X , Y , X : i y 1 k - j F ik .Ž .½ 5ž / ž /Ž iy1.k Ž iy1.k Ž iy1.k j j j

For a fixed i, 1 F i F t, and x Ž iy1.k g XX
Ž iy1.k, writeˆ

Ž iy1.k ik < Ž iy1.k 5 ik < Ž iy1.kD x s D p ? x q ? x ,Ž . Ž . Ž .ˆ ˆ ˆŽ .i Ž iy1.k Ž iy1.k

ik Ž iy1.k ˆ ik ˆŽ iy1.k Ž iy1.kŽ < . Ž < .where, for example, p ? x s dist X X s x . Weˆ ˆŽ iy1.k Ž iy1.k

Ž .have, instead of 2.1 ,

t1 k
Ž iy1.k Ž iy1.k n n5p x D x s D p q .Ž . Ž . Ž .ˆ ˆÝ Ý i

t nŽiy1.kis1 x̂

Let us define the random sequence Y tk so that the strings Y ik , i sŽ iy1.k

ˆn1, . . . , t, shall be conditionally independent, given X , and satisfy

ik ˆŽ iy1.k Ž iy1.k k< <dist Y X s x s q ? x .ˆ ˆŽ .ž /Ž iy1.k Ž iy1.k

Ž ik < . ikThe right-hand side here denotes dist X X s x , that is, YˆŽ iy1.k Ž iy1.k Ž iy1.k Ž iy1.k

develops from the state x the same way as X ik would do. Moreover,Ž̂ iy1.k Ž iy1.k

ˆ ik ik ˆŽ iy1.kŽ .we define the joint conditional distribution of X , Y , given XŽ iy1.k Ž iy1.k

and Y Ž iy1.k so as to achieve

ik ˆ ik ˆŽ iy1.k Ž iy1.k Ž iy1.k Ž iy1.k<Pr Y / X X s x , Y s yˆ½ 5Ž iy1.k Ž iy1.k

1r21 Ž iy1.k Ž iy1.k Ž iy1.kF D x , for all x , y .Ž .ˆ ˆ2
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ˆn nŽ .Next we extend the definition of dist X , Y to a definition of
ˆn n nŽ .dist Y , Y , X , using induction in i and bounding, at each step, the condi-

tional expected d-distance

ik ik Ž iy1.k Ž iy1.k Ž iy1.k Ž iy1.k Ž iy1.k Ž iy1.kˆ<E d Y , X X s x , Y s y , X s x ,ˆŽ .½ 5Ž iy1.k Ž iy1.k

kŽ < . kŽ < .given the marginals q ? x and q ? x . This conditional expecta-Ž̂ iy1.k Ž iy1.k

Ž .tion can be made less than or equal to 1 y ark in case x / x , andŽ̂ iy1.k Ž iy1.k

0 if x s x .Ž̂ iy1.k Ž iy1.k

ˆŽ iy1.k Ž iy1.k Ž iy1.kŽ .Now consider, for a given i, the random triple X , Y , X ,

the distribution of which has been constructed, step by step, subject to the

above conditions. Observe that if a pair

yŽ iy1.k , x Ž iy1.kŽ .Ž iy2.k Ž iy2.k

has positive probability and

Ž iy1.k Ž iy1.kd y , x - 1,Ž .Ž iy2.k Ž iy2.k

then y s x , since both Y and X develop according to the sameŽ iy1.k Ž iy1.k

Markovian q. It follows that, if for some realization

x Ž iy1.k , yŽ iy1.k , x Ž iy1.kŽ .ˆ

Ž iy1.k Ž iy1.k Ž iy1.k Ž iy1.kŽ .we have x s y , and d x , x - 1, then x s x .ˆ ˆ ˆŽ iy2.k Ž iy2.k Ž iy2.k Ž iy2.k Ž iy1.k Ž iy1.k

Therefore,

a
ik ik Ž iy1.k Ž iy1.kˆd Y , X F 1 y d X , X ,Ž . ž /Ž iy1.k Ž iy1.k Ž iy2.k Ž iy2.kž /k

ˆŽ iy1.k Ž iy1.k ˆ0 0 0Ž .provided X s Y . We assume X s Y s X . It follows thatŽ iy2.k Ž iy2.k yk yk yk

ik ik Ž iy1.k Ž iy1.kˆEd Y , X F Pr X / YŽ . ½ 5Ž iy1.k Ž iy1.k Ž iy2.k Ž iy2.k

a
Ž iy1.k Ž iy1.kˆq 1 y Ed X , Xž /Ž iy2.k Ž iy2.kž /k

and so

ik ikˆEd X , Xž /Ž iy1.k Ž iy1.k

ˆŽ iy1.k Ž iy1.kF Pr X / Y½ 5Ž iy2.k Ž iy2.k

a
ik ik Ž iy1.k Ž iy1.kˆ ˆq Pr X / Y q 1 y Ed X , X .½ 5 ž /Ž iy1.k Ž iy1.k Ž iy2.k Ž iy2.kž /k

Averaging for i we get

1r2a 2k
tk tk n nˆ 5Ed X , X F D p q . IŽ . Ž .

k n
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n ˆnPROOF OF PROPOSITION 4. Let p s dist X denote the distribution

q x n rqn A , x n g A ,Ž . Ž .n np x sŽ . ½ 0, otherwise,

and define r n similarly, replacing A with B. We have then
1r2

1 1
n nd p , q F c logŽ . n2n q AŽ .

and
1r2

1 1
n nd r , q F c log .Ž . n2n q BŽ .

Therefore,

n n n n n nd A , B F d p , r F d p , q q d r , qŽ . Ž . Ž . Ž .
1r2 1r2

1 1 1 1
F c log q log . I

n nž / ž /2n q A 2n q BŽ . Ž .
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