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We consider the supremum Wn of self-normalized empirical processes
indexed by unbounded classes of functions F . Such variables are of
interest in various statistical applications, for example, the likelihood ratio
tests of contamination. Using the Herbst method, we prove an exponential
concentration inequality for Wn under a second moment assumption on
the envelope function of F . This inequality is applied to obtain moderate
deviations for Wn. We also provide large deviations results for some
unbounded parametric classes F .

1. Introduction and main results. Let (X,Xn)n∈N be a sequence of inde-
pendent and identically distributed random variables with values in some measur-
able space (X,X). Let F be a permissible class of real measurable functions on
(X,X). We consider centered and normalized functions, that is, all functions f in
F satisfy

E[f (X)] = 0 and E[f 2(X)] = 1.(1.1)

Define

Wn(f )= Pn(f )√
Pn(f 2)

,(1.2)

where Pn denotes the empirical measure

Pn = 1

n

n∑
k=1

δXk

with the convention 0/0 = 0 if Pn(f 2) = 0. For each fixed function f in F ,
Wn(f ) is a self-normalized sum. A striking result about self-normalized sums was
obtained by Shao [23] and Dembo and Shao [6]: a large deviations principle holds
for Wn(f ) without any integrability assumption on f and a moderate deviations
principle holds for Wn(f ) as soon as f (X) is centered and has a finite second
moment. One can note that the precise result requires slightly weaker assumptions.
These remarkable properties have to be compared with classical large deviations
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results on empirical sums Pn(f ), where, roughly speaking, one requires the
moment generating function of f (X) to be finite in a neighborhood of zero. In this
paper, we are interested in the self-normalized empirical process (Wn(f ))f∈F .
More specifically, we investigate various exponential bounds for the deviation of

Wn = sup
f∈F

Wn(f ),(1.3)

namely concentration inequalities and asymptotic exponential bounds given by
large and moderate deviations principles. Such theoretical results are of practical
interest for statistical applications as nonstandard likelihood ratio testing problems
[4, 5, 13, 14]. For example, self-normalized score tests may be proposed to obtain
a consistent test with exponentially decreasing level in the contamination testing
problem [10].

Concentration inequalities have been investigated in depth in the last few
years thanks to the important contribution of M. Talagrand [24, 25]. We refer
the reader to McDiarmid [18] for an introduction to concentration inequalities
with applications. These concentration inequalities apply to the supremum of
empirical processes on classes of bounded functions. A different approach to
derive concentration inequalities for empirical processes was proposed by Ledoux
[15] and later developed by Massart [17] and Rio [21, 22]. All these results
assume that the functions are uniformly bounded or at least uniformly bounded
on the right-hand side. On the other hand, known results for the deviation of
the supremum of empirical processes on classes of unbounded functions lead to
upper bounds with nonexponential tails, except for classes of functions having
an envelope function for which the moment generating function is finite in a
right neighborhood of zero. As a matter of fact, in all other cases, the upper
bounds mainly depend on the tail of the envelope function. We refer the reader to
Pollard [19], Van der Vaart and Wellner [26] and Giné [11] for theoretical results
on empirical processes.

In order to obtain exponential bounds in the case of unbounded functions,
different ratios of empirical processes are studied by Pollard [20], Haussler [12]
and Bartlett and Lugosi [3]. However, the ratios are not self-normalized, the upper
bounds depend on the envelope function and they are not necessarily exponentially
decreasing.

Our first result, established in Section 2, is a concentration inequality for Wn.

THEOREM 1.1. Assume that F is a countable class of centered and normal-
ized functions with finite bracketing numbers in L2(P ), such that

E = sup
n>0

E

[
sup
f∈F

max
(√
nPn(f ),0

)]
<+∞.(1.4)
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Then, for any δ > 0 and α >
√

2, one can find some positive θ and n0 depending
on F , α and δ such that, for n≥ n0 and for any x in [0, θ√n],

P(
√
nWn ≥ x + αE)≤ 2 exp

(
− x2

4α2(1 + δ)

)
.(1.5)

Assumption (1.4) is satisfied by most of the P -Donsker classes, such as classes
with finite bracketing integral (see [27], page 270) or classes of functions intro-
duced in [1]. Sections 3 and 4 are devoted to moderate and large deviations results
for Wn. As for concentration inequalities, the earlier moderate and large devia-
tions results on empirical processes (Pn(f ))f∈F require strong assumptions on
the class F . In particular, Wu [28] established a functional large deviations princi-
ple for Pn(f ) under the assumption that an envelope function exists with moment
generating function finite in a right neighborhood of zero. Moreover, Ledoux [16]
proved moderate deviations results in Banach spaces under subexponential mo-
ment conditions on the norms of the random vectors. However, for self normalized
empirical processes, this appears to be far too restrictive comparing to the results
of Shao [23] and Dembo and Shao [6] and the purpose of Section 3 is to show that
we can obtain moderate deviations results for Wn under quite similar assumptions
as in Theorem 1.1.

In order to establish the moderate deviations principle, we need an additional
condition on the brackets. We shall say that F has a finite covering with brackets
in L2(P ) satisfying concordance of signs if, for any δ > 0, one can find a finite
family C of pairs of measurable functions in L2(P ) such that, for any f in F ,
there exists (g,h) in C with

|g| ≤ |f | ≤ |h|, gf ≥ 0, gh≥ 0 and E[(h− g)2(X)] ≤ δ.(1.6)

THEOREM 1.2. Use the same assumptions as in Theorem 1.1. Moreover,
assume that F has a finite covering with brackets in L2(P ) satisfying concordance
of signs. Then, for any sequence (xn) tending to infinity such that xn = o(

√
n), we

have

lim
n→+∞

1

x2
n

log P

(
Wn ≥ xn√

n

)
= −1

2
.(1.7)

Recently, Shao [23] has established a large deviations principle for Wn(f )

for each fixed function f in F such that f (X) has continuous distribution. In
particular, he has shown that for any x > 0,

lim
n→∞

1

n
logP

(
Wn(f )≥ x

) = −If (x)
where the rate function If is explicitly given. In contrast with moderate deviations
results, the denominator Pn(f 2) plays a fundamental role. This introduces further
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difficulties for proving a large deviations principle for Wn. In Section 4, we shall
restrict ourselves to parametric classes associated with exponential models. More
precisely, we consider F = {fγ with γ ∈ [m,0−] ∪ [0+,M]} wherem is negative,
M is positive,

fγ (x)=



exp
(
γ t (x)− l(γ )

) − 1, if γ �= 0,

t (x), if γ = 0+,
−t (x), if γ = 0−.

(1.8)

The function t is continuous real measurable with moment generating function
l(γ )= logE[exp(γ t (X))]. We assume that [2m,2M] is included in the domain of
l so that the functions of F are square integrable. Define the rate function I by

I(x)=
{

inf
f∈F

If (x), if x ≥ 0,

+∞, otherwise.
(1.9)

THEOREM 1.3. Let F be the parametric class of centered and square
integrable functions given by (1.8). Moreover, assume that t (X) has a continuous
distribution function and E[t (X)] = 0. Then, (Wn) satisfies a large deviations
principle with continuous rate function I. In particular, for any x ≥ 0,

lim
n→∞

1

n
logP(Wn ≥ x)= −I(x).(1.10)

2. Concentration inequalities. The purpose of this section is to establish
a concentration inequality for Wn. The main tool for proving this inequality is the
entropy method proposed by Ledoux [15], which provides differential inequalities
for various functionals of random measures. Due to the structure of self-
normalized empirical processes, we avoid symmetrization. We start by recalling
a differential inequality for Laplace transforms of functionals of independent
random variables which was stated in Massart [17] in a slightly different version.
The present form can be found in Rio [21].

THEOREM 2.1. Let Fn be the σ -algebra generated by (X1,X2, . . . ,Xn) and
denote by F k

n the σ -algebra generated by (X1,X2, . . . ,Xk−1,Xk+1, . . . ,Xn). Set

ψ(x)= exp(−x)+ x − 1, φ(x)= 1 − (1 + x) exp(−x).
Let Z = Z(X1, . . . ,Xn) be a given bounded functional and denote by Fn its
Laplace transform. Then, for any sequence (Zk)k∈[1,n] of bounded functionals
respectively F k

n -measurable and for any nonnegative λ, we have

λF ′
n(λ)− Fn(λ) logFn(λ)≤

n∑
k=1

E
[
ψ
(
λ(Z−Zk)+

)
eλZ + φ

(
λ(Z −Zk)−

)
eλZk

]
.
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For all f in F , let Sn(f ) = nPn(f ). We shall apply the above differential
inequality to the process

Z(N)(n)= sup
f∈F

max(Sn(f ),0)√
N + Sn(f

2+)

with n in [1,N ]. We set Z(N) = Z(N)(N).

THEOREM 2.2. Assume that F is a countable class of centered and
normalized functions, totally bounded in L2(P ). Let

EN = sup
n∈[1,N]

E[Z(N)(n)]

and assume that ζ = supN>0EN <∞. Set

η(t)= t sup
f∈F

P
(
f 2(X) > t

)
.(2.1)

Then, for any δ > 0, one can find some positive ε and N0 only depending on η
and ζ such that, for N ≥N0 and for any λ in [0, ε√N ],

E
[
exp

(
λZ(N)

)] ≤ exp
(
λEN + (1 + δ)λ2).(2.2)

Consequently, for any x in [0,2(1 + δ)ε
√
N ],

P
(
Z(N) ≥ x +EN

) ≤ exp
(
− x2

4(1 + δ)

)
.(2.3)

PROOF. First of all, relation (2.3) immediately follows from the standard
Cramér–Chernoff calculation. Next, in order to avoid heaviness in the notation,
we rewrite Z(N)(n) as Z. Our goal is to bound up the Laplace transform Fn of Z
via Theorem 2.1. We shall obtain this upper bound by induction on n. Define

Zk = sup
f∈F

max(Skn(f ),0)√
N + Skn(f

2+)
with Skn(f )=

n∑
i=1

f (Xi)1i �=k.

In order to use Theorem 2.1, it is necessary to bound up the random variable
Z − Zk . We may assume without loss of generality that F is finite, that is,
F = {f1, . . . , fm} with m ≥ 1. One the one hand, for the positive part of Z −Zk ,
let τ be the infimum of integers i such that

Z = max(Sn(fi),0)√
N + Sn(f

2
i+)

.
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Clearly, we may assume Z > 0, which ensures that Sn(fτ ) > 0. If Skn(fτ ) ≤ 0,
then fτ (Xk) > 0 and

Z−Zk ≤ Sn(fτ )√
N + Sn(f

2
τ+)

≤ fτ+(Xk)√
N + Sn(f

2
τ+)

.

Otherwise,

Zk ≥ Skn(fτ )√
N + Skn(f

2
τ+)

> 0

and therefore

Z −Zk ≤ Sn(fτ )√
N + Sn(f

2
τ+)

− Skn(fτ )√
N + Skn(f

2
τ+)

≤ fτ+(Xk)√
N + Sn(f

2
τ+)

.

Noting that ψ(x)≤ x2/2 for any positive x, we find that for all λ≥ 0,

ψ
(
λ(Z−Zk)+

) ≤ λ2f 2
τ+(Xk)

2N + 2Sn(f 2
τ+)

,

which immediately implies that

n∑
k=1

E
[
ψ
(
λ(Z −Zk)+

)
eλZ

] ≤ λ2

2
Fn(λ).(2.4)

On the other hand, for the negative part of Z−Zk , let τk be the infimum of integers
i such that

Zk = max(Skn(fi),0)√
N + Skn(f

2
i+)

.

As before, we may assume Zk > 0, which ensures that Skn(fτk ) > 0. If Sn(fτk)≤ 0,
then fτk (Xk) < 0 and

Zk −Z ≤ Skn(fτk )√
N + Skn(f

2
τk+)

≤ fτk−(Xk)√
N + Skn(f

2
τk+)

.

Otherwise,

Z ≥ Sn(fτk )√
N + Sn(f

2
τk+)

> 0
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and therefore

Zk −Z ≤ Skn(fτk )√
N + Skn(f

2
τk+)

− Sn(fτk )√
N + Sn(f

2
τk+)

≤ fτk−(Xk)√
N + Sn(f

2
τk+)

+Zk


1 −

√√√√N + Skn(f
2
τk+)

N + Sn(f
2
τk+)


 .

Consequently, it follows that

Zk −Z ≤ fτk−(Xk)√
N + Skn(f

2
τk+)

+ Zkf
2
τk+(Xk)

2N + Sn(f
2
τk+)

.(2.5)

Note that either the first term or the second term in this upper bound are null. Since
φ(x)≤ x2/2 for any positive x, setting Yk = f 2

τk+(Xk), we deduce that

φ
(
λ(Z −Zk)−

) ≤ λ2

2N
f 2
τk−(Xk)+ φ

(
λYkZk

2N + Yk

)
.

Let E
k
n denote the conditional expectation with respect to F k

n and P
k
n be the

corresponding conditional probability. Integrating with respect to Xk the above
inequality and noting that φ′(x)= x exp(−x), we find that

E
k
n

[
φ
(
λ(Z −Zk)−

)] ≤ λ2

2N
E
k
n[f 2

τk−(Xk)] +
∫ ∞

0
P
k
n(Vk ≥ t)te−t dt

with Vk = λ(2N + Yk)
−1YkZk . On the one hand, E[f 2(Xk)] = 1 and the stopping

time τk is F k
n -measurable so that E

k
n[f 2

τk−(Xk)] ≤ 1. On the other hand, set

.(t)= sup
f∈F

P
(
f 2(X) > t

) = η(t)

t
,

where the function η is given by (2.1). Since Zk is F k
n -measurable, we obtain that∫ ∞

0
P
k
n(Vk ≥ t)te−t dt ≤

∫ λZk

0
t.

(
2Nt

λZk − t

)
e−t dt ≤ λZk

2N
I (λZk)

with

I (z)=
∫ z

0
η(2Ntz−1) exp(−t) dt.

Therefrom, taking expectations, we deduce that
n∑
k=1

E
[
φ
(
λ(Z −Zk)−

)
eλZk

] ≤ λ2

2
Fn−1(λ)+ λ

2
E[Zk exp(λZk)I (λZk)].(2.6)

We now control the integral I (z) by the straightforward Toeplitz-like lemma be-
low.
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LEMMA 2.3. Assume that F is totally bounded in L2(P ). Then,
limt→∞ η(t)= 0,

I (z)= (
1 − exp(−z))ε(max(1, z)

2N

)

for some function ε with values in [0,1] satisfying limt→0 ε(t)= 0.

PROOF. As the family of functions {f 2, f ∈ F } is relatively compact in
L1(P ), we classically have the uniform integrability of {f 2(X),f ∈ F } (see [9],
page 294), which implies the convergence of η to 0. Next, if z≤ 1, then

I (z)≤ z

2N

∫ 2N

0
η(u) du,

which implies Lemma 2.3. Otherwise, let a = (z/2N)1/2. Since η(t)≤ 1, we get

I (z)≤ a +
∫ z

a
η(2Ntz−1)e−t dt ≤ (1 − e−z)

(
ea

e− 1
+ sup
x≥1/a

η(x)

)

which completes the proof of Lemma 2.3. �

Now, from (2.6) and Lemma 2.3 together with the elementary fact that for all
x ≥ 0, x(exp(x)− 1)≤ 2φ(−x), we find that

n∑
k=1

E
[
φ
(
λ(Z −Zk)−

)
eλZk

] ≤ λ2

2
Fn−1(λ)+ E

[
φ(−λZk)ε

(
max(1, λZk)

2N

)]
.

By the Cauchy–Schwarz inequality, Zk ≤ √
N . Consequently, if

ε∗(x)= sup{ε(t) : t ∈]0, x]},
we can deduce that for N ≥ 1/(2α) and for any λ≤ α

√
N ,

n∑
k=1

E
[
φ
(
λ(Z −Zk)−

)
eλZk

] ≤ λ2

2
Fn−1(λ)+ ε∗(α)E[φ(−λZk)].(2.7)

In addition, one can observe that

E[φ(−λZk)] = λF ′
n−1(λ)− Fn−1(λ)+ 1.

Piecing together the contributions of the positive part (2.4) and of the negative
part (2.7), we obtain by Theorem 2.1 that for N ≥ 1/(2α) and for any λ≤ α

√
N ,

λF ′
n − Fn logFn ≤ λ2

2
(Fn−1 + Fn)+ ε∗(α)(λF ′

n−1 − Fn−1 + 1).(2.8)
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We are now in position to state our induction hypothesis. The induction hypothesis
H(n) at range n is that for any λ in ]0, α√

N ],

Fn(λ) < exp

(
λEN + (1 + δ)λ2),

λF ′
n(λ)− Fn(λ)+ 1 ≤ Cλ2 exp

(
λEN + (1 + δ)λ2).

At range 0, we assume that F0(λ)= 1. Hence the induction hypothesis holds true
at range 0. Let n be some integer in [1,N ]. Suppose that the induction hypothesis
holds at range n− 1. Set

H(λ)= exp
(
λEN + (1 + δ)λ2).

Then, we find via (2.8) that

λF ′
n(λ)− Fn(λ) logFn(λ) <

λ2

2
Fn(λ)+ λ2

2
H(λ)+ ε∗(α)Cλ2H(λ).(2.9)

Consequently, Fn is a subsolution of the Differential Equation (DE) corresponding
to the equality in (2.9) with Fn(0) = 1 and F ′

n(0) = E[Z] ≤ EN . Moreover, we
have

λH ′(λ)−H(λ) logH(λ)= λ2

2
H(λ)+ λ2

2
(1 + 2δ)H(λ).

Hence, if α and C are such that δ = ε∗(α)C, H is the solution of (DE) such
that H(0) = 1 and H ′(0) = EN . Therefrom, by the comparison lemma (see [2],
page 26), we obtain that for all n in [1,N ] and for any λ in ]0, α√

N ],
Fn(λ) <H(λ).

It remains to choose α in such a way that the second part of the induction
hypothesis holds true. From (2.8) and the above inequality, we derive that

λF ′
n(λ)−Fn(λ)+ 1 ≤ Fn(λ) logFn(λ)− Fn(λ)+ 1 + λ2(1 + δ)H(λ).

Now, recall that Fn(λ) ≥ 1 and observe that the function x logx − x + 1 is
nondecreasing on [1,+∞[. Since Fn ≤H , we infer that

λF ′
n(λ)− Fn(λ)+ 1 ≤H(λ) logH(λ)−H(λ)+ 1 + λ2(1 + δ)H(λ).

Set G(λ)= logH(λ)= λEN + (1 + δ)λ2. Then, we obtain that

λF ′
n(λ)− Fn(λ)+ 1 ≤ (

ψ
(
G(λ)

) + λ2(1 + δ)
)
H(λ).(2.10)

However, ψ is a convex function so that

ψ
(
G(λ)

) ≤ 1
2

(
ψ(2λEN)+ψ

(
2(1 + δ)λ2)) ≤ (E2

N + 1 + δ)λ2.(2.11)

Finally, if we choose α in such a way that ε∗(α) ≤ 1/3 and if we take C =
3(ζ 2 + 2), we deduce from (2.10) together with (2.11) that

λF ′
n(λ)− Fn(λ)+ 1 ≤ (

E2
N + 2(1 + δ)

)
λ2H(λ)≤ Cλ2H(λ)
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which immediately implies H(n). Hence, by induction, H(N) also holds,
completing the proof of Theorem 2.2. �

Now, we deduce the concentration inequality for Wn from Theorem 2.2.

THEOREM 2.4. Assume that F is a countable class of centered and
normalized functions, totally bounded in L2(P ). Moreover, assume that for any
ζ in ]0,1[, one can find a finite family G of real measurable functions satisfying
the two constraints: for all f in F, there exists g in G such that

f 2 ≥ g2 and E[f 2(X)− g2(X)] ≤ ζ.(2.12)

Then, for any δ > 0 and α >
√

2, one can find some positive ξ and n0 depending
on F , E given by (1.4) and α such that, for n≥ n0 and for any λ in [0, ξ√n],

E
[
exp(λ

√
nWn)

] ≤ 2 exp
(
αλE + (1 + δ)α2λ2).(2.13)

PROOF. It follows from (1.2) together with (1.3) that

√
nWn ≤ sup

f∈F

Sn(f )√
n+ Sn(f

2+)

(
n

Sn(f 2)
+ 1

)1/2

.

For α >
√

2, set aα = (α2 − 1)−1 and

6α =
{

inf
f∈F

Sn(f
2)≥ aαn

}
.

On 6α , we clearly have
√
nWn ≤ αZ with Z = Z(n)(n). Hence

E
[
exp(λ

√
nWn)

] ≤ 2 max
(
Fn(αλ), exp(λ

√
n)P (6cα)

)
,(2.14)

where Fn denotes the Laplace transform of Z. On the one hand, we obtain from
Theorem 2.2 that for λ < ε

√
n/α,

Fn(αλ)≤ exp
(
αλE + (1 + δ)α2λ2).(2.15)

On the other hand, let Gζ be a finite family with minimal cardinality among the
families satisfying (2.12). First, from (2.12),

min
g∈Gζ

E[g2(X)] ≥ 1 − ζ.(2.16)

In addition,

6cα ⊂
{

inf
g∈Gζ

Sn(g
2)≤ naα

}
.

Then, applying Proposition A.1 to Gζ , we deduce that

P(6cα)≤ |Gζ | exp(−nθα)
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with θα > 0 provided that aα < 1 − ζ , that is, ζ < (α2 − 1)−1(α2 − 2). Therefore,
we find from (2.14) together with (2.15) that for all λ < ε

√
n/α,

E
[
exp(λ

√
nWn)

] ≤ 2 exp
(
αλE + (1 + δ)α2λ2)(2.17)

as soon as |Gζ | exp(λ
√
n− nθα) ≤ 1 which can be rewritten as nθα − cζ ≥ λ

√
n

with cζ = log |Gζ |, completing the proof of Theorem 2.4. One can note that
Theorem 1.1 immediately follows from Theorem 2.4. �

3. Moderate deviations. Theorem 1.2 provides the moderate deviations
principle for Wn. It is derived from concentration inequalities for the fluctuations
process as in Ledoux [16].

PROOF OF THEOREM 1.2. First of all, let C = {(gi, hi) with i ∈ I } be a
family of brackets satisfying concordance of signs, as defined in Section 1. Next,
let (Bi)i∈I be a partition of F such that, for any f in Bi ,

|gi | ≤ |f | ≤ |hi | with E[(hi − gi)
2(X)] ≤ δ and gif ≥ 0, gihi ≥ 0.(3.1)

For any ε in ]0,1[, we have the decomposition

P

(
Wn ≥ xn√

n

)
≤An(δ, ε)+

∑
i∈I
Bin(δ, ε),(3.2)

where

An(δ, ε)= P

(
sup
i∈I

max(Sn(gi − E[gi]),0)√
Sn(g

2
i )

≥ (1 − ε)xn

)
,

Bin(δ, ε)= P

(
sup
f∈Bi

(√
nmax

(
Wn(f ),0

) − max(Sn(gi − E[gi]),0)√
Sn(g

2
i )

)
≥ εxn

)
.

On the one hand, we apply Theorem 3.1 of Shao [23] to obtain moderate deviations
for An(δ, ε). On the other hand, we bound up the remainder terms Bin(δ, ε) via the
following concentration inequality, which is proven in Appendix B. Let

V in(δ)= sup
f∈Bi

max(Sn(f − gi + E[gi]),0)√
Sn(f 2)

.

THEOREM 3.1. Under the assumptions of Theorem 1.2, for any δ > 0 and
α >

√
2, one can find some positive ξ and n0 depending on F , E given by (1.4)

and α such that, for n≥ n0 and for any λ in [0, ξ√n],
E
[
exp

(
λV in(δ)

)] ≤ 2 exp
(
αλ(1 +E)+ 16| logδ|−1α2λ2).(3.3)
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Now, by use of Theorem 3.1, we prove that there exists δ > 0 such that Bin(δ, ε) is
bounded by exp(−x2

n). For any f in Bi , since Sn(f 2)≥ Sn(g
2
i ), we have

max(Sn(gi − E[gi]),0)√
Sn(g

2
i )

≥ max(Sn(gi − E[gi ]),0)√
Sn(f 2)

.

Hence, by (1.2),

√
nmax

(
Wn(f ),0

)− max(Sn(gi − E[gi]),0)√
Sn(g

2
i )

≤ max(Sn(f − gi + E[gi]),0)√
Sn(f 2)

.

(3.4)

Consequently, applying (3.3) with α = 2, δ = exp(−512/ε2) and λ = | log δ| εxn128
together with Markov’s inequality, we have for n large enough

Bin(δ, ε)≤ P
(
V in(δ)≥ εxn

) ≤ exp(−x2
n).(3.5)

In addition, for any i in I , |E[gi]| ≤ √
δ. Hence,

sup
i∈I

Sn(gi − E[gi ])√
Sn(g

2
i )

= sup
i∈I

Sn(gi − E[gi ])√
Sn((gi − E[gi])2)

√√√√Sn((gi − E[gi ])2)
Sn(g

2
i )

≤ sup
i∈I

√
nWn(gi − E[gi ])

(
1 +

√
n|E[gi ]|√
Sn(g

2
i )

)

≤ sup
i∈I

√
nWn(gi − E[gi ])

(
1 +

√
nδ

Sn(g
2
i )

)
.

Therefore,

An(δ, ε)≤ P

(
sup
i∈I

Wn(gi − E[gi])≥ (1 − ε)xn

(1 + ε)
√
n

)
+ P

(
inf
i∈I

Sn(g
2
i )

n
≤ δ

ε2

)
.(3.6)

By Theorem 3.1 of Shao [23], we have

lim
n→+∞

1

x2
n

logP

(
sup
i∈I

Wn(gi − E[gi])≥ (1 − ε)xn

(1 + ε)
√
n

)
= −1

2

(
1 − ε

1 + ε

)2

.(3.7)

Furthermore, one can notice that for any i in I , E[g2
i ] ≥ 1 − 2

√
δ. Then, since

1 − 2
√
δ > δ/ε2, we deduce from Proposition A.1 that we can find θ > 0 such that

lim sup
n→+∞

1

n
logP

(
inf
i∈I

Sn(g
2
i )

n
≤ δ

ε2

)
≤ −θ.(3.8)
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Then, we deduce from (3.5) to (3.8) that

lim sup
n→+∞

1

x2
n

log P

(
Wn ≥ xn√

n

)
≤ −1

2

(
1 − ε

1 + ε

)2

which, by the arbitrariness of ε, immediately implies

lim sup
n→+∞

1

x2
n

logP

(
Wn ≥ xn√

n

)
≤ −1

2
.

Finally, by Theorem 3.1 of Shao [23], we have for any fixed function f in F ,

lim sup
n→+∞

1

x2
n

logP

(
Wn ≥ xn√

n

)
≥ lim sup

n→+∞
1

x2
n

logP

(
Wn(f )≥ xn√

n

)
= −1

2
,

which completes the proof of Theorem 1.2. �

4. Large deviations. Recently, Shao [23] has established a large deviations
principle for Wn(f ) for each fixed function f in F such that f (X) has continuous
distribution function. In particular, he has shown that for any x > 0,

lim
n→∞

1

n
logP

(
Wn(f )≥ x

) = −If (x)
where

If (x)= − log sup
a≥0

inf
t≥0

E
[
exp

{
t
(
af (X)− x

(
f 2(X)+ a2)/2)}].

In this section, we consider the parametric class F given by (1.8). Due to the
structure of the class, it is sufficient to prove a large deviations principle for
nonnegative values of the parameter γ . As a matter of fact, one can change
t (x) into −t (x) to obtain Theorem 1.3. Consequently, we consider the class
F = {fγ with γ ∈ [0,M]}.

PROOF OF THEOREM 1.3. By rescaling the class, we may without loss of
generality assume that M = 1. Let δ be a positive real in ]0,1] and set N = n2.
For any integer j in [1,N ], define Ij = [(1 + δ)j−1−N, (1 + δ)j−N ] and set
I0 = [0, (1 + δ)−N ]. For j in [1,N ], let aj = inf Ij and define

gj (x)= Sign
(
faj (x)

)
inf
γ∈Ij

|fγ (x)|.(4.1)

In addition, define the function h by h(0)= 0 and h(γ )= l(γ )/γ and let

g0(x)= (
t (x)− h(a1)

)
+ − a−1

1

(
exp

(
a1t (x)

) − 1
)
−.(4.2)

For any positive x and α with α < x, we have the decomposition

P(Wn ≥ x)≤An(δ,α)+Bn(δ, x − α),(4.3)
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where

An(δ,α)= P
(
Wn − max

(
Wn(g0), . . . ,Wn(gN),0

) ≥ α
)
,

Bn(δ,β)= P
(
max

(
Wn(g0), . . . ,Wn(gN)

) ≥ β
)
.

Theorem 1.3 follows from both the continuity of I together with the exponential
negligibility ofAn and some large deviations bound for Bn, which are stated below
and proved in Appendix C. �

LEMMA 4.1. Under the assumptions of Theorem 1.3, for any positive α,

lim
δ→0

lim sup
n→∞

1

n
logAn(δ,α)= −∞.

LEMMA 4.2. Under the assumptions of Theorem 1.3, for any positive β ,

lim sup
δ→0

lim sup
n→∞

1

n
logBn(δ,β)≤ −I(β).

APPENDIX A

In this Appendix we establish an exponential inequality for empirical processes
indexed by square functions similar to the well-known Bennett inequality.
However, since our result deals with the left-hand side deviation, we only require
a second moment assumption.

PROPOSITION A.1. Let G be a finite family in L2(P ) such that

v = inf
g∈G

E[g2]> 0.

Moreover, for any g in G, let φg be the function defined by φg(x)= P(g2(X)≥ x).
Then, for all negative λ, we have

logE

[
exp

(
λ inf
g∈G

Sn(g
2)
)] ≤ log |G| + nλ

(
H(λ)+ v

)
(A.1)

where

H(λ)= inf
g∈G

∫ ∞
0
φg(x)(e

λx − 1) dx.

Consequently, for any a > 0 with a < v, one can find θ > 0 such that

P

(
inf
g∈G

Sn(g
2)

n
≤ a

)
≤ |G| exp(−nθ).(A.2)



1590 B. BERCU, E. GASSIAT AND E. RIO

PROOF. We proceed as in the proof of Bennett’s inequality. For any g in G,

logE

[
exp

(
λ inf
g∈G

Sn(g
2)
)] ≤ log |G| + n sup

g∈G
log E

[
exp

(
λg2(X)

)]
.

Since logx ≤ x − 1, we obtain

log E
[
exp

(
λg2(X)

)] ≤ E
[
exp

(
λg2(X)

) − 1
]
,

so that

log E
[
exp

(
λg2(X)

)] ≤ λv + E
[
exp

(
λg2(X)

) − λg2(X)− 1
]
.(A.3)

Integrating by parts, we have

E
[
exp

(
λg2(X)

) − λg2(X)− 1
] = λ

∫ ∞
0
φg(x)(e

λx − 1) dx,

which immediately implies (A.1). Then, by (A.1) and Markov’s inequality, we
have for all λ < 0 and for any a < v

P

(
inf
g∈G

Sn(g
2)≤ na

)
≤ |G| exp

(
nλ

(
H(λ)+ v − a

))
.

Moreover, by the Lebesgue dominated convergence theorem,H(λ) converges to 0
as λ tends to 0. Hence, (A.1) implies (A.2). �

APPENDIX B

The goal of this Appendix is to obtain concentration inequalities for the
processes

=(N)(n)= sup
f∈Bi

max(Sn(f − gi + E[gi]),0)√
N + Sn(f

2+)

with n in [1,N ]. This will be achieved via Theorem 2.1, exactly as in Section 2.
We set =(N) ==(N)(N).

THEOREM B.1. Assume that F is a countable class of centered and
normalized functions, totally bounded in L2(P ). In addition, assume that F
satisfies the bracketing condition (3.1). Let

EδN = sup
n∈[1,N]

E[=(N)(n)]

and assume that supN>0E
δ
N <∞. Then, one can find some positive ε andN0 only

depending on η given by (2.1) and EδN such that, for N ≥ N0 and for any λ in
[0, ε√N ],

E
[
exp

(
λ=(N)

)] ≤ exp(λEδN + 16| logδ|−1λ2).(B.1)
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PROOF. The proof follows essentially the same line as the one of Theorem 2.2.
For the sake of brevity, rewrite =(N)(n) as = and denote by Fn the Laplace
transform of =. Define

=k = sup
f∈Bi

max(Skn(f − gi)+ nE[gi],0)√
N + Skn(f

2+)
.

We may assume without loss of generality that F is finite, that is, F =
{f1, . . . , fm} with m≥ 1. One the one hand, for the positive part of =−=k , let τ
denote the infimum of integers j such that

== max(Sn(fj − gi)+ nE[gi ],0)√
N + Sn(f

2
j+)

.

Clearly, we may assume => 0, which ensures that Sn(fτ − gi)+ nE[gi ]> 0. If
Skn(fτ − gi)+ nE[gi] ≤ 0, then (fτ − gi)(Xk) > 0 and

=−=k ≤ Sn(fτ − gi)+ nE[gi ]√
N + Sn(f

2
τ+)

≤ (fτ − gi)+(Xk)√
N + Sn(f

2
τ+)

.

Otherwise,

=k ≥ Skn(fτ − gi)+ nE[gi ]√
N + Skn(f

2
τ+)

≥ Skn(fτ − gi)+ nE[gi]√
N + Sn(f

2
τ+)

> 0,

and consequently

=−=k ≤ (fτ − gi)+(Xk)√
N + Sn(f

2
τ+)

.

Noting that for any positive x,

ψ(x)≤ x2

2
1x≤1 + x1x>1,

we deduce that for all λ≥ 0,

ψ
(
λ(=−=k)+

) ≤ Ik(λ)+ Jk(λ)(B.2)

with

Ik(λ)= λ2(fτ − gi)
2+(Xk)

2N
1λ(=−=k)+≤1,

Jk(λ)= λ(fτ − gi)+(Xk)√
Sn(f

2
τ+)

1λ(=−=k)+>1.
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Furthermore, from condition (3.1), if gi �= 0 then gi , fτ and hi are simultane-
ously positive or negative so that (fτ − gi)+ ≤ (hi − gi)+. Otherwise, gi = 0 so
that (fτ − gi)+ ≤ |hi |. In addition, if fτ > gi , one can easily see that necessarily
gi ≥ 0. Therefrom

Ik(λ)≤ λ2(hi − gi)
2(Xk)

2N
1λ=≤1+λ=k .

Consequently,
n∑
k=1

E[Ik(λ)eλ=] ≤ eλ2

2N

n∑
k=1

E[(hi − gi)
2(Xk)e

λ=k ] ≤ δeλ2

2
E[exp(λ=n)]

since E[(hi − gi)
2(X)] ≤ δ, =k is F k

n -measurable and

E[exp(λ=k)] = E[exp(λ=n)].
Next, the Laplace transform of =n differs from Fn−1. However,

=n ≤=(N)(n−1)+N−1/2|E[gi]|.(B.3)

Then, as |E[gi ]| ≤
√
δ, it follows from (B.3) that

E[exp(λ=n)] ≤ exp
(
λ
√
δ√
N

)
Fn−1(λ).

Hence, for any λ in ]0,√N ], we obtain that
n∑
k=1

E[Ik(λ)eλ=] ≤ δe2λ2

2
Fn−1(λ).

Next, for the second term Jk(λ), we have

Jk(λ)≤ λfτ+(Xk)√
Sn(f

2
τ+)

1λ(hi−gi)(Xk)>
√
N.

Applying the Cauchy–Schwarz inequality, we find
n∑
k=1

Jk(λ)≤ λMn(λ) with Mn(λ)=
√
Sn

(
1
λ(hi−gi)>

√
N

)
,

which leads to
n∑
k=1

E[Jk(λ)eλ=] ≤ λE[Mn(λ) exp(λ=)].

Piecing together these two contributions, we obtain from (B.2) that
n∑
k=1

E
[
ψ
(
λ(=−=k)+

)
eλ=

] ≤ δe2λ2

2
Fn−1(λ)+ λE[Mn(λ) exp(λ=)].(B.4)
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By the duality variational formula for the entropy (see, e.g., [22], inequality (6)
with y = 1/2), we have

2E[λMn(λ) exp(λ=)] ≤ λF ′
n − Fn logFn + Fn logE

[
exp

(
2λMn(λ)

)]
.(B.5)

Now, for any β > 0,

2λMn(λ)≤ β−1λ2 + βM2
n(λ).

Moreover M2
n(λ) has a binomial B(n,p) distribution with p ≤ δλ2/N . Conse-

quently,

logE
[
exp

(
2λMn(λ)

)] ≤ β−1λ2 + np(eβ − 1)≤ λ2(β−1 + δ(eβ − 1)
)
.

Choosing β = log(1 + δ−1/2) yields

logE
[
exp

(
2λMn(λ)

)] ≤ 2λ2

log(1 + δ−1/2)
≤ 4λ2

| log δ| .

Finally, it follows from (B.4) and (B.5) that for any λ in ]0,√N],
n∑
k=1

E
[
ψ
(
λ(=−=k)+

)
eλ=

] ≤ δe2λ2Fn−1

2
+ 2λ2Fn

| log δ| + 1

2
(λF ′

n − Fn logFn).(B.6)

On the other hand, for the negative part of =k −=, let τk be the infimum of
integers j such that

=k = max(Skn(fj − gi)+ nE[gi],0)√
N + Skn(f

2
j+)

.

Proceeding exactly as in Section 2 with Yk = f 2
τk+(Xk), we find that

φ
(
λ(=−=k)−

) ≤ λ2

2N
(fτk − gi)

2−(Xk)+ φ

(
λ=kYk

2N + Yk

)
,

≤ λ2

2N
(hi − gi)

2(Xk)+ φ

(
λ=kYk

2N + Yk

)
.

In addition, (B.3) immediately implies that =k ≤ 2
√
N . Similarly to (2.7), we

deduce that for α in ]0,1[, N≥1/(2α) and λ in ]0, α√
N ],

n∑
k=1

E
[
φ
(
λ(=−=k)−

)
eλ=k

] ≤ δeλ2

2
Fn−1(λ)+ ε∗(α)E [φ(−λ=n)] .(B.7)

The function φ is nonincreasing on R
−. Thus, if =n ≤=(n−1),

φ(−λ=n)≤ φ(−λ=(n−1)).
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Otherwise, φ is convex on R
− and φ

′
(x)= x exp(−x). Hence, for any x, y in R

+

φ(−x − y)≤ φ(−x)+ y(x + y) exp(x + y).

Applying this elementary inequality to x = λ=N(n − 1) and y = λ(=n −
=N(n− 1)), we get from (B.3) that

φ(−λ=n)≤ φ
(−λ=N(n− 1)

) + λ2

√
δ√
N
=n exp(λ=n).

Consequently, for any λ in ]0, α√
N ],

φ(−λ=n)≤ φ
(−λ=N(n− 1)

) + 2e
√
δλ2 exp

(
λ=N(n− 1)

)
.

Hence

E[φ(−λ=n)] ≤ E
[
φ
(−λ=N(n− 1)

)] + 2e
√
δλ2Fn−1(λ).(B.8)

In addition, one can observe that

E
[
φ
(−λ=N(n− 1)

)] = λF ′
n−1(λ)− Fn−1(λ)+ 1.

From the conjunction of (B.6), (B.7) and (B.8), we obtain via Theorem 2.1 that for
N ≥ 1/(2α) and λ in ]0, α√

N],

λF ′
n − Fn logFn ≤ e(2 + e)

√
δλ2Fn−1 + 4λ2Fn

| log δ| + 2ε∗(α)(λF ′
n−1 − Fn−1 + 1),

provided that ε∗(α)≤ 1/4. Finally, as −x logx ≤ e−1 for x in ]0,1[, we find that

λF ′
n − Fn logFn ≤ 5λ2

| log δ|(Fn + 2Fn−1)+ 2ε∗(α)(λF ′
n−1 − Fn−1 + 1).(B.9)

We are now in position to state our induction hypothesis. Hereafter, assume that
δ ≤ 1/e. The induction hypothesis H(n) at range n is that for any λ in ]0, α√

N ],{
Fn(λ) < exp(λEN + 16 | logδ|−1λ2),

λF ′
n(λ)− Fn(λ)+ 1 ≤ Cλ2 exp(λEN + 16 | logδ|−1λ2).

At range 0, we assume that F0(λ)= 1. Hence the induction hypothesis holds true
at range 0. Let n be some integer in [1,N ]. Suppose that the induction hypothesis
holds at range n− 1. Set

H(λ)= exp(λEN + 16| log δ|−1λ2).

Then, we find via (B.9) that

λF ′
n − Fn logFn <

5λ2

| log δ|(Fn + 2H)+ 2ε∗(α)Cλ2H.(B.10)
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Consequently, Fn is a subsolution of the Differential Equation (DE) corresponding
to the equality in (B.10) with Fn(0)= 1 and F ′

n(0)= E[Z] ≤EN . Now, we have

λH ′(λ)−H(λ) logH(λ)= 16| log δ|−1λ2H(λ).

Therefrom, by the comparison lemma in Arnold [2], we obtain that for all n
in [1,N ] and for any λ in ]0, α√

N ], Fn(λ) < H(λ) provided that 2ε∗(α)C ≤
| log δ|−1. To bound up λF ′

n − Fn + 1, one has to use exactly the same arguments
as in Section 2. Consequently, the end of the proof will be omitted. Finally, by
induction, H(N) holds and the result follows. �

PROOF OF THEOREM 3.1. The proof is similar to the one of Theorem 2.4.
First of all, we clearly have

V in(δ)≤ sup
f∈Bi

max(Sn(f − gi + E[gi ]),0)√
n+ Sn(f

2+)

(
n

Sn(f 2)
+ 1

)1/2

.

Next, for α >
√

2, set aα = (α2 − 1)−1 and

6α,i =
{

inf
f∈Bi

Sn(f
2)≥ aαn

}
.

On 6α,i , as V in(δ)≤ α= with ===(n)(n), we derive that

E
[
exp

(
λV in(δ)

)] ≤ 2 max
(
Fn(αλ), exp

(
λ(1 + √

δ)
√
n
)
P (6cα,i)

)
(B.11)

where Fn denotes the Laplace transform of =. We have already seen from
Theorem B.1 that for λ < ε

√
n/α,

Fn(αλ)≤ exp(αλEδn + 16| logδ|−1α2λ2).(B.12)

In addition, Eδn ≤ 1 +E. Moreover,

6cα,i ⊂ {Sn(g2
i )≤ naα}.

Next, the bracketing condition (3.1) implies that E[g2
i ] ≥ 1 −2

√
δ for any i ∈ I .

Then, applying Proposition A.1, we deduce that

P(6cα,i)≤ exp(−nθα)
with θα > 0 provided that aα < 1 − 2

√
δ, that is, δ < (2α2 − 2)−2(α2 − 2)2.

Consequently, we find from (B.11) together with (B.12) that for all λ < ε
√
n/α,

E
[
exp

(
λV in(δ)

)] ≤ 2 exp
(
αλ(1 +E)+ 16| logδ|−1α2λ2)(B.13)

as soon as exp(λ(1 + √
δ)

√
n− nθα) ≤ 1, that is, λ < (1 + √

δ)−1√nθα , which
completes the proof of Theorem 3.1. �
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APPENDIX C

PROOF OF LEMMA 4.1. Let j be some integer in [0,N ]. If fγ = 0 for some
γ in Ij , then gj = 0. Otherwise, from the continuity of γ → fγ , the sign of fγ is
constant for γ in Ij and fγ gj > 0. Let τ be the infimum of integers j in [0,N ]
such that the supremum Wn is realized on Ij . On the one hand, suppose that τ �= 0.

Then, it follows from (4.1) that

|gτ (x)| = inf
γ∈Iτ

|fγ (x)|(C.1)

and, similarly to (3.4), for any γ in Iτ ,

Wn(fγ )− max
(
Wn(gτ ),0

) ≤ Pn(fγ − gτ )√
Pn(f 2

γ )
.(C.2)

On the other hand, suppose τ = 0. Let us introduce a new parametrization of
the class on I0. In the sequel, for γ in I0 with γ �= 0, we denote by fγ the function

fγ (x)= γ−1(exp
(
γ t (x)− l(γ )

)− 1
)
.

For the sake of brevity, write ε = a1. If t (x) belongs to [0, h(ε)], then g0(x)= 0.
Otherwise, either t (x) > h(ε) or t (x) < 0. In the first case, fγ (x) is positive and
by convexity of the exponential function,

fγ (x)≥ γ−1(exp
(
γ
(
t (x)− h(ε)

)) − 1
) ≥ t (x)− h(ε).

In the second case, fγ (x) < 0 and

−fγ (x)≥ γ−1(1 − exp
(
γ t (x)

)) ≥ ε−1(1 − exp
(
εt (x)

))
.

Therefrom, if g0(x) �= 0, then g0(x) has the sign of fγ (x) and

inf
γ∈I0

|fγ (x)| ≥ |g0(x)|.(C.3)

With this new parametrization on I0, we still have (C.2) for τ = 0. Consequently,

Wn − max
(
Wn(g0), . . . ,Wn(gN),0

) ≤ max(=0,=1, . . . ,=N)(C.4)

where

=j = sup
γ∈Ij

Pn(|fγ − gj |)√
Pn(f 2

γ )
.(C.5)

We now prove that the upper bound in (C.4) is exponentially negligible. By the
Cauchy–Schwarz inequality,

=j ≤ sup
γ∈Ij

√
Pn

(
(1 − gjf

−1
γ )21fγ �=0

)
,
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which implies that

=j ≤
√
Pn(mj ) with mj = 1 − |gj |

supγ∈Ij |fγ | .(C.6)

In order to control Pn(mj ), it will be convenient to bound up the expectation
of mj(X). Suppose first that j �= 0. Let γ0 and γ1 be the elements of Ij such that
|gj (x)| = |fγ0(x)| and supγ∈Ij |fγ (x)| = |fγ1(x)|. Then

mj(x)= 1 − |fγ0(x)|
|fγ1(x)|

≤
∫
Ij

∣∣∣∣ ddγ log |fγ (x)|
∣∣∣∣dγ.

Let Aξj be the set of reals x such that |gj (x)|< ξaj where ξ = √
δ. As

d

dγ
log |fγ (x)| = (

t (x)− l′(γ )
)(

1 + 1

fγ (x)

)
,

we obtain that for any x /∈Aξj ,∣∣∣∣ ddγ log |fγ (x)|
∣∣∣∣ ≤ 2(ξaj )

−1|t (x)− l′(γ )|.

Consequently, since |Ij | = δaj ,

E[mj(X)] ≤ P(X ∈Aξj )+ 2
√
δ
(
E[|t (X)|] + l′(1)

)
.(C.7)

We now study the set Aξj . Since |γ | ≥ aj for γ in Ij , we have, by (4.1),

|gj (x)| ≥ 1 − exp
(
−aj inf

γ∈Ij
|h(γ )− t (x)|

)
.

Therefore, Aξj is included in the set of reals x such that

inf
γ∈Ij

|h(γ )− t (x)| ≤ a−1
j | log(1 − ajξ)|.(C.8)

Let Q denote the maximal concentration function of the real random variable
t (X), defined by

Q(x)= sup
y∈R

P
(
y ≤ t (X)≤ y + x

)
.

We infer from (C.8) and the concavity of the logarithm function that

P(X ∈Aξj )≤ κ with κ =Q
(
2 | log(1 − ξ)| + δl′(1)

)
.

Hence from (C.7), we get that

E[mj(X)] ≤ κ + 2
√
δ
(
E[|t (X)|] + l′(1)

) = ζ.(C.9)
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We now bound the Laplace transform of =j . By (C.6), the convexity of the
exponential function and the fact that 0 ≤mj(X)≤ 1,

E
[
exp(t=2

j )
] ≤ exp

(
nζ(et − 1)

)
.

Using the Chernoff calculation and recalling that N = n2, we infer that

1

n
log P

(
max(=1, . . . ,=N)≥ α

) ≤ 2

n
logn+ α2 − α2 log

(
α2

ζ

)
.(C.10)

It remains to prove a similar bound for P(=0 ≥ α). From (C.6), we have

1

n
log P(=0 ≥ α)≤ α2 − α2 log

(
α2

E[m0(X)]
)
.

Furthermore, the function m0 takes its values in [0,1] and converges pointwise
to 0 as n tends to ∞, provided that t (x) �= 0. Hence, by the Lebesgue dominated
convergence theorem,

lim
n→∞ E[m0(X)] = 0 and lim sup

n→∞
1

n
logP(=0 ≥ α)= −∞(C.11)

for any positive δ. Finally, Lemma 4.1 follows from (C.10) and (C.11) together
with the fact that log(α2/ζ ) tends to ∞ as δ tends to 0. �

CONTINUITY OF THE RATE FUNCTION I. In order to perform a continuous
parametrization of the class F , we set rγ = γ−1fγ for γ > 0. Let

Z(a, γ, x)= arγ (X)−x(r2
γ (X)+a2)/2, F (t, a, γ, x)= E

[
exp

(
tZ(a, γ, x)

)]
and

R(a, γ, x)= inf
t≥0

E
[
exp

{
t
(
arγ (X)− x

(
r2
γ (X)+ a2)/2)}].

Following the approach of Shao [23], Lemma 8.1, we obtain that for any d > 0,
one can find A> 0 such that, for any x in [d,1],

I(x)= − log sup
γ∈[0,1]

sup
a∈[0,A]

R(a, γ, x).(C.12)

The continuity of I immediately follows from the lemma below. �

LEMMA C.1. Assume that t (X) has a continuous distribution function. Then,
for any A> 0 and any d > 0, R is continuous on [0,A] × [0,1] × [d,1].

PROOF. Clearly, R is upper semicontinuous. Hence we only have to prove
that for any nonnegative y, (R > y) is an open set. Let b0 = (a0, γ0, x0) in
[0,A] × [0,1] × [d,1] and assume that R(b0) > y. Using the fact that Z(b0) is
an analytic function of t (X), we obtain that P(Z(b0)= 0)= 0. Hence there exists
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s > 0 such that P(Z(b0)≥ 2s) > 0. Thus, one can find a neighborhood V of b0 and
some positive δ such that P(Z(b)≥ s) > δ for any b in V . Consequently, choosing
T = | log δ|/s, we obtain that F(T , b) > 1 for any b in V . As F(0, b) = 1, we
deduce that R(b) = inf{F(t, b) : t ∈ [0, T ]} for any b in V , which implies that
(R > y) is an open set. �

PROOF OF LEMMA 4.2. We first bound up the random variables Wn(gj ) for
j �= 0. Let K = [0, l′(1)]. If t (x) > l′(1), then

d

dγ
fγ (x)= (

t (x)− l′(γ )
)
exp

(
γ
(
t (x)− h(γ )

))
> 0

for any γ in ]0,1]. Hence fγ (x) > 0. In the same way, if t (x) < 0 , then
d
dγ
fγ (x) < 0 and fγ (x) < 0. Hence gj (x) = faj (x) for t (x) not in K . For the

sake of brevity, rewrite faj as fj . Noting that
√
Pn(f 2) is an L2 pseudonorm, we

get√
Pn(f

2
j )

(
Wn(gj )−Wn(fj )

) ≤Wn(gj )
(√
Pn(f

2
j )−

√
Pn(g

2
j )
) + Pn(|gj − fj |)

≤ 2
√
Pn

(
(fj − gj )

2
)
,

so that

Wn(gj )−Wn(fj )≤ 2

√√√√Pn((fj − gj )21t (x)∈K)
Pn(f

2
j )

.(C.13)

If t (x) belongs to K , then

|fj (x)− gj (x)| ≤
∫
Ij

|t (x)− l′(γ )| exp
(
γ
(
t (x)− h(γ )

))
dγ ≤ δaj l

′(1)el′(1).

Let C = 2l′(1) exp(l′(1)) and set ξ = √
δ. It follows from (C.13) that

P
(
Wn(gj )≥ β

) ≤ P
(
Wn(fj )≥ β − ξ

) + P
(
Pn(|raj |)≤ Cξ

)
.(C.14)

In order to bound from below the random variables Pn(|rγ |), we bound up the
concentration function of rγ around 0. Noting that |rγ (x)| ≤ y if and only if

h(γ )+ γ−1 log(1 − γy)≤ t (x)≤ h(γ )+ γ−1 log(1 + γy)

and recalling that ϕ(x)= log(1 + x)− log(1 − x) is a convex function, we have

P(|rγ (X)| ≤ y)≤Q
(
γ−1ϕ(γy)

) ≤Q
(
ϕ(y)

) =G(y).(C.15)

Now G is the distribution function of a random variable V with values in
[0,1]. Denote by L∗ the Legendre transform of the log-Laplace of V . Since G is



1600 B. BERCU, E. GASSIAT AND E. RIO

continuous at point 0, L∗(x) goes to infinity as x tends to 0. Furthermore, by
(C.15), for any γ in ]0,1],

P
(
Pn(|rγ |)≤ x

) ≤ exp
(−nL∗(x)

)
.(C.16)

Using the same arguments, we bound up Wn(g0). First,

Wn(g0)−Wn(t)≤ 2

√
Pn((t − g0)

2)

Pn(t
2)

.(C.17)

Next, observe that if t (x) ≥ 0, then |t (x) − g0(x)| ≤ h(a1). In addition, if
−a−1/2

1 ≤ t (x) < 0,

|t (x)− g0(x)| ≤ 1

a1
ψ
(−a1t (x)

) ≤ a1t
2(x)

2
≤

√
a1

2
|t (x)|.

Consequently, √
Pn((t − g0)

2)

Pn(t2)
≤ h(a1)

Pn(|t|) +
√
a1

2

as soon as t (Xi) ≥ −a−1/2
1 for any i in [1, n]. Now it is easy to check that t (X)

satisfies the concentration bound (C.15) so that

P
(
Pn(|t|)≤ √

a1
) ≤ exp

(
−nL∗

(
2h(a1)√
a1

))
.(C.18)

Hence

P
(
Wn(g0)≥ β

) ≤ P
(
Wn(t)≥ β − 2

√
a1

)
+ exp

(
−nL∗

(
2h(a1)√
a1

))
+ nE[t2(X)]a1

where we recall that a1 = (1 + ξ2)−n2
. Consequently, as the rate function It is

continuous (see Lemma 8.1 of [23]), it implies that

lim sup
n→∞

1

n
logP

(
Wn(g0)≥ β

) ≤ −It (β).(C.19)

Finally, Lemma 4.2 follows from the conjunction of (C.14), (C.16), (C.19), Lemma
below and the continuity of the rate function. �

APPENDIX D

LEMMA D.1. For any positive x,

lim sup
n→∞

1

n
log sup

γ∈]0,1]
P
(
Wn(fγ )≥ x

) ≤ −I(x).
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PROOF. Let A be some real satisfying A > l(1). Define the functions t(x) =
inf{t (x),A}, f γ (x) = exp(γ t(x) − l(γ )) − 1 and rγ = γ−1f γ . For the sake of
brevity, we rewrite fγ and rγ as f and r , respectively. First,

Wn(f )≤ max(Pn(f ),0)√
Pn(f 2)

+ Pn(f − f )√
Pn(f 2)

.

If t (x) ≤ A, then f − f = 0. Otherwise 0 ≤ f − f ≤ f as A > l(1). Hence, by
the Cauchy–Schwarz inequality,

Pn(f − f )√
Pn(f

2)
≤ √

Pn(1t>A).

Next, recalling that Pn(r)≤ Pn(r), we get for any positive real δ

max(Pn(r),0)√
Pn(r

2)
− max(Pn(r),0)√

δ2 + Pn(r
2)

≤ δ2

2Pn(r2)
.

Consequently, if Wn(r, δ)= Pn(r)√
δ2+Pn(r2)

, we deduce that for any 0 ≤ y ≤ x/2,

P
(
Wn(f )≥ x

) ≤Dn(x − 2y)+ P

(
Pn(r

2)≤ δ2

2y

)
+ P

(
Pn(1t>A)≥ y

)
(D.1)

with Dn(z)= P(Wn(r, δ)≥ z). In order to bound upDn(z), we need the following
lemma.

LEMMA D.2. For any ε and x in ]0,1],

P

(
Pn(rγ )√
Pn(r

2
γ )+ ε

≥ x

)
≤ e2A

x2ε
exp

(−nIfγ (x)).

PROOF. We shall follow the same approach as that of Shao [23]. Exactly as
in [23], equation (2.3), page 288, we have

P

(
Pn(r)√
Pn(r2)+ ε

≥ x

)
= P

(
sup
b≥0

2bPn(r)− x
(
b2 + ε+ Pn(r

2)
) ≥ 0

)
.(D.2)

Now r ≤ eA − 1 so that Pn(r)≤ eA − 1. Hence the supremum in (D.2) is realized
in the interval J = [0,C] with C = x−1(eA − 1). For k positive integer, set

Jk = [√
(k − 1)ε,

√
kε

]
, K = [

ε−1x−2e2A]
and bk = supJk . Since the union of Jk for k in [1,K] covers J , we get from (D.2)
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P

(
Pn(r)√
Pn(r

2)+ ε
≥ x

)
≤

K∑
k=1

P
(
2bkPn(r)− x

(
b2
k + Pn(r

2)
) ≥ 0

)

≤
K∑
k=1

inf
t≥0

E
[
exp

(
2tbkPn(r)− tx

(
b2
k + Pn(r

2)
))]

≤K sup
b≥0

inf
t≥0

E
[
exp

(
2tbPn(r)− tx

(
b2 + Pn(r

2)
))]
,

as Pn(r)≤ Pn(r), which implies Lemma D.2. �

Starting from (D.1) and Lemma D.2, we now complete the proof of Lemma D.1.
By use of (C.15), we have

1

n
log P

(
Pn(r

2)≤ δ2

2y

)
≤ −L∗

(
δ√
2y

)
.

In addition, if we take A = l(1) + δ−1, from Markov’s inequality applied to
exp(t (X)), we obtain that P(t (X) > A)≤ exp(−1/δ), whence

1

n
logP

(
Pn(1t>A)≥ y

) ≤ −y
δ

− y log
(
y

e

)
.

Furthermore, from Lemma D.2 with ε = δ2,

1

n
logDn(x − 2y)≤ 2

n

(
l(1)+ δ−1 − log

(
δ(x − 2y)

)) − I(x − 2y).

Hence for any positive δ,

lim sup
n→∞

1

n
log sup

γ∈]0,1]
P
(
Wn(fγ )≥ x

)

≤ −min
(
L∗

(
δ√
2y

)
,
y

δ
+ y log

(
y

e

)
,I(x − 2y)

)

which, by the arbitrariness of δ, ensures that

lim sup
n→∞

1

n
log sup

γ∈]0,1]
P
(
Wn(fγ )≥ x

) ≤ −I(x − 2y).

Finally, Lemma D.1 follows from the continuity of I. �
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