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LAWS OF THE ITERATED LOGARITHM FOR THE RANGE
OF RANDOM WALKS IN TWO AND THREE DIMENSIONS

BY RICHARD F. BASss' AND TAKASHI KUMAGAI?
University of Connecticut and Kyoto University

Let S, be arandom walk in Z4 and let R, be the range of S;,. We prove an
almost sure invariance principle for R, when d = 3 and a law of the iterated
logarithm for R, when d = 2.

1. Introduction. Let S, be a random walk taking values in Z4 and let R, be
the range of S,,. That means that R,, is the number of points visited at least once by
Sk, k < n. The subject of the asymptotics of R, has a long history in probability.
Despite this, the problem of proving a law of the iterated logarithm for dimensions
d = 2,3 has remained open, even for the case of simple symmetric random walk.
Our purpose in this paper is to provide such LILs.

The strong law of large numbers for R, was proved in Dvoretzky and Erdés [5].
The central limit theorem for d > 3 can be found in Jain and Pruitt [13, 16],
for example, while the case d =2 was proved by Le Gall [18]. See Le Gall and
Rosen [21] for a central limit theorem when the random walk is in the domain of
attraction of a stable law. The LIL for d > 4 can be found in Jain and Pruitt [14]. An
almost sure invariance principle for R, in the case d > 4 was recently proved by
Hamana [8]. For information on large deviations, see Donsker and Varadhan [4]
and Hamana and Kesten [11, 10]. Questions about the range have as analogues
questions about the volume of the Wiener sausage. See, for example, Le Gall [19].

In this paper we first consider the case of dimension 3. We show that under some
moment assumptions on S, an almost sure invariance principle holds. Changing
the probability space if necessary, we show there exists a Brownian motion B;, an
explicit constant o, and another constant ¢ < 1/2 such that

R, — ER,

o - Bnlogn = O(ﬁ(logn)q) a.s.

Our rate is quite poor and can probably be improved. However, our results are
strong enough to yield the analogues of the usual LILs for Brownian motion. For
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example, we show

. Rn - ERn
lim sup =cC11 a.s.
n—oo «/nlognloglogn

where c11 is an explicitly determined constant. The extra logn term in the
almost sure invariance principle and in the LIL is a consequence of the fact that
Var R, =< nlogn, where f;, < g, means the ratio f,/g, is bounded above and
below by positive constants not depending on 7.

The case d = 2 is considerably harder. Under somewhat stronger assumptions
on the random walk, we show there exists a constant ¢ » such that

R, — ER,
lim sup
n—oo nlogloglogn/(logn)?

=cCl2 a.s.

In the case d = 2 it is known (see [15]) that Var R,, < nz/(log n)*, which explains
part of the rate. The presence of a logloglogn term instead of the expected
loglogn term is perhaps surprising.

In Section 2 we give a precise statement of our results. We prove the three-
dimensional case in Section 3 and the two-dimensional case in Section 4.
Overviews of the proofs of Theorems 2.1 and 2.5 are given near the beginning
of Section 3 and after the statements of Propositions 4.1 and 4.4. Throughout
the paper c,,; will denote the ith fixed constant in Section n; other positive finite
constants ¢; will be also be used, but will be fixed within a given proof.

2. Main theorems and known results. In this section, we will recall several
known results and state our main theorems. We first explain the setting. Let { X ;} be
an i.i.d. sequence of random variables taking values in Z¢ (d = 3 in Section 2.1 and
d =2 in Section 2.2) such that EX; =0 and E[|X; |2+5] < oo for some § > 0 and
set S, = 2?21 X ;. Let R, be the range of S, ..., S, that is, R, is the cardinality
of the set {Sg, Si, ..., S,}.

Define

p = P(S; #0forall Kk eN).

Throughout this paper, we assume p < 1 as otherwise R, =n 4+ 1 a.s. and there
is no interest in this case. We also assume that the random walk {S,} is genuinely
d-dimensional; that is, if

R+={xeZd:PO(S,,zx)>0f0rs0men20},
R={xeZ¥:x=y—zforsomeye R andz € R},

then R is d-dimensional. When R is a proper subgroup of Zd it is isomorphic
to Z4, so by a suitable transformation we can suppose R = Z4; that is, the
transformed random walk is aperiodic. As the transformation does not change Ry,
and p, there is no loss of generality in considering the case R=174.

For sequences {f,} and {g,}, we write f, ~ g, when lim,_ o /8, = 1.
Define log, a =logloga and log; a =loglogloga.
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2.1. Main theorem: three-dimensional case. When d = 3, our main theorem
is an almost sure invariance principle for R,,.

THEOREM 2.1. Suppose d.= 3. .Let qg= % Changing the probability space
if necessary, there exist a one-dimensional Brownian motion and a constant o > (0
such that

R, — ER,

(2.1) —— ~ Buioan = O(vn(logn)?)  a.s.

As we will see in the proof, 02=2 p4 (27)72|Q|~! where Q is the covariance
matrix for X.

Using the laws of the iterated logarithm for Brownian motion, we have the
following LILs for R, as an immediate corollary of the theorem.

COROLLARY 2.2. Suppose d = 3. The following hold P-a.s.:

R, —ER
limsup ————"— = /20,

n—oo /nlognlog,n

R, — ER
liminf ——"2 = —{/20,

n—o0 /nlognlog,n

lim inf =

n—oc  /nlogn/logyn V8

An analogue of Strassen’s LIL also holds.

REMARK 2.3. Let Q;,p ) be the number of distinct sites that {S;:0<i <n}has

visited exactly p times. Hamana [9] has informed us that by using our arguments

and some estimates for Q;,p ), one can prove the analogue of Theorem 2.1 for

Q;,p ) (with a different constant for o). We will briefly sketch the argument in
Remark 3.4.

2.2. Main theorem: two-dimensional case. When d = 2, our main theorem is
a law of the iterated logarithm for R,,. In this case, we need the following further
assumptions for X;.

ASSUMPTION 2.4. (a) Xy is mean 0 and has covariance matrix equal to o 1
for some o > 0.
(b) X is bounded: there exists A > 0 such that P(|X| > A) =0.

We note that (a) is equivalent to (H3) in [18]. Under these conditions, we have
the following.
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THEOREM 2.5. Suppose d = 2. There exists co.1 > 0 such that the following
holds P-a.s.:

sup;,(R; — ER;
2.2) lim sup Pjzn(R; 2])
n—oo nlogyn/(logn)

=C21-

REMARK 2.6. (i) As we will see from the proof, the same result holds with
R, — ER, instead of sup; _,(R; — ER;j).

(i1) We do not know the exact value of ¢; ;. Also, we have not obtained the LIL
for the lim inf of R,, — ER,,.

2.3. Known results. Before giving the proofs, we recall some known results.
The results in this subsection hold for aperiodic random walks with £ X = 0 and
E[1X, |2] < 00. Further estimates will be introduced in the next section.

For the three-dimensional case, the following are known:

(2.3) ER, = pn+ O0(/n),
(2.4) E[(R, — ER,)*] = O(n*(logn)?),
2.5) Ry — ERy AN

. W €22V,

where N is the standard normal distribution. The convergence in (2.5) is in the
sense of distribution. Equation (2.3) was proved by Dvoretzky and Erd6s [5], (2.4)
is from Jain and Pruitt [13], Theorem 4, and (2.5) is from Jain and Pruitt [13].

For the two-dimensional case, the following are known:

2.6) ERy=k—— 1 0<L),
logn (logn)?
n2
(2.7) Var (Rn) = 0(@),
(logn)?
(2.8) (R, — ERy) —> —c23Y,

where y is renormalized self-intersection local time of planar Brownian motion
and « is a constant. The convergence in (2.8) is again in distribution. Equation (2.6)
is from Jain and Pruitt [12], Lemma 2.6 with the estimates (2.2) and (2.3) in [7],
(2.7) is from Jain and Pruitt [15], Theorem 4.2, and (2.8) is from Le Gall [18].
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3. Proof: three-dimensional case. In this section, we will prove Theo-
rem 2.1. We set (x) =nif x € n — 4, n+ %] throughout the paper. Let o be
a positive constant that we will choose later. We form a sequence {n;} of posi-
tive integers by taking all positive integers in each interval [2%, 2K*1) which are
of the form 2% + (i2%/k%), k=1,2,...,i =0,1,...,k*. This choice of the se-
quence will be important in the proof. Let ng = 0. For 2K < n; < 281, we have
2Kk —1< niy] —n; < 2K /k® 4 1, so that the following hold:

nli)ngoni_i_l/n,‘ = 1, niy1 —n; = O(ni/(logni)“).

We write #A for the cardinality of the set A. For any random variable ¥ we
write Y for Y — EY. Let

U; =#{Sk:k€ [nj_l,nj)}.
Fix i < j and let
Vi=V =#({Sc:k e lnj_r.n)} 0 Sk €nj.n}).

Then R,, = 3-:1 Uj - Zi._:ll V;, so that

3.1) Ry=)U;j=) V.

Let us now give a overview of the proof of Theorem 2.1. We will need three
lemmas (Lemmas 3.1, 3.2, 3.3) for the proof. Using Lemma 3.1, we show

i—1
ZVJ' =o(y/ni(logn;)?) a.s.
j=1

As the {Uj};zl are independent, by Skorohod embedding [22] there exist
a Brownian motion B; and a sequence of nonnegative independent random
variables {7;}52 such that

L i
—ZU]"VB( Tk>.
o0 k=1

We then use Lemma 3.2 and after some computations derive

B(Z Tk) = B(n;logn;) + O(/n;(logn;)?) a.s.
k=1

Thus, by (3.1), we have (2.1) for the subsequence {n;}. Lemma 3.3 will then be
used to show the result for all 7.
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Before stating the lemmas, we give some notation. For x,y € Z3, n>0 and
A C 73, define

P (x,y) = P*(S, =),
P (x,y) = PX(S1,.... S0 1 £ A, Sy =),

o0

F(x,y)=)Y PM(x,y)=P*(Ty <o),
n=1
n

Gu(x,y) =Y PO(x,y),
k=0

Gx,y) =Y PO, y),

k=0
where T4 =inf{n > 0:5,, € A}.
Let
Zi = Ui Sip1. SiS) forO<i<n, Z,=1,
Zi = 1{5;#5,11.5:#Si42..-.) fori >0,
Wi'=2! -7 for0<i <n,

n—1
Yo=Y Z,
i=0

n—1
Wa=>_ W/
i=0

Note that R, =}/ Z' =Y, + W, + 1. We now state the lemmas. The proofs
will be given at the end of this section.

LEMMA 3.1. For nonnegative integers a < b, let V, , =#({S;:j € [a,b)} N
{Sk:k € b, 00)}). There exists c3.1 > 0 such that

(3.2) E[V} ] <c31(b—a)™.
Further, for each | > 3, there exists ¢35 = c32(l) > 0 such that
(3.3) E[(Wn)*] < 30 (logn)".

LEMMA 3.2. There exists o > 0 such that for all n € N,
(3.4) Var(R,) = o*nlogn + O(n/Togn).
Further, for each | € N,

(3.5) E[|IR, — ER,|'] = O((nlogn)'/?).
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LEMMA 3.3. (a) For nonnegative integers a < b and [, there exists ¢33 =
c33() such that

E[|(Ry — ERp) — (Ry — ER)|'] < c3.3((b — a) log(b — a))"*.

(b) For nonnegative integers a < b and | > 2, there exists c3.4 = c3.4(l) such
that
og(b — a))/?
Al ‘

P< max |(R, — ER,) — (R, — ER,)| > X) §C3,4((b_a)l

a<n<b
We now give a proof of Theorem 2.1, assuming the above lemmas.

PROOF OF THEOREM 2.1. Let

9 s B
320 PT3p % V=

Recall that for i fixed and for j <i, V; = Vji) is the cardinality of {S;:k €
[nj_1,n;)} N {Sk:k €[n;,n;]}. We have

o= , e=107°.

ol 3

—~

E[(C5 V'l

cin?(logn)*

IA

(3.6) P(Z V; chﬁi(logni)ﬁ>
j=1

By Hoélder’s inequality and (3.2),
1/4

4 4
E[V;,V,ViVi] < { [1 E[Vf,‘,,]} <c [ njw —nj—1-
m=1

m=1

Thus, when 2K0 < 5; < 2ko+1

i 4 i i 4
E|:<Z VJ-) }= Z E[V;Vj, Vi Vil <c3 Z l_[ Mjm = M jm—1
j=1 1223, ja=1 Ji:J2,J3, ja=1m=1
ko 4
k=1

where in the last inequality we use the elementary fact that
n
(3.7) > kPgk ~nPq"
k=1

as n — oo for each p > 0, g > 1. Thus the right-hand side of (3.6) is bounded
from above by C5k§a_4’3 . The number of n; in [2%0, 2k0+1) ig less than cekg - Since
3 — 48 < —1, then Z,?(‘)’Zl kga_45 < 00, and by Borel-Cantelli we see that

S y®

(3.8) lim sup =17

—— < a.s.
i—00 ni(logni)ﬂ
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Since /2 < B and EV; < ¢7,/nj —nj_1, we have by similar calculations that

i ko
D EV) = ey 3ok 24k < k5224 = oV (logn)F).
Jj=1 k=1
Thus we obtain
I (v — EV))|
(3.9) lim sup j=1"J J < ¢o as.

i \/ﬁi (lognl)ﬂ

Set Hi = (U; — EUj)/o. As the {Hj};?‘;l are independent there exist [22]
a Brownian motion B; and a sequence of nonnegative independent random
variables {Tj}?il such that

j j-1

(3.10) =B<Z Tk)—B<Z Tk)} < (Hj) ;.
k=1 k=1 J

(3.11) E[T;]1=E[|H,|’].

(3.12) E[T{] <cioE[|H;"]  foralll>2.

From (3.10), we see that Z;:l Hj is equal in law to 3(22:1 Ti).
We now prove
L (T — ET))

(3.13) lim sup <00 a.s.
i—00 ni(logn;)Y

It is clear that 23:1 T ; is a martingale. So by Doob’s inequality, for each / € N,

o E[(XE_, T H*
3.14 P Su T > n; 10 n: 1% <c j= .
( : (rsri) ; j| Z nilogni) ) =cCi nfl(logni)ﬂy
Note that
i 21 ;
EKZ Tj) } = 2 B[l Tal

(315) j:1 jl,jz,...,jlel l

2! . .

=ZW 4 Z E[TJ'I]"'E[TJZ]’
(*) P Jlseens Jpzl

where () ranges overall (¢1, ..., ¢p), 1 < p <2[,suchthat{; > 2foralll <i < p
and Y/, ¢ = 21. The second equality holds because E[T , --- T j,,] = 0 when one
of j1, j2, ..., ju is different from all the others, as the {T ;}; are independent and

mean z€ro.
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Observe also that
E[T5 1= 1ET}" =mET]' ™ ETj + -+ (=1)"(ET))"|

<cip(nj—nj_logn;—n;_}"
by (3.11), (3.12) and (3.5).
Then when 2K0 < p; < 2ko+1

Y ET] ] e {(nj—nj_p)lognj —nj_}"
(3.16) = =

km

< Zk(x mkm <cu krrl(l a)+aomko

where we used (3.7) for the last inequality. [Note that ci» = c12(m), c13 =
c13(m), c14 = c1a(m) depend on m.] Using this, (3.15) is estimated from above

by c1s Z(*) kol(1 OFeP2ko for some c15 = c15(l) > 0. As the term is the biggest
when p = [, combining with (3.14),

[e.e] r
2P (Sup 2T
i=1 \Tr=i

j=1

0 o0
2i(1—a/2—y)+ua
<c =cC k s
16 2 ko= 22k k2[y 16 2 ko
ko=1 ko=1

> ni(l()g”i)y)

K@ik

for some c16 = c16(/) > 0. The last term is finite if we choose / large enough so
that 2/(1 — § — y) +a < —1. This proves (3.13).

Let J; = Y% _; Ti. Let & = n; (logn;)" . Then,

1/2
P(IB(J;) — B(EJ)| > &> (logn)*; |J; — EJ;| <2&)
1/2 e
< P( sup |B; — Bs| > &' “(logn;) )
EJi—ZEifs,l‘fEJi'i‘ZEi

_ )2¢
< cpqe—logn)* /2,

There are at most ¢jgko?® values of n; such that 2%0—1 < p; < 2% g0 the above is
summable in kg. Combining with (3.13), we deduce

B(Ji) — B(EJ;) = O(n;"*(logn;)V/2+).
By (3.11), 23:1 ET; = Z?:l(nj —l’lj_l)log(nj —nj_1)+ 0(11,'\/10g—ni) and

we have by elementary computations that

l
Z ETj =n;logn; + o(ni(logni)zﬁ_g).
j=1
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We thus have
(3.17) B(Z Tk> — B(n;logn;) = O(y/n; (logn;)?) a.s.
k=1

Putting together what we have so far, we have
(Ry;, — ERy;) — B(nilogn;) = O(v/n; (logni)ﬁ) a.s.
It remains to take care of values of n that are not one of the n;. By Lemma 3.3(b),

P( max |R, — Ry,| > ﬁi(logni)ﬂ>
S|

neN

e ((nig1 —ni)log(nipr —ny))/?
=0 (n)2(logn;)P!

< ookl 1-a=2P)/2

if 28 < n; < 2%+ There are at most o1k values of n; such that 28 < n; < 2k+1,
so taking [ large enough, this will be summable and we obtain
max |R, — Ry,| = O(Vn; (logni)ﬁ) a.s.

ni<n=<nj4|

Finally, standard estimates on Brownian motion show that

P< Sup |Bl‘ - Bni lognil > \/Ei (lognl)ﬁ>

n;logn;<t<n;yjlogn;y
is summable in i so that
sup |B: — By, logn; | = O (V/n; (logni)ﬂ) a.s.
n;logn;<t<n;ilogn;y

The proof of Theorem 2.1 is complete. L]

REMARK 3.4. As we pointed out in Remark 2.3, similar arguments allow
one to deduce Theorem 2.1 for Q;,p ), which is the number of distinct sites that
{S;:0 < i < n} has visited exactly p times. We sketch how to prove this. For
0<a<b,let S(a,b] ={Sk:a <k < b} and SP(a, b] be the set of distinct sites
where S(a, b] visited exactly p times. (For simplicity we do not count Sy.) Clearly,
Q,(lp ) —usp (0, n]. Now take a sequence {n;} as in the proof of this section, fix i,
and define

U;’:#Sp(nj—bnj],

Lg.i) #{SP(nj_1,n;1N S(nj, n;l},

O
M;

#{S(nj-1,n;10 8P (nj, n;1},
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. p_l
NJ('I) = > #{S'(j_1.n 10 8P (nj.nil}.
=1

Then
(@) (OREVIO)! )

(3.18) O0<L;\M;”,N;" <V,
where V; is the same as above. By a simple calculation similar to [7], (3.1), we
have

) _ % S0 gy O

p) __ P i i i
(3.19) D=3 U= (LY + M7 =N

j=1 j=1

Thanks to (3.18), we can apply (3.3) to derive moment bounds for L;i), Mj(i)

and N](.i). Also, an estimate of the variance for Qf,p )

so that (3.4) still holds (with a different constant for o) for Q;,p ), Thus, our proof
(p)
P

is obtained in [6], Theorem 3.1,

can be applied to Q
In the rest of this section, we will give proofs of Lemmas 3.1, 3.2 and 3.3.

PROOF OF LEMMA 3.1. First, note that because Vy ,+1 =1—Z, + W, then
Vo.» and W, have the same asymptotics. Also by the Markov property, V, ; and
Vo.b—a have the same distribution. As E[(W)* = 0®n?) by Lemma 6.1 of [16],
(3.2) follows.

We next prove (3.3) by induction. When [ = 2 this is from (3.2). Assume that
(3.3) holds up to [ — 1. By the same argument as in the proof of Lemma 6.1 of [16],
we have

Y EIW! - WE1< > ei(n—ia) 2 Gu(0,x1)Gu(x1, x2) -+ G (x2—2, X21—1)
x G(ay,a2)G(az, a3) -+ - G(ay—1, ay),

where iy; is fixed and the first sumisoverall 0 <i; <ip) <--- <ipy_1 <n—1.The
second sum is over all xq,x2, ..., xy_ € Z° \ {0} such that they are all distinct
and over all permutations (¢, ..., o) of (0, xq, ..., x2—1). We will sum over iy,
so what we need to show is the following:

Y G0, x1)Gp(x1,X2) -+ Gu(x2—2, X21-1)

(3.20) I-1)2 ;
x G(a,02)G(a, 3) -+ G(ag—1,az) = O(n (logn)’).

By Lemma 3 of [13] we have
(3.21) Y Gu(0,){G(u,x) + G(x,u)} = O(n'/?),

(3.22) > Gu(0,x)G(u, x)G(x,v) = O(logn),
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uniformly over u, v € Z3. First we sum over xp;,_; in the left-hand side of (3.20).
Depending whether either of o) or oy is x9;—1 or not, we use either (3.21)
or (3.22). Then we sum over x;_2,x2;—3,.... [When (3.22) is used, there
is the possibility that for some j, no x; term will be left as we proceed
with our summation. In that case, we use the estimate ij Gn(xj_1,x)) =

Y i—o ij P(k)(xj_l ,xj) < n.] As aresult, we obtain (3.20).
We must also consider the case where at least two of iy, ..., ip;—1 are equal, say
ij =1ij41.In this case, as Wi’; <1,

Z E[W] - W] ]=n Z E[W}--- W],

127 127
L ER) 12]—1 13505 127—1

so that by the induction hypothesis, we again obtain the desired estimate.
Combining these facts, the proof of (3.3) is complete. [

REMARK 3.5. We believe that the right-hand side of (3.3) can be replaced
by cant. As (3.3) is enough for our use, we did not try to prove this.

The next lemma will be used in the proof of Lemma 3.2. The proof is due to
D. Khoshnevisan.

LEMMA 3.6. Let EX| =0 and E|X1|**® < oo for some § € (0, 1). Let Q be
the covariance matrix of X1 and let e =5/(4 + 5). Then

1

GO = oG

(14 0(x|™%)).

PROOF. Let B; be a standard three-dimensional Brownian motion and let
Ps(x) be the transition density for 0'/2B,, where Q'/2 is the nonnegative definite
symmetric square root of Q.

Considering the cases |y| < 1 and |y| > 1 separately for y € R, note

2
: . y
o _ (1 by 7)] <cryP AlyP) < ealyH.

If ¢ is the characteristic function of X1, then
lp(@) — (1 = JaQa)| < 2 E|X 7|l

Let B > 0. Since E|X;|*"® < oo and |a" — b"| < nla — b|(Ja| Vv |b])"~!, for
|| < B4/logn, we can deduce
[@" (er//n) — €92 < e3n ™02 | PHY

Using this estimate, we now proceed as in the proof of Proposition 3.1 of [1] to
obtain

(323) |P(Sy=x) — pa(®)| < can” O 2(logn)TH/2 < ¢5n=G/2=C/),
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It is well known (see [23]) that
(3.24) P(S, =x) <cen /2

When |x| > n'/? we can get a better estimate on P(S, =x). Let A={z ¢ YAR
lz| < |x — z|}. Write

(3.25) P(S,=x)=P(S,=x, Sny2) €AY+ P(Sy=x, Sy € A°).
By the Markov property, (3.24) and Chebyshev’s inequality,

P(Sy=x, Sy € A)= Y P(Stuj2) = 2)P(Su—(n2) =X —2)
ZEAC

<cen/? Z P(Spup) =2)

ZEAC
< C6n_3/2P(|S(n/2)| > |x]/2)

pln/2) s
|x|2 _n1/2|x|2

<cn

If §k = S,_k, then
P(Sy=x, S €A) =P (S, =0, Sy—n2y € A| Sop=x).

Since Sy satisfies the same hypotheses as Si, then by the same argument the first
term on the right-hand side of (3.25) is also bounded by cg/ (n'/%x|?). We thus
have

2cg

That p, (x) satisfies the same bound is easy, using Gaussian tail estimates.
Let r =2/(1 + 6/4) and ¢ = §/(4 + §). By (3.23), (3.26) and the bound

on pp(x),

x| x|

Y UPS =x) = pa@)| <Y PSu=x)+ Y _ pu(x)

+ Y IP(Su=x)— pa(x)

n=|x|"+1

4c
< lei Z”_1/2+C5 Z n—G/2=6/4)
n=|x|"

< C9|x|(r/2)—2 + C9|x|—r((1/2)+(8/4))

<cpolx[77F
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It is easy to see that

nX:jlpn(x) - fo ps(x) ds

00
=2
n=1

= [ prds

is o(Jx|~17¢). A direct calculation of fooo ps(x)ds, now proves the lemma. [J

PROOF OF LEMMA 3.2. We first prove (3.4) which is a refinement of
Theorem 2 in [13]. Note that in the proof of Theorem 2 in [13], the following
fact is obtained:

n—1
(3.27) Var(R,) =2 a; + O(ny/Togn),

j=1
where
(3.28) aj=p Y. GO,x)b(x)+O0(),

XEBjﬂZ3
(3.29) Bj={zeR:1<z07'z<},
_ 1—F(,0)

(3.30) b(x) = 1_ F(X’O)F(O’x)pF(x,O)F(O,x),
(3.31) F(x,y) =pG(x,y),

and Q is the covariance matrix for X (equation (3.30) is proved in Lemma 5 of
[13]). We have by (3.28) and (3.30) that

(332) a;=p* > G(O,x)ZG(x,0)+O<{ > G(O,x)3G(x,O)}\/1>.

xGBjﬂZ3 XGBjﬂZ3
By Lemma 3.6 with ¢ = /(4 4 §),

1
27| Q2 (x Q7 1x)1/2
Note that by translation invariance, G(—x, 0) = G (0, x), so that G(x, 0) has the
same asymptotics as G (0, x). Substituting (3.33) in (3.32), we have

aj=p*'Cm)1017* Y o lnT?

XEBjﬂZ3

+0({ > (xQ_lx)_@/z)_S}vl).

XEBjﬂZ3

(3.33) G0,x)= (1+0(x7%)).
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Since

> woo = [ oy v o)

xGBjﬂZ3
=f y173101Y2dy + 0(1)
{1<ly?<j}
=27|Q|"?log j + O(1),

and ) . B;NZ3 (xQ~1x)=3/2=¢ = O(1) by a similar computation, we have

aj=o*(logj)/2+ O(1),

where 62 = 2p*(27)72|Q|~!. Substituting this into (3.27), we obtain (3.4).
We next prove (3.5). The basic idea is the same as the proof of Lemma 4.1
in [16]. Set p,, = +/nlogn and define for each m, n € N,

Lym= pi{E[(Rn — ER,)™™]}

1/2m

Our goal is to prove
(3.34) Lym <My, for allm,n € N,

where {M,,} is a sequence of positive bounded numbers independent of n. Once
(3.34) is proved, it leads to (3.5) for / odd by using Holder’s inequality.

As seenin (2.4) and (3.4), (3.34) holds for m = 1, 2. Now we assume that (3.34)
holds for all m < mg [thus, by Holder’s inequality, (3.5) holds for all I < 2my], and
we will show {L, ;;,41} is bounded for all n. Note that

n 2n n—1
(3.35) Roy=3 20+ 2" =3 (7] =27 -1
i=0 i=n —0
and by (3.3),
n—1 2(mo+1)
(3.36) E|:(Z(Zzn _ Z?ﬂ)) i| < E[W,%(m()+1)] — O(p,%(m‘ﬁ_l)).
i=0

Recall Y =Y — EY for any random variable Y. Noting that Zf’zof? and
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2n

2 . ST -
2n 7" are independent and have the same distribution as R,,, we have

n m 2(mo+1)
E[(ZZ’#ZZZ”) }
i=0 i=n

=2E[R," "] +2 (2(m(’2+ 1)) E[R"E[Ry] + -

2(m0 + 1) —mg+1 2
+ ( mo+ 1 )E[R" ]

(3.37)

< p’%(m()+1)<2LﬁfZgii) +C1>,

for some c; = ci(mo) > 0, where the last inequality is due to the induction
hypothesis. By (3.35), (3.36) and (3.37), we have

(ot 1)) 1/20mo+1) Y 1/20mo+1)
{e[Ry" ) < pa(2L2008) + 1) +0(pn).

Dividing both sides by p2, ~ \/5,0,,, we have

1 2ot D) 1/2(mo+1)
m
(3.38) Lanm = (g Lara ) + c2) to
Now choose N large so that
L N po 1/2(mo+1) N a -
omg - N2(mo+1) N —

Either Ly, uy+1 < N for every m that is a power of 2 or for some m € N that is
a power of 2, we have L, ,+1 > N. In the latter case, for n > m, we have by
(3.38) that

L2n,m0+1
Lm,mg—l—l
1/2(mo+1)
< i (M)Z(m(ﬁ_l) + € + L
—\2mo Lm,m()—H (Lm,m()+1)2(m0+1) Lm,m()—i-l

Thus Loy mg+1 < Lm,mg+1 and by induction it follows that Ly py+1 < L mg+1
for all n > m which are powers of 2. Thus {Lo# ;,,41} is bounded.
Next consider n/2 < m < n where n is a power of 2. We can write

m n m—1
Ro=)_ZI'+ > Z'=> (Z'-zZ})—1.
i=0 i=m i=0
By a similar argument to the above, we obtain

Lm,m()—i-l =< C4Ln,m()+1 + Cs.
The boundedness of {L, y,+1} follows. L[]
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REMARK 3.7. Hamana [9] has informed us that (3.27) holds with O(n)
(instead of O(n+/logn)). Using this, the extra term in (3.4) can be sharpened
to O(n).

PROOF OF LEMMA 3.3. Let

A=#{Sy:a <k <b},
B=#({Sx:a <k <b}N{S:0<k <a}).
Then
R,—R,=A-B.
The law of A is equal to the law of Rj_,, so by Lemma 3.2 we have
E[(A)] = c1((b — a)log(b — a))'*.

Consider the sequence {§k} ={Sp, Sp_1, ..., So}. Then §k is a random walk
satisfying the same conditions as S; and

B=#({S;:0<k<b—a)N{Sy:b—a<k<b)).
By Lemma 3.1,
E[B'] < c2((b — a) log(b — a))'/>.

Since (EB)! < E[B'] by Jensen’s inequality, combining with the estimate for A
proves (a).

Let D=b —a and
_ (Ri+a — ERk+q) — (Rqg — ERy)

G
k (Dlog D)'/2

To show (b) we need to show

(3.39) P(max 1Gi| > x) <8
k<D Al

Note from (a) that

(3.40) E|Gy - G| <ca(lk — jl/ D).

For each k let k; be the largest element of {(mD/ 27y :m < 27} that is less than or
equal to k. We have

G =Gy + (Giy — Gyy) + (Giy — Gpy) + -+

The sum is actually finite because from some point on all the k; are equal to k.
Thus, in order for |G| to be larger than A for some k < D there must be a j >0
and an m < 2/ such that

A
G h—G N [
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Therefore, using (3.40),

oo 2J
A
P{max |G A< P\ |G — G W > —
<k§DI (> >_§)r§0 <| (m+1)D/2i) (mD/21)|—4O(j+1)2
o 2N+ 1
= Sj:O o
c6
=W

as long as / > 2. This proves (3.39). O

4. Proof: two-dimensional case. We split the proof of Theorem 2.5 into two

parts. The first is the following.

PROPOSITION 4.1. Suppose d = 2. There exists c4.1 > 0 such that

sup; ., (R — ER;
4.1 lim sup Pjsn(Rj /)
n—soo nlogyn/(logn)?

<c4.1 a.s.

We do not require Assumption 2.4 here.

Using (2.6), it is enough to prove the theorem when we replace ER, with

kn/logn. We fix n and for each j € N with j <n, set

L ji=1
$i= J, j>1,
log j

F]_Rj KQj,
(logn)?
Gj=Gj=Fj——,

K =[logyn]+1.

We will show that max;<; G ; is almost subadditive. If it had been subadditive,
we could have used the technique in [2], Section 3. Here we must modify the ideas

in [2] appropriately.

LEMMA 4.2. There exists cap such that if A, B €N, C =A+ B and

a=(AANB)/C, then

c 1/2

4.2 — Q4 — < -
(4.2) lpc — @a (pBl_C4'2(logC)2a
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PROOF. The cases where A or B equal 1 are easy, so we suppose A, B > 1.
We start with the identity

C [ AlogC —logA BlogC—logB]
Pc — ¢ — 9B = - -

logCL C log A C log B
If2<A <C'? thenlogA > 1 and

C

_ 1/2 2 1/2
O<élogC logA§3<2) 1 (logC) __a (A)

—C logA C) logC C'* ~logC
If C!/?2 < A < C/2, then

— 1/2
O<élogC logA<2élog(C/A)< c2 <A> ‘

- C log A - C logC " logC Cc
If A> C/2, then

AlogC —log A 1/2
0= LB < ot - /O = (2 )
g

-C log A ~lo logC\C
We similarly bound (B/C)((logC —log B)/log B). U

The following lemma is similar to Lemma 3.3, but here there are no absolute
values and the estimates are one-sided.

LEMMA 4.3. (a) There exists M > 0 not depending on n such that

4.3) P<max Gj>M><%.

1<j<n
(b) There exist c4.3, c4.4 > 0 not depending on n such that

4.4) E|:eXp<C4.3 max Gj)] <cC44.

1<j<n

PROOF. Let 6; be the usual shift operators. Since R, — R;; < Ry, 06y, then
by Lemma 4.2,

n—m)l/2

(4.5) (h—GmfG%mMM+q<ﬂA
n n

By the Markov property, (2.6) and (2.7),

. logn\* .
(4.6) EL(G; 00?1 = E"G? = EG? Sczu/nﬁ(%) < e3(j/m".
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In particular
4.7 EG3 <c3(j/n)2.

For each k let k; be the largest element of {{mn/27) :m < 27} that is less than or
equal to k. We have

G =Gy + (Gry — Giy) + (G, — Gp) + -+,

where the sum is a finite one. If maxy<, Gy > M, then for some j > O the
following must hold:

M .
48 G G y>-——  forsomem <2/
(4.8) (non/2) = Gnnj2i) > 365770 "=

Let I (m, j) = ((m + Dn/2/y — (mn/27). If m < 2//8  then by (4.7),

M
P<G<(m+1>n/2f> =G > 55512 1)2>

3200 + D%/, ,

< (EG i + EGlunpi)
ca(j 4+ DHm/27)3/?

<5

— 25]/4M2

If m > 2//3, then using (4.5),

—12
G (mt+1n/27y = Gimny2iy < G1om,j) © Oynyaiy +c1(m + 1) /

M

<Gi@m,jyob Wt oo T
= UIGm,j) ©Yumny2iy 80(j + 1)2

if M is large enough. In this case, using (4.6),
M
P G((m+1)n/2j> - G<mn/2j> = 40(j + 1)2
M
< P Grom,j) ©Omnsaiy > 800 +1)2
G+D* 1
M2 232
<_“9
— 25j/4 M2

<c6
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We thus have

oo 2/
M
P(Hlaij > M) =22 P<G<(m+1>n/2f> ~ Gl > 30075 1)2>

j=n j=0m=1
> 2/ 1
= 2y g
j=0
cos 1
- M2 2

if M is large enough.
We next prove (4.4). Note that by (4.5), we have

4.9) Gy,—Gy <Gy oy +co.

Now, choose c1¢ large so that c¢19/2 > c9 and
(4.10) P( max G; > (c10/2) — 09> <1/2 for alln € N,
1<j<n

which is possible by (4.3). Let Ty = min{j : G; > cjok}. Then

P( nax G j > cio(k + 1)) = P(Tk4+1 <n)
Jj<n

< P<Tk <n, max (G; —Grp) > c10/2)

Tk<j<n

= E[P( max (Gj—Gr) > c10/2|5~“Tk); T fn]

Tx<j=<n
< E[P(max G > (c10/2) — C9); T, < n]
j<n

< 3P(T} <n),

where the second inequality follows by (4.9) and the third inequality by (4.10). By
induction we obtain P(T; <n) < 27", which yields (4.4). [

PROOF OF PROPOSITION 4.1. Let

Ci:= max R; — R; — KQj_(;
/ <jn/1<>si<<(j+1>n/1<>[ = Rijnyk) = €9i—(jn/ )]

and
Cj
D;= .
(n/K)/(og(n/K))
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c1D;

By Lemma 4.3 there exist ¢y, c2 such that Ee“!™/ < ¢;. Moreover, the D; are

independent. Let

lon — K@ou/k)l

CKn = n/(logn)?

An elementary computation shows that
eKx.n=C3 log K.

Since

(Rm_KQDm) C4 K
M n/ogny © K 2 DI Kess

for A > 2c¢3k, we have

R
P(maxi > AlogK)
m<n n/(logn)?

K
< P(Z D; > AK (log K)/(2C4)>
j=1
< ¢~ C1AK(logK)/(2ca) g ,c12.D;

K
Z >A10gK—/ceK,,>

NIL

< ¢—¢sAK (log K)/Zcé‘(

< e~ ¢sAK(0gK)/2

if K is large enough. Using this inequality for n = n; = 2/ and K = (log, n), the
right-hand side is summable in i, and we can apply Borel-Cantelli. Since

Sup; < (Rj —k¢;) < SUp;j <, (Rj — K@)
nlogzn/(logn)®> = nipilogyniti/(logniy1)?

for n; <n <n;qq ifi is large, we obtain (4.1). [
We next work on the lower bound.

PROPOSITION 4.4. Suppose d = 2. Under Assumption 2.4, there exists
ca5 > 0 such that

supjfn(Rj — ERj)

4.11 li > 8.
“.11) lr?lsolép nlogzn/(logn)? ~ €45 a3
The idea of the proof of Proposition 4.4 is to split Sg, S1, ..., S, into about

log, n blocks of approximately equal length. We show that there is sufficiently
large probability that the jth and kth blocks will not overlap if |j — k| > 1.1If J; is
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the range of the jth block and H; is the cardinality of the overlap of the (j — 1)st
and jth blocks, we can then write

Ry —ER,=) (Jj—EJj)+ (Z EJ;— ERn> — > Hj.
j j j

We estimate the first term on the right-hand side using the central limit theorem
of [18]. The second term is a straightforward computation. To bound the final term,
we first need to develop some estimates for the intersections of two random walks.

In order to prove Proposition 4.4, we need two lemmas. Let I, be the cardinality
of {Sy:ke[0,n]}N {S,/( 1k € [0, n]} where Sy and S,/( are two independent random
walks with Sy = y, Sy =y’ for some y, y’ € Z2. Note that the initial points y, y’
can be chosen arbitrarily in Z?. Denote by «; the intersection local time of two
independent two-dimensional Brownian motions up to time ¢.

LEMMA 4.5. Under Assumption 2.4, there exists cq.6 > 0 such that

I, P
(4.12) E[(W) i| < cfﬁEaf forall p e N.

PROOF. Let T, =inf{k > 0: Sy = y}. We will show

4.13)  (log(lyPT)) PUTy < [yI*T) <cv([0, T])  forall y € Z2,

where v is the measure on R with density (1/t) exp(—1/(cat)), with some ¢y > 0
to be chosen later. We first prove the lemma assuming (4.13). Using (5.a), (5.b)
and (5.c) of Le Gall [18],

——Elf1= Z/ duy - dupfy(uy, ..., up)0,@, ... up),

for all p € N where 4, is the set of permutations of {1, ..., p} and 6, is defined by
On(ur, ... up) = (ogm)? PO (T2, 1 < -+ < Tyt ) <7

foreachuy,...,up, € R2. Similarly to the proof just before equation (5.d) in [18],
and using (4.13), we have

ldl‘l Us(1 2
Qn(ul,...,up)fcf —exp(—ﬂ>
0 N (23]

=t dn o) — o (1)]?
X —exp| ———————— | x
0 5] (6] %)

I=(t14+1p-1) d¢ u —uononl?
« / 14 atp exp(—l o(p) o(p 1)| )
0 Ip colp
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Asin (5.d) in [18], this is less than

p
Cf// dS1~~'dspnqsi—si,l(uo(i—l),uo(i)),
0<sy<--<sp<l i1
where g be the transition density of a two-dimensional Brownian motion, with
the variance at time ¢ not ¢/ but c4t1 (where c4 = ¢3/2); in other words, a speeded
up Brownian motion. Also we set o (0) = 0. Following Le Gall’s argument on
page 495 in [18], this in turn is less than cé’EﬂfG, but now £, is the intersection
local time of two independent Brownian motions that each have covariance
matrix cetl. By scaling, this will be less than cg cg Eaf , which completes the
proof of the lemma.
It remains to show (4.13). For the proof of this, we observe two facts. One is
Theorem 3.6 in [18]:

(4.14) a%nﬂ”absmscﬂa%w%ﬂmﬁv%é%mwhﬁapﬁ-

The other is Bernstein’s inequality,

)»2
P(max|Sk| > A) < exp(—i),
k<n cg(m+ AA)

where A is given in Assumption 2.4(b); see [3].

Using (4.14) with n = |y|>T, (4.13) is clear for T > (32A%)~! [note that
replacing y by —y in (4.14) and using translation invariance, (4.14) holds for
PUTy <m)]. If T < (32A%)~! and |y| < 4A, then |y[>T < 1 and (4.13) follows
trivially. So we look at the case where T < (32A%) ! and | y| > 4A. It is easy
to see that v([0, T]) > cgexp(—1/(c19T)) for T < (32A%)~!. Denote by 70,1
the first exit time from the ball centered at O and radius r. By the strong Markov
property we have

PO(Ty <|yl*T) = PO(IB(0,|y\/2) <IyPT, T, < IyI°T)

4.15 o 1 5: 5 9
<E [P BOMD(Ty 500 m = V7T TB@.1y1/2) < 1Y T]-
By (4.14),
S:
(416) PBOLI2) (Ty—Sr(B(O.\y\/Z)) = |)’|2T) = Cll/ 10g(|y|2T)’

when |y|/2 > 2A. By Assumption 2.4(b) the random walk cannot go a distance
more than A|y|>T in time |y|?T. Soif T < 1/(4A|y|), then A|y|*T < |y|/4 and
P0(13(0,|y\/2) < |y|2T) =0.1If T > 1/(4A|y|), then by Bernstein’s inequality,

Iy o
PO (tp,1yi/2) < IVIPT) < exp(— ) < ¢ M(enD)
o 4cs(1yPT + Alyl/2)

if c12 is chosen sufficiently large. Putting this and (4.16) in (4.15) yields (4.13).
O
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LEMMA 4.6. There exists c47 > 0 such that
(4.17) Eaf <ci,p!  forall peN.

Further, there exists c4.8, c4.9 > 0 such that

ca8ly
(4.18) Elexp| ———= ) | <c49 foralln € N.
n/(logn)?

PROOF. (4.17)is proved in Lemma 2 of [20]. Inequality (4.18) is then deduced
by combining (4.17) with Lemma 4.5. [

PROOF OF PROPOSITION 4.4. Fixn.Let K = (8log, n), where § is a number
we will choose later. Let M =n/K. Set

Jj=#{S:k e [{jM). ((j + M)},
Hj =#({Sk:k € [((M), (G + DM)} N {Se:k € [((j — DM), (jM))}).

Let e be a vector of length /M. We denote by B(x, r) the ball of radius r centered
at x. Let A; be the event that S(;) € B(je, 1y M) and

[Sk:k € (M), ((G+ DM} C B((j + 1)e, V/M).

Let B; be the event that J j(logM )2/ M is greater than some number —c;. By the
usual central limit theorem we know P(A;) > ¢ if n is large. Thanks to (2.8), if
we take ¢ sufficiently large, then P(A; N B;) > c;/2. By the Markov property,

(4.19) P(F) > (c2/2)X,
where F = ﬂle(Aj N Bj).

On the set F we have that {Sy:k € [(jM), ((j+ 1)M))} is disjoint from
{Sk:kel(iM), (i +1)M))}if|i — j| > 1, and so

K K K
(4.20) Fn=27j+<2 EJj—ER,,> — > Hj.
On the set F the event B holds for each j, and so

ca KM - c3n
(logM)? —  (logn)?’

K
(4.21) YUz
j=1
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We have

K
Y EJj—ER,=
j=1

(4.22)

if n is large.

R. F. BASS AND T. KUMAGAI

n/K n n
K -t 0o )
log(n/K) logn (logn)?
ST s R (o)
~lognl1— (logK/logn) (logn)?

Let C; be the event that

and C; the event that

- nlog K O( n )
c
=™ (logn)? (logn)?
nlogzn
>
= “logn)?
Z H; = csnlogyn
3 (logn)?

{j odd}

cs nlogyn
iZ= 2"
3 (logn)

2

{j even}

Set G = F N C{NC5. For j odd the H; are independent. By Lemma 4.6,

P(Cy)

When r is large, K will be large, and then P(C;) < P(F)/3. We have a similar

2

_ P(
{j odd}

< o c6c1K10g K 7 ,c73 Hj(log M)2 /M

7j > K1 K
M/(log M)2 = °" °% )

< e—CgKlOgK (CQ)K.

estimate for P (C»), so using (4.19), we have

(4.23)

On the event G,

(4.24)

P(G) > (c2/2)% /3.

2c5 nlogzn
3 (logn)?’

K
D Hj <
j=1

Combining (4.20), (4.21), (4.22) and (4.24), on the event G,

(4.25)

R, = cionlogzn/(logn)*.

Now let ny = (exp(fz)), let Ky = (Blog,(ne+1 —ny)), let S,/( = Skn, —

k=0,1,2,...,n¢41 —ng, and let R, = #{S;:0 <k < ney1 — ne}. If we apply
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the above results to the random walk S,’(, we see there exist events G/e which are
independent, which have probability at least %(cz /2)X¢, and on which

426) o> clo(ﬂe+1 —ng)logz(ngy1 —ny) o Tt logynets
- (log(ne4+1 — ne))? (logng41)?

If we choose f small enough, then )", P(G}) = oo, and by Borel-Cantelli G,
occurs infinitely often with probability 1. Now R, differs from R, , by at most
ng =o(ng41logznes1/(log nes+1)?) and the same holds for the difference of their
expectations. Together with (4.26) this proves the proposition. [

PROOF OF THEOREM 2.5. We use Propositions 4.1 and 4.4, and the Hewitt—
Savage zero—one law (see, e.g., Theorem 2.15 of [17]). U
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