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LAWS OF THE ITERATED LOGARITHM FOR THE RANGE
OF RANDOM WALKS IN TWO AND THREE DIMENSIONS

BY RICHARD F. BASS1 AND TAKASHI KUMAGAI2

University of Connecticut and Kyoto University

Let Sn be a random walk in Zd and letRn be the range of Sn. We prove an
almost sure invariance principle for Rn when d = 3 and a law of the iterated
logarithm for Rn when d = 2.

1. Introduction. Let Sn be a random walk taking values in Zd and let Rn be
the range of Sn. That means that Rn is the number of points visited at least once by
Sk , k ≤ n. The subject of the asymptotics of Rn has a long history in probability.
Despite this, the problem of proving a law of the iterated logarithm for dimensions
d = 2,3 has remained open, even for the case of simple symmetric random walk.
Our purpose in this paper is to provide such LILs.

The strong law of large numbers for Rn was proved in Dvoretzky and Erdős [5].
The central limit theorem for d ≥ 3 can be found in Jain and Pruitt [13, 16],
for example, while the case d = 2 was proved by Le Gall [18]. See Le Gall and
Rosen [21] for a central limit theorem when the random walk is in the domain of
attraction of a stable law. The LIL for d ≥ 4 can be found in Jain and Pruitt [14]. An
almost sure invariance principle for Rn in the case d ≥ 4 was recently proved by
Hamana [8]. For information on large deviations, see Donsker and Varadhan [4]
and Hamana and Kesten [11, 10]. Questions about the range have as analogues
questions about the volume of the Wiener sausage. See, for example, Le Gall [19].

In this paper we first consider the case of dimension 3. We show that under some
moment assumptions on Sn an almost sure invariance principle holds. Changing
the probability space if necessary, we show there exists a Brownian motion Bt , an
explicit constant σ , and another constant q < 1/2 such that

Rn −ERn

σ
−Bn logn =O

(√
n(logn)q

)
a.s.

Our rate is quite poor and can probably be improved. However, our results are
strong enough to yield the analogues of the usual LILs for Brownian motion. For
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example, we show

lim sup
n→∞

Rn−ERn√
n logn log logn

= c1.1 a.s.

where c1.1 is an explicitly determined constant. The extra logn term in the
almost sure invariance principle and in the LIL is a consequence of the fact that
VarRn � n logn, where fn � gn means the ratio fn/gn is bounded above and
below by positive constants not depending on n.

The case d = 2 is considerably harder. Under somewhat stronger assumptions
on the random walk, we show there exists a constant c1.2 such that

lim sup
n→∞

Rn−ERn

n log log logn/(logn)2
= c1.2 a.s.

In the case d = 2 it is known (see [15]) that VarRn � n2/(logn)4, which explains
part of the rate. The presence of a log log logn term instead of the expected
log logn term is perhaps surprising.

In Section 2 we give a precise statement of our results. We prove the three-
dimensional case in Section 3 and the two-dimensional case in Section 4.
Overviews of the proofs of Theorems 2.1 and 2.5 are given near the beginning
of Section 3 and after the statements of Propositions 4.1 and 4.4. Throughout
the paper cn.i will denote the ith fixed constant in Section n; other positive finite
constants ci will be also be used, but will be fixed within a given proof.

2. Main theorems and known results. In this section, we will recall several
known results and state our main theorems. We first explain the setting. Let {Xj } be
an i.i.d. sequence of random variables taking values in Zd (d = 3 in Section 2.1 and
d = 2 in Section 2.2) such that EX1 = 0 and E[|X1|2+δ]<∞ for some δ > 0 and
set Sn =∑n

j=1Xj . Let Rn be the range of S0, . . . , Sn, that is, Rn is the cardinality
of the set {S0, S1, . . . , Sn}.

Define

p = P (Sk �= 0 for all k ∈ N).

Throughout this paper, we assume p < 1 as otherwise Rn = n+ 1 a.s. and there
is no interest in this case. We also assume that the random walk {Sn} is genuinely
d-dimensional; that is, if

R+ = {x ∈ Zd :P 0(Sn = x) > 0 for some n≥ 0
}
,

R̂ = {x ∈ Zd :x = y − z for some y ∈R+ and z ∈ R+},
then R̂ is d-dimensional. When R̂ is a proper subgroup of Zd , it is isomorphic
to Zd , so by a suitable transformation we can suppose R̂ = Zd ; that is, the
transformed random walk is aperiodic. As the transformation does not change Rn
and p, there is no loss of generality in considering the case R̂ = Zd .

For sequences {fn} and {gn}, we write fn ∼ gn when limn→∞ fn/gn = 1.
Define log2 a = log loga and log3 a = log log loga.
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2.1. Main theorem: three-dimensional case. When d = 3, our main theorem
is an almost sure invariance principle for Rn.

THEOREM 2.1. Suppose d = 3. Let q = 15
32 . Changing the probability space

if necessary, there exist a one-dimensional Brownian motion and a constant σ > 0
such that

Rn−ERn

σ
−Bn logn =O

(√
n(logn)q

)
a.s.(2.1)

As we will see in the proof, σ 2 = 2p4(2π)−2|Q|−1 where Q is the covariance
matrix for X1.

Using the laws of the iterated logarithm for Brownian motion, we have the
following LILs for Rn as an immediate corollary of the theorem.

COROLLARY 2.2. Suppose d = 3. The following hold P -a.s.:

lim sup
n→∞

Rn−ERn√
n logn log2 n

=√
2σ,

lim inf
n→∞

Rn−ERn√
n logn log2 n

=−√
2σ,

lim inf
n→∞

supm≤n |Rm −ERm|√
n logn/ log2 n

= πσ√
8
.

An analogue of Strassen’s LIL also holds.

REMARK 2.3. LetQ(p)
n be the number of distinct sites that {Si : 0< i ≤ n} has

visited exactly p times. Hamana [9] has informed us that by using our arguments
and some estimates for Q(p)

n , one can prove the analogue of Theorem 2.1 for
Q
(p)
n (with a different constant for σ ). We will briefly sketch the argument in

Remark 3.4.

2.2. Main theorem: two-dimensional case. When d = 2, our main theorem is
a law of the iterated logarithm for Rn. In this case, we need the following further
assumptions for X1.

ASSUMPTION 2.4. (a) X1 is mean 0 and has covariance matrix equal to σI
for some σ > 0.

(b) X1 is bounded: there exists $> 0 such that P (|X1|>$)= 0.

We note that (a) is equivalent to (H3) in [18]. Under these conditions, we have
the following.
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THEOREM 2.5. Suppose d = 2. There exists c2.1 > 0 such that the following
holds P -a.s.:

lim sup
n→∞

supj≤n(Rj −ERj)

n log3 n/(logn)2
= c2.1.(2.2)

REMARK 2.6. (i) As we will see from the proof, the same result holds with
Rn −ERn instead of supj≤n(Rj −ERj).

(ii) We do not know the exact value of c2.1. Also, we have not obtained the LIL
for the lim inf of Rn−ERn.

2.3. Known results. Before giving the proofs, we recall some known results.
The results in this subsection hold for aperiodic random walks with EX1 = 0 and
E[|X1|2]<∞. Further estimates will be introduced in the next section.

For the three-dimensional case, the following are known:

ERn = pn+O(
√
n),(2.3)

E
[
(Rn −ERn)

4]=O
(
n2(logn)2

)
,(2.4)

Rn −ERn√
n logn

→ c2.2N ,(2.5)

where N is the standard normal distribution. The convergence in (2.5) is in the
sense of distribution. Equation (2.3) was proved by Dvoretzky and Erdős [5], (2.4)
is from Jain and Pruitt [13], Theorem 4, and (2.5) is from Jain and Pruitt [13].

For the two-dimensional case, the following are known:

ERn = κ
n

logn
+O

(
n

(logn)2

)
,(2.6)

Var (Rn)=O

(
n2

(logn)4

)
,(2.7)

(logn)2

n
(Rn −ERn)→−c2.3γ,(2.8)

where γ is renormalized self-intersection local time of planar Brownian motion
and κ is a constant. The convergence in (2.8) is again in distribution. Equation (2.6)
is from Jain and Pruitt [12], Lemma 2.6 with the estimates (2.2) and (2.3) in [7],
(2.7) is from Jain and Pruitt [15], Theorem 4.2, and (2.8) is from Le Gall [18].
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3. Proof: three-dimensional case. In this section, we will prove Theo-
rem 2.1. We set 〈x〉 = n if x ∈ (n − 1

2 , n + 1
2 ] throughout the paper. Let α be

a positive constant that we will choose later. We form a sequence {nj } of posi-
tive integers by taking all positive integers in each interval [2k,2k+1) which are
of the form 2k + 〈i2k/kα〉, k = 1,2, . . . , i = 0,1, . . . , kα . This choice of the se-
quence will be important in the proof. Let n0 = 0. For 2k ≤ ni < 2k+1, we have
2k/kα − 1 ≤ ni+1 − ni ≤ 2k/kα + 1, so that the following hold:

lim
n→∞ni+1/ni = 1, ni+1 − ni =O

(
ni/(logni)

α
)
.

We write #A for the cardinality of the set A. For any random variable Y we
write Y for Y −EY . Let

Uj = #
{
Sk :k ∈ [nj−1, nj )

}
.

Fix i < j and let

Vj = V
(i)
j = #

({
Sk :k ∈ [nj−1, nj )

}∩ {Sk :k ∈ [nj , ni]}).
Then Rni =

∑i
j=1Uj −

∑i−1
j=1Vj , so that

Rni =
i∑

j=1

Uj −
i−1∑
j=1

V j .(3.1)

Let us now give a overview of the proof of Theorem 2.1. We will need three
lemmas (Lemmas 3.1, 3.2, 3.3) for the proof. Using Lemma 3.1, we show

i−1∑
j=1

V j = o
(√

ni(logni)
q
)

a.s.

As the {Uj }ij=1 are independent, by Skorohod embedding [22] there exist
a Brownian motion Bt and a sequence of nonnegative independent random
variables {Tj }∞j=1 such that

1

σ

i∑
j=1

Uj
L∼ B

(
i∑

k=1

Tk

)
.

We then use Lemma 3.2 and after some computations derive

B

(
i∑

k=1

Tk

)
= B(ni logni)+O

(√
ni(logni)

q) a.s.

Thus, by (3.1), we have (2.1) for the subsequence {ni}. Lemma 3.3 will then be
used to show the result for all n.
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Before stating the lemmas, we give some notation. For x, y ∈ Z3, n ≥ 0 and
A⊂ Z3, define

P (n)(x, y)= P x(Sn = y),

P
(n)
A (x, y)= P x(S1, . . . , Sn−1 /∈A, Sn = y),

F (x, y)=
∞∑
n=1

P (n)
y (x, y)= P x(Ty <∞),

Gn(x, y)=
n∑

k=0

P (k)(x, y),

G(x, y)=
∞∑
k=0

P (k)(x, y),

where TA = inf{n > 0 :Sn ∈A}.
Let

Zn
i = 1{Si �=Si+1,...,Si �=Sn} for 0 ≤ i < n, Zn

n = 1,

Zi = 1{Si �=Si+1,Si �=Si+2,...} for i ≥ 0,

Wn
i = Zn

i −Zi for 0 ≤ i < n,

Yn =
n−1∑
i=0

Zi,

Wn =
n−1∑
i=0

Wn
i .

Note that Rn =∑n
i=0Z

n
i = Yn +Wn + 1. We now state the lemmas. The proofs

will be given at the end of this section.

LEMMA 3.1. For nonnegative integers a < b, let Va,b = #({Sj : j ∈ [a, b)} ∩
{Sk :k ∈ [b,∞)}). There exists c3.1 > 0 such that

E[V 4
a,b] ≤ c3.1(b− a)2.(3.2)

Further, for each l ≥ 3, there exists c3.2 = c3.2(l) > 0 such that

E
[
(Wn)

2l]≤ c3.2n
l(logn)l.(3.3)

LEMMA 3.2. There exists σ > 0 such that for all n ∈ N,

Var(Rn)= σ 2n logn+O
(
n
√

logn
)
.(3.4)

Further, for each l ∈ N,

E
[|Rn −ERn|l]=O

(
(n logn)l/2).(3.5)
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LEMMA 3.3. (a) For nonnegative integers a < b and l, there exists c3.3 =
c3.3(l) such that

E
[|(Rb −ERb)− (Ra −ERa)|l]≤ c3.3

(
(b− a) log(b− a)

)l/2
.

(b) For nonnegative integers a < b and l > 2, there exists c3.4 = c3.4(l) such
that

P

(
max
a≤n≤b |(Rn −ERn)− (Ra −ERa)|> λ

)
≤ c3.4

((b− a) log(b− a))l/2

λl
.

We now give a proof of Theorem 2.1, assuming the above lemmas.

PROOF OF THEOREM 2.1. Let

α = 9

32
, β = 15

32
− ε, γ = 7

8
, ε = 10−6.

Recall that for i fixed and for j ≤ i, Vj = V
(i)
j is the cardinality of {Sk :k ∈

[nj−1, nj )} ∩ {Sk :k ∈ [nj , ni]}. We have

P

(
i∑

j=1

Vj ≥ c1
√
ni(logni)

β

)
≤ E[(∑i

j=1Vj)
4]

c4
1n

2
i (logni)4β

.(3.6)

By Hölder’s inequality and (3.2),

E[Vj1Vj2Vj3Vj4] ≤
{ 4∏
m=1

E
[
V 4
jm

]}1/4

≤ c2

4∏
m=1

√
njm − njm−1.

Thus, when 2k0 ≤ ni < 2k0+1,

E

[(
i∑

j=1

Vj

)4]
=

i∑
j1,j2,j3,j4=1

E[Vj1Vj2Vj3Vj4] ≤ c3

i∑
j1,j2,j3,j4=1

4∏
m=1

√
njm − njm−1

≤ c4

(
k0∑
k=1

kα
√

2k/kα
)4

≤ c5k
2α
0 22k0,

where in the last inequality we use the elementary fact that
n∑

k=1

kpqk ∼ npqn(3.7)

as n→ ∞ for each p > 0, q > 1. Thus the right-hand side of (3.6) is bounded
from above by c5k

2α−4β
0 . The number of ni in [2k0,2k0+1) is less than c6k

α
0 . Since

3α− 4β <−1, then
∑∞

k0=1 k
3α−4β
0 <∞, and by Borel–Cantelli we see that

lim sup
i→∞

∑i
j=1V

(i)
j√

ni(logni)β
≤ c1 a.s.(3.8)
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Since α/2< β and EVj ≤ c7
√
nj − nj−1, we have by similar calculations that

i∑
j=1

EVj ≤ c8

k0∑
k=1

kα
√

2k/kα ≤ k
α/2
0 2k0/2 = o

(√
ni(logni)

β).
Thus we obtain

lim sup
i

|∑i−1
j=1(Vj −EVj)|√
ni(logni)β

≤ c9 a.s.(3.9)

Set Hj = (Uj − EUj)/σ . As the {Hj }∞j=1 are independent there exist [22]
a Brownian motion Bt and a sequence of nonnegative independent random
variables {Tj }∞j=1 such that{

B

(
j∑
k=1

Tk

)
−B

(
j−1∑
k=1

Tk

)}
j

L∼ {Hj }j ,(3.10)

E[Tj ] =E
[|Hj |2],(3.11)

E[T l
j ] ≤ c10E

[|Hj |2l] for all l ≥ 2.(3.12)

From (3.10), we see that
∑i

j=1Hj is equal in law to B(
∑i

k=1 Tk).
We now prove

lim sup
i→∞

∑i
j=1(Tj −ETj)

ni(logni)γ
<∞ a.s.(3.13)

It is clear that
∑i

j=1 T j is a martingale. So by Doob’s inequality, for each l ∈ N,

P

(
sup
r≤i

∣∣∣∣∣
r∑

j=1

T j

∣∣∣∣∣≥ ni(logni)
γ

)
≤ c11

E[(∑i
j=1 T j )

2l]
n2l
i (logni)2lγ

.(3.14)

Note that

E

[(
i∑

j=1

T j

)2l]
=

i∑
j1,j2,...,j2l=1

E
[
T j1 · · ·T j2l

]

=∑
(∗)

(2l)!
ζ1! · · · ζp!

i∑
j1,...,jp=1

E
[
T
ζ1
j1

] · · ·E[T ζp
jp

]
,

(3.15)

where (∗) ranges over all (ζ1, . . . , ζp), 1 ≤ p ≤ 2l, such that ζi ≥ 2 for all 1 ≤ i ≤ p

and
∑p

t=1 ζt = 2l. The second equality holds becauseE[T j1 · · ·T j2l ] = 0 when one
of j1, j2, . . . , j2l is different from all the others, as the {T j }j are independent and
mean zero.
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Observe also that∣∣E[T m

j

]∣∣= |ETm
j −mET m−1

j ETj + · · · + (−1)m(ETj )
m|

≤ c12{(nj − nj−1) log(nj − nj−1)}m
by (3.11), (3.12) and (3.5).

Then when 2k0 ≤ ni < 2k0+1,
i∑

j=1

∣∣[ET m

j

]∣∣≤ c12

i∑
j=1

{(nj − nj−1) log(nj − nj−1)}m
(3.16)

≤ c13

k0∑
k=1

kα
2km

kαm
km ≤ c14k

m(1−α)+α2mk0
0

where we used (3.7) for the last inequality. [Note that c12 = c12(m), c13 =
c13(m), c14 = c14(m) depend on m.] Using this, (3.15) is estimated from above

by c15
∑

(∗) k
2l(1−α)+αp
0 22lk0 for some c15 = c15(l) > 0. As the term is the biggest

when p = l, combining with (3.14),

∞∑
i=1

P

(
sup
r≤i

∣∣∣∣∣
r∑

j=1

T j

∣∣∣∣∣≥ ni(logni)
γ

)

≤ c16

∞∑
k0=1

kα0
k
l(2−α)
0 22lk0

22lk0k
2lγ
0

= c16

∞∑
k0=1

k
2l(1−α/2−γ )+α
0 ,

for some c16 = c16(l) > 0. The last term is finite if we choose l large enough so
that 2l(1 − α

2 − γ )+ α <−1. This proves (3.13).
Let Ji =∑i

k=1 Tk . Let ξi = ni(logni)γ . Then,

P
(|B(Ji)−B(EJi)|> ξ

1/2
i (logni)

ε; |Ji −EJi | ≤ 2ξi
)

≤ P

(
sup

EJi−2ξi≤s,t≤EJi+2ξi
|Bt −Bs | ≥ ξ

1/2
i (logni)

ε

)
≤ c17e

−(logni)2ε/2.

There are at most c18k0
α values of ni such that 2k0−1 ≤ ni ≤ 2k0 , so the above is

summable in k0. Combining with (3.13), we deduce

B(Ji)−B(EJi)=O
(
n

1/2
i (logni)

(γ /2)+ε).
By (3.11),

∑i
j=1ETj =

∑i
j=1(nj −nj−1) log(nj −nj−1)+O(ni

√
logni) and

we have by elementary computations that

i∑
j=1

ETj = ni logni + o
(
ni(logni)

2β−ε).
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We thus have

B

(
i∑

k=1

Tk

)
−B(ni logni)=O

(√
ni(logni)

β) a.s.(3.17)

Putting together what we have so far, we have

(Rni −ERni)−B(ni logni)=O
(√

ni(logni)
β
)

a.s.

It remains to take care of values of n that are not one of the ni . By Lemma 3.3(b),

P

(
max

ni≤n≤ni+1
n∈N

∣∣Rn −Rni

∣∣>√
ni(logni)

β

)

≤ c19
((ni+1 − ni) log(ni+1 − ni))

l/2

(ni)
l/2(logni)βl

≤ c20k
l(1−α−2β)/2

if 2k ≤ ni ≤ 2k+1. There are at most c21k
α values of ni such that 2k ≤ ni ≤ 2k+1,

so taking l large enough, this will be summable and we obtain

max
ni≤n≤ni+1

∣∣Rn −Rni

∣∣=O
(√

ni(logni)
β) a.s.

Finally, standard estimates on Brownian motion show that

P

(
sup

ni logni≤t≤ni+1 logni+1

|Bt −Bni logni |>
√
ni(logni)

β

)
is summable in i so that

sup
ni logni≤t≤ni+1 logni+1

|Bt −Bni logni | =O
(√

ni(logni)
β
)

a.s.

The proof of Theorem 2.1 is complete. �

REMARK 3.4. As we pointed out in Remark 2.3, similar arguments allow
one to deduce Theorem 2.1 for Q(p)

n , which is the number of distinct sites that
{Si : 0 < i ≤ n} has visited exactly p times. We sketch how to prove this. For
0 ≤ a < b, let S(a, b] = {Sk :a < k ≤ b} and Sp(a, b] be the set of distinct sites
where S(a, b] visited exactly p times. (For simplicity we do not count S0.) Clearly,
Q
(p)
n = #Sp(0, n]. Now take a sequence {nj } as in the proof of this section, fix i,

and define

U
p
j = #Sp(nj−1, nj ],

L
(i)
j = #

{
Sp(nj−1, nj ] ∩ S(nj , ni]},

M
(i)
j = #

{
S(nj−1, nj ] ∩ Sp(nj , ni]},
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N
(i)
j =

p−1∑
l=1

#
{
Sl(nj−1, nj ] ∩ Sp−l (nj , ni]}.

Then

0 ≤ L
(i)
j ,M

(i)
j ,N

(i)
j ≤ Vj ,(3.18)

where Vj is the same as above. By a simple calculation similar to [7], (3.1), we
have

Q
(p)
t =

i∑
j=1

U
p
j −

i−1∑
j=1

(
L
(i)
j +M

(i)
j −N

(i)
j

)
.(3.19)

Thanks to (3.18), we can apply (3.3) to derive moment bounds for L(i)j , M(i)
j

andN(i)
j . Also, an estimate of the variance forQ(p)

n is obtained in [6], Theorem 3.1,

so that (3.4) still holds (with a different constant for σ ) for Q(p)
n . Thus, our proof

can be applied to Q(p)
n .

In the rest of this section, we will give proofs of Lemmas 3.1, 3.2 and 3.3.

PROOF OF LEMMA 3.1. First, note that because V0,n+1 = 1 −Zn+Wn, then
V0,n and Wn have the same asymptotics. Also by the Markov property, Va,b and
V0,b−a have the same distribution. As E[(Wn)

4] =O(n2) by Lemma 6.1 of [16],
(3.2) follows.

We next prove (3.3) by induction. When l = 2 this is from (3.2). Assume that
(3.3) holds up to l−1. By the same argument as in the proof of Lemma 6.1 of [16],
we have∑

E[Wn
i1
· · ·Wn

i2l
] ≤∑ c1(n− i2l)

−1/2Gn(0, x1)Gn(x1, x2) · · ·Gn(x2l−2, x2l−1)

× G(α1, α2)G(α2, α3) · · ·G(α2l−1, α2l),

where i2l is fixed and the first sum is over all 0 ≤ i1 < i2 < · · ·< i2l−1 ≤ n−1. The
second sum is over all x1, x2, . . . , x2l−1 ∈ Z3 \ {0} such that they are all distinct
and over all permutations (α1, . . . , α2l) of (0, x1, . . . , x2l−1). We will sum over i2l ,
so what we need to show is the following:∑

Gn(0, x1)Gn(x1, x2) · · ·Gn(x2l−2, x2l−1)

×G(α1, α2)G(α2, α3) · · ·G(α2l−1, α2l)=O
(
nl−1/2(logn)l

)
.

(3.20)

By Lemma 3 of [13] we have∑
x

Gn(0, x){G(u,x)+G(x,u)} =O(n1/2),(3.21)

∑
x

Gn(0, x)G(u, x)G(x, v)=O(logn),(3.22)
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uniformly over u, v ∈ Z3. First we sum over x2l−1 in the left-hand side of (3.20).
Depending whether either of α1 or α2l is x2l−1 or not, we use either (3.21)
or (3.22). Then we sum over x2l−2, x2l−3, . . . . [When (3.22) is used, there
is the possibility that for some j , no xj term will be left as we proceed
with our summation. In that case, we use the estimate

∑
xj
Gn(xj−1, xj ) =∑n

k=0
∑

xj
P (k)(xj−1, xj )≤ n.] As a result, we obtain (3.20).

We must also consider the case where at least two of i1, . . . , i2l−1 are equal, say
ij = ij+1. In this case, as Wn

ij
≤ 1,∑

i1,...,i2l−1
ij=ij+1

E[Wn
i1
· · ·Wn

i2l
] = n

∑
i3,...,i2l−1

E[Wn
i3
· · ·Wn

i2l
],

so that by the induction hypothesis, we again obtain the desired estimate.
Combining these facts, the proof of (3.3) is complete. �

REMARK 3.5. We believe that the right-hand side of (3.3) can be replaced
by c2n

l . As (3.3) is enough for our use, we did not try to prove this.

The next lemma will be used in the proof of Lemma 3.2. The proof is due to
D. Khoshnevisan.

LEMMA 3.6. Let EX1 = 0 and E|X1|2+δ <∞ for some δ ∈ (0,1). Let Q be
the covariance matrix of X1 and let ε = δ/(4 + δ). Then

G(0, x)= 1

2π |Q|1/2(xQ−1x)1/2

(
1 +O(|x|−ε)).

PROOF. Let Bt be a standard three-dimensional Brownian motion and let
ps(x) be the transition density for Q1/2Bs , where Q1/2 is the nonnegative definite
symmetric square root of Q.

Considering the cases |y| ≤ 1 and |y|> 1 separately for y ∈ R, note∣∣∣∣eiy − (1 + iy − y2

2

)∣∣∣∣≤ c1(|y|2 ∧ |y|3)≤ c2|y|2+δ.
If ϕ is the characteristic function of X1, then∣∣ϕ(α)− (1 − 1

2αQα
)∣∣≤ c2E|X1|2+δ|α|2+δ.

Let B > 0. Since E|X1|2+δ < ∞ and |an − bn| ≤ n|a − b|(|a| ∨ |b|)n−1, for
|α| ≤ B

√
logn, we can deduce∣∣ϕn(α/√n)− e−αQα/2∣∣≤ c3n

−δ/2|α|2+δ.
Using this estimate, we now proceed as in the proof of Proposition 3.1 of [1] to
obtain

|P (Sn = x)− pn(x)| ≤ c4n
−(3+δ)/2(logn)(5+δ)/2 ≤ c5n

−(3/2)−(δ/4).(3.23)
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It is well known (see [23]) that

P (Sn = x)≤ c6n
−3/2.(3.24)

When |x| > n1/2 we can get a better estimate on P (Sn = x). Let A = {z ∈ Z3 :
|z| ≤ |x − z|}. Write

P (Sn = x)= P (Sn = x, S〈n/2〉 ∈A)+ P (Sn = x, S〈n/2〉 ∈Ac).(3.25)

By the Markov property, (3.24) and Chebyshev’s inequality,

P (Sn = x, S〈n/2〉 ∈Ac)= ∑
z∈Ac

P (S〈n/2〉 = z)P (Sn−〈n/2〉 = x − z)

≤ c6n
−3/2

∑
z∈Ac

P (S〈n/2〉 = z)

≤ c6n
−3/2P (|S〈n/2〉| ≥ |x|/2)

≤ c7n
−3/2 〈n/2〉

|x|2 ≤ c8

n1/2|x|2 .

If S̃k = Sn−k , then

P (Sn = x, S〈n/2〉 ∈A)= P (S̃n = 0, S̃n−〈n/2〉 ∈A | S̃0 = x).

Since S̃k satisfies the same hypotheses as Sk , then by the same argument the first
term on the right-hand side of (3.25) is also bounded by c8/(n

1/2|x|2). We thus
have

P (Sn = x)≤ 2c8

n1/2|x|2 .(3.26)

That pn(x) satisfies the same bound is easy, using Gaussian tail estimates.
Let r = 2/(1 + δ/4) and ε = δ/(4 + δ). By (3.23), (3.26) and the bound

on pn(x),

∞∑
n=1

|P (Sn = x)− pn(x)| ≤
|x|r∑
n=1

P (Sn = x)+
|x|r∑
n=1

pn(x)

+
∞∑

n=|x|r+1

|P (Sn = x)− pn(x)|

≤ 4c8

|x|2
|x|r∑
n=1

n−1/2 + c5

∞∑
n=|x|r

n−(3/2)−(δ/4)

≤ c9|x|(r/2)−2 + c9|x|−r((1/2)+(δ/4))

≤ c10|x|−1−ε.
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It is easy to see that∣∣∣∣∣
∞∑
n=1

pn(x)−
∫ ∞

0
ps(x) ds

∣∣∣∣∣≤
∞∑
n=1

∣∣∣∣pn(x)− ∫ n

n−1
ps(x) ds

∣∣∣∣
is o(|x|−1−ε). A direct calculation of

∫∞
0 ps(x) ds, now proves the lemma. �

PROOF OF LEMMA 3.2. We first prove (3.4) which is a refinement of
Theorem 2 in [13]. Note that in the proof of Theorem 2 in [13], the following
fact is obtained:

Var(Rn)= 2
n−1∑
j=1

aj +O(n
√

logn),(3.27)

where

aj = p
∑

x∈Bj∩Z3

G(0, x)b(x)+O(1),(3.28)

Bj = {z ∈ R3 : 1 ≤ zQ−1z≤ j},(3.29)

b(x)= 1 − F(x,0)

1 − F(x,0)F (0, x)
pF (x,0)F (0, x),(3.30)

F(x, y)= pG(x, y),(3.31)

and Q is the covariance matrix for X1 (equation (3.30) is proved in Lemma 5 of
[13]). We have by (3.28) and (3.30) that

aj = p4
∑

x∈Bj∩Z3

G(0, x)2G(x,0)+O

({ ∑
x∈Bj∩Z3

G(0, x)3G(x,0)

}
∨ 1

)
.(3.32)

By Lemma 3.6 with ε = δ/(4 + δ),

G(0, x)= 1

2π |Q|1/2(xQ−1x)1/2

(
1 +O(x−ε)

)
.(3.33)

Note that by translation invariance, G(−x,0) = G(0, x), so that G(x,0) has the
same asymptotics as G(0, x). Substituting (3.33) in (3.32), we have

aj = p4(2π)−3|Q|−3/2
∑

x∈Bj∩Z3

(xQ−1x)−3/2

+O

({ ∑
x∈Bj∩Z3

(xQ−1x)−(3/2)−ε
}
∨ 1

)
.
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Since

∑
x∈Bj∩Z3

(xQ−1x)−3/2 =
∫
Bj

(zQ−1z)−3/2 dz+O(1)

=
∫
{1≤|y|2≤j }

|y|−3|Q|1/2 dy +O(1)

= 2π |Q|1/2 log j +O(1),

and
∑

x∈Bj∩Z3(xQ−1x)−(3/2)−ε =O(1) by a similar computation, we have

aj = σ 2(log j)/2 +O(1),

where σ 2 = 2p4(2π)−2|Q|−1. Substituting this into (3.27), we obtain (3.4).

We next prove (3.5). The basic idea is the same as the proof of Lemma 4.1
in [16]. Set ρn =√

n logn and define for each m,n ∈ N,

Ln,m = 1

ρn

{
E
[
(Rn −ERn)

2m]}1/2m
.

Our goal is to prove

Ln,m ≤Mm for all m,n ∈ N,(3.34)

where {Mm} is a sequence of positive bounded numbers independent of n. Once
(3.34) is proved, it leads to (3.5) for l odd by using Hölder’s inequality.

As seen in (2.4) and (3.4), (3.34) holds for m= 1,2. Now we assume that (3.34)
holds for all m≤m0 [thus, by Hölder’s inequality, (3.5) holds for all l ≤ 2m0], and
we will show {Ln,m0+1} is bounded for all n. Note that

R2n =
n∑
i=0

Zn
i +

2n∑
i=n

Z2n
i −

n−1∑
i=0

(Zn
i −Z2n

i )− 1(3.35)

and by (3.3),

E

[(
n−1∑
i=0

(Zn
i −Z2n

i )

)2(m0+1)]
≤E

[
W 2(m0+1)
n

]=O
(
ρ2(m0+1)
n

)
.(3.36)

Recall Y = Y −EY for any random variable Y . Noting that
∑n

i=0Z
n

i and
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∑2n
i=n Z

2n
i are independent and have the same distribution as Rn, we have

E

[(
n∑
i=0

Z
n

i +
2n∑
i=n

Z
2n
i

)2(m0+1)]

= 2E
[
R

2(m0+1)
n

]
+ 2

(
2(m0 + 1)

2

)
E
[
R

2m0
n

]
E
[
R

2
n

]
+ · · ·

+
(

2(m0 + 1)
m0 + 1

)
E
[
R
m0+1
n

]2

≤ ρ
2(m0+1)
n

(
2L2(m0+1)

n,m0+1 + c1

)
,

(3.37)

for some c1 = c1(m0) > 0, where the last inequality is due to the induction
hypothesis. By (3.35), (3.36) and (3.37), we have{

E
[
R

2(m0+1)
2n

]}1/2(m0+1) ≤ ρn

(
2L2(m0+1)

n,m0+1 + c1

)1/2(m0+1) +O(ρn).

Dividing both sides by ρ2n ∼
√

2ρn, we have

L2n,m0+1 ≤
(

1

2m0
L

2(m0+1)
n,m0+1 + c2

)1/2(m0+1)

+ c3.(3.38)

Now choose N large so that(
1

2m0
+ c2

N2(m0+1)

)1/2(m0+1)

+ c3

N
≤ 1.

Either Lm,m0+1 ≤ N for every m that is a power of 2 or for some m ∈ N that is
a power of 2, we have Lm,m0+1 ≥ N . In the latter case, for n ≥ m, we have by
(3.38) that

L2n,m0+1

Lm,m0+1

≤
(

1

2m0

(
Ln,m0+1

Lm,m0+1

)2(m0+1)

+ c2

(Lm,m0+1)
2(m0+1)

)1/2(m0+1)

+ c3

Lm,m0+1
.

Thus L2m,m0+1 ≤ Lm,m0+1 and by induction it follows that Ln,m0+1 ≤ Lm,m0+1
for all n >m which are powers of 2. Thus {L2n,m0+1} is bounded.

Next consider n/2<m< n where n is a power of 2. We can write

Rn =
m∑
i=0

Zm
i +

n∑
i=m

Zn
i −

m−1∑
i=0

(Zm
i −Zn

i )− 1.

By a similar argument to the above, we obtain

Lm,m0+1 ≤ c4Ln,m0+1 + c5.

The boundedness of {Ln,m0+1} follows. �
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REMARK 3.7. Hamana [9] has informed us that (3.27) holds with O(n)

(instead of O(n
√

logn)). Using this, the extra term in (3.4) can be sharpened
to O(n).

PROOF OF LEMMA 3.3. Let

A= #{Sk :a < k ≤ b},
B = #

({Sk :a < k ≤ b} ∩ {Sk : 0 ≤ k ≤ a}).
Then

Rb −Ra =A−B.

The law of A is equal to the law of Rb−a , so by Lemma 3.2 we have

E[(A)l] ≤ c1((b− a) log(b− a))l/2.

Consider the sequence {S̃k} = {Sb, Sb−1, . . . , S0}. Then S̃k is a random walk
satisfying the same conditions as Sk and

B = #
({S̃k : 0 ≤ k < b− a} ∩ {S̃k :b− a ≤ k ≤ b}).

By Lemma 3.1,

E[Bl] ≤ c2((b− a) log(b− a))l/2.

Since (EB)l ≤ E[Bl] by Jensen’s inequality, combining with the estimate for A
proves (a).

Let D = b− a and

Gk = (Rk+a −ERk+a)− (Ra −ERa)

(D logD)1/2 .

To show (b) we need to show

P

(
max
k≤D |Gk|> λ

)
≤ c3

λl
.(3.39)

Note from (a) that

E|Gk −Gj |l ≤ c4(|k − j |/D)l/2.(3.40)

For each k let kj be the largest element of {〈mD/2j 〉 :m≤ 2j } that is less than or
equal to k. We have

Gk =Gk0 + (Gk1 −Gk0)+ (Gk2 −Gk1)+ · · · .
The sum is actually finite because from some point on all the kj are equal to k.
Thus, in order for |Gk| to be larger than λ for some k ≤D there must be a j ≥ 0
and an m≤ 2j such that∣∣G〈(m+1)D/2j 〉 −G〈mD/2j 〉

∣∣≥ λ

40(j + 1)2
.
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Therefore, using (3.40),

P

(
max
k≤D |Gk|> λ

)
≤

∞∑
j=0

2j∑
m=0

P

(∣∣G〈(m+1)D/2j 〉 −G〈mD/2j 〉
∣∣≥ λ

40(j + 1)2

)

≤ c5

∞∑
j=0

2j
(1/2j )l/2(j + 1)2l

λl

≤ c6

λl

as long as l > 2. This proves (3.39). �

4. Proof: two-dimensional case. We split the proof of Theorem 2.5 into two
parts. The first is the following.

PROPOSITION 4.1. Suppose d = 2. There exists c4.1 > 0 such that

lim sup
n→∞

supj≤n(Rj −ERj)

n log3 n/(logn)2
≤ c4.1 a.s.(4.1)

We do not require Assumption 2.4 here.
Using (2.6), it is enough to prove the theorem when we replace ERn with

κn/ logn. We fix n and for each j ∈ N with j ≤ n, set

ϕj =


1, j = 1,
j

log j
, j > 1,

Fj = Rj − κϕj ,

Gj =Gn
j = Fj

(logn)2

n
,

K = [log2 n] + 1.

We will show that maxj≤k Gj is almost subadditive. If it had been subadditive,
we could have used the technique in [2], Section 3. Here we must modify the ideas
in [2] appropriately.

LEMMA 4.2. There exists c4.2 such that if A,B ∈ N, C = A + B and
α = (A∧B)/C, then

|ϕC − ϕA− ϕB | ≤ c4.2
C

(logC)2
α1/2.(4.2)
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PROOF. The cases where A or B equal 1 are easy, so we suppose A,B > 1.
We start with the identity

ϕC − ϕA − ϕB = C

logC

[
−A

C

logC − logA

logA
− B

C

logC − logB

logB

]
.

If 2 ≤A≤ C1/2, then logA≥ 1
3 and

0 ≤ A

C

logC − logA

logA
≤ 3

(
A

C

)1/2 1

logC

(logC)2

C1/4 ≤ c1

logC

(
A

C

)1/2

.

If C1/2 ≤A≤ C/2, then

0 ≤ A

C

logC − logA

logA
≤ 2

A

C

log(C/A)

logC
≤ c2

logC

(
A

C

)1/2

.

If A≥ C/2, then

0 ≤ A

C

logC − logA

logA
≤ c3

logA
| log(1 − (B/C))| ≤ c4

logC

(
B

C

)1/2

.

We similarly bound (B/C)((logC − logB)/logB). �

The following lemma is similar to Lemma 3.3, but here there are no absolute
values and the estimates are one-sided.

LEMMA 4.3. (a) There exists M > 0 not depending on n such that

P

(
max

1≤j≤nGj >M

)
< 1

2 .(4.3)

(b) There exist c4.3, c4.4 > 0 not depending on n such that

E

[
exp
(
c4.3 max

1≤j≤nGj

)]
≤ c4.4.(4.4)

PROOF. Let θj be the usual shift operators. Since Rn−Rm ≤Rn−m ◦ θm, then
by Lemma 4.2,

Gn−Gm ≤Gn−m ◦ θm + c1

(
m

n
∧ n−m

n

)1/2

.(4.5)

By the Markov property, (2.6) and (2.7),

E[(Gj ◦ θm)2] =ESmG2
j =EG2

j ≤ c2(j/n)
2
(

logn

log j

)4

≤ c3(j/n)
3/2.(4.6)
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In particular

EG2
j ≤ c3(j/n)

3/2.(4.7)

For each k let kj be the largest element of {〈mn/2j 〉 :m≤ 2j } that is less than or
equal to k. We have

Gk =Gk0 + (Gk1 −Gk0)+ (Gk2 −Gk1)+ · · · ,
where the sum is a finite one. If maxk≤n Gk ≥ M , then for some j ≥ 0 the
following must hold:

G〈(m+1)n/2j 〉 −G〈mn/2j 〉 >
M

40(j + 1)2
for some m≤ 2j .(4.8)

Let I (m, j)= 〈(m+ 1)n/2j 〉 − 〈mn/2j 〉. If m≤ 2j/8, then by (4.7),

P

(
G〈(m+1)n/2j 〉 −G〈mn/2j 〉 >

M

40(j + 1)2

)

≤ 3200(j + 1)4

M2

(
EG2

〈(m+1)n/2j 〉 +EG2
〈mn/2j 〉

)
≤ c4(j + 1)4(m/2j )3/2

M2

≤ c5

25j/4M2
.

If m> 2j/8, then using (4.5),

G〈(m+1)n/2j 〉 −G〈mn/2j 〉 ≤GI(m,j) ◦ θ〈mn/2j 〉 + c1(m+ 1)−1/2

≤GI(m,j) ◦ θ〈mn/2j 〉 +
M

80(j + 1)2

if M is large enough. In this case, using (4.6),

P

(
G〈(m+1)n/2j 〉 −G〈mn/2j 〉 >

M

40(j + 1)2

)

≤ P

(
GI(m,j) ◦ θ〈mn/2j 〉 >

M

80(j + 1)2

)

≤ c6
(j + 1)4

M2

1

23j/2

≤ c7

25j/4M2
.
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We thus have

P

(
max
j≤n Gj >M

)
≤

∞∑
j=0

2j∑
m=1

P

(
G〈(m+1)n/2j 〉 −G〈mn/2j 〉 >

M

40(j + 1)2

)

≤
∞∑
j=0

c8
2j

M2

1

25j/4

≤ c8

M2
≤ 1

2

if M is large enough.
We next prove (4.4). Note that by (4.5), we have

Gn −Gm ≤Gn−m ◦ θm + c9.(4.9)

Now, choose c10 large so that c10/2> c9 and

P

(
max

1≤j≤nGj > (c10/2)− c9

)
< 1/2 for all n ∈ N,(4.10)

which is possible by (4.3). Let Tk = min{j :Gj > c10k}. Then

P

(
max
j≤n Gj > c10(k + 1)

)
= P (Tk+1 ≤ n)

≤ P

(
Tk ≤ n, max

Tk≤j≤n
(Gj −GTk) > c10/2

)

= E

[
P

(
max

Tk≤j≤n
(Gj −GTk) > c10/2

∣∣FTk

)
;Tk ≤ n

]

≤ E

[
P

(
max
j≤n Gj > (c10/2)− c9

)
;Tk ≤ n

]
≤ 1

2P (Tk ≤ n),

where the second inequality follows by (4.9) and the third inequality by (4.10). By
induction we obtain P (Tk ≤ n)≤ 2−n, which yields (4.4). �

PROOF OF PROPOSITION 4.1. Let

Cj = max〈jn/K〉≤i<〈(j+1)n/K〉
[
Ri −R〈jn/K〉 − κϕi−〈jn/K〉

]
and

Dj = Cj

(n/K)/(log(n/K))2
.
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By Lemma 4.3 there exist c1, c2 such that Eec1Dj ≤ c2. Moreover, the Dj are
independent. Let

eK,n = |ϕn −Kϕ〈n/K〉|
n/(logn)2

.

An elementary computation shows that

eK,n ≤ c3 logK.

Since

max
m≤n

(Rm − κϕm)

n/(logn)2
≤ c4

K

K∑
j=1

Dj + κeK,n

for A≥ 2c3κ , we have

P

(
max
m≤n

Rm − κϕm

n/(logn)2
>A logK

)
≤ P

(
c4

K

K∑
j=1

Dj >A logK − κeK,n

)

≤ P

(
K∑
j=1

Dj >AK(logK)/(2c4)

)

≤ e−c1AK(logK)/(2c4)Eec1
∑
Dj

≤ e−c5AK(logK)/2cK2

≤ e−c5AK(logK)/2

if K is large enough. Using this inequality for n= ni = 2i and K = 〈log2 n〉, the
right-hand side is summable in i, and we can apply Borel–Cantelli. Since

supj≤n(Rj − κϕj )

n log3 n/(logn)2
≤ 2

supj≤ni+1
(Rj − κϕj )

ni+1 log3 ni+1/(logni+1)
2

for ni ≤ n < ni+1 if i is large, we obtain (4.1). �

We next work on the lower bound.

PROPOSITION 4.4. Suppose d = 2. Under Assumption 2.4, there exists
c4.5 > 0 such that

lim sup
n→∞

supj≤n(Rj −ERj)

n log3 n/(logn)2
≥ c4.5 a.s.(4.11)

The idea of the proof of Proposition 4.4 is to split S0, S1, . . . , Sn into about
log2 n blocks of approximately equal length. We show that there is sufficiently
large probability that the j th and kth blocks will not overlap if |j − k|> 1. If Jj is
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the range of the j th block and Hj is the cardinality of the overlap of the (j − 1)st
and j th blocks, we can then write

Rn −ERn =
∑
j

(Jj −EJj)+
(∑

j

EJj −ERn

)
−∑

j

Hj .

We estimate the first term on the right-hand side using the central limit theorem
of [18]. The second term is a straightforward computation. To bound the final term,
we first need to develop some estimates for the intersections of two random walks.

In order to prove Proposition 4.4, we need two lemmas. Let In be the cardinality
of {Sk :k ∈ [0, n]} ∩ {S′k :k ∈ [0, n]} where Sk and S′k are two independent random
walks with S0 = y, S′0 = y′ for some y, y′ ∈ Z2. Note that the initial points y, y′
can be chosen arbitrarily in Z2. Denote by αt the intersection local time of two
independent two-dimensional Brownian motions up to time t .

LEMMA 4.5. Under Assumption 2.4, there exists c4.6 > 0 such that

E

[(
In

n/(logn)2

)p]
≤ c

p
4.6Eα

p
1 for all p ∈ N.(4.12)

PROOF. Let Ty = inf{k > 0 :Sk = y}. We will show(
log(|y|2T ))P 0(Ty ≤ |y|2T )≤ c1ν([0, T ]) for all y ∈ Z2,(4.13)

where ν is the measure on R with density (1/t) exp(−1/(c2t)), with some c2 > 0
to be chosen later. We first prove the lemma assuming (4.13). Using (5.a), (5.b)
and (5.c) of Le Gall [18],

(logn)2p

np
E[Ipn ] ≤

∑
σ,σ ′∈Sp

∫
(R2)p

du1 · · ·dupθn(u1, . . . , up)θ
′
n(u1, . . . , up),

for all p ∈ N where Sp is the set of permutations of {1, . . . , p} and θn is defined by

θn(u1, . . . , up)= (logn)pP 0(T[n1/2uσ(1)] ≤ · · · ≤ T[n1/2uσ(p)] ≤ n
)

for each u1, . . . , up ∈ R2. Similarly to the proof just before equation (5.d) in [18],
and using (4.13), we have

θn(u1, . . . , up)≤ c
p
1

∫ 1

0

dt1

t1
exp
(
−|uσ(1)|2

c2t1

)

×
∫ 1−t1

0

dt2

t2
exp
(
−|uσ(2)− uσ(1)|2

c2t2

)
× · · ·

×
∫ 1−(t1+···+tp−1)

0

dtp

tp
exp
(
−|uσ(p)− uσ(p−1)|2

c2tp

)
.
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As in (5.d) in [18], this is less than

c
p
3

∫
· · ·
∫

0≤s1≤···≤sp≤1
ds1 · · ·dsp

p∏
i=1

qsi−si−1(uσ(i−1), uσ(i)),

where qs be the transition density of a two-dimensional Brownian motion, with
the variance at time t not tI but c4tI (where c4 = c2/2); in other words, a speeded
up Brownian motion. Also we set σ(0) = 0. Following Le Gall’s argument on
page 495 in [18], this in turn is less than cp5EJ

p
c6 , but now Jc6 is the intersection

local time of two independent Brownian motions that each have covariance
matrix c6tI . By scaling, this will be less than c

p
5 c

p
6Eα

p
1 , which completes the

proof of the lemma.
It remains to show (4.13). For the proof of this, we observe two facts. One is

Theorem 3.6 in [18]:

(logn)P y(T0 ≤ n)≤ c7

{
(log

√
n/|y|)+ + n

|y|2 1{|y|/√n≥1/2}
}
.(4.14)

The other is Bernstein’s inequality,

P

(
max
k≤n |Sk|> λ

)
≤ exp

(
− λ2

c8(n+$λ)

)
,

where $ is given in Assumption 2.4(b); see [3].
Using (4.14) with n = |y|2T , (4.13) is clear for T > (32$2)−1 [note that

replacing y by −y in (4.14) and using translation invariance, (4.14) holds for
P 0(Ty ≤ n)]. If T ≤ (32$2)−1 and |y| ≤ 4$, then |y|2T ≤ 1

2 and (4.13) follows
trivially. So we look at the case where T ≤ (32$2)−1 and |y| > 4$. It is easy
to see that ν([0, T ]) ≥ c9 exp(−1/(c10T )) for T ≤ (32$2)−1. Denote by τB(0,r)
the first exit time from the ball centered at 0 and radius r . By the strong Markov
property we have

P 0(Ty ≤ |y|2T )= P 0(τB(0,|y|/2) ≤ |y|2T,Ty ≤ |y|2T )
≤ E0

[
P
SτB(0,|y|/2)

(
Ty−SτB(0,|y|/2)

≤ |y|2T ); τB(0,|y|/2)≤ |y|2T
]
.

(4.15)

By (4.14),

P
SτB(0,|y|/2)

(
Ty−Sτ(B(0,|y|/2)) ≤ |y|2T )≤ c11/ log(|y|2T ),(4.16)

when |y|/2 > 2$. By Assumption 2.4(b) the random walk cannot go a distance
more than $|y|2T in time |y|2T . So if T < 1/(4$|y|), then $|y|2T < |y|/4 and
P 0(τB(0,|y|/2) < |y|2T )= 0. If T > 1/(4$|y|), then by Bernstein’s inequality,

P 0(τB(0,|y|/2) ≤ |y|2T )≤ exp
(
− |y|2

4c8(|y|2T +$|y|/2)

)
≤ e−1/(c12T )

if c12 is chosen sufficiently large. Putting this and (4.16) in (4.15) yields (4.13).
�
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LEMMA 4.6. There exists c4.7 > 0 such that

Eα
p
1 ≤ c

p
4.7p! for all p ∈ N.(4.17)

Further, there exists c4.8, c4.9 > 0 such that

E

[
exp

(
c4.8In

n/(logn)2

)]
< c4.9 for all n ∈ N.(4.18)

PROOF. (4.17) is proved in Lemma 2 of [20]. Inequality (4.18) is then deduced
by combining (4.17) with Lemma 4.5. �

PROOF OF PROPOSITION 4.4. Fix n. LetK = 〈β log2 n〉, where β is a number
we will choose later. Let M = n/K . Set

Jj = #
{
Sk :k ∈ [〈jM〉, 〈(j + 1)M〉)},

Hj = #
({
Sk :k ∈ [〈jM〉, 〈(j + 1)M〉)}∩ {Sk :k ∈ [〈(j − 1)M〉, 〈jM〉)}).

Let e be a vector of length
√
M . We denote by B(x, r) the ball of radius r centered

at x. Let Aj be the event that S〈jM〉 ∈B(je, 1
8

√
M) and

{
Sk :k ∈ [〈jM〉, 〈(j + 1)M〉)}⊂ B

((
j + 1

2

)
e,
√
M
)
.

Let Bj be the event that J j (logM)2/M is greater than some number −c1. By the
usual central limit theorem we know P (Aj) ≥ c2 if n is large. Thanks to (2.8), if
we take c1 sufficiently large, then P (Aj ∩Bj ) > c2/2. By the Markov property,

P (F )≥ (c2/2)K,(4.19)

where F =⋂K
j=1(Aj ∩Bj ).

On the set F we have that {Sk :k ∈ [〈jM〉, 〈(j + 1)M〉)} is disjoint from
{Sk :k ∈ [〈iM〉, 〈(i + 1)M〉)} if |i − j |> 1, and so

Rn =
K∑
j=1

J j +
(

K∑
j=1

EJj −ERn

)
−

K∑
j=1

Hj .(4.20)

On the set F the event Bj holds for each j , and so

K∑
j=1

J j ≥− c1KM

(logM)2
≥− c3n

(logn)2
.(4.21)
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We have
K∑
j=1

EJj −ERn =K
n/K

log(n/K)
− n

logn
+O

(
n

(logn)2

)

= n

logn

[
1

1 − (logK/ logn)
− 1

]
+O

(
n

(logn)2

)
≥ c4

n logK

(logn)2
+O

(
n

(logn)2

)
≥ c5

n log3 n

(logn)2

(4.22)

if n is large.
Let C1 be the event that ∑

{j odd}
Hj ≥ c5

3

n log3 n

(logn)2

and C2 the event that ∑
{j even}

Hj ≥ c5

3

n log3 n

(logn)2
.

Set G= F ∩Cc
1 ∩Cc

2. For j odd the Hj are independent. By Lemma 4.6,

P (C1)= P

( ∑
{j odd}

Hj

M/(logM)2
≥ c6K logK

)

≤ e−c6c7K logKEec7
∑
Hj (logM)2/M

≤ e−c8K logK(c9)
K.

When n is large, K will be large, and then P (C1) ≤ P (F )/3. We have a similar
estimate for P (C2), so using (4.19), we have

P (G)≥ (c2/2)K/3.(4.23)

On the event G,

K∑
j=1

Hj ≤ 2c5

3

n log3 n

(logn)2
.(4.24)

Combining (4.20), (4.21), (4.22) and (4.24), on the event G,

Rn ≥ c10n log3 n/(logn)2.(4.25)

Now let nJ = 〈exp(J2)〉, let KJ = 〈β log2(nJ+1 − nJ)〉, let S′k = Sk+nJ − SnJ ,
k = 0,1,2, . . . , nJ+1 − nJ, and let R′

J = #{S′k : 0 ≤ k < nJ+1 − nJ}. If we apply
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the above results to the random walk S′k , we see there exist events G′
J which are

independent, which have probability at least 1
3(c2/2)KJ , and on which

R′
J ≥ c10

(nJ+1 − nJ) log3(nJ+1 − nJ)

(log(nJ+1 − nJ))2
≥ c11

nJ+1 log3 nJ+1

(lognJ+1)2
.(4.26)

If we choose β small enough, then
∑

J P (G
′
J) = ∞, and by Borel–Cantelli G′

J

occurs infinitely often with probability 1. Now R′
J differs from RnJ+1 by at most

nJ = o(nJ+1 log3 nJ+1/(lognJ+1)
2) and the same holds for the difference of their

expectations. Together with (4.26) this proves the proposition. �

PROOF OF THEOREM 2.5. We use Propositions 4.1 and 4.4, and the Hewitt–
Savage zero–one law (see, e.g., Theorem 2.15 of [17]). �

Acknowledgments. The authors are grateful to J.-F. Le Gall, Y. Hamana,
N. Jain, H. Kesten, D. Khoshnevisan and Z. Shi for helpful advice and comments.

REFERENCES

[1] BASS, R. F. and KHOSHNEVISAN, D. (1992). Local times on curves and uniform invariance
principles. Probab. Theory Related Fields 92 465–492.

[2] BASS, R. F. and KUMAGAI, T. (2000). Laws of the iterated logarithm for some symmetric
diffusion processes. Osaka J. Math. 37 625–650.

[3] BENNETT, G. (1962). Probability inequalities for the sum of independent random variables.
J. Amer. Statist. Assoc. 57 33–45.

[4] DONSKER, M. D. and VARADHAN, S. R. S. (1979). On the number of distinct sites visited by
a random walk. Comm. Pure Appl. Math. 32 721–747.
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