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This paper is concerned with the intrinsic metrics of the two main
classes of superprocesses. For the Fleming-Viot process, we identify it as
the Bhattacharya distance, and for Dawson—-Watanabe processes, we find
the Kakutani—Hellinger metric. The corresponding geometries are studied
in some detail. In particular, representation formulas for geodesics and
arc length functionals are obtained. The relations between the two metrics
yield a geometric interpretation of the identification of the Fleming-Viot
process as a Dawson—Watanabe superprocess conditioned to have total
mass 1. As an application, a functional limit theorem for super-Brownian
motion conditioned on local extinction is proved.

0. Introduction. Let A be the generator of a diffusion process. One can
use the corresponding carré du champs operator:

I'(u,v) == A(uv) — UAv — VAU
to define an intrinsic metric p associated with the diffusion by setting

(0.1) p(X,y) = sup{u(x) — u(y) IT(u,u)(z) <1Vz).

If, for example, A is an elliptic second-order differential operator with smooth
coefficients on R¢Y, then it is well known that p is the Riemannian distance
function associated with the Riemannian inner product obtained by inverting
the diffusion matrix of A. For more general diffusions, the intrinsic metric
(0.1) can replace this Riemannian distance in heat kernel estimates and large
deviation theorems. See, for instance, Carlen, Kusuoka and Strook (1987) and
Davies (1989). For other probabilistic applications of (0.1) see Sturm (1994,
1995) and Kuwae and Uemura (1995).

The aim of this paper is to calculate the intrinsic metrics associated with
both the Fleming-Viot and the Dawson—Watanabe superprocesses. In partic-
ular, this complements the results of Overbeck and Rdckner (1996), where
the Fleming—Viot process has been analyzed by differential geometric meth-
ods, but without identification of the intrinsic metric.

Our formulas for the intrinsic metrics will be presented in the next section.
In Section 2 we will examine the corresponding geometries in terms of their
geodesics and arc length functionals. Also we will provide a geometric inter-
pretation of the results in Etheridge and March (1991) and Perkins (1991),
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where the Fleming—Viot superprocess is identified as a Dawson—-Watanabe
process conditioned to have total mass 1, and we will rediscover some results
of Overbeck and Rdckner (1996). As an application, a functional limit theorem
for super-Brownian motion conditioned on local extinction is proved in Sec-
tion 3. The final Section 4 contains proofs of our results.

1. The intrinsic metrics for the Fleming-Viot and the Dawson-
Watanabe superprocesses. Let M = M(E) denote the space of positive
finite measures on some standard Borel space (E, B) and let M, will denote
the subset of probability distributions. The variation norm of a signed mea-
sure u on (E, B) is defined as usual by

| wllvar = sup {<f, wy | f is measurable and [f(x)| < 1V x € E}.

Here we wrote ( f, u) for the integral of f with respect to u. The space M *
of all signed measured on (E, B) endowed with || - ||,ar is a Banach space [see
Dunford and Schwartz (1967), 111.7.4]. However, it is only separable if E is
countable.

A curve into M (or M,) will be mapping w:[0,1] - M (or w:[0,1] - M,)
that is continuous in variation. We will say that a curve o is differentiable if
it can be differentiated in M * with respect to |- |lvar and has a derivative
o(t) e M* (0 <t < 1) With C1( M) we will denote the set of all continuous
functions u: M — R such that, for any differentiable curve , the mapping
t — u(w(t)) is differentiable with derivative (d/dt)u(w(t)) = (Du(w(t)),
o(t)), with a bounded and measurable function Du: M X E - R. If u e
CY( M) then Du can be obtained as follows:

d
(1.0) Du(;u,x)=a u( u + téy), weEM xeE.
t=0
Here 8, denotes the unit point mass in x € E. By considering only functions
on and curves into M,, we can define a space C*( M,). However, in this case it
is more appropriate to consider

(1.1) Du( u, X) =% u((l—t)u +1s,), wmeM,x€eEE,

t=0
instead of (1.0). Clearly (d/dt)u(w(t)) = {( Du(w(1)), @(t)) = {Du(w(t)), ®(t))
holds for all differentiable curves into M;.

Now let (A, D(A)) denote the generator of some conservative Feller proces
with respect to some Polish topology on E. For a function u € C*( M,) of the
form u(w) = ¢ fy, wy, ..., (f,, w)), with n € N, a bounded and smooth func-
tion ¢ on R" having bounded derivatives and f,,..., f, € D(A), the in-
finitesimal generator of a Fleming—Viot process with mutation operator A
takes the form

(1.2) Tu(p) =3[ D2u(p, x)u(dx) + [ ADU(p, ) u(dx),  p e M,



1162 A. SCHIED

where D?u( u, x) := D(Du(:, x))( &, x) and ADu( g, x) = A(Du( w, - )(x). We
refer the reader to Ethier and Kurtz (1986) and Dawson (1993) for surveys on
Fleming-Viot processes. It follows easily from (1.2) that, for u as above, the
carré du champs operator T associated with L takes the form

T(u,u)(w) = [ (Bu(m, ) w(dx),  peM

and hence can be extended to the whole of C( M;). We now can state our
result on the intrinsic metric of a Fleming—Viot process.

THeEOREM 1.1. For v, u € M; and any n € M such that both » and pn are
absolutely continuous with respect to n, define
dv du
1.3 o(v, = arccos —_——
(13) (v, 1) IV @0 an
Then

(1.4)  sup{u(p) —u(v)IT(u,u) <1,ueCH{ M)} =28(p ).

dn.

It can be seen easily that the right-hand side of (1.3) does not depend on
the particular choice of 7. According to Amari (1985), 6(v, u) is called the
Bhattacharya distance of u and v.

The Dawson—Watanabe superprocesses form another important class of
measure-valued diffusions. We refer to Dawson (1993) for a survey. The
infinitesimal generator L of the kind of processes we are interested in here
can be described as in (1.2) by simply omitting bars. That is, for (A, D(A),
and u = ¢(f,-),...,{(f,,-)) € CHM)as above,

(15) Lu(p) =3[ D2u(p, x)p(dx) + [ADU(p, X)p(dx),  pEM,

where D?u( u, X) = D(Du(-, X)) u, x) and ADu( w, x) := A(DU( w, - )(x). If,
for example, A is the Laplace operator on E = RY, L generates the so-called
super-Brownian motion. For u as above, L has a carré du champs operator T’
given by

I“(u,u)=f(Du(,u, x))%u(dx), wE M.
Again T can be extended to the whole of C'( M). Our next result is the

following theorem.

THEOREM 1.2. For v, u € M and any n € M such that both v and u are
absolutely continuous with respect to n, let
2 1/2
dn) ,

du dv
1.6 d(v, = —_— =/ =
(16) =1V Ve
denote the Kakutani—Hellinger distance of » and w. Then
(1.7)  sup{u(p) —u(v) IT(u,u) <1,ueCY{ M)} =2d(v,pn).




GEOMETRIC ASPECTS OF SUPERPROCESSES 1163

Note that the right-hand side of (1.6) again is independent of n and that d
differs here by a factor V2 from the Kakutani—Hellinger distance as defined
in Jacod and Shiryaev (1987). The metric d appears also in the rate function
for certain large deviation principles for super-Brownian motion, and has
hence a clear probabilistic significance. See Schied (1996). Other conse-
guences of our results will be discussed in the next section after we have
studied the geometries of ( M;, ) and ( M, d) and their relations.

One might ask if our results would be affected by choosing other domains
for the carré du champs operators instead of the Cl-spaces. Indeed, our
formulas (1.2) and (1.5) for the infinitesimal generators L and L were a priori
only valid on function spaces of the form

FCH(D) = {u(n) = ¢({fr,m), ... . (f, w)) I f,,..., f, €D,
¢ € CL(R™), n e N},
where D is a certain set of measurable and bounded functions on E and

Cy(R") denotes the space of all bounded smooth functions on R" with
bounded derivatives.

PropPosITION 1.3.  Suppose D contains all constant functions and an alge-
bra generating the o-field B. Then the conclusions of Theorems 1.1 and 1.2
remain true, if C*( M;) and C*( M) in (1.4) and (1.7) respectively are replaced
by FCy(D).

2. The Kakutani-Hellinger geometry. Let d denote the Kakutani-
Hellinger distance as in (1.6). We define energy and length of a curve into M
as follows:

d(w(t), o(t_,))’

ti - ti—1

O<ty; <t; < - <tn§1,neN},

l n
E(w) = SUD{E by
i=1

O<ty<t; < - <tns1,neN}.

L(w) = sup{__i d(o(t), ot 1))

It has been proved in Schied (1996) that E admits the following integral
representation formula:

2

1 1] da(t)
— dt, if H,
(2.0 E(w) = 8/0 do(t) || Lz(uety hes

o0, otherwise,

where H is the space of those w:[0, 1] - M that are of the form
(2.1) o(t) = (0) + [(b(s)ds, Os<ts<l,
0

for some locally finite signed measures w(s) which are absolutely continuous
with respect to w(s), for almost every s, and whose Radon—Nikodym deriva-
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tive dw(x)/dw(s) satisfies
2

do(t
(2.2) I (t) dt < .
o [[do(t) | 2w
THEOREM 2.1. If w € H, then L(w) is given by
1 1| de(t)
(2.3) L(w) == dt.
2‘/0 dw(t) Lz(m(t))

Fix u, v € M, choose any n € M such that u, v < n, and define a curve vy into
M by

dy(t v d
(2.4) Z(n) - ((1—t)1/d—17 +t1/d—5

Then, if w is any curve such that »(0) = v and w(1) = u, we have that

2
)

0O<t<1.

(25) L(w)>L(y) =d(v,p)
and
(26) E(w) = E(y) = 3d(v, w)".

Moreover, equality in (2.6) implies w = y, and equality in (2.5) implies that o
and vy coincide modulo reparameterization.

Note that Jensen’s inequality together with (2.0) and (2.3) implies that

(2.7) L(w)® < 2E(w),
for any curve w.

A curve y as in (2.5) will be called minimal geodesic. Of course, y can be
extended to a mapping v : R — M, but in general it will not minimize the arc
length outside the interval [0, 1]. Indeed, suppose that » < u and that y(t) is
defined as in (2.4). Then, for t > 1,

d dy(t d d d
- v (1) =1-11-tl] —V<t i on —M=O.
dn dn dn dn dn

Since n(du/dn = 0) > 0 by assumption, this implies that

(2.8) d(v(0), y(1)) < td(v, ) ift> 1.

Let us now consider the angular distance & defined in (1.3). For a curve o
into M, define as above energy and length with respect to é:

E(w) = sup{% i S(w(:i)’ o(ti_y))

: Ost0<tl<-~~<tn51,neN},
i ti-1

O<ty<t, < -~ <tnsl,neN}.

E(‘”) = SUp{_Z d(w(t), o(ti_y))
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THEOREM 2.2. The angular distance § defines a metric on M; and, for two
probability measures v # u,
v

(2.9) d(v,p) <é(v,p) < ‘/§d(V’M)'

Moreover, E(w) = E(w) and L(w) = L(w) holds for any curve o into M,. Fix
w, v € M, and define a curve y into M; as follows by its Radon—Nikodym
derivatives with respect to any n > v, w!

2
dy(t) dv . du sin ot
—_— = — 6t — cot 6 ot) + —_— ,
(2.10) dn dn (cos cot 9'sin 61) dn siné

O0<t<1,

where 6 := 6(v, w). Then, if o is any other curve into M; such that w(0) = v
and w(1) = u, we have that

(2.11) L(w) =L(0) 2L(y) =8(v, p)
and
(2.12) E(w) =E(w) 2 E(y) = 38(v, n)".

Amari (1985) also studied some geometric aspects of d and 8, but only
when they are restricted to the set of probability measures that are abso-
lutely continuous with respect to some fixed reference measure 7.

Let us now state a few consequences of the results we obtained so far.
Equation (2.11) implies that

(2.13) 8(v,p) = inf{L(w) | w(0) = v, w(1) = pand w(t) €M, Vt}.

That is, 6 is induced by d and the inclusion M, C M. This seems to be the
geometric interpretation of the results in Etheridge and March (1991) and
Perkins (1991), where the Fleming—Viot process is identified as a Dawson—
Watanabe superprocess conditioned to have total mass 1.

One might be tempted to transfer concepts from Riemannian geometry to
our setting. Indeed, (2.3) suggests that the “tangent space” of ( M, d) in some
measure v should be L?(») with its usual inner product. This works well if E
is countable and » has full support. But in the general situation we can
always find some nontrivial A € M which is singular with respect to ». Define
n by m = v+ A and let y denote the geodesic (2.4) from v to w, where u is
defined by du/dn = (dA/dn)Y? + (dv/dn)*/?)?. Then we have that
ldy(0)/dvll 2,y = 0. Thus geodesics are no longer determined by their start-
ing point and an initial vector. In particular, there is no reasonable analogue
of an exponential map.

Formally, (2.11) or the form of T suggest that the “tangent space” of
(M, 8) in some » € M; should be the orthogonal complement in L2(») of the
constant functions, and that it should be endowed with the L2(v) inner
product. This means that ( M, §) carries the structure of a “Riemannian
submanifold” of ( M, d), and this gives another formal explanation of (2.13).
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Proposition V.4.4 of Jacod and Shiryaev (1987) asserts that

(2-14) %”V - IJ«”var < d(V, /~L) < ”V - li”:\L/é?a v, uE Ml,

where the upper bound also holds for v, u € M. Combining (2.14) with (2.9)
yields

1 T 12
(215) EHV - IJ«”var < 5(7’, M) < ﬁ”’j - /-L”vara v, hE Ml; vV#F W

These estimates are sharp, and together with Theorem 1.1 they yield an
improvement of Theorem 5.1 of Overbeck and Rockner (1996), which states a
nonsharp estimate like (2.15) for the intrinsic metric of the Fleming-Viot
process. Equations (2.14) and (2.15) show that convergence with respect to d
or & is a very strong concept. But in the case where the operator A in (1.2)
and (1.5) is the generator of a Markov chain with bounded jump intensities,
Shiga (1990) has proved that the corresponding measure-valued diffusions
are almost surely continuous in variation, and hence with respect to their
intrinsic metrics. Konno and Shiga (1988) proved a similar result, when A is
the Laplace operator on R.

There is a natural notion of curvature in geodesic spaces. It is called
curvatue in the sense of CAT (Comparison, Alexandrov, Toponogov) and it is
obtained by comparing geodesic triangles with comparison triangles in simply
connected two-dimensional Riemannian manifolds of constant curvature. See
Ballmann (1990) or Sturm (1994). In our case, it is clear from (2.10) that
every geodesic triangle in ( M, §) matches another one in the Euclidean
two-sphere of radius one. Thus ( M, §) has constant curvature +1 in the
sense of CAT. According to Remark 3.3 in Overbeck and Rdockner (1996), this
fact has been independently noticed by B. Driver by calculating the curvature
tensor that corresponds to the coefficient matrix of a Fleming—Viot process in
the case where E is a finite set with n + 1 elements. In this situation, our
equation (2.10) now shows in addition that ( M;, ) is just a Euclidean
n-sphere where two points are identified when they can be obtained from
each other by reflections with respect to the hyperplanes {(x,,..., X,,,) €
R" 1| x, =0} (i=1,...,n+1). But this is just a sphere segment with
boundary. These aspects of the Bhattacharya metric with finite E have been
studied before in Amari (1985).

The sphere segment above can be parameterized on

n
K={(X,....,%X,) €ER"|x;>20,i=1,...,n, )} xisl},
i=1
by the mapping

n 1/2
KS (Xgyeoes X)) = ®(Xq,..0, X)) = (x%/z,...,xrl/z,(l— h xi) )
i=1
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The canonical volume element of the n-sphere reads in these coordinates as

n -1/2
m(dx,,...,dx,) = (x1 xn(l - xi)) dx, - dx,,
i—1

and this yields the invariant distribution of a Fleming—Viot process with
parent independent mutation [i.e., the case A = 0 in (1.2)] when mapped onto
K. Theorem V.4.6 in lkeda and Watanabe (1989) can now be used to charac-
terize all mutation operators A that yield symmetrizable drifts and to
calculate their symmetrizing measures. This has been carried out in Theorem
2.2 of Overbeck and Rdckner (1996) by direct means.

3. Small-time asymptotics for super-Brownian motion conditioned
on local extinction. Suppose p > n and let M,(R") denote the space of all
positive o-finite Borel measures w on R" such that (¢,, u) <=, where
b, x) = (1 + |x[>)P/2 (x € R"). The space Mp([RQ”) becomes Polish when en-
dowed with the topology generated by the maps

My(R") = p = (f, u), fe {4} UC(R").

Clearly one can extend the Kakutani—Hellinger distance d to Mp(R”), but
note that now the distance between two measures might be infinite. However,
one can show easily that Theorem 2.1 with appropriate modifications remains
true on this space.

Let C([0, 1]: M,(R™) denote the space of all continuous paths from [0, 1]
into MP(R"), and we endow this space with the usual compact open topology.
Then this is the canonical path space for super-Brownian motion X, which is
a diffusion with values in M (R") and generator

(3.1) Lu = (D?*u( ), u> + 3€ADU( ), u), u € FCy(D),

where D equals here the set of all smooth functions on R" with compact
support. Let P, denote its law when starting from u € Mp([R”). Assume now
that u € MD(R”) has full support. It has been shown in Corollary 3 of Schied
(1996) that, as ¢ |0, the rescaled processes X{ = X_, (0 <t < 1) satisfy a
large deviation principle with good rate function

2E(w), if w(0)=pand w € D,

3.2 10 =
(3:2) w(@) 0, otherwise,

where D is the set of all paths o € C([0,1]: M,(R")) having decreasing
support. The appearance of the intrinsic metric in the rate function shows
that the Kukutani—Hellinger distance has some probablistic significance for
Dawson—Watanabe superprocesses.

We now combine the above large deviation principle with the knowledge of
the minimizing geodesics provided by Theorem 2.1 to prove a weak conver-
gence result for super-Brownian motion conditioned on local extinction.



1168 A. SCHIED

THEOREM 3.1.  Fix u € M(R") with full support, and choose a closed set
N c R" such that w(N) < . For &> 0, let X denote the process X{ = X_,
(0 <t < 1). Then the laws of X* under P,[-| X7(N) = 0] converge weakly as
£ 10 to the Dirac mass in the curve y € C([0, 1]: M (R")) given by

y(t) =p—-t(2-t)py, O<t<l,

where u, is the restriction of w to N.

4. Proofs. We will prove our results in the following order: Theorem 2.1,
Theorem 2.2, Theorem 1.2, Theorem 1.1, Proposition 1.3, and finally Theo-
rem 3.1.

All vector-valued integrals that appear below are to be understood in the
sense of Bochner. See Hille and Phillips (1957).

ProoF oF THEOREM 2.1. First we will prove (2.3). To this end fix w € H
and definep € M by n = [} o(t) dt. If A € Band n(A) = 0, then o(t)(A) =0
for every t € [0, 1] since t —» w(t)(A) is continuous by (2.1) and (2.2). Hence,
for each t € [0, 1], there is a function ¢(t) € L'(n) such that dw(t) = ¢(t) dn.
Since

1 1
J -

by (2.2), t —» dw(t)/dn is Bochner integrable in L'(n) [cf. Theorem 3.7.4 in
Hille and Phillips (1957)]. By testing with bounded and measurable functions
it follows easily that, for all t € [0, 1],

da(t)
dn

do(t)
dw(t)

do(t)
do(t)

dt < o,
L2(w(1)

dt < o(w) [

LY(n) LY w(1))

dw(s
o )ds,
dn

t

¢(t) = 0(0) + [

0

holds in L(n). Therefore the mapping t — ¢(t) € LX(n) is strongly differen-
tiable almost everywhere and possesses the derivative ¢(t) = dw(t)/dn [cf.

Theorem 3.8.5 in Hille and Phillips (1957)].

LeEmmA 4.1. For ¢ as above, the identity

t. _
(4.1) Ve(t) — Ve(0) =§f0 o(s)e(s) ?ds, O0<t<1
holds in L2(n).
Proor. Define functions f; and f, on [0,%) by f/(x) =n A (4x)"!/2 and

f.(x) =[5 fi(y)dy (n=1,2,...). Equations (53) and (54) in Schied (1996)
assert that

fa(@(1) — fu(¢(0)) = /O‘f,;(so(s))@o(a ds
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in L2(xn). For almost every s,
(4.2) fi(e(5))&(s) = 36(s)e(s) /*  asnte,
pointwise on E. But, for all n and almost every s,

(fi(e(s) ()" < 1(s)*e(s) " € L'(m).
Hence (4.2) takes place even in L?(n). Moreover,
do(s)
dw(s)

ds < o
L2(w(s))

1, . _ 1
[ 1e()e(s) iz ds = [
0 0
by (2.2), and hence, for each t,
t . t. _
[ fie()e(s)ds > 3 [Te(s)e(s) 2ds  asnie,

in L2(n) by dominated convergence for Bochner integrals [see Hille and
Phillips (1957), Theorem 3.7.9]. On the other hand, by monotone convergence,

f(e(1) = yo(t)  asnie

in L2(n). Therefore the lemma is proved. O

It follows from the lemma that

d(w(s), (1)) =

ot

| —
oy %fs le(u)e(u) ™Il du.
n

Hence
do(u)

Fa(0) dt.

1 .4 A 1 4

< — 2 = —
L(w) < 2fo le(u)e(u) ~“llzqm du Zfo o
To prove the reverse inequality, choose ¢ > 0 and a step function : [0, 1] —
L?(n) such that [l e(u)e(w) /2 /2 — ¢(u)ll 2 du < e. See Hille and Phillips
(1957), page 86, for existence. Let A = {s, ..., s,J denote an ordered partition
of [0, 1] such that ¢ is constant a.e.on [s;_;,s;] (i =1,...,n). We can find a
refinement A’ = {t,,..., t,} of A such that

|
L(@) < ¥ d(o(t) o(t) + o= ¥

i=1

+ &,
L2(n)

[ bsyes) 7 s

tig

by Lemma 4.1. Then we have that

|
£ e

fti y(s) ds

t_

Lz(TI)

= [M3e(s)ets) 7~ u(s)

L2(n

Lz(ﬂ) dS < £,
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and

|
o) 6(5) ™ furon ds = B
i=1

" y(s)ds

r

L2(n)

S Nes)e(s) 2 e ds = [Fu(s)lliay ds
0 0

< [ e(s)e(s) 7 = w(9) | ds < o

Putting these estimates together, we arrive at

< 3e.

\Luo—%gﬂa@¢w)”wﬂmm

Since £ was arbitrary, (2.3) is proved.

Now consider the curve vy given by (2.4). Then, since t — y/dy(t)/dy is a
straight line in L%(n), we have that d(y(s),y(t)) = |t — s|d(», u). Hence
L(y) =d(v, w), E(y)=d(v,w?/2 and y € H. Since d(v, u) < L(w) and
d(v, u)? < 2E(w) are trivial for any curve » connecting » and u, the above
implies (2.5) and (2.6).

Now suppose L(w) = d(v, u). We will show first that this implies that the
graphs of w and vy coincide:

(4.3) {o(t)10<t<1) ={y(t)10=<t<1}.

Observe that it suffices to prove only the inclusion <, because w is continu-
ous. Clearly, for any t [0, 1],

(44)  d(r.n) = L(0) 2 d(r, w(t) +d(w(t), p) = d(v, u),

and the inequalities are here in fact equalities. If we define n, by ny = v +

u + o(t), (4.4) implies that
[ dv [ do(t) [ do(t) [ du
PR — + — _
dnq dng L2(ng) dnq dnq

[ dv [ du

dnq dng
Hence (dw(t)/dny)*? must lie on the straight line from (dv/dn,)? to
(du/dny)'? in the space L?(n,). Since (2.4) is independent of 7, the above
shows that o(t) is an element of the graph of vy, and (4.3) is proved. To
construct the desired reparametrization it suffices to observe that t—
d(v, o(t)) is increasing. Indeed, d(v, o(t + h)) = d(v, w(t)) + d(w(t),
o(t + h)) as can be shown by arguing as in (4.4).

Next suppose that E(w) = d(v, u)? /2. Equation (2.7) now yields 2E(w) =
L(w)? = d(v, u)?. Hence o coincides with vy at least modulo reparametriza-

LZ(TIQ)

Lz(‘ﬂo)
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tion. In addition E(w) is finite and thus « € H. Therefore, by (2.3),
1 da(t 2 1 da(t
_(fl “(t) dt) =L(w)2=2E(cu)=—/l @t

4 0 dw(t) Lz(w(t)) 4 0 dw(t) Lz(m(t))

But this can only happen if ||dw(t)/dw(t)ll 2 is constant in t. This easily
implies y = w and Theorem 2.1 is proved. O

2

dt.

ProoF oF THEOREM 2.2. First let us show that é is indeed a metric on M,.
Only the triangle inequality is not obvious. To prove it, suppose v, u, A € M,,
fix » > v, u, A, and denote by ¢,, ¢, and ¢, the square-roots of the corre-
sponding Radon—Nikodym derivatives. Then let 6, = (v, u), 6, == 8(pu, A)
and

1 ~ 1
—¢,cotf;, and ¢ = ¢

o, =

" - cot 6,.
”sin 6, u 2

sin 6,

Then 6.0, L in L2(n), ¢, =g cos6;, +5sing, and ¢ = ¢, cosb, +
@, sin 6,. Thus

cos 8( v, A) = cos 0, cos 6, — {@,, B )12 Sin B, sin 0,
> cos 6, cos 0, — sin 6, sin 6,

cos(6(v, m) +8(u,A)).
As & only takes values in [0, /2], this shows that

(4.5) (v, A) <8(v, ) +8(u, A) withequality iff o, = g¢,.
To prove (2.9) observe that
(4.6) 8(v, ) = arccos (1 — 3d(v, u)*).

But 0 < d(v, u) < V2 and 1 < arccos(1 — x2/2)/x < w/ V8, for 0 < x < V2.

Now fix a curve o into M;. We have L(w) > L(w) and E(w) > E(w) from
(2.9). To prove the converse assertion for the arc length, define L(w) =

" 8(w(t), o(t;_) if A ={ty, t,,..., t,} is any ordered partition of the unit
interval. Next we remark that arccos(1 — x2/2)/x | 1 as x | 0. Hence we infer
from (4.6) that for any &> 0 there is some r > 0 such that §(a, A) <
(1 + &)d(a, A) whenever «, A € M; are such that d(a, A) < r. This shows
that L(w) < (1 + &) L(w), if we suppose that d(w(t)), o(t;_,)) < r, for all
t; € A. But § is a metric, and hence

(4.7) L () = Ly(w) if A" isfiner than A.

Since w was supposed to be strongly continuous, we arrive at L(w) =
sup, Ly(w) < (1 + &) L(w), where the supremem is taken over all partitions
A that are fine enough in the above sense.

In principle the same reasoning applies to E(w). However, some additional
care is needed, because the property analogous to (4.7) is uncertain in
general. But it remains true if A and A’ are dyadic partitions, and this is
sufficient to prove the assertion. See Schied (1996), Lemma 24 for the details.



1172 A. SCHIED

Now we proceed to show that ¥ is indeed a minimizing geodesic. Choose 7
dominating w and v, and let (t) denote the Radon—Nikodym derivative
dy(t)/dn. Clearly, t —» (t) € L'(n) is strongly differentiable, and its deriva-
tive satisfies

. d
(4.8) (1) = (D) = 26( % cos 0t — /¢ (0) sin ot)y/y (1),

where & = (sin §)"1{/¢(1) — cot 6/y(0) . Therefore t — y(t) € L'(n) is of
strong bounded variation. Moreover ¢ is weakly absolutely continuous, and
so ¢(t) = ¢(0) + [5 y(s)ds holds in L'(n) by Theorem 3.6.8 in Hille and
Phillips (1957). Thus (2.1) follows for 7, with 7y given by dy(t) = (t) dn.
From (4.8) we conclude that y(t) < (t), for all t. To calculate the corre-

sponding density observe that, for any measurable set A,

. d7(t) dy(t) :

VOA) = [ ) gy 9= [ i dn

Thus it follows that

SZEI; () = ¢ (t) = 20(@cos 6t — /y(0) sin ot}y/w (1), nae.,

which in turn implies that

dy(t
dZEt; = 26(cos 6t — /y(0) sin 6t)y(1) "%, F(t)-ae.
Y
Using [|¢ll 2 = 1 and & L /¢(0) in L?(x), this yields
dy(t
Z( ) = 20”5005 0t — y/(0) sin Ot 2, = 26( p, v).
dy (1) [|Lzzay
Therefore y € H,
1 1| dy(t)
o(m,v) == — dt =L (%),
2/0 dy (1) ||z
and
- 2
1 1 | dy(t)
=8(v, )’ = < = dt = E(7).
2 8 j;) dY(t) L2(3(1)

Hence Theorem 2.2 is proved. O

PrROOF OF THEOREM 1.2. Suppose u € C'( M) satisfies I'(u,u) <1 and
o € H is a curve such that »(0) = A and «(1) = u. Then HGlder’s inequality
and (2.3) imply that

1 d 1 ;
u(d) —u(p) = [ grule(t) o|t=[O (Du( (1)), d(t)) dt

1 do(t
< [ VT(u u(e(D) Hdwit;

dt <2 L(w).
L2 (w(t)
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Equation (2.5) now shows that

p(A, ) =sup{u(A) —u(p) I (u,u) <l,ueC( M)} <2d(A n).

To prove the reverse inequality we will distinguish between the cases
where E is countable or uncountable. Let us start with the latter case. Since
the assertion of our theorem only depends on the measurable structure of
(E, B), we can assume that E = R and that B is the usual Borel field [see,
e.g., Theorem 2.12 of Parthasarathy (1967)]. Denote by », the normal distri-
bution with mean 0 and variance ¢ > 0 and choose n = A + u + v,;. Then, for
any « € M and each ¢ > 0, the convolution v_* « of 1 and « is absolutely
continuous with respect to n. Now fix &, o0 > 0 and a bounded measurable
function f, and define

v, xa\"?
(4.9) u(a) = [fle+ an dn, acM.
Clearly, for B € M, t » u(a + tg8) is differentiable and
d 1 dy, #*(a + tB) w1z dy, B
— +tg) == [fle+ ——— d
gu(ar ) =3 (8 dn dn "
1 dy, #(a+tB)) /2
=§[VU*[f 8+d—7” dB

Therefore u € C( M).
By Jensen’s inequality (v, * g)* < », * g2, for any bounded and measurable

function g on R. Hence
dv % a) /2 ’
v, * f(.9+ ; ) da
n

1 dy *a\ !

— fz(u—) dy, * a
4f dn

1

Z (¢2

4ff dn.

Hence I'(u, u) < 1 if [[fll 2, < 2. Therefore we can choose f depending on
A, w, € and o such that

F(u,u)(a) = Z/

IA

IA

e+

u(A) - u(u) = [f dn

dy, + A \Y? duy, = w\*?
— e+
dn ) (8 dn )

1/2

>2(1-¢)||le+

dV,,*/\)l/z ( du, *
—le+ .
dn d'n LZ(’])

Letting ¢ tend to 0 we conclude that p(A, w) > 2d(y, * A, v, * w). The asser-
tion will now follow from

(4.10) liminf d(u, A, 2, * ) > d(A, w).
ol0
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To prove (4.10) suppose first that the support of A is contained in the support
of w. Of course, the support of a measure should here be regarded with
respect to the Euclidean topology on E = R. In this case, Lemma 23 in Schied
(1996) asserts that

(4.11) d(A, p) = sup ((F, ) =V f, W),
feC(R)

where C.(R) denotes the space of continuous functions with compact support
on R and V, is, for t > 0, given by

, ifx<t,
(4.12) Vex =1{1-tx

0, otherwise.

Compare also with Lynch and Sethuraman (1987). Applying this variational
formula to d(v, = A, v, * u) as well, we get with Jensen’s inequality that
liminfd(v, A, v, *u)
ol0
> sup liminf sup (Cfoy = A = (Vo f oy x w))
neN ©ol0  fec(@®), f<i-1/n

> sup liminf sup (o, = F,0) = V(= ), w)).
neN 910 fec(Rr), f<i-1/n

Now choose ¢ > 0, n € N large enough and g € C(R)suchthat g <1 —1/n
and

(g, A —<AVy0, 1) = sup (CF, 0 =V fw) — &
feC(R), f<1-1/n

Since », x g — g pointwise as o |0 and y, *g<1—1/n, for all o> 0,
dominated convergence yields that (y, * g, A\) — (V,(y, * @), u) = (g, A) —
{(V,g, w>. Thus

liminf sup (o, = £,0) = V(= T), w)
ol0  fec ), f<1-1/n
> sup (CFoA) =V fw)

feC(R), f<1-1/n
and (4.10) is proved in the case where the support of A is contained in the
support of u. To handle the general case, observe first that

d(e, B) <lla — Blvr, a, BEM.

This can be seen as in part (i) of the proof of Proposition V.4.4 in Jacod and
Shiryaev (1987). Hence, for o, ¢ > 0,

d( * po v, #(p+ eX) <l = p— v+ (p+ ed)lar

1/2 1/2
< ”V(,-”vér”‘?/\”vér = V‘9||A||var .
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Since the support of A trivially is contained in the support of u + €A, we get
that

liminfd(v, = A, v, *u)
ol0

> liminfd(y, *A, 5, *(p+ e))) — limsup d(u, * u, y, *(p + &d))
ol0 o l0

> d(A, p) —d(p, pm+ ed) = Yellllvar = d(A, w) — 2y ellAllvar -

Since & was arbitrary, (4.10) is proved.

This proves p = y2d in the case where E is uncountable. If E is count-
able, E can be regarded as discrete subset of R. Then M(E) = M(R), and
hence every function u € C*( M(R)) satisfying I'(u, u) < 1 yields a function
u’ on M(E) with the same property. Therefore

sup{u'(A) — u'( ) lu’ € CH M(E)),T(u',u') <1}
> sup{u(A) —u( ) lue CH M(R)),I'(u,u) <1} =2d(A, )
and Theorem 1.2 is proved. O
PrROOF OF THEOREM 1.1. Suppose u € C*( M,) satisfies T'(u,u) < 1 and

o € Hisacurve such that «(0) = A, (1) = pand w(t) € M;, forall t € [0, 1].
Then, as above,

U(Y) —u(w) = [(Du(w(1)), b)) dt
da(t)
do(t)

dt <2 L(w).
L2(w(1)

= [VE(u, u)(a(D)
Choosing w = 7y as defined in (2.10), we get
p( A w) = sup{u(A) —u(p) IT(u,u) <1,ueCl{ M)} <28(A n).

For the prove of p > 26 we may restrict ourselves as above to the case
where E = R. Choose, o, ¢ > 0, let v, denote the normal distribution with
mean O and variance o, let n denote the measure n = (A + u + v,)/3, and
define f as (an n-version of)

dn, * |

dn

Note that f is bounded, since dv, * u/dn is bounded by some constant. With
these choices define a function u on the whole of M as in (4.9), and let w
denote the function

w(a) = arccos(u( ) — Ve (f, n)), aeM,.
By Holder’s inequality,

e+

f=(1+e)°

U(Oé) S||f|||_2(,,)(||a||var+8) Sl VaEMl
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and so o is well defined and in C*( M,). For @ € M, fixed, let ¢ denote the
density dv, * o/dn. Then we have that, for g € M,,

\/1 — (cosw(a))?

-1 -1/2
ssmway el fe 0 B a)
Therefore, with C denoting (2 sin w(a))?,

((Bw(a))z, a)y = C(<(Vo, *[f(a + go)_l/z])z, a> —< f(e+ qo)_l/z, v, * oz>2)
< C(< f2(e+ qo)_l, v,k a> —< f(e+ go)_l/zqo,n>2)

<c(¢rzm = (e + )2 — o f(e+ o) 2 n)).

(Dw(a), B) (Du(a), B — a)

Now
8< f(e+ go)_l/z,n> < \/§<f,n> S<f(a+ 90)1/2,7;> =u(a),
and hence
_ ) 1-(u(a) —Vedlf,m)) 1
<(DW(a)) ’a>S ( :siiz w(a) v T
Hence T(2w, 2w) < 1 and p(A, w) > 2w(A) — 2w( w). Letting ¢ tend to 0 we
arrive at

P(A, p) = 26(v, %A, v, 1),
But from (4.6) and (4.10),
lim 8(v, * A, v, * w) = liminf arccos(1 — d(v, * A, v, * u)?/2) = 8(A, ).
g0 a0
Hence the theorem is proved. O

RemARK. The choice of the particular function w in the above proof can be
guessed by expressing the carré du champs operator I" in terms of “polar
coordinates.” That is, we write u M as w=r-u, where r > 0 and © € M,
and we consider a function u on [0,) X M, as function on M by writing
u( w) = u(r, @). Then, at least formally,

d V1 R
P ) (0) = o - u(r )|+ LT, u(r ) ()

The r appearing on the right-hand side can be eliminated by choosing
u(r) = r*/2uy(@), and we then get that

T(u, u)(w) = U( &)°/4 + T(ug, Ug) (&)
So if w e C(M,) is some function such that T'(w,w) < 1, we can choose
U, = 2cos(w/2) to get I'(u, u) < 1. This argument is close to those that can
be used to derive the results of Etheridge and March (1991) and Perkins
(1991).



GEOMETRIC ASPECTS OF SUPERPROCESSES 1177

Proor oF ProrosiTiON 1.3.  We will only prove the part of the proposition
concerned with p. The assertion for p can be obtained analogously.

Again we can put ourselves in the situation where E = R and B is its
Borel field. It suffices to show that, for » and uw € M fixed, we can find a
sequence (u,) € FCy(D) such that I'(u,,, u,) < 1and u,(v) = u(v) and u,(u)
— u( ) if u is given by (4.9). To this end let f, ¢, and n be the same as in
(4.9), and choose pairwise disjoint sets A,,..., A, €B and g;,...,9,€D
suchthat0 < g; <1(i=1,...,n). Now define v € FC;(D) (i = 1...n) by

(g a2
V(a)—f ( + Q(A)) dn, ae M.

Then
1 2 -1/2
Dvi(a, x) = 3¢ ﬂAiv”I>(‘9”fl( A"+ (A, a>) 9i(x).
Now let w be given by w = X' ; v;. We get
<f|Ai1n><f|Aj17’> <gigj,a>
1 \/n(Ai)n(AJ—) \/<gi,a><gj,a>'
but 0 < g; < 1 and hence (g;g;, a) < \/<gi, a><g,-, ay (i,j=1,...,n). Thus

1[0 (fly, )
F(W,W)(a)sz(_;l \/n(TT' ff dn.

By our assumptions on D we can find functions @; that coincide n-a.e. (and
hence v and p-a.e) with v, = 1, , and that are bounded pointwise limits of
sequences (gf) c D with 0 <gf <1 (i=1,...,n,k €N). The function w*
corresponding to (g¥, ..., gX) then satisfies T(w*, w) < || f|[{2.,,/4, and (w*)
converges pointwise to some function W. For a« < n and in particular for
a € {v, u}, W(a) takes the form

l n
M(w,w)(a) < " Z;

ij

1/2
W(a) /fa+dv”*a ) dn
W(a) = .
d”fl o(Aq, ..., A
But now martingale convergence implies that u(a) given in (4.9) can be
approximated by functions W(«) as above when o(A,,..., A,) — B. This

proves the part of the proposition concerned with p. O

ProorF oF THEOREM 3.1. We will show first that under the assumptions of
Theorem 3.1,

(413)  u(N) = d( , uye)’ = Inf(12(w) | w(1)(N) = 0} = 12(y).
Indeed, the first equality is trivial. Obviously, by (2.6),
d( g, pye)® = inf{d( u, »)* | »(N) =0}
<inf{12(w) lw(1)(N) =0} < 12(7).

But vy is the unique minimizing geodesic from w to wyc, and therefore
12(y) = 2E(y) = d(u, pyc)®. Hence (4.13) is proved.
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LEMMA 4.2. Under the assumptions of Theorem 3.1,
lim £ logP,[ X,(N) = 0] = —u(N).
10

&

ProoF. Let P/(x, A) = 2nt)"9/2 [, exp(—|x — y|?/2t) dy denote the
Brownian transition semigroup. Theorem 9 of Schied (1996) implies that, for
t > 0 and f bounded and measurable,

(V{Pf, uy < logE, [exp({f, X)) < (PV,f, u),
where V, is defined in (4.12). Using the lower bound we get that
logP,[ X,(N) = 0] = limlog E,[exp (—AX,(N))]
Ao

) AP.(x, N)
- Ilmf
ae /L4 eAP (X, N)

%

w (dx)

R N (o).
Hence
liminf zlog P,[ X,(N) = 0] > limsup [P,(x, N)p(dx) = —p(N),
€10 el0

because N is closed. On the other hand, limsup, , slogP,[ X.(N) = 0] <
u(N) follows from (4.13) and the upper bound of the large deviation principle
stated in connection with (3.2). O

Now suppose A c C([0, 1]: M,(R™) is closed. Let Ay denote the closed set
Ay = ANn{wl o1(N) = 0}. Then, by the above large deviation principle and
Lemma 4.2,

limsup glogP,[ X* € A| X{(N) = 0] = limsup elogP,[ X* € Ay] + u(N)
el0 10
m(N) —

but by Theorem 2.1 and (4.13) we have that
in/l‘N 12(w) > u(N) =12(y) = y&Ay.

we

This shows that

limsup P,[ X* € AIX{(N)=0] <8,(A) Vclosed A cC([0,1]: M,(R"))
el0

and this is equivalent to the asserted weak convergence. O

IA

inf 1° ,
wEAY 'u(w)
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