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INFORMATION INEQUALITIES AND
CONCENTRATION OF MEASURE!?

By AMIR DEMBO

Technion-Israel Institute of Technology

We derive inequalities of the form A(P, ) < H(P|R)+ H(Q|R) which
hold for every choice of probability measures P, @, R, where H(P|R) de-
notes the relative entropy of P with respect to R and A(P, ) stands for a
coupling type “distance” between P and @. Using the chain rule for relative
entropies and then specializing to @ with a given support we recover some
of Talagrand’s concentration of measure inequalities for product spaces.

1. Introduction. In [9], Talagrand provided a variety of concentration of
measure inequalities which apply in every product space QY equipped with
a product (probability) measure R. These inequalities are extremely useful
in combinatorial applications such as the longest common/increasing subse-
quence, in statistical physics applications such as the study of spin glass mod-
els and in areas touching upon functional analysis, such as probability in
Banach spaces (cf. [9]-[11] and the references therein). For suitably chosen
“distance” functions f(-), these inequalities are of the form

q
@ [exp(tf (A ..., Ay X)) dR(X) < exp(C(¢, @) [T R(A) ™,

=1
for some constants ¢ € N, «, ¢t > 0 and C(¢, @) < oo, and hold for every (mea-
surable) A; ¢ QV, i = 1,...,q. Of most interest are the “dimension-free”
inequalities in which g, a, ¢ are independent of N and C(¢,«) = 0. Not to
be distracted from the main course of this paper, we follow Talagrand’s con-
vention and hereafter ignore all measurability questions (these can either be
taken care of by considering upper integrals and outer probabilities or cir-
cumvented by assuming () is Polish, the A; are compact and all probability
measures encountered are Borel measures). Three “distance” functions that
play a prominent role in [9] are the “control by g points”

N
fo(Ar, .. Ay, X) = iinf > 1xk¢{y};,i:1,<..,q}’
y'eA; =1
i=1,...,q

the “penalties”

N
fa(A,x)=1inf > h(xy, ;)
yeA e
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928 A. DEMBO

for h: Q x Q) — [0, o) and the “convex hull”

fo(A,X)= lnf Z Ea(sp),

Vax)

where V 4(X) £ conv-hull{(1
[0, c0) is such that

):ye A}, a>0and &, [0,1] -

XFEYL xzv#yN

a+l—oau

2 &(uw)y<a(l—-u)log(l—u)—(a+1-—au) Iog( T1ra

) Yu €0, 1].

The proofs of the inequalities of the form (1) provided in [9] are all
based on an induction on N, the key step of which is to fix xy,; = » and
then apply the induction hypothesis for the N dimensional sets A(w) =
{(yl’-"’yN): (yl7"'7yN’w) € A} and B = {(yl"-wyN): (yl7"'5yN72) €
A for some z}.

Marton, in [6], building upon [5], proposed a new approach to concentra-
tion inequalities, based on the use of information inequalities, and in [6, 7]
applied this approach to extend some of Talagrand’s results to the context of
contracting Markov chains.

Marton'’s work is the impetus for this paper, in which we concentrate on the
case of product measures and recover the sharper variants of the inequalities
of [9] (see the discussion following Theorem 1 below).

Specifically, with .Zy(Q, ..., Q,, P) denoting the set of all probability mea-
sures on (QY)9*1 whose marginals are the prescribed probability measures
Q1,---,Qq, P oOn QY. we consider the following coupling type “distances” be-
tween probability measures in a product space Q¥:

N .
d4(Qu,---, Qe P)= (ian om Y m( Xy g{Y,,i=1,...,q}),
L Ry
QP = _inf 3 > [ s, v de.y)
d(@P)= _inf 3 > [ £, £ XX = 0) dP ()

where (Y1, ...,Y9, X) has the joint law 7 and X, (Y':) denotes the Q-valued
kth marginal of X (Y?, respectively).
Recall that the relative entropy of P with respect to R is

dP apP .
/— og —dR —— exists,
H(PIR) = dR dR dR
0, otherwise.

Theorem 1, our main result (whose proof is provided in Section 2), states that
for appropriate choices of a, ¢t > 0 and C(¢, @) < oo the functionals d, d;, and
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d, satisfy the inequality

q
@) td,(Q1, ..., Qq, P) = H(P|R) +a } H(Q;|R) + C(t, @)

i=1

for every choice of probability measures P, Q, and every product measure R.

THEOREM 1. Suppose R =[], R, is a product measure on QV.

(i) The functional d, satisfies inequality (3) with C(¢, «) = 0 for ¢ = 1, any
a > 0 and ¢, satisfying (2).

(ii) Inequality (3) holds for d,, g > 1, C(t, @) = 0 and ¢ which is the unique
positive solution of 1 + aq = e’ + age™"/*. Moreover, d,, ¢ = 1, satisfies (3) for
any t, « > 0, but now with C(¢, ) = N log a(¢, ), where

a® (et _ e—t/a)l+a
(1 + a)l+a (1 _ e—t/a)(et _ 1)a .

(iii) The functional d; satisfies inequality (3) for () a Polish space and A €
B(QxQ), a=1,anyt>0and C(t,a) = YN, b(¢, h, R,) with

(4) a(t, @) =

(5) b(t,h, R) = sup log (/eé dR/e‘g dR).
g=0
g(x)<th(x, y)+g(y)

We next show that some of the concentration of measure inequalities of [9]
are direct corollaries of Theorem 1. To this end observe that the inequality

(6) /f.(Al9"'aAq’X)dP(X)Sd.(Ql’--'aQqap)

holds for every P and Q; such that supp Q; € A; when considering d,, d;, and
d, paired with f, f), and f,, respectively.

The following simple lemma shows that whenever (6) holds, the inequality
(1) is a consequence of (3) [for the same values of «, ¢ and C(t, «)].

LEMMA 1. Suppose that for a probability measure R and some g e N, o, ¢ >
0 and C(¢, @) < oo, the inequality (3) holds for every choice of probability
measures P, Q;. Then (1) holds provided that inequality (6) holds for every
choice of P and Q; such that suppQ; C A;.

ProOF. Set Q; = R(:|4;) for which H(Q;|R) = log (1/(R(4,))) and P,, is
such that
P, exp(tf(Ay, ..., Ay X) Am)
dR ~ [exp(tf(Ay, ..., A, X) Am)dR(X)

Then, by (6) and evaluation of H(P,,|R),

Iogfexp(tf(Al, Ay, X) Am)dR(X) < td(Qy, ..., Qg Py) — H(P,,|R).
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Hence, (3) implies that

/ exp(tf(Ay, ... Ay, X) Am)dR(X) < exp(C(¢, @)) ﬁ R(A,)™.

i=1

Letting m — oo we obtain (1) by monotone convergence. O

REMARK 1. Conversely to Lemma 1, if for some g € N, f(-) bounded, Q
Polish, «, ¢t > 0 and a collection .# of probability measures on Q¥

(7)  exp(C(t, @) = sup ﬁR(Ai)a [exp(tf (Ay, ..., Ag, X)) dR(x)
Re# ;-1

A;coV

for some C(t, @) < oo, then (6) holds for
q
(8) d(Qy,...,Qq P) = t‘l[C(t, a) + ég; a) H(Q;|R)+ H(P|R)}
) i=1

and every choice of P and Q; such that suppQ,; C A,.
Indeed, fixing A; € QY we have by (8) that

P,{Q;: suppQ;cA;}

inf {td(Ql, .3 QgP) — ftf(Al,...,Aq,x)dP(x)}

q
=c st |« it HQIR)

- sl;p{/tf(Al, ooy Ag, X)dP(X) — H(PIR)H

=C(t, ) + é@; {—a Xq: logR(A;) — log fexp(tf(Al, . x))dR(x)}

i=1
> 0.

The inequality in the preceding line is due to (7), whereas the equality fol-
lows by the Donsker—Varadhan formula (cf. [1], (6.2.14)) and the well known
inequality H(Q|R) > — log R(supp Q).

In particular, if (1) holds, it should always be possible to derive it by proving
(3) and (6) for an appropriate choice of d(-). Moreover, equality in (3) and (6)
for R and the same Q; and P implies equality in (1) for A; = suppQ; and R.

REMARK 2. Combining Lemma 1 with part (i) of Theorem 1 yields [9], The-
orem 4.2.4, whereas part (ii) yields likewise [9], Theorem 3.1.1, and [9], Propo-
sition 2.2.1 (for ¢ > 1 and q = 1, respectively). Combining part (iii) of Theo-
rem 1 above and the bounds on b(¢, h, R) provided in [9], Propositions 2.4.2
and 2.5.2, we get [9], Theorems 2.4.1 and 2.5.1, for A~ > 0 and bounded. The
general case then follows by standard approximation arguments. Altogether,
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Theorem 1 recovers the results of Sections 2.1, 2.2, 2.4, 3.1, 3.2, 4.1 and 4.2
of [9]. The optimality of the rhs of (2) in the context of f, is observed in [9],
Lemma4.2.1, albeit from a seemingly different reason, related to the induction
technique of [9].

Marton [7] combined the coupling characterization of the total variation
distance with information inequalities of the form of Pinsker’s inequality
A(Q, P) < \/H(P|Q)/2 to prove that

) v2d,24(Q,P) <V H(P|R) + vV H(QIR),

leading to [9], Corollary 4.2.5 [with d,.(-,-) denoting d, for « = 1 and
&,(u) = u?/4]. Note that (9) trivially holds when d,.,(Q,P) < H(QIR)/2.
Thus, considering part (ii) of Theorem 1 for &,(u) = au?/(2(a + 1)) (which
satisfies (2), cf. [9], Lemma 4.2.2) and & = v2d,2/,(Q, P)/H(Q|R) — 1 > 0, we
also recover (9).

Our proof of Theorem 1 uses the extended coupling of Proposition 2(i) to
handle the case of d, and the well known Lemma 4 to handle that of d,,.
To establish a result of the form (3) for a variety of “distance” functionals,
with sharper constants, our proof also differs from Marton’s in deriving in
Proposition 1 the “linearized” information inequalities of the form (11) which
might be of some independent interest.

We note in passing that [10] contains new concentration inequalities for
product spaces which are possibly sharper than those in [9]. The proofs in
[10] are again by means of the basic induction alluded to above. In Section 3
we outline how [10], Theorem 5.4, follows from an extension of part (ii) of Theo-
rem 1, whereas in [2] we use a different variant of the “transportation method”
to recover [10], Theorem 2.1, apart from the exact value of certain constants.
It is yet unclear to what extent one may recover or even improve upon the
inequalities of [10], Theorems 3.1, 4.2 and 5.1, by using the transportation
method.

Talagrand [11] used the “transportation method” with a different coupling
than the one used here (compare Lemma 4 with [11], (2.1)), showing that (3)
holds for d; with C(¢,a) =0, ¢t = a = ¢ = 1 and Q = R when considering
either h(x, y) = (x—y)?/2 and R the standard Gaussian measure or hA(x, y) =
(1 —b)(b|x — y| — 1 — e ?l*=¥I)/b for some b < 1 and R the product of one-
dimensional standard Laplace measures.

Ledoux [4] presented a direct derivation of some consequences of the ab-
stract inequalities of [9] and [10] out of Poincaré and logarithmic Sobolev
inequalities.

2. Proof of Theorem 1. The “distance” functionals between probability
measures on QY which we consider are of the form

N
(10) d(Qy,...,Qq, P) = inf > gr(m).

meMn(Q1,- Qqa P) k=1
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With each such functional we associate a basic “distance” functional
A(Qy, ..., @, P) such that for some «, ¢ > 0, c¢(t, @) < oo and every choice of
probability measures P, @;, R on Q,

q
(11) tA(Qy,...,Qy P) < H(P|R)+a) H(Q;|R)+c(t, ).

i=1

The next lemma obtains the inequality (3) as a consequence of the basic
information inequality (11), and is the only place in our proof where we rely
on R being a product measure.

LEMMA 2. Suppose that for every Q,,...,Q,, P and & > 0 there are
(Y1, ..., Y%, X) of some joint law 7 = 7, € .#y(Q,...,Q,, P) such that for
k=1,2,...,N,

gr(m) < EAQuYRIYL, ..., Y5 1), ..., QY Y], ...,Y] ),

P(Xk|Xl, ey Xk—l)) + &

(12)

[where Q;(Y%|Yi,..., Y% ;) and P(X,|Xy,..., X;,_,) denote the correspond-
ing regular conditional probability distributions]. Then (11) implies that (3)
holds for every product measure R on QY with C(¢, ) = Nc(t, ).

Proor. By (10), (11) and (12) we have that for every ¢ > 0, probability
measures Q,, P on OV and R, on Q,

N
td(Qy,..., Q. P) < Y EtA(Qu(Y4IYL, ... Y5 1), ..o,
k=1

P(X,X1,..., Xj1)) + Nte

N
(19) < E[ S H(P(X,|X,, ...,Xk_1>|Rk>}
k=1

oY B( X HQYIYL o YiIRY)

1=1 k=1

+ N(c(t, @) + te).

Note that P = [T, P(X | X1, ..., Xp1), Q =TIV, Qu(YL|Yi,...,Yi )and
let R = ]‘[fle R, be any product measure on QY. Taking & | 0, (3) follows

from (13) by the well known chain rule for relative entropies [H(P|R) =
YN EH(P(X,|Xy,..., X} 1)|R}); cf. [3], Lemma 4.4.7]. O
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In particular, corresponding to the functionals d,, d; and d, are the basic
“distance” functionals

(14) Aq(Q,P)zfﬂ<1—q§—g>+dP,

A(Q, P) = Sup{fﬁdP— /ng; g€ L (P), g<cLi(Q),
(15)
4(x) — g(y) < h(x, y) Vx, y € Q}

and

a  s@ P fa((1-5F) )

respectively [where () is such that P(Q)¢) = 0 and d Q/dP exists on Q].

The next proposition, which is of independent interest, provides the infor-
mation inequalities of the type (11), relating A , A, and A, with the relative
entropy.

PrOPOSITION 1. (i) For every choice of probability measures P, @, R on (),
(17 tA,(Q, P) = H(P|R) + aH(Q|R)

provided ¢ = 1 and £, satisfies (2).
(ii) Inequality (17) holds for A, when ¢ > 1, @ > 0 and ¢ is the unique
positive solution of

(18) 14+ a=e 4+ ae ™,
whereas for g =1, any « > 0, ¢ > 0,
(19) tA,(Q, P) = H(P|R) + a«H(Q|R) + loga(t, @),

where a(¢, ) is determined as in (4).
(iii) For h bounded and b(t, h, R) of (5),

(20) tA,(Q, P) < H(P|R)+ H(Q|R) + b(¢, h, R) .

REMARK 3. Existence and uniqueness of the positive solution ¢ of (18) for
a > 0 and g > 1 is standard [solving E(exp(¢Z)) = 1 for bounded random
variable Z such that E(Z) < 0 and P(Z > 0) > 0, taking here P(Z =1) =
1-P(Z = —q/a) =1/(1+a)]. Since a(1 —exp(—qt/a)) increases with respect
to both ¢ and «, so does the solution ¢ of (18), with ¢ = log g in case a = q.

REMARK 4. Settingin (19), ¢t = \/8H(P|R) and « = ,/H(P|R)/H(Q|R), we
recover Pinsker’s inequality A,(P, @) < /H(P|R)/2+ ,/H(Q|R)/2 by using
the bound log a(t, @) < t2(1 + a~1)/8 of [9], Lemma 2.2.2. Avoiding the latter
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bound, we can improve on Pinsker’s inequality. For example, when H(P|R) =
H(Q|R) = H and « and ¢t are as before, (19) reads

H +logcoshv2H 1}
V2H )

The proof of Proposition 1 relies on the following elementary lemma.

A(Q, P) < min{

LEMMA 3. (a) For any probability measures Py, P,, R on Q) and 8 € [0, 1],
21) BH(P{|R)+ (1 - B)H(Po|R)
= BH(P,|Pg) + (1 — B)H(Po|Pg) + H(P4|R),

where Py = Py + (1 — B)Py.
(b) Forany P, @ and « > 0

(22) inf{H(P|R) + «H(Q|R)} = [ &, ( Q)dP+ Q(O)v,,
where v, = alog(1 +a~1) and
23) . (x) = axlog x — (1 + ax) Iog< 11‘”)

PrOOF. (a) The cases of B = 0 and B = 1 are trivial. When B8 € (0, 1),
unless Py, <« R and P; < R, both sides of (21) are infinite. Hence, let f; =
dP;/dR,i=0,1,and fz = Bf,+(1—B)fo=dPg/dR. Then

BH(P1|R)+(1— B)H(PolR)
= [1Bf110g f1+(1 = B)folog fol dR

f fo
= [[pritog £+ = pifoton [+ fut0nr, | ar

= BH(Py1|Pg) + (1 = B)H(Po|Pg) + H(Pg|R).

(b) Applying (21) for 8 = 1/(1 +«a), P, = P, Py = @, since H(Pg|R) > 0,
it follows that the infimum in the lhs of (22) is obtained for R, =
(P +aQ)/(1+ ). With f = dQ/dP on ), noting that

H(P|Ra)=/ﬂlog(11:aaf>dP

@R, = [ 1og( T ) ap + @@y 1og (217,

and

af
it is easy to check that H(P|R,)+aH(Q|R,) is identical to the rhs of (22). O
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PROOF OF PROPOSITION 1. (i) Without loss of generality we assume equal-
ity in (2) for every u € [0, 1]. Then, by (16) and (23), for every P, @ in ()

d
(24) A(Q, P)= /Q¢a<£>1{dQ/dP<1} dp.

Since ¢,(1) =0, ¢,(1) = 0 and ¢/(x) = a/(x(1 + ax)) is positive for x > 0,
it follows that ¢,(x) > 0 for x > 0. Hence, (17) follows by comparing (22)
with (24).

(ii) Let hy(x) = ¢o(x) — (1 —gx), for ¢ = 1, ¢ > 0 and @ > 0. Fixing
a > 0, g > 1, (18) has a unique positive solution [since k(¢) = e’ + ae 9/«
is convex, k(0) = (1+ «),k(0) = 1—¢q < 0 and lim,_,  k(¢) = oo]. Since
hi(x) = alog((1 + a)x/(1 + ax)) + tq is increasing on [0, ¢~'], the global
minimum of A,(-) on [0, g7 '] is at x* = 1/(q v (1 + a)e?/* — a)). For x > g1,
hq(x) = ¢,(x) is nonnegative by part (i) above, and taking ¢ as determined
by (18) we have that A, (x*) = log(1 4+ a — ae™9"/*) — t is zero. Since A,(x) is
nonnegative for x > 0, we arrive at (17) by comparing (14) with (22).

By (14) and (22) we also arrive at (19) provided that for any « > 0, ¢ > 0,

(25) loga(t, )= '.;'fodpfl}{ /Q hy(f)dP + (1 /Q fdP)va}.
Since hq(x) is convex on [0, 1] and also on [1, o0), the rhs of (25) is minimal
when f = x,1p + x,1p. for some x, > 1 > x, and p = P(B) € [0, 1] such that
x1p + x5(1 — p) < 1. For f of this form, the expression in the rhs of (25) is
U, + pld(x1) — (1 — x1) — xq0,] + (1 = p)[d,(x2) — x5v,] Which is monotone
decreasing with respect to x,. Thus, we may set p = (x, —1)/(x, — x,) for
which (25) amounts to —log a(?, @) = inf, 1., o k(x1, x5), Where

@) k() = (225 outan) + (5 Yot - P20,

X2 — X X2 =X (x2 — x1)
Differentiating %, it is not hard to check that Vk(x,, x,) = 0 at the unique
point x; = a (1 — e7?)/(e!* — 1), x5 = a7 (e’ — 1)/(1 — e~¥/*) at which the
Hessian of % is positive definite (note also that x5 > 1 > x7 > 0). Moreover,
k(x7, x3) = —loga(¢, ) and the minimal value of k(-,-) at the boundaries
x, =0 o0r x, - oo exceeds k(x7, x3).

(iii) With h bounded above, g(x)—g(y) < th(x, y) implies that g is bounded
below. Hence, moving a constant from g to g, with no loss of generality g > 0.
Suppose f = dP/dR exists and ¢ € L,(P) is such that [efdR < occ. Define
S via dS/dR = ef/([ e dR). Then,

@27) 0 < H(P|S) = —/édP+H(P|R)+Iogfe§dR.
Likewise, for any @, g € L,(Q) and any R

28) OS/ng+H(Q|R)+|og/e*ng.

Since tA;, = Ay, for any ¢ > 0, adding (27) and (28) we obtain (20). O
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With Proposition 1 established, the next proposition is key to the proof of
parts (i) and (ii) of Theorem 1 and is of some independent interest.

PROPOSITION 2. (i) For any g € N, and probability measures @, ..., @4, P,

. 149
(29) P)Tr(ng!{Y‘,i:1,...,q})=Aq<EZQi,P>.

i=1
(i) For any &,, @, P,

inf [ £,(m(Y # X|X = x))dP(x) < A,(Q, P),

met1(Q, P)

with equality when £, is convex and nondecreasing.

REMARK 5. For ¢ = 1, (29) is the classical characterization of the total
variation distance.

PROOF OF PROPOSITION 2. (i) Hereafter let @,,, = P and for nonnegative
measures S, T of finite total mass, let (S —T'), denote the positive part of the
signed measure S —T', while S A T denotes the nonnegative measure S — (S —
T),=T—-(T-S8),.Forr=1,...,g+1letv, = [(P-Y!Z @), » Q,](Q).
Since

q+1 r—1
(30) >(P-xa) re-r
r=1 i=1 +
in particular, ij v, = 1. Also note that for r =1, ..., q,
r-1 r
(31) (P-Ta) re+(ra-r) re-a
=1 + =1 +
and, in particular, forr =1, ..., q,

[(éQi - P)+ A Qr}(g) — 1w,

Suppose0 <v, <1, r=1,...,9+1and that (Q, %) is rich enough to support
the independent random variables {W,}?*] and {Z,}?_, with W, ~ (P —
Z:‘;:I% Qi)Jr A Qr and Zr ~ (1_ Vr)_l(Z::l Qi - P)+ A Qr' Let] e {1’ treo Q+l}
be chosen independently of all these variables according to the probabilities
{v1,...,vg1} - Finallylet X = Wyand Y™ = (W, 1,_,+Z, 1, )forr=1,...,q.

The identity (30) implies that X ~ P while (31) results with Y™ ~ @,.. Also
note that in this coupling (Y?,..., Y9, X) ~ 7 € .#(Q4, ..., Q,, P) is such
that

(X gAY, =10 q)) = v = (P—i:ilezi)fm - Aq(qli:ilQi, ).
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If v, = 0, then we do not need the variable W, for the construction of
Y! ...,Y9 X, whereas for v, = 1 we never use Z,. Hence, we have just
established the less than or equal to direction in (29).

To show the converse, let D = {x € Q: >7,dQ;/dP(x) < 1}. Then, for

7€ #1(Qy,...Q, P),
m(X ¢{Y'i=1,...,q}) > 7({X e D} n, {Y' ¢ D})

q q
- P(D)- Y. QD) = Aq(q-l 3 Q. P).
=1

=1
(ii) For ¢ = 1 the construction of part (i) above results with 7(Y? # X,
X €)= (P-@Q),(), implying that [ {,(m(Y # X|X = x))dP(x) = A,(Q, P).
Conversely, fix ¢ > 0 and let D; = {x € Q: 1 — dQ/dP(x) € [is, (i + 1)¢)},
i =0,1,.... Then, for any = € .#,(Q, P), by convexity and monotonicity of
Ea

ffa(W(Y # X|X = x))dP(x) = 3 P(D)én(1 - Q(D;)/ P(D;))
> Y &ulie) P(D)).
Taking ¢ | O the rhs converges to A,(Q, P). O

The next duality lemma, which is a special case of [8], Theorem 4, is needed
for the proof of part (iii) of Theorem 1.

LEMMA 4. Suppose P, @ are probability measures on a Polish space () and
h € B(Q x Q). Then

(32) L int [ h(x ) dn(x, 5) = A4(Q, P)

Proor oF THEOREM 1. (i) Without loss of generality assume equality
holds in (2) for every u € [0, 1]. Fix ¢ > 0, P, Q and a product measure R,
using hereafter the notation P,(-) = P(X, € |X4,..., X,_q) and Q,(:) =
QY € |Yy,..., Y, q)for k=1,..., N. Fix X of law P. By the convexity
of ¢, determined above, and applying part (ii) of Proposition 2 sequentially
for (Qk7Pk)1 k= 1,...,N, there is Yk S O-(Xk7Yl7"'>Yk717X17"’7Xk—1)
such that the joint law 7 of (Y, X) is in .#y(Q, P) satisfying

Ega(W(Yk 7é Xk|x)) = Ega(W(Yk 7é Xk|X9 Y1> D) Yk—l))
(33) :Ega(W(Yk75Xk|Yl7"'7Yk—l7Xl7""Xk))
< EA(Qp, Pp) te.

The proof is completed by combining part (i) of Proposition 1 with Lemma 2
[compare (17) and (33) with (11) and (12), respectively].
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(i) Fix & > 0,P, Qq,...,Q, and a product measure R. Now let X have
law P and Y/ = (Y%,..., YY) have law Q; for i = 1,..., ¢ with @, ; de-
noting the law of Y conditioned upon (Y%,..., Y% ;). Applying part (i) of
Proposition 2 sequentially for (@ 1,..., @ 4> Pi), B =1,..., N, there exist
(Yi,....,YL, X)) e o(Yi,...,YL |, X,,..., X,_,) such that the joint law 7
of (Y1, ..., Y%, X)isin.#y(Qq,...,Q,, P) satisfying

. q
B4  w(X, g {Yii=1.....q}) < EAq(q-l S Qs Pk) te.
=1

The proof is completed by combining part (ii) of Proposition 1 with Lemma 2
[compare (34) with (12)], noting in the case of g > 1 that H(qg~ ' Y/, @, ;|R;) <
gt X H(Qp, ;| Ry).

(iii) Fix A € B(Q x Q), « = 1, ¢ > 0, probability measures P, Q, a prod-
uct measure R = [], R, and ¢ > 0. Using the notations of part (i) above,
applying Lemma 4 sequentially for (@, P,), k = 1,..., N, thereis Y, €
o(Xp, Y, ..., Y1, Xq,..., X;_1) such that the joint law 7 of (Y, X) is in
An(Q, P) satisfying

(35) [ A yi) dm(x,y) < EAW(Qys Py) + e

The proof is completed by part (iii) of Proposition 1 and Lemma 2 [compare
(35) with (12)]. O

3. Extensions of Theorem 1. Extend the “control by g points” by defin-

ing for m =2, 3, ..., g the decreasing sequence

N
36 A,...,A,,X)= inf 1 -
( ) fq,m( 1 s 41> ) yieA}, }; {Zgzllxk¢y§€—m}

Note that £, . is merely f, of (2). The corresponding coupling type “distances”
between probability measures in QY are then

N q
@37 dyw(Qu ... QyP) = inf » w(z ly,uvi = m>

meMn(Q1,-., Qq,P) k=1 i=1

Extending part (i) of Proposition 2 it can be shown that

q
inf T 1 i > m)
et (Q1rnn Q. P) (Lzl Xy

1 P inj
= max max 1- > dP,
O q=pzm i Fit-£i, p—m+1:7 dP ),

J=1

where P(Q)) = 1 and d@,/dP existon Q for i =1,...,q. With A, ,,(Q, ...,
Q,, P) denoting the rhs of (38), extending part (ii) of Proposition 1 it can also
be shown that for any probability measures @;, P and R on () and any « > 0,
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qg>m=>2,
q

(39) tAy m(Q1, ..., @y, P) < H(P|IR) + @) H(Q;|R),
i=1

provided

(40) p(l—exp(—tat/(p—m+1))>a(exp(t)—1) for p=m,...,q.

By the same arguments as in the proof of Theorem 1, the inequality (3) holds
ford, ,,, m =2,3,...,q, C(¢t,a) = 0 and any ¢ > 0 satisfying (40). In par-
ticular, for m = g we recover part (ii) of Theorem 1. By [10], Lemma 5.6, for
m = 2 and a = 1/q the condition (40) applies to ¢ > 0 such that e!?/? + ¢4 = 2.
Consequently, we recover [10], Theorem 5.4, by using Lemma 1. The resulting
concentration inequalities for all other choices of a, m seem to be new.

It may be of independent interest to extend part (i) of Proposition 2 by
considering X/, j = 1,...,r, for r > 2. For example, with @ = ¢71 Y7 | @;
and P=r"13"_, P, it can be shown that

Jj=1
Al g -1
wevll(Ql,..l.,ngq, PeP) 7({ XY, 0 {Y'} =) =r[A,,(Q, P) — (L —r )],
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