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LetX be an R
d-valued continuous semimartingale,T a fixed time hori-

zon and � the space of all R
d-valued predictable X-integrable processes

such that the stochastic integral G�ϑ� = ∫
ϑdX is a square-integrable

semimartingale. A recent paper gives necessary and sufficient conditions
on X for GT��� to be closed in L2�P�. In this paper, we describe the
structure of the L2-projection mapping an �T-measurable random vari-
able H ∈ L2�P� on GT��� and provide the resulting integrand ϑH ∈ �
in feedback form. This is related to variance-optimal hedging strategies
in financial mathematics and generalizes previous results imposing very
restrictive assumptions on X. Our proofs use the variance-optimal martin-
gale measure P̃ for X and weighted norm inequalities relating P̃ to the
original measure P.

0. Introduction. LetX be an R
d-valued semimartingale and � the space

of all R
d-valued predictable X-integrable processes such that the stochastic

integral G�ϑ� = ∫
ϑdX is a square-integrable semimartingale. For a fixed

time horizon T, GT��� is then a linear subspace of L2�P�, and so one can ask
if there is an L2-projection on GT���, that is, if GT��� is closed in L2�P�. If
X is a local martingale, the answer is of course positive since the stochastic
integral is then an isometry. For a continuous semimartingale X, necessary
and sufficient conditions for the closedness of GT��� in L2�P� have recently
been established by Delbaen, Monat, Schachermayer, Schweizer and Stricker
(1996), subsequently abbreviated as DMSSS; see also Grandits and Krawczyk
(1996) for a generalization to the case of Lp�P� with p > 1.

In this paper, we describe the structure of the L2-projection mapping an �T-
measurable random variableH ∈ L2�P� onGT��� and show how to obtain the
integrand ϑH ∈ � appearing in this projection. If X is a local martingale, this
is a classical question whose answer is given by the well-known Galtchouk–
Kunita–Watanabe projection theorem. The more general semimartingale case
comes up naturally in hedging problems from financial mathematics, and
some partial results have been obtained by Duffie and Richardson (1991),
Hipp (1993, 1996), Schweizer (1994), Wiese (1995) and Pham, Rheinländer
and Schweizer (1996), among others. But all these papers imposed unnatural
and very restrictive conditions on X which do not hold in typical financial
models; this is discussed in more detail in Pham, Rheinländer and Schweizer
(1996). Moreover, no paper so far gives a solution for H ∈ L2�P�; at least
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H ∈ L2+ε�P� is always assumed. The present paper gives the solution in the
general continuous L2-case.

What do we mean by “general continuous L2-case”? First of all, we assume
that X is a continuous semimartingale; any extensions to a discontinuous
process are for the moment postponed to future research. Moreover, we only
suppose thatH ∈ L2�P�. The basic idea for attacking the problem is to connect
the semimartingale to the martingale case in some way, and this is achieved by
assuming that there exists an equivalent local martingale measure (ELMM,
for short) forX, that is, a probability measureQ equivalent toP such thatX is
a localQ-martingale. This is a well-known condition in financial mathematics,
which states that X should not allow arbitrage opportunities. By Girsanov’s
theorem, the existence of an ELMM implies that the canonical decomposition
of X must have the form

X =X0 +M+
∫
d�M�λ

for some predictable process λ. Again by Girsanov’s theorem, a natural candi-
date for an ELMM is then given by the so-called minimal martingale measure
P̂ with density

dP̂

dP
= �

(
−
∫
λdM

)
T

�

The main results in the existing literature show that the integrand ϑH of X
in the projection of H on GT��� can be written in feedback form as

�0�1� ϑH = ξ̂ H − ζ̂

Ẑ

(
V̂H

− −
∫
ϑH dX

)
�

where V̂H is the P̂-martingale

�0�2� V̂H
t = Ê	H
�t�� 0 ≤ t ≤ T

and ξ̂ H is the integrand of X in the Galtchouk–Kunita–Watanabe decompo-
sition of H under P̂. The crucial assumption for this to be true is that the
density of P̂ can be written as a constant plus a stochastic integral of X,

�0�3� dP̂

dP
= Ê

[
dP̂

dP

]
+

∫ T
0
ζ̂s dXs

for some ζ̂ ∈ �, and the process Ẑ in (0.1) is then

�0�4� Ẑt = Ê

[
dP̂

dP

∣∣∣∣�t
]
= Ê

[
dP̂

dP

]
+

∫ t
0
ζ̂s dXs� 0 ≤ t ≤ T�

In addition, one has to impose moment conditions on H and dP̂/dP since
(0.1) is proved by switching from P to P̂ and back, and one needs square
integrability under P̂ for this method to work.
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As pointed out in Pham, Rheinländer and Schweizer (1996), the minimal
martingale measure P̂ will typically not satisfy (0.3) so that the preceding
result has a very limited scope. But there is another ELMM whose density
almost by definition does satisfy the requirement (0.3). This is the variance-
optimal martingale measure P̃ defined by the property that its density with
respect toP has minimalL2�P�-norm among all ELMMs forX. Due to a result
of Delbaen and Schachermayer (1996), P̃ always exists if X is continuous and
if there is at least one ELMM for X with density in L2�P�. In this paper,
we show that these two conditions plus closedness of GT��� in L2�P� are
already sufficient to obtain ϑH in feedback form. More precisely, we show that
under these assumptions, (0.1)–(0.4) always hold if we replace the minimal
martingale measure throughout by the variance-optimal martingale measure
and every hat ̂ by a tilde ˜. Moreover, no assumption on H is needed except,
of course, H ∈ L2�P�.

The main tools to obtain these results are weighted norm inequalities which
allow us to obtain estimates in L2�P� for processes which are local martin-
gales under P̃. This is possible thanks to the main result of DMSSS, which
characterizes the closedness of GT��� by the validity of such inequalities. Sec-
tion 1 contains a precise formulation of the basic problem and a brief survey
of those results of DMSSS that we use in this paper. In Section 2, we study
the properties of the Galtchouk–Kunita–Watanabe decomposition of H under
an ELMM Q, and we show that the terms in this decomposition have good
properties in L2�P� if one has weighted norm inequalities linking P and Q.
Any such Q then leads to a decomposition of H into a constant, an integral in
GT��� and a certain orthogonal term, and it remains to project constants and
those orthogonal terms on GT���. By the definition of P̃, the density dP̃/dP
is a multiple of the projection of the constant 1 on the orthogonal complement
of GT��� in L2�P�, and this suggests working with Q = P̃ to effect the decom-
position of H. In Section 3, we show that this does indeed give the solution
and leads to the representation of ϑH as in (0.1). An alternative approach to
determine the integrand ϑH has recently been proposed by Gouriéroux, Lau-
rent and Pham (1996). We briefly discuss their main result in Section 4, and,
because this is not clear from their formulation, we prove that they do indeed
solve the same problem as in our paper.

1. Preliminaries. Let ���� �F�P� be a filtered probability space with a
filtration F = ��t�0≤t≤T satisfying the usual conditions, where T ∈ �0�∞� is a
fixed time horizon. For simplicity, we assume that �0 is trivial and � = �T. All
stochastic processes will be indexed by t ∈ 	0�T�. Let X be a continuous R

d-
valued semimartingale with canonical decompositionX =X0+M+A. For any
R
d-valued predictable X-integrable process ϑ, we denote by G�ϑ� the (real-

valued) stochastic integral process G�ϑ� �= ∫
ϑdX. Unexplained terminology

and notation from martingale theory can be found in Dellacherie and Meyer
(1982). Throughout the paper, C denotes a generic constant in �0�∞� which
may vary from line to line.
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Definition. For any RCLL process Y, we denote by Y∗
t �= sup0≤s≤t 
Ys


the supremum process of Y. The space �2�P� consists of all adapted RCLL
processes Y such that

�Y��2�P� �= �Y∗
T�L2�P� <∞�

Definition. Let L2�M� be the space of all R
d-valued predictable processes

ϑ such that

�ϑ�2
L2�M� �= E

[∫ T
0
ϑtr
t d�M�t ϑt

]
<∞�

Let L2�A� be the space of all R
d-valued predictable processes ϑ such that

�ϑ�2
L2�A� �= E

[(∫ T
0

∣∣ϑtr
t dAt

∣∣)2]
<∞�

Finally, we set � �= L2�M� ∩L2�A�.

If ϑ is in �, the continuous semimartingale G�ϑ� is in �2�P� so that in
particular its terminal value GT�ϑ� is in L2�P�. For any given H ∈ L2�P�, we
may thus consider the optimization problem

�1�1� Minimize �H−GT�ϑ��L2�P� over all ϑ ∈ ��
To ensure that (1.1) has a solution for everyH ∈ L2�P�, we impose throughout
this paper the standing assumption

�1�2� GT��� is closed in L2�P��
Necessary and sufficient conditions on X to guarantee (1.2) were established
in DMSSS, and we briefly summarize here those results we shall use in the
present paper.

Definition. Let Z be a uniformly integrable martingale with Z0 = 1 and
ZT > 0. We say that Z satisfies the reverse Hölder inequality with exponent
p ∈ �1�∞� under P, denoted by Rp�P�, if there is a constant C such that for
every stopping time S ≤ T, we have

E

[(
ZT

ZS

)p∣∣∣∣�S
]
≤ C�

Definition. Let Z be an adapted RCLL process. We say that Z satisfies
condition �J� if there is a constant C such that

1
C
Z− ≤ Z ≤ CZ−�

Definition. If Q is a probability measure equivalent to P, we denote by
ZQ an RCLL version of the strictly positive P-martingale

Z
Q
t �= EP

[
dQ

dP

∣∣∣∣�t
]
� 0 ≤ t ≤ T�
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With these definitions in place, we can now recall two fundamental weighted
norm inequalities. The first one is a consequence of Propositions 4 and 5 and
the Corollary on page 318 of Doléans-Dade and Meyer (1979); the second one
follows by a localization argument from Theorem 2 of Bonami and Lépingle
(1979), combined with Proposition 5 of Doléans-Dade and Meyer (1979).

Proposition 1. LetQ be a probability measure equivalent toP and assume
that ZQ satisfies R2�P� and �J�. Then we have the following.

(i) There exists a constant C such that

E
[�N∗

S�2] ≤ CE[
N2
S

]
for all uniformly integrable Q-martingales N and all stopping times S ≤ T.

(ii) There exist two constants c and C in �0�∞� such that

cE
[�N∗

S�2] ≤ E		N�S� ≤ CE
[�N∗

S�2]
for all local Q-martingales N and all stopping times S ≤ T.

Note that (i) and (ii) are generalizations of the Doob and Burkholder–Davis–
Gundy inequalities, respectively, since we have estimates in the L2-norm un-
der P for processes which are local martingales under Q.

To relate Proposition 1 to the closedness of GT��� in L2�P�, we recall the
concept of the variance-optimal martingale measure which was studied in
Delbaen and Schachermayer (1996) and Schweizer (1996). Let � denote the
linear subspace of L∞���� �P� spanned by the simple stochastic integrals
of the form Y = htr�XT2

− XT1
�, where T1 ≤ T2 ≤ T are stopping times

such that the stopped process XT2 is bounded and h is a bounded R
d-valued

�T1
-measurable random variable.

Definition. Let � s�P� be the space of all signed measures Q � P with
Q	�� = 1 and

E

[
dQ

dP
Y

]
= 0 for all Y ∈ � �

Let � e�P� denote the subset of all probability measures Q ∈ � s�P� such that
Q is equivalent to P. Finally, we define two sets of densities by

�x �=
{
dQ

dP

∣∣∣∣Q ∈ � x�P�
}

for x ∈ �e� s��

It is clear that X is a local Q-martingale for any Q ∈ � e�P� and that � s ∩
L2�P� is a closed convex set.

Definition. The variance-optimal martingale measure P̃ is the unique
element of � s�P� such that D̃ = dP̃/dP is in L2�P� and minimizes �D�L2�P�
over all D ∈ � s ∩L2�P�.
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Note that P̃ exists if and only if � s ∩L2�P� is nonempty. In that case, we
define Z and Z̃ as RCLL versions of

Zt �= E

[
dP̃

dP

∣∣∣∣�t
]
= ZP̃

t � 0 ≤ t ≤ T

and

Z̃t �= Ẽ

[
dP̃

dP

∣∣∣∣�t
]
� 0 ≤ t ≤ T�

where Ẽ denotes expectation with respect to P̃. Since X is continuous, The-
orem 1.3 of Delbaen and Schachermayer (1996) implies that P̃ is actually in
� e�P� as soon as it exists. In particular, � e ∩L2�P� is nonempty as soon as
� s ∩ L2�P� is. The following result is then a partial statement of Theorem
4.1 of DMSSS, combined with their Lemma 2.17, Theorem 3.7, Lemma 3.2,
Theorem 2.22 and Theorem 1.3 of Delbaen and Schachermayer (1996); L∞

+ �P�
denotes the space of all nonnegative bounded random variables.

Theorem 2. For a continuous semimartingale X, the following conditions
are equivalent.

(i) GT��� is closed in L2�P�, and GT��� ∩L∞
+ �P� = �0�.

(ii) GT��� is closed in L2�P�, and � s ∩L2�P� �= �.

(iii) The variance–optimal martingale measure P̃ exists and is in � e�P�,
and Z = ZP̃ satisfies the reverse Hölder inequality R2�P�.
Moreover, each of these conditions implies that Z satisfies condition �J� and
that � = L2�M�.

We conclude this section with a simple observation from DMSSS, which
turns out to be extremely useful in the sequel. If P̃ exists, the Bayes rule
yields

Z̃t = Ẽ
[
Z̃T

∣∣�t] = 1
Zt

E
[
Z̃2
T

∣∣�t] = 1
Zt

E
[
Z2
T

∣∣�t]�
If Z satisfies R2�P�, we have from Jensen’s inequality

1 ≤ 1

Z2
t

E
[
Z2
T

∣∣�t] ≤ C�
and therefore

�1�3� Zt ≤ Z̃t ≤ CZt�

The importance of this comparison lies in the fact that it will allow us to
switch freely between Z and Z̃ for the purposes of estimation.
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2. Kunita–Watanabe decompositions under a change of measure.
Let Q be an equivalent local martingale measure for X, that is, a probabil-
ity measure equivalent to P such that X is a local Q-martingale. Since X is
continuous, every local Q-martingale admits a Galtchouk–Kunita–Watanabe
decomposition with respect to X under Q into a stochastic integral of X and a
local Q-martingale strongly Q-orthogonal to X; see Ansel and Stricker (1993).
Our main result in this section shows that a control on the density process ZQ

allows us to obtain good integrability properties under the original measure
P for this decomposition.

Theorem 3. Assume (1.2) as well as � s ∩ L2�P� �= �. Let dQ/dP ∈ � e ∩
L2�P� be such that the associated density process ZQ satisfies R2�P� and �J�.
For any H ∈ L2�P�, define the Q-martingale VH�Q as an RCLL-version of

V
H�Q
t �= EQ	H
�t�. Then there exist a process ξH�Q ∈ � and a Q-martingale

LH�Q null at 0 with LH�Q ∈ �2�P� and

�2�1� [
LH�Q�Xi

] = 0 for i = 1� � � � � d

such that VH�Q can be uniquely written as

V
H�Q
t = EQ	H� +

∫ t
0
ξH�Qs dXs +LH�Qt � 0 ≤ t ≤ T�

Proof. Since X is a continuous local Q-martingale, we know from Ansel
and Stricker (1993) that VH�Q has a unique Galtchouk–Kunita–Watanabe
decomposition with respect to X under Q. More precisely, there exist an R

d-
valued predictable X-integrable process ξH�Q and a local Q-martingale LH�Q

null at 0 with

VH�Q = EQ	H� +
∫
ξH�Q dX+LH�Q

and such that 	LH�Q�Xi� is a local Q-martingale for i = 1� � � � � d. Since X is
continuous, we have[

LH�Q�Xi
] = 〈

LH�Q�Xi
〉 = 0 for i = 1� � � � � d

and therefore (2.1). By definition, VH�Q is a uniformly integrable Q-mar-
tingale. Because ZQ satisfies R2�P� and �J�, Proposition 1 implies that

E
[[
VH�Q

]
T

] ≤ CE[
sup

0≤t≤T

∣∣VH�Q
t

∣∣2] ≤ CE[(
V
H�Q
T

)2] = CE	H2� <∞�

By (2.1) and the continuity of X,[
VH�Q

] = ∫ (
ξH�Q

)tr
d�M� ξH�Q + [

LH�Q
]
�

and so we conclude that ξH�Q is in L2�M�, hence in � by Theorem 2. Moreover,
LH�Q is a local Q-martingale with 	LH�Q�T ≤ 	VH�Q�T ∈ L1�P�, and so LH�Q

is in �2�P� by part (ii) of Proposition 1. Since dQ/dP is in L2�P�, this finally
implies that the local Q-martingale LH�Q is in fact a true Q-martingale. ✷
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Remark. If the minimal martingale measure P̂ happens to satisfy the as-
sumptions of Theorem 3, the above decomposition for Q = P̂ will coincide
with the Föllmer–Schweizer decomposition of H; see Schweizer (1995a). For
Q �= P̂, we obtain in general a different decomposition. Moreover, it may
happen that GT��� is closed and that the variance-optimal martingale mea-
sure P̃ satisfies R2�P�, while P̂ fails to satisfy R2�P�; see Example 3.12 of
DMSSS. Together with the development in the next section, this shows that
the Föllmer–Schweizer decomposition is in general not the appropriate tool to
solve the optimization problem (1.1).

3. The integrand in the L2-projection on GT���. Consider now a fixed
random variable H ∈ L2�P�. Thanks to the standing assumption (1.2), we can
project H in L2�P� on GT��� so that (1.1) has a solution which we denote by
ϑH ∈ �. Although the random variable GT�ϑH� is uniquely determined, ϑH

itself need not be unique, but it will be as soon as the mapping ϑ �→ GT�ϑ� is
injective. According to Lemma 3.5 of DMSSS, this is the case if � e ∩L2�P� is
nonempty, and so we shall adopt this assumption in addition to (1.2).

In order to determine ϑH, we can use Theorem 3 to decompose H into three
terms and to project these on GT��� separately. The middle term is already in
GT��� for any suitable choice of Q in Theorem 3. The first term is a constant,
and so its projection will be directly related to the density of the variance-
optimal martingale measure P̃. This suggests working withQ = P̃ in Theorem
3, an intuition supported by the results obtained in Pham, Rheinländer and
Schweizer (1996), and we shall see that Q = P̃ is indeed the right choice.

According to the projection theorem, a process ϑH ∈ � solves (1.1) if and
only if

�3�1� E
[(
H−GT�ϑH�

)
GT�ϑ�

] = 0 for all ϑ ∈ ��

By Theorem 2, the density process Z = ZP̃ of P̃ satisfies R2�P� and condition
�J�, and so Theorem 3 allows us to write H as

�3�2� H = Ẽ	H� +
∫ T

0
ξ̃Hs dXs + L̃HT

for a process ξ̃H ∈ � and a P̃-martingale L̃H null at 0 with L̃H ∈ �2�P� and

�3�3� [
L̃H�Xi

] = 0 for i = 1� � � � � d�

By Lemma 1 of Schweizer (1996), the density of P̃ with respect to P can be
written as

dP̃

dP
= Ẽ

[
dP̃

dP

]
+

∫ T
0
ζ̃s dXs for some ζ̃ ∈ ��
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and so we have

�3�4� Z̃t = Ẽ

[
dP̃

dP

∣∣∣∣�t
]
= Ẽ	Z̃T� +

∫ t
0
ζ̃s dXs� 0 ≤ t ≤ T�

This shows in particular that the P̃-martingale Z̃ is continuous and strongly
P̃-orthogonal to a local P̃-martingale L̃ if and only if L̃ is strongly P̃-
orthogonal to X.

Lemma 4. Assume (1.2) as well as � s ∩ L2�P� �= �. Then we have the
following.

(i) For H ≡ 1, the solution ϑH of (1.1) is given by

ϑH = −Z̃−1
0 ζ̃�

(ii) For H = ∫ T
0 ξ̃

H
s dXs with ξ̃H ∈ �, the solution ϑH of (1.1) is given by

ϑH = ξ̃H�

Proof. Since (ii) is obvious, we only have to prove (i). Property (3.4) of the
variance-optimal martingale measure implies that

H = 1 = Z̃−1
0 Z̃T −

∫ T
0
Z̃−1

0 ζ̃s dXs�

and by the definition of P̃, Z̃T is in the orthogonal complement of GT��� in
L2�P�. Since Z̃−1

0 ζ̃ is in �, the assertion follows from (3.1). ✷

In view of the preceding discussion, it now remains to consider the case
where H = L̃HT . This is actually the hardest case, and the next theorem can
in a sense be viewed as the main result of this paper.

Theorem 5. Assume (1.2) and � s ∩ L2�P� �= �. Let H ∈ L2�P� be such

that the P̃-martingale L̃ defined by L̃t �= Ẽ	H
�t� is null at 0 and satisfies

	L̃�Xi� = 0 for i = 1� � � � � d. Then the solution ϑH of (1.1) is given by

ϑHt = −ζ̃t
∫ t−

0
Z̃−1
s dL̃s�

Proof. Since 	L̃�Xi� = 0 for i = 1� � � � � d, (3.4) implies that 	L̃� Z̃� = 0. If
we define the R

d-valued predictable X-integrable process ϑ̄ by

ϑ̄t �= −ζ̃t
∫ t−

0
Z̃−1
s dL̃s�

the product rule and (3.4) therefore imply that

�3�5�
∫
ϑ̄ dX = L̃− Z̃

∫
Z̃−1 dL̃�
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The subsequent Lemma 7 will show that

�3�6� Z̃
∫
Z̃−1 dL̃ ∈ �2�P��

By Theorem 3, L̃ ∈ �2�P�, and so (3.5) and (3.6) show that the local P̃-
martingale

∫
ϑ̄ dX is also in �2�P�. Proposition 1 and the continuity of X

thus imply that

∫ T
0
ϑ̄tr
t d�M�t ϑ̄t =

∫ T
0
ϑ̄tr
t d	X�t ϑ̄t =

[∫
ϑ̄ dX

]
T

∈ L1�P��

and so ϑ̄ is in L2�M� = � by Theorem 2. To complete the proof, it thus
remains to show that ϑ̄ satisfies (3.1). Now the product rule and 	L̃�Xi� = 0
for i = 1� � � � � d imply that for ϑ ∈ �, the process G�ϑ� ∫ Z̃−1 dL̃ is a local P̃-
martingale, and so ZG�ϑ� ∫ Z̃−1 dL̃ is a local P-martingale. We now use (1.3)
to replace Z by Z̃, then (3.6), the fact that G�ϑ� ∈ �2�P� and the Cauchy–
Schwarz inequality to finally obtain

sup
0≤t≤T

∣∣∣∣ZtGt�ϑ�
∫ t

0
Z̃−1
s dL̃s

∣∣∣∣ ∈ L1�P��

and so ZG�ϑ� ∫ Z̃−1 dL̃ is even a true P-martingale for every ϑ ∈ �. Since
Z̃T = ZT, (3.5) and L̃T =H imply that

E
[�H−GT�ϑ̄��GT�ϑ�

] = E

[
Z̃TGT�ϑ�

∫ T
0
Z̃−1
s dL̃s

]
= 0 for all ϑ ∈ ��

which proves that ϑ̄ solves the optimization problem (1.1). ✷

Now define the process ṼH by setting

�3�7� ṼH
t �= Ẽ	H� +

∫ t
0
ξ̃Hs dXs + L̃Ht = Ẽ	H
�t�� 0 ≤ t ≤ T�

Putting everything together, we then obtain the following result.

Theorem 6. Assume (1.2) and � s ∩ L2�P� �= �. For any H ∈ L2�P�, the
solution of (1.1) takes the form
�3�8�

ϑHt = ξ̃Ht − ζ̃t
(
Ẽ	H�Z̃−1

0 +
∫ t−

0
Z̃−1
s dL̃Hs

)
= ξ̃Ht − ζ̃t

Z̃t

(
ṼH
t− −

∫ t
0
ϑHs dXs

)
�

Proof. Due to the linearity of H �→ ϑH, the first equality is immediate
from Lemma 4 and Theorem 5. Since 	L̃H� Z̃� = 0 by (3.4) and (3.3), we can
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use the product rule, (3.4) and the first equality in (3.8) to obtain

Z̃

(
Ẽ	H�Z̃−1

0 +
∫
Z̃−1 dL̃H

)
= Ẽ	H� +

∫
Ẽ	H�Z̃−1

0 ζ̃ dX

+
∫ (∫

Z̃−1 dL̃H
)
−
ζ̃ dX+ L̃H

= Ẽ	H� + L̃H +
∫ (
ξ̃H −ϑH)dX

= ṼH −
∫
ϑH dX�

and this yields the second equality in (3.8). ✷

Remark. The second expression for ϑH in (3.8) gives us the optimal inte-
grand in feedback form, with a correction term which is proportional to the
amount by which the cumulative gains from trade

∫
ϑH dX deviate from the

current intrinsic P̃-value ṼH of H in (3.7). This generalizes results of various
authors where this representation was only obtained under very restrictive ad-
ditional conditions. Duffie and Richardson (1991) and Schweizer (1994) worked
with a “deterministic mean-variance tradeoff,” while Hipp (1993, 1996), Wiese
(1995) and Pham, Rheinländer and Schweizer (1996) assumed somewhat more
generally that the minimal martingale measure P̂ coincides with the variance-
optimal martingale measure P̃. But all these assumptions are quite unnatural
and will fail in most typical situations; see Pham, Rheinländer and Schweizer
(1996) for an amplification of this point.

It now remains to prove the crucial estimate (3.6), and this is indeed where
the main work has to be done. The key observation in the following proof is
that the stochastic integral

∫
Z̃−1 dL̃ can equivalently be written as a back-

ward integral, which is possible thanks to the orthogonality of L̃ and X and
the property (3.4) of the variance-optimal martingale measure. This alterna-
tive representation allows us in turn to apply the reverse Hölder inequality
R2�P� backward in time to obtain the desired estimate by an approximation
procedure. The original motivation for looking at the problem in this way
comes from Schweizer (1995b) where a backward induction argument is used
to solve the optimization problem (1.1) in finite discrete time. By using a suit-
able change of measure, we are able to give an alternative shorter proof in
Section 4.2. On the other hand, the subsequent argument has the advantage
that all computations and estimates are made under the original measure
P, and this appears more promising in view of possible generalizations to a
discontinuous process X.

Lemma 7. With the assumptions and notations of Theorem 5, we have

�3�6� sup
0≤t≤T

∣∣∣∣Z̃t

∫ t
0
Z̃−1
s dL̃s

∣∣∣∣ ∈ L2�P��
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Proof. For brevity, let us write N �= Z̃
∫
Z̃−1dL̃. By (3.5), N is a local

P̃-martingale so that we can choose an increasing sequence �Tn� of stopping
times such that NTn is a uniformly integrable P̃-martingale. From part (i) of
Proposition 1, we get

E
[

sup
0≤t≤T

∣∣NTn
t

∣∣2] ≤ CE[
N2
Tn

]
for a constant C which does not depend on n, and so it is enough to show that

�3�9� sup
S

E
[
N2
S

]
<∞�

where the supremum runs over all stopping times S ≤ T. The assertion then
follows by letting n tend to infinity and applying the monotone convergence
theorem.

To prove (3.9), we shall first show that

�3�10� E
[
N2
S

] ≤ CE		L̃�S�
for any stopping time S ≤ T, with a constant C which does not depend on S.
Theorem 2 and Proposition 1 then imply that

sup
S

E
[
N2
S

] ≤ CE		L̃�T� ≤ CE
[

sup
0≤t≤T

L̃2
t

]
≤ CE[

L̃2
T

] = CE	H2� <∞�

which gives (3.9).
As a preparation for the proof of (3.10), we now fix a stopping time S ≤ T

and approximate the stochastic integral
∫ S

0 Z̃
−1
u dL̃u appearing in NS. A

random partition of 		0� S�� is a finite family σ of stopping times Ti such
that 0 = T0 ≤ T1 ≤ · · · ≤ Tk = S P-a.s.; its (random) grid size is

σ 
 �= maxi=1�����k 
Ti − Ti−1
. According to Theorems II.21 and II.23 of
Protter (1990), there exists a sequence �σm�m∈N of random partitions of
		0� S�� with limm→∞ 
σm
 = 0 P-a.s. such that∫ S

0
Z̃−1
u dL̃u = lim

m→∞
∑

Ti∈σm
Z̃−1
Ti

(
L̃Ti+1

− L̃Ti
)

in probability

as well as[
Z̃−1� L̃

]
S
= lim

m→∞
∑

Ti∈σm

(
Z̃−1
Ti+1

− Z̃−1
Ti

)(
L̃Ti+1

− L̃Ti
)

in probability.

But 	Z̃−1� L̃� = 0 by Itô’s formula since Z̃ is continuous and 	Z̃� L̃� = 0 as in
the proof of Theorem 5. Hence we get by addition

�3�11�
∫ S

0
Z̃−1
u dL̃u = lim

m→∞
∑

Ti∈σm
Z̃−1
Ti+1

(
L̃Ti+1

− L̃Ti
)

in probability,

and this shows that the forward integral
∫
Z̃−1 dL̃ can also be written as a

backward integral
∫
Z̃−1 d∗L̃.
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According to (1.3) and the definition of N, proving (3.10) is equivalent to
showing that

�3�12� E

[
ZSZ̃S

(∫ S
0
Z̃−1
u dL̃u

)2]
≤ CE		L̃�S��

If Ti�Ti+1�Tj�Tj+1 are stopping times with 0 ≤ Ti ≤ Ti+1 ≤ Tj ≤ Tj+1 ≤ S,
we have

E

[
ZSZ̃S

�L̃Ti+1
− L̃Ti�

Z̃Ti+1

�L̃Tj+1
− L̃Tj�

Z̃Tj+1

]

= E

[�L̃Ti+1
− L̃Ti�

Z̃Ti+1

E

[
ZSZ̃S

�L̃Tj+1
− L̃Tj�

Z̃Tj+1

∣∣∣∣�Tj
]]

= 0�

In fact, ZZ̃ is a P-martingale because Z̃ is a P̃-martingale; thus we obtain

E

[
ZSZ̃S

�L̃Tj+1
− L̃Tj�

Z̃Tj+1

∣∣∣∣�Tj
]
= E

[
ZTj+1

(
L̃Tj+1

− L̃Tj
)∣∣�Tj] = 0

by first conditioning on �Tj+1
and then using the fact that ZL̃ is a P-

martingale because L̃ is a P̃-martingale. If we approximate
∫ S

0 Z̃
−1
u dL̃u as

in (3.11), the mixed terms appearing in the corresponding approximation of
(3.12) thus have expectation 0, and so we obtain

sup
m
E

[
ZSZ̃S

( ∑
Ti∈σm�S�

Z̃−1
Ti+1

(
L̃Ti+1

− L̃Ti
))2]

= sup
m
E

[ ∑
Ti∈σm�S�

ZSZ̃S

Z̃2
Ti+1

(
L̃Ti+1

− L̃Ti
)2
]

≤ C sup
m
E

[ ∑
Ti∈σm�S�

Z2
S

Z2
Ti+1

(
L̃Ti+1

− L̃Ti
)2
]

= C sup
m
E

[ ∑
Ti∈σm�S�

(
L̃Ti+1

− L̃Ti
)2
E

[
Z2
S

Z2
Ti+1

∣∣∣∣�Ti+1

]]

≤ C sup
m
E

[ ∑
Ti∈σm�S�

(
L̃Ti+1

− L̃Ti
)2
]

≤ C sup
m
E

[ ∑
Ti∈σm�S�

(	L̃�Ti+1
− 	L̃�Ti

)]

≤ CE		L̃�S��
where we have used (1.3), the reverse Hölder inequality R2�P� and Proposi-
tion 1. In particular, the third inequality is obtained by applying part (ii) of
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Proposition 1 to the finitely many P̃-martingales Ni �= L̃Ti+1 − L̃Ti . Note also
that none of the appearing constants depends on m or on the stopping time
S. By (3.11),

lim
m→∞ZSZ̃S

( ∑
Ti∈σm�S�

Z̃−1
Ti+1

(
L̃Ti+1

− L̃Ti
))2

= ZSZ̃S

(∫ S
0
Z̃−1
s dL̃s

)2

in probability,

and so Fatou’s lemma yields (3.12). This completes the proof. ✷

4. A second solution. A very elegant different method of attacking the
basic problem (1.1) has recently been proposed by Gouriéroux, Laurent and
Pham (1996), subsequently abbreviated as GLP. Their idea is to combine a
change of measure with a change of coordinates to transform the problem in
such a way that it can be solved directly by means of the Galtchouk–Kunita–
Watanabe projection theorem. But a priori, GLP are only able to solve a weaker
problem by their approach, and one contribution of the present paper is to
prove that they actually obtain the solution to the same question that we
consider here.

4.1. The alternative approach. This subsection briefly explains the results
of GLP. Their basic model is a multidimensional diffusion model with a Brown-
ian filtration. The R

d+1-valued process S is given by

dS0
t

S0
t

= rt dt� S0
0 = 1

and

dSit

Sit
= µit dt+

n∑
j=1

σ
ij
t dW

j
t � Si0 > 0

for i = 1� � � � � d ≤ n, with predictable processes r, µ, σ satisfying appropriate
integrability conditions. The process X is then the R

d-valued process with
components Xi �= Si/S0 for i = 1� � � � � d. To facilitate comparisons and to
avoid some technical problems, we consider in the sequel the discounted case
where r ≡ 0 so that S0 ≡ 1. Our subsequent arguments do not need the
diffusion structure, but only the continuity of X.

Denote as above by P̃ the variance-optimal martingale measure for X so
thatX is a continuous local P̃-martingale. GLP then consider the optimization
problem

�4�1� Minimize �H−GT�ϑ��L2�P� over all ϑ ∈ �̃�

where the space �̃ consists of all R
d-valued predictableX-integrable processes

ϑ such that the stochastic integral G�ϑ� is a P̃-martingale satisfying GT�ϑ� ∈
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L2�P�. It is easy to check (and will be proved in Lemma 9) that � is then
contained in �̃ so that (4.1) is more likely to have a solution than (1.1).

Now consider the strictly positive P̃-martingale Z̃ given by (3.4) and define
a new probability measure R̃ ≈ P by setting

dR̃

dP̃
�= Z̃T

Z̃0

= 1 +
∫ T

0
Z̃−1

0 ζ̃s dXs�

Since X is a continuous local P̃-martingale, the R
d+1-valued process Y

with Y0 �= Z̃−1 and Yi �= XiZ̃−1 for i = 1� � � � � d is a continuous local
R̃-martingale. Moreover,

�4�2� dR̃

dP
= dR̃

dP̃

dP̃

dP
= Z̃2

T

Z̃0

�

and so we obtain

�4�3� ∥∥H−GT�ϑ�
∥∥
L2�P� =

√
Z̃0

∥∥∥∥ H
Z̃T

− GT�ϑ�
Z̃T

∥∥∥∥
L2�R̃�

�

A generalized version of the crucial result of GLP is then

Proposition 8. Assume that X is a continuous semimartingale which sat-
isfies (1.2) and � s ∩L2�P� �= �. Then

�4�4� 1

Z̃T

GT��̃� =
{∫ T

0
ψu dYu

∣∣∣∣ψ ∈ L2�Y� R̃�
}
�

where L2�Y� R̃� is the space of all R
d+1-valued predictable Y-integrable pro-

cesses ψ such that
∫
ψdY is in the space � 2�R̃� of martingales. Moreover, the

relation between ϑ ∈ �̃ and ψ ∈ L2�Y� R̃� is given by

�4�5�
ψi �= ϑi for i = 1� � � � � d�

ψ0 �= G�ϑ� −ϑtrX

and

�4�6� ϑi �= ψi + ζ̃i
(∫

ψdY− ψtrY

)
for i = 1� � � � � d�

Proof. The crucial step of the argument is to show that

�4�7�

{
G�ϑ�∣∣ϑ is R

d-valued, predictable and X-integrable
}

=
{
Z̃

∫
ψdY

∣∣∣∣ψ is R
d+1-valued, predictable and Y-integrable

}
with the relation between ϑ and ψ given by (4.5) and (4.6). As a preparation
for this, note first that the product rule yields

�4�8� d
(
XZ̃−1) = Z̃−1 dX+XdZ̃−1 + d[X� Z̃−1]�
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�4�9�
d
(
G�ϑ�Z̃−1) = Z̃−1 dG�ϑ� +G�ϑ�dZ̃−1 + d[G�ϑ�� Z̃−1]

= Z̃−1ϑdX+G�ϑ�dZ̃−1 +ϑtr d
[
X� Z̃−1]

and

�4�10� d�Z̃Y� = YdZ̃+ Z̃ dY+ d	Z̃�Y��
Suppose first that ϑ is X-integrable and define ϑn �= ϑI�
ϑ
≤n�. Then (4.9),

(4.8) and the definition of Y imply that

d
(
G�ϑn�Z̃−1) = Z̃−1ϑn dX+G�ϑn�dZ̃−1 + �ϑn�trd

[
X� Z̃−1]

= ϑn d
(
XZ̃−1)+ (

G�ϑn� − �ϑn�trX
)
dZ̃−1

= (
ψ�n�)dY�

where the Y-integrable process ψ�n� is given by

�ψ�n��0 �= G�ϑn� − �ϑn�trX�

�ψ�n��i �= �ϑn�i for i = 1� � � � � d�

As n tends to infinity, G�ϑn� converges to G�ϑ� in the semimartingale topol-
ogy because ϑ is X-integrable. This implies that

∫
ψ�n� dY = Z̃−1G�ϑn� also

converges in the semimartingale topology since multiplication with a fixed
semimartingale is a continuous operation; see Proposition 4 of Emery (1979).
By Theorem V.4 of Mémin (1980), the subspace �∫ ψdY
ψ is Y-integrable� is
closed in the semimartingale topology, and so we conclude that

Z̃−1G�ϑ� =
∫
ψ̄ dY for some Y-integrable process ψ̄.

But since ψ�n� converges for n → ∞ (P-a.s. uniformly in t, at least along a
subsequence) to ψ given by (4.5), we deduce from Theorem V.4 of Mémin (1980)
that ψ̄ = ψ, and this establishes the inclusion “⊆” in (4.7).

The proof of the converse is very similar. If ψ is Y-integrable, we define
ψn �= ψI�
ψ
≤n� and use the product rule, (3.4), (4.10) and the definition of Y
to obtain

d

(
Z̃

∫
ψn dY

)
=

(∫
ψn dY

)
dZ̃+ Z̃ψn dY+ �ψn�tr d	Z̃�Y�

=
(∫

ψn dY

)
ζ̃ dX+ ψn d�Z̃Y� − (�ψn�trY

)
dZ̃

= ϑ�n� dX

with the X-integrable process

�ϑ�n��i �= �ψn�i + ζ̃i
(∫

ψn dY− �ψn�trY

)
for i = 1� � � � � d�
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An analogous argument as above then yields for n→ ∞ that

Z̃
∫
ψdY = G�ϑ�

with ϑ given by (4.6), and this establishes the inclusion “⊇” in (4.7).
The proof of (4.4) is now easy. For ψ ∈ L2�Y� R̃�, the stochastic integral∫
ψdY is an R̃-martingale so that the product Z̃

∫
ψdY = G�ϑ� is a P̃-

martingale. Moreover, (4.2) and (4.7) yield

E	�GT�ϑ��2� = Z̃0ER̃

[(∫ T
0
ψu dYu

)2]
<∞

since
∫
ψdY ∈ � 2�R̃�, and so GT�ϑ� is in L2�P�. Conversely, let G�ϑ� be

a P̃-martingale with terminal value GT�ϑ� ∈ L2�P�. Then (4.7) shows that∫
ψdY is an R̃-martingale whose terminal value GT�ϑ�/Z̃T is in L2�R̃� due

to (4.2). Hence ψ must be in L2�Y� R̃�, and this completes the proof. ✷

In view of Proposition 8 and (4.3), (4.1) is equivalent to the optimization
problem

�4�11� Minimize
∥∥∥∥ H
Z̃T

−
∫ T

0
ψu dYu

∥∥∥∥
L2�R̃�

over all ψ ∈ L2�Y� R̃��

But this is a much easier problem. In fact, since Y is an R̃-martingale, the
solution ψ∗ of (4.11) is simply given by the integrand of Y in the Galtchouk–
Kunita–Watanabe decomposition under R̃ of the random variable H/Z̃T ∈
L2�R̃�. The solution ϑ∗ of (4.1) is then obtained via (4.6). The transformation
from X to Y and back is the change of coordinates alluded to above.

Remarks. (i) A result similar to Proposition 8 is given in GLP for the
multidimensional diffusion case under the assumptions that σσ tr is invertible
and that σ tr�σσ tr�−1�µ−r1� is bounded. This amounts to saying that X has a
bounded mean-variance tradeoff which is a well-known convenient condition.
It is sufficient (but not necessary) to ensure that GT��� is closed in L2�P� and
that � s ∩ L2�P� contains the density of the minimal martingale measure P̂
and is therefore nonempty; see DMSSS for more details.

(ii) A closer look at the proof of Proposition 8 shows that we do not really
need the assumption (1.2) that GT��� is closed in L2�P�. All we require is the
existence of the variance-optimal martingale measure P̃ and the representa-
tion

Z̃t = Ẽ	Z̃T� +
∫ t

0
ζ̃s dXs� 0 ≤ t ≤ T

for some X-integrable process ζ̃ (which need not even be in �). By Lemma 2.2
of Delbaen and Schachermayer (1996), this is satisfied as soon as � e ∩L2�P�
is nonempty. In particular, Proposition 8 then implies that GT��̃� is closed in



L2-PROJECTIONS ON STOCHASTIC INTEGRALS 1827

L2�P� so that (4.1) is indeed easier to solve than (1.1). (We are grateful to
L. Krawczyk for this remark.)

4.2. The relation to our results. Let us now compare our results to those
of GLP. As pointed out in GLP, the solution ϑ∗ of (4.1) is only in the space
�̃ which is a priori bigger than �. The first result in this subsection shows
that under our assumptions, the two spaces actually coincide so that the GLP
solution is also a solution to (1.1). Although the proof below is very short, it is
worth pointing out that it relies crucially on the weighted norm inequalities
used in the present paper.

Lemma 9. Assume (1.2) and � s ∩L2�P� �= �. Then �̃ = �.

Proof. The inclusion “⊇” is easy and already pointed out in GLP. In fact,
if ϑ is in �, then G�ϑ� is in �2�P� as well as a local P̃-martingale so that
ZP̃G�ϑ� is a local P-martingale. Since dP̃/dP ∈ L2�P�, the density process
ZP̃ is also in �2�P� by Doob’s inequality so that ZP̃G�ϑ� is actually a true
P-martingale; hence G�ϑ� is a P̃-martingale. Note that this argument uses
no further properties of P̃ except that dP̃/dP ∈ L2�P�.

Conversely, suppose now that ϑ is in �̃ so that G�ϑ� is a P̃-martingale with
terminal value GT�ϑ� ∈ L2�P�. Since ZP̃ satisfies the reverse Hölder inequal-
ity R2�P� and condition �J� by Theorem 2, we conclude from Proposition 1
and the continuity of X that∫ T

0
ϑtr
s d�M�s ϑs = 	G�ϑ��T ∈ L1�P�

so that ϑ is in L2�M�, hence in � by Theorem 2. This shows the inclusion “⊆”
and thus completes the proof. ✷

Of course, Lemma 9 implies that the solution ϑ∗ of (4.1) and the solution
ϑH of (1.1) in Theorem 6 must actually coincide. One can ask if this could not
be seen directly by comparing the two decompositions of H used for obtaining
the two solutions. Recall that the decomposition used for Theorem 6 is

�3�2� H = Ẽ	H� +
∫ T

0
ξ̃Hs dXs + L̃HT

from Theorem 3, where ξ̃H ∈ � and L̃H is a P̃-martingale null at 0 with
L̃H ∈ �2�P� and 	L̃H�Xi� = 0 for i = 1� � � � � d. On the other hand, the GLP
solution uses the Galtchouk–Kunita–Watanabe decomposition

�4�12� H

Z̃T

= ER̃

[
H

Z̃T

]
+

∫ T
0
ψu dYu +LT

under R̃, where ψ ∈ L2�Y� R̃� and L is in � 2
0 �R̃� and strongly R̃-orthogonal

to Y. The next result explicitly describes the connection between (3.2) and
(4.12).
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Proposition 10. Assume (1.2) and � s ∩L2�P� �= �. For every H ∈ L2�P�,
the decompositions (3.2) and (4.12) are then related by

�4�13� L̃H =
∫
Z̃ dL

and

�4�14� ξ̃H = Ẽ	H�Z̃−1
0 ζ̃ +ϑ+L−ζ̃�

where ϑ is given from ψ via (4.6).

Proof. Since the density of R̃ with respect to P̃ is Z̃T/Z̃0, the represen-
tation (3.4) of Z̃T implies that

Z̃TER̃

[
H

Z̃T

]
=

(
Z̃0 +

∫ T
0
ζ̃s dXs

)
Ẽ

[
H

Z̃0

]
= Ẽ	H�

(
1 +

∫ T
0
Z̃−1

0 ζ̃s dXs

)
�

By (4.4),

Z̃T

∫ T
0
ψu dYu = GT�ϑ� =

∫ T
0
ϑu dXu

for some ϑ ∈ � given from ψ via (4.6), and so it only remains to study the
product Z̃TLT. Since L is strongly R̃-orthogonal to the continuous process Y,
we have 	L�Yi� = 0 for i = 0�1� � � � � d. For i = 0, this yields 	L� Z̃−1� = 0 and
therefore by Itô’s formula and the continuity of Z̃ that

�4�15� 	L� Z̃� = 0�

For i = 1� � � � � d, we have Xi = Z̃Yi, and so (4.10) and the preceding argu-
ments imply that

�4�16� 	L�Xi� = 0 for i = 1� � � � � d�

because 	Z̃�Yi� is continuous and of finite variation. Thanks to (4.15) and
(3.4), the product rule now gives

Z̃TLT =
∫ T

0
Ls− dZ̃s +

∫ T
0
Z̃s dLs =

∫ T
0
Ls−ζ̃s dXs +

∫ T
0
Z̃s dLs

and so we conclude from (4.12) that H can be decomposed as

H = Ẽ	H� +
∫ T

0

(
Ẽ	H�Z̃−1

0 ζ̃s +ϑs +Ls−ζ̃s
)
dXs +

∫ T
0
Z̃s dLs�

But we already know that ζ̃ and ϑ are in �; thanks to the uniqueness in
Theorem 3, (4.13) and (4.14) will thus follow once we show that L−ζ̃ is in �
and that the process N �= ∫

Z̃ dL is a P̃-martingale null at 0 with N ∈ �2�P�
and 	N�Xi� = 0 for i = 1� � � � � d.

The last assertion is immediate from (4.16) and the definition of N. Since
L is strongly R̃-orthogonal to Y0 = Z̃−1, the product LZ̃−1 is a local R̃-
martingale. Thus L is a local P̃-martingale, and so is N since Z̃ is continuous,
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hence locally bounded. Because ZP̃ satisfies R2�P� and �J� by Theorem 2,
part (ii) of Proposition 1 implies that N will be in �2�P� if we can show that
	N�T ∈ L1�P�. To prove that this is true, we use successively (1.3), Theorem
VI.57 of Dellacherie and Meyer (1982), the definition of P̃, again Theorem
VI.57 of Dellacherie and Meyer (1982) and the definition of R̃ to obtain

E		N�T� = E

[∫ T
0
Z̃2
s d	L�s

]

≤ CE
[∫ T

0
ZsZ̃s d	L�s

]

= CE

[
ZT

∫ T
0
Z̃s d	L�s

]

= Ẽ

[∫ T
0
Z̃s d	L�s

]

= CẼ	Z̃T	L�T�
= CZ̃0ER̃		L�T� <∞�

because L is in � 2�R̃�. Now N is a local P̃-martingale with N ∈ �2�P� and
the density process Z of P̃ with respect to P is in �2�P�; hence we conclude
that ZN is a true P-martingale so that N is a true P̃-martingale. This shows
that N has all the properties claimed above and implies that N satisfies the
assumptions of Theorem 5. Therefore

L−ζ̃ = ζ̃

(∫
Z̃−1 dN

)
−

is in � by Theorem 5, and this completes the proof. ✷

Proposition 10 allows us to see quite easily that the solutions ϑ∗ of (4.1)
and ϑH of (1.1) coincide. In fact, (4.14) and (4.13) imply that

ϑ∗ = ξ̃H − Ẽ	H�Z̃−1
0 ζ̃ −L−ζ̃ = ξ̃H − ζ̃

(
Ẽ	H�Z̃−1

0 +
(∫

Z̃−1 dL̃H
)
−

)

which equals ϑH according to Theorem 6.
Interestingly, the probability measure R̃ introduced by GLP also allows us

to give a shorter proof of the crucial Lemma 7. As in the first proof, it is enough
to show that

�3�10� E	N2
S� ≤ CE		L̃�S�

for any stopping time S ≤ T, with a constant C which does not depend on S.
We first observe that Z̃L̃ is a local P̃-martingale since both Z̃ and L̃ are, and
since 	Z̃� L̃� = 0. Thus L̃ is a local R̃-martingale, and so is

∫
Z̃−1 dL̃ because

Z̃−1 is continuous, hence locally bounded. Using successively the definition of
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N, (1.3), the definitions of Z and R̃, the Burkholder–Davis–Gundy inequality
under R̃, the definitions of R̃ and Z and (1.3) yields

E
[
N2
S

] = E

[
Z̃2
S

(∫ S
0
Z̃−1
u dL̃u

)2]

≤ CE
[
ZSZ̃S

(∫ S
0
Z̃−1
u dL̃u

)2]

= CER̃

[(∫ S
0
Z̃−1
u dL̃u

)2]

≤ CER̃

[∫ S
0
Z̃−2
u d	L̃�u

]

= CE

[
ZSZ̃S

∫ S
0
Z̃−2
u d	L̃�u

]

≤ CE
[
ZSZ̃S

∫ S
0
Z−1
u Z̃

−1
u d	L̃�u

]
�

But Z̃ is a P̃-martingale, hence ZZ̃ is a P-martingale, and so the last term
equals E		L̃�S� by Theorem VI.57 of Dellacherie and Meyer (1982). Since none
of the appearing constants depends on S, this again proves (3.10) and therefore
Lemma 7. ✷
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bilités XXVII. Lecture Notes in Math. 1557 30–32. Springer, Berlin.
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