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Consider the σ -finite measure-valued diffusion corresponding to the
evolution equation ut =Lu+ β(x)u− f (x,u), where

f (x,u)= α(x)u2 +
∫ ∞

0
(e−ku − 1+ ku)n(x, dk)

and n is a smooth kernel satisfying an integrability condition. We assume
that β,α ∈ Cη(Rd) with η ∈ (0,1], and α > 0. Under appropriate spectral
theoretical assumptions we prove the existence of the random measure

lim
t↑∞e−λctXt (dx)

(with respect to the vague topology), where λc is the generalized principal

eigenvalue of L + β on Rd and it is assumed to be finite and positive,
completing a result of Pinsky on the expectation of the rescaled process.
Moreover, we prove that this limiting random measure is a nonnegative
nondegenerate random multiple of a deterministic measure related to the
operator L+ β.

When β is bounded from above, X is finite measure-valued. In this case,
under an additional assumption on L+β, we can actually prove the existence
of the previous limit with respect to the weak topology.

As a particular case, we show that if L corresponds to a positive recurrent
diffusion Y and β is a positive constant, then

lim
t↑∞e−βtXt (dx)

exists and equals a nonnegative nondegenerate random multiple of the
invariant measure for Y .

Taking L= 1
2� on R and replacing β by δ0 (super-Brownian motion with

a single point source), we prove a similar result with λc replaced by 1
2 and

with the deterministic measure e−|x| dx, giving an answer in the affirmative
to a problem proposed by Engländer and Fleischmann [Stochastic Process.
Appl. 88 (2000) 37–58].

The proofs are based upon two new results on invariant curves of strongly
continuous nonlinear semigroups.
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1. Introduction and statement of results.

1.1. Motivation. In [13] it has been proven that the superdiffusion correspond-
ing to the semilinear operator Lu+ βu− αu2 tends to a nonzero limit in expec-
tation after exponential rescaling if and only if the linear operator L + β satis-
fies a certain spectral assumption. Although the statement was proved for the case
when α and β are positive constants, it is easy to check that the proof works just
as well in the variable coefficient case. A similar result has been presented in [7]
for a nonregular setting (super-Brownian motion with a single point source).

In this paper we replace the expectations by the superdiffusions themselves and
prove that the rescaled superdiffusions tend to a limit in law. For the case of the
super-Brownian motion with a single point source this will give a positive answer
to a problem proposed in [7].

1.2. Preparation. We begin with some notation. Let M =M(Rd) denote the
set of finite measures µ on Rd endowed with the topology of weak convergence
and with ‖µ‖ denoting the total mass of µ; let Mc =Mc(Rd) denote the subset
of all compactly supported measures. Write Ck,η =Ck,η(Rd) for the usual Hölder
spaces of index η ∈ (0,1] including derivatives of order k, and set Cη := C0,η.
Let Cb = Cb(Rd) and C+b = C+b (Rd) denote the space of bounded continuous
functions on Rd and the space of nonnegative bounded continuous functions,
respectively; let ‖ · ‖ denote the sup-norm for bounded functions. Furthermore,
C =C(Rd) and C0 =C0(Rd ) refer to continuous functions on Rd and continuous
functions on Rd decaying to zero, respectively. Finally, Cc (C+c ) denotes the space
of continuous (nonnegative continuous) functions on Rd with compact support.

We now recall the definition of (L,β,α;Rd)-superdiffusion. LetL be an elliptic
operator on Rd of the form

L= 1
2∇ · a ∇ + b · ∇ on Rd,(1)

where aij , bi ∈C1,η , i, j = 1, . . . , d , for some η ∈ (0,1] and the symmetric matrix
a = {aij } satisfies

d∑
i,j=1

aij (x)vivj > 0 for all v ∈Rd\{0} and all x ∈Rd .(2)

In addition, let α,β ∈Cη , where β is bounded from above (we will later relax this
condition) and α is positive.

NOTATION 1 (Superdiffusion). Let (X,Pµ,µ ∈M) denote the (L,β,α;Rd)-
superdiffusion. That is, X is the unique M-valued continuous (time-homogeneous)
Markov process which satisfies, for any bounded continuous g: Rd �→R+,

Eµ exp〈Xt,−g〉 = exp〈µ,−u(·, t)〉,(3)
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where u is the minimal nonnegative solution to

ut =Lu+ βu− αu2 on Rd × (0,∞),

lim
t→0+u(·, t)= g(·)(4)

(see [8]). Here 〈ν,f 〉 denotes the integral
∫
Rd ν(dx)f (x).

Here is an equivalent way of replacing the word minimal in the definition of u
in Notation 1 (cf. [8]): u is the nonnegative solution to (4) obtained as a limit of
solutions with Dirichlet boundary condition: u = limn→+∞ un, where un(x, t) is
the solution to (4) for |x| ≤ n with un(x)= 0 at |x| = n.

REMARK 2. We note that this definition will later be extended to a more
general class of β’s and a more general class of nonlinearities (see the last
subsection of this section).

REMARK 3 (Mild equation with linear semigroup). In fact the parabolic
semilinear pde under (4) can be rewritten as an integral equation (or mild equation)
as follows: u is the unique function which solves

u(·, t)= Ttg −
∫ t

0
dsTt−s

(
αu2(·, s)),(5)

with sup0≤s≤t ‖u(·, s)‖ <∞ for all t > 0. Here {Tt}t≥0 denotes the semigroup
corresponding to the operator L+ β and acting on Cb. That is, for bounded and
continuous g,

Ttg := Ex

[
exp

(∫ t

0
β(Ys) ds

)
g(Yt ); τ > t

]
,(6)

where Y denotes the diffusion corresponding to L on Rd living on Rd ∪ {�}, the
one-point compactification of Rd (with expectations {Ex}x∈Rd ), and τ denotes its
lifetime,

τ := inf{t ≥ 0 | Yt /∈Rd}.
We mention that the mild equation under (5) is usually written in a slightly

different form: {Tt }t≥0 is replaced by the semigroup corresponding to the
operatorL on Rd and the nonlinearity αu2 is replaced by−βu+αu2 [see, e.g., [8],
formula (1.3)]. The advantage of that formulation is that the semigroup then
describes the spatial motion (the diffusion corresponding to L on Rd ), while the
nonlinear term refers to the branching mechanism built in the construction of X.
In this paper we chose to include β in the linear semigroup as in (6) for technical
reasons. For example, we do not have to assume that β is bounded from below; the
semigroup under (6) makes sense whenever β is bounded from above.
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REMARK 4 (Formula for expectation). Using the stochastic representation
formula for solutions of parabolic pde’s [see [11], formula (5.15)] it is easy to
show that u(x, t) := Ttg(x) is the minimal nonnegative solution for (4) with α = 0.
From this, it is standard to verify that

Eδx 〈Xt, g〉 = Ttg(x).(7)

In the sequel we use concepts and facts from the so-called criticality theory
of second-order elliptic operators (see [12], Chapter 4) without further reference.
The definitions for subcritical, critical and product-critical operators, for the
ground state of a critical operator and its adjoint, and for the generalized principal
eigenvalue of L+β on Rd are presented in Appendix B. The reader should consult
that section from time to time, where a review is given on criticality theory.

We will also use the notation 〈f,g〉 with nonnegative f and g for the (possibly
infinite) integral

∫
Rd dxf (x)g(x). In [13] the following result has been proved

(though formally for a somewhat more restricted case—see the note after the
theorem).

THEOREM P. Let µ ∈Mc and let g ∈ C+c be not identically zero. Let λc ∈ R
denote the generalized principal eigenvalue of L + β on Rd . In the case when
L+β −λc is critical we denote the corresponding ground state by φ. (The ground
state for the formal adjoint of L+β−λc will be denoted by φ̃.) Finally, let ρ ∈R:

(i) limt↑∞ e−ρtEµ〈Xt, g〉 = 0 if ρ > λc , and limt↑∞ e−ρtEµ〈Xt, g〉 = ∞
if ρ < λc;

(ii-a) if L+ β − λc is subcritical or if L+ β − λc is critical but 〈φ, φ̃〉 =∞,
then

lim
t↑∞ e

−λctEµ〈Xt, g〉 = 0;

(ii-b) if L+ β − λc is critical and 〈φ, φ̃〉<∞, then

lim
t↑∞e

−λctEµ〈Xt, g〉 = 〈µ,φ〉〈φ̃, g〉,

where φ and φ̃ are normalized by 〈φ, φ̃〉 = 1.

The condition in (ii-b) of Theorem P is sometimes called product criticality (see
Appendix B for more explanation).

As far as (i) and (ii-a) are concerned, the proofs given in [13] require some
further completion. In fact, it is very easy to complete the proof of the first
statement in (i) and the proof of (ii-a) under the subcriticality assumption; however,
the second statement in (i) and the critical but not product-critical case in (ii-a) are
not proven in full generality in that paper. Nevertheless, since in the present article
we will use (ii-b) only [except in Remark 5, where we use the first statement in (i)],
we defer the discussion regarding (i) and (ii-a) to the forthcoming paper [9].
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Although (ii-b) was stated for the case when L is a conservative diffusion
(i.e., a diffusion having an infinite lifetime) on Rd with a corresponding C0-pre-
serving semigroup and β and α are positive constants, it is easy to check that its
proof never uses these assumptions and consequently it is valid for our general
notion of (L,β,α;Rd)-superdiffusion as well. [Note that if β is constant, we have
λc = β + λc(L), where λc(L) denotes the generalized principal eigenvalue of L
on Rd .]

In a recent paper [7] a nonregular setting, namely a super-Brownian motion with
a single point source, has been studied and a result analogous to Theorem P has
been proved for this process. In this case the additional mass production is zero
everywhere except at a single point (the origin, say) where the mass production
is infinite (in a δ-function sense). In other words, consider the superdiffusion Xsin

corresponding to the formal evolution equation

ut = 1
2�u+ δ0u− αu2 on R× (0,∞),

u(·,0)= g(·),
where δ0 denotes the Dirac δ-function at zero. The precise meaning of the above
evolution equation is that u is the unique (nonnegative) solution to the integral
equation

u(·, t)=
∫ ∞
−∞

dy p(t, ·, y)g(y)+
∫ t

0
ds p(t − s, ·,0)u(0, s)

−
∫ t

0
ds

∫ ∞
−∞

dy p(t − s, ·, y)α(y)u2(y, s), t > 0,
(8)

with sup0≤s≤t ‖u(·, s)‖<∞ for all t > 0, where {p(t, x, y)= p(t, x − y); t > 0,
x, y ∈R} denote the Brownian transition densities. Xsin is then determined by its
Laplace functional as in (3), but with u from (8). The corresponding expectations
will be denoted by {Esin

µ , µ ∈Mf }.
In [7] the following result is proved for α = 1 (the proof for general α > 0 is

virtually identical to the proof given in [7]):

THEOREM EF. For all bounded continuous g: R �→R+ and µ ∈M(R),

lim
t↑∞e

−t/2Esin
µ 〈Xsin

t , g〉 = 〈e−|x|,µ〉〈e−|x|, g〉.(9)

Note that in this (nonregular) setting, the number 1/2 and the function x �→
e−|x| play the role of λc and φ (= φ̃). Note also that 〈e−2|x|,1〉 = 1; that is,
x �→ e−|x| has already been “normalized.”

An obvious but important fact is recorded in the following remark.
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REMARK 5 (“Overscaling”). By Theorem P(i) and the Markov inequal-
ity, for the (L,β,α;Rd)-superdiffusion X we have limt↑∞〈e−ρtXt , g〉 = 0
in probability if ρ > λc, provided X0 ∈ Mc. Similarly, using Theorem EF,
limt↑∞〈e−ρtXsin

t , g〉 = 0 in probability if ρ > 1/2, provided X0 ∈M(R).

Motivated by these results and a proposed problem in [7] (see Remark 3 in
that paper), we ask the following natural questions. Let the (L,β,α;Rd)-super-
diffusion X satisfy the condition in (ii-b) of Theorem P. Does the rescaled process
e−λctXt itselft have a limit in law for any X0 ∈ Mc? Is the same true for the
rescaled process e−t/2Xsin

t for any X0 ∈M(R)?
To answer these questions, we first invoke the definition of local extinction.

DEFINITION 6 (Local extinction). A measure-valued path X exhibits local
extinction if Xt(B) = 0 for all sufficiently large t , for each ball B . The measure-
valued process X corresponding to Pµ is said to possess this property if it is true
with Pµ-probability 1.

Roughly speaking, local extinction means that the support of the measure-
valued process leaves any given compact set in finite time.

REMARK 7 (Process property). In [8, 13] it was shown that, for fixed L, β
and α, if the property in Definition 6 holds for some Pµ, µ ∈Mc with µ �= 0, then
it in fact holds for every Pµ, µ ∈Mc.

Local extinction can be characterized in terms of L and β (see [13], Theorem 6
and Remark 1).

LEMMA 8 (Spectral condition for local extinction). The (L,β,α;Rd)-super-
diffusion X exhibits local extinction if and only if there exists a (strictly) positive
solution u to the equation (L+ β)u= 0 on Rd , that is, if and only if λc ≤ 0.

REMARK 9 (Ergodicity and local extinction). Let f : R+ → R+. Using
Lemma 8, it immediately follows that if λc ≤ 0, we have f (t)〈Xt, g〉 → 0 as
t→∞ a.s. for any g ∈ C+c and X0 ∈Mc, no matter how “large” f is.

Nevertheless, the situation is completely different when replacing g ∈ C+c
by g ∈ C+b . For the case when µ ∈ Mc but g = 1, the condition λc ≤ 0
(local extinction) does not contain enough information about the behavior of
the total mass. To elucidate this point, consider the following example. Fix
β,α > 0 and take an L with λc(L) ≤ −β corresponding to a conservative
diffusion. Let X denote the corresponding superdiffusion and let X∗ denote the
superdiffusion where L is replaced by 1

2� (supercritical super-Brownian motion).
Then λc(

1
2� + β) = β but for X we have λc(L + β) ≤ 0. Nevertheless, the
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processes ‖X‖ and ‖X∗‖ have the same law, because the branching is independent
of the motion process and “no mass is lost” due to the conservativeness of the
diffusion corresponding to L. (See the argument preceding formula (1.4) in [13].)
Therefore ‖X‖ grows exponentially in expectation in this case. On the other hand,
the (sub)critical super-Brownian motion exhibits local extinction too but its total
mass is constant (resp. tends to zero) in expectation.

Last, we mention that the case when λc ≤ 0 and µ does not belong to Mc but
rather is σ -finite has also been studied in the literature. The simplest case is critical
super-Brownian motion, that is, L = 1

2�, β = 0 and 0 < α = const. In this case
λc = 0. For the ergodic behavior of this process under different, and even mixed
starting measures, see [2]. For (L,β,α,Rd)-superdiffusions see [14].

In the sequel we always assume that λc > 0, that is, that the (L,β,α;Rd)-
superdiffusion under consideration does not exhibit local extinction. (As already
mentioned in this subsection, in the singular setting the number 1/2 plays the role
of λc.)

1.3. Scaling limits for superdiffusions. In this paper we prove the existence
of the scaling limits in the case of (L,β,α;Rd)-superdiffusions and in the case
of the single point source as well, under the assumption that λc(L+ β) > 0 and
that the condition in (ii-b) of Theorem P (product criticality) holds. In addition, we
assume that α is not “too large.” In fact we are able to replace Mc and M(R) by
two families of measures, each satisfying an integrability assumption only. (See
Theorems 1 and 2 below.)

As is usual in the analysis of nonlinear phenomena, we use a geometric
approach to (5). For a continuous function u define the weighted norm ‖u‖φ−1 =
supx ‖u(x)φ−1(x)‖, where φ is the ground state of L + β − λc. Under certain
conditions guaranteed by Theorem 1 or 2 below, we prove in Lemma 20 (Section 3)
the existence of a special smooth curve u = ψ(σ), σ ∈ [0,∞), in the space of
nonnegative functions bounded in the norm ‖ · ‖φ−1 , such that ψ(0) = 0 and
ψ ′(0)= φ and that the curve is invariant under the positive time shift u(0) �→ u(t)

defined by (5). Thus, the curve emanates from zero and is tangent at zero to
the one-dimensional invariant (with respect to the semigroup {Tt }t≥0) subspace,
spanned by φ. We prove that this curve is uniquely defined by the condition that
for any point u(0)= g =ψ(σ0) on the curve we have

u(t)=ψ(σ0e
λct ),(10)

where u(t) is the unique nonnegative solution to (5), bounded in the ‖u‖φ−1 -norm
at all t . This condition means that the curve is parametrized in such a way that (5)
restricted to the invariant curve becomes linear: σ̇ = λcσ .

Since our invariant curve u = ψ(σ) is defined uniquely by the nonlinear
equation (5), it is quite legitimate to formulate the results in terms of the
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function ψ , as we do below (note that our proof of existence of the invariant curve
in Lemma 20 is constructive and gives an algorithm for the computation of the
function ψ). In essence, Theorems 1 and 2 illustrate one of the standard ideas
of local nonlinear analysis: the analogy between invariant subspaces of linearized
evolution equations and invariant curves of nonlinear equations.

Before stating our main result we introduce additional notation.

NOTATION 10. For 0≤ g measurable, define the following space of measures:

M(g) := {µ is a measure on Rd : 〈µ,g〉<∞}.

We now state our main result.

THEOREM 1 [Scaling limit for (L,β,α;Rd)-superdiffusions]. Let X be
the (L,β,α;Rd)-superdiffusion with L,β,α as in the paragraph preceding
Notation 1. Let 0 < λc, where λc denotes the generalized principal eigenvalue of
L+β on Rd . Assume that the condition in (ii-b) of Theorem P (product criticality)
holds. In addition, assume that αφ is bounded from above.

Then, for any X0 = µ ∈M(φ), there exists a nonnegative nondegenerate ran-
dom variable Nµ such that, for all g ∈C+c ,

lim
t↑∞e

−λct 〈Xt, g〉 =Nµ〈φ̃, g〉 in law.(11)

Moreover, under the normalization 〈φ, φ̃〉 = 1, the law of Nµ is determined via its
Laplace transform as follows:

Ee−σNµ = exp〈µ,−ψ(σ)〉, σ > 0,(12)

where σ �→ ψ(σ) is the invariant curve defined by (10). Furthermore,

ENµ = 〈µ,φ〉.(13)

In particular, P(Nµ <∞)= 1.
If we assume in addition that φ is bounded away from zero, then

lim
t↑∞ e

−λctXt (dx)=Nµφ̃(x) dx in law.(14)

REMARK 11 (Joint distribution). The reader can easily check that the
following (apparently stronger) “vector formulation” is in fact equivalent to (11):
For any n ∈N and any collection of C+c (Rd)-functions (g1, . . . , gn),

lim
t→∞ e

−λct (〈Xt, g1〉, . . . , 〈Xt, gn〉)=Nµ(〈φ̃, g1〉, . . . , 〈φ̃, gn〉) in law.

An interpretation of Theorem 1 will be given in the next subsection.
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REMARK 12. It is not hard to show that (11) implies that

P(Nµ = 0)≥ Pµ(‖Xt‖ = 0 for all large t’s).

(We defer the proof to the next subsection, because we will need the concept of
the h-transform for superprocesses defined in that subsection.) The right-hand-
side probability, that is, the probability of finite time extinction, is positive for all
µ ∈Mc (see [8], Theorem 3.1), and consequently P(Nµ = 0) > 0 for all µ ∈Mc.

REMARK 13 (Example for invariant curve). When α and β are positive
constants and L, α and β satisfy the conditions of Theorem 1, a straightforward
computation (left to the reader) gives that

ψ(σ)= βσ

β + ασ , σ ≥ 0.

We continue with two proposed problems.

PROBLEM 14. Is it true in general that

P(Nµ = 0)= Pµ(‖Xt‖ = 0 for all large t’s)?

(Compare [1], Theorem III.7.2, for nonspatial branching processes.)

PROBLEM 15. What can we say about the asymptotic behavior of X in the
case when L+ β − λc is subcritical or L+ β − λc is critical but 〈φ, φ̃〉 =∞ [case
(ii-a) in Theorem P]?

REMARK 16 (Supercritical super-Brownian motion). The simplest case of
Problem 15 is when X corresponds to the quadruple (1

2�,β,α;Rd), d ≥ 1, with
α,β positive constants (supercritical super-Brownian motion). Here λc = β and

1
2�+ β − λc = 1

2�.

Since φ = φ̃ ≡ 1, d ≥ 1, the operator 1
2� either is critical but not product-critical

(d ≤ 2) or is subcritical (d ≥ 3).
In the forthcoming paper [9] we will prove that, for g ∈C+c ,

lim
t↑∞(2πt)

d/2e−βt〈Xt, g〉 =Z1〈dx,g〉 in law,

where Z is the total mass process of the critical super-Brownian motion
corresponding to (1

2�,0, α/β;Rd) and Z starts with ‖X0‖. Z is also known as
Feller’s diffusion. In fact (see, e.g., [13], page 239) Z is the diffusion process

corresponding to the operator α
β
x d2

dx2 on [0,∞), where 0 is a cemetery state [or,
equivalently, it is the unique strong solution of the stochastic differential equation:

dZt =
√

2
α

β
Zt dwt, Z0 = ‖X0‖,
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where w = (wt )t≥0 is the Brownian motion on the real line]. In [9] we will also
improve and generalize the main result of the present article.

Finally, we state a theorem analogous to Theorem 1 for the superdiffusion Xsin

of Theorem EF (super-Brownian motion with an additional single point source).

THEOREM 2 (Scaling limit in the case of a single point source). Let Xsin be
the superdiffusion corresponding to the integral equation (8), and assume that
α(x) ≤Ke|x|, K > 0. For any X(0)= µ ∈M(exp−|x|), there exists a nonnegative
nondegenerate random variable Nµ with ENµ = 〈µ,e−|x|〉 satisfying that

lim
t↑∞e

−t/2Xsin
t (dx)=Nµe

−|x| dx in law.(15)

Furthermore, the law of Nµ is determined via its Laplace transform as in (12),
where σ �→ ψ(σ) is the invariant curve defined by (10) when replacing the
nonlinear equation (5) with (8), and using the formal substitution λc = 1/2.

1.4. An interpretation of our main theorem via reducing it to a particular case.
Before presenting an interpretation of Theorem 1, first recall the definition of the
h-transformed superdiffusion. (The h-transform for (L,β,α;Rd)-superdiffusions
was developed in [8].)

DEFINITION 17 (h-Transformed superdiffusion Xh). Let 0 < h ∈ C2,η and
consider the (L,β,α;Rd)-superdiffusion X. Define

Xh
t := hXt

(
i.e.,

dXh
t

dXt
= h

)
, t ≥ 0.(16)

Then Xh is the (Lh0, β
h,αh;Rd)-superdiffusion, where

Lh0 :=L+ a∇h
h
· ∇, βh := (L+ β)h

h
and αh := αh.(17)

Xh makes sense even if βh is unbounded from above (see [8], Section 2, for more
elaboration). Xh is called the h-transformed superdiffusion.

REMARK 18 (h-Transforms). (i) Lh0 is just the diffusion part of the usual
linear h-transformed operator Lh (see [12], Chapter 4).

(ii) The operators A(u) := Lu+ βu− αu2 and Ah(u) :=Lh0u+ βhu− αhu2

are related by Ah(u)= 1
h
A(hu).

REMARK 19 (Invariance under h-transforms). An obvious but important
property of the h-transform is that it leaves invariant the support process t �→
supp(Xt ) of X.
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We now give an interpretation of Theorem 1 using the transformed process
Xφ = φX as follows. First note that φ and φ̃ transform into 1 and φφ̃, respectively.
Hence, Theorem 1 states that, for Xφ

0 = ν ∈M,

lim
t↑∞ e

−λctXφ
t (dx)=Nφ

ν φφ̃ dx in law(18)

(cf. [1], Theorem III.7.1, for nonspatial branching processes). Recall that Xφ is
the (L

φ
0 , λc, αφ;Rd)-superdiffusion. (Note that βφ = λc is no longer spatially

dependent.)
Next, note that integrating against the function 1 in (18) yields

lim
t↑∞ e

−λct‖Xφ
t ‖ =Nφ

ν in law;(19)

that is, the total mass behaves like eλctNφ
ν as t→∞. Recall that λc is the average

mass creation at each point of Rd and note that, since φ transforms into 1, we have

ENφ
ν = ‖ν‖.

By (12) (applied for the φ-transformed setting) N
φ
ν depends on the whole

branching term λcu− αφu2, where αφ can be identified with the variance of the
offspring distribution (see [8], Appendix 1). It depends also on Lφ0 , that is, on the
motion process, which fact comes of course from the spatial dependence of the
branching.

Note also (see Appendix B) that by the product-criticality assumption, and by
the invariance of this property under h-transforms, Lφ0 corresponds to a positive
recurrent diffusion (loosely speaking, positive recurrence means that the diffusion
hits any fixed ball in finite expected time) which ergodizes with invariant measure
φφ̃ dx (see [12], Theorem 4.9.9). Putting this together with (19), the right-hand
side of the approximating formula

X
φ
t (dx)∼ eλctNφ

ν φφ̃ dx

can be interpreted as eλctNφ
ν being the total mass and φφ̃ dx being the limiting

distribution of the individual particle.
We close this section by proving Remark 12.

PROOF OF REMARK 12. It is enough to prove the inequality for Xφ , because
the probability of extinction is the same for X (starting with µ) and Xφ (starting
with ν = φµ), and also P(Nµ = 0)= P(Nφ

ν = 0). Using (18), we have

P(Nφ
ν = 0)= lim

s↑∞Ee−sN
φ
ν 〈φφ̃,1〉 = lim

s↑∞ lim
t↑∞Ee−s〈e−λctX

φ
t ,1〉

≥ Pµ(〈Xφ
t ,1〉 = 0 for all large t’s).

This completes the proof of the remark. �
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1.5. More general branching. In this subsection we consider superdiffusions
with more general branching mechanisms and generalize our main theorem for
that setup. To this end, first recall that in [8] the definition of (L,β,α;Rd)-super-
diffusion was extended for β’s which are not necessarily bounded from above but
rather satisfy the more general condition

λc = λc(L+ β) <∞.(20)

This extension relies on the fact that the h-transform with h = φ transforms
formally the quadruple (L,β,α;Rd) into the quadruple (Lφ0 , λc, αφ;Rd), which
corresponds to a superdiffusion X (since βh = λc <∞). Then the (L,β,α;Rd)-
superdiffusion X̂ can be defined by X̂ := 1

φ
X (where X starts at X0 = µ ∈Mc if

and only if X̂ starts at X̂0 = 1
φ
µ ∈Mc). X̂, however, is not M-valued in general

but rather σ -finite measure-valued. (See [8] for more elaboration.) In particular,
the appropriate topology for measures becomes the vague topology in place of the
weak one.

In fact, this construction can easily be generalized for (time-independent) local
branching, that is, for the case when instead of the quadratic nonlinearity in (5) we
have the more general nonlinearity of the form

f (x,u)= α(x)u2(x)+
∫ ∞

0
[e−ku(x) − 1+ ku(x)]n(x, dk).(21)

Here n is a kernel from Rd to [0,∞), that is, n(x, dk) is a measure on
[0,∞) for each x ∈ Rd , and n(·,B) is a continuous function on Rd for every
measurable B ⊆ [0,∞) (cf. [5], Sections 1.7–1.8). (In the original setting of [5]
only the measurability was required. We, however, prefer to work in this paper
with the spaces of continuous functions.) To be able to define the superdiffusion X̂
corresponding to L, β and f via an h-transform, we assume that 0 < αφ is
bounded from above and that n satisfies

sup
x∈Rd

∫ ∞
0
[k ∧ φ(x)k2]n(x, dk) <∞.(22)

Moreover, we assume that the convergence to the limit

lim
K→+∞

∫ ∞
K

kn(x, dk)= 0(23)

is uniform with respect to x on every compact subset of Rd . [This condition will
guarantee that the map x �→ f (x,u(x)) is continuous whenever u ∈C.]

The h-transform with h = φ takes the operator L + β into L
φ
0 + λc, while

f (x,u) transforms into

f φ(x,u)= αφ(x)u2(x)+
∫ ∞

0
[e−ku(x) − 1+ ku(x)]nφ(x, dk),
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where

nφ(x, dk) := 1

φ(x)
n

(
x,

dk

φ(x)

)
.

Note that, by (22), nφ satisfies

sup
x∈Rd

∫ ∞
0
(k ∧ k2)nφ(x, dk) <∞(24)

(and this integral converges uniformly with respect to x). Using this, along with
the fact that αφ is bounded from above by assumption, the φ-transformed mild
equation uniquely defines a superdiffusion X (see [5], Sections 1.6–1.8). Then
the superdiffusion X̂ can be defined in the usual way: X̂ := 1

φ
X. (Note that X̂ is

Mφ-valued for every starting measure in Mφ . In particular, if φ is bounded away
from zero, then X̂ is M-valued for every starting measure in Mφ .) Denote the
semigroup corresponding to Lφ0 + λc by {T φt }t≥0. It is immediately seen that X̂
corresponds to the mild equation

u(·, t)= Ttg −
∫ t

0
ds Tt−s

(
f

(
u(·, s))),(25)

where the linear semigroup {Tt }t≥0 is defined by

Tt (u) := φT
φ
t (u/φ), t ≥ 0,

and the nonlinearity f is defined by

f (x,u) := φ(x)f φ(x,u/φ).

(The h-transformed mild equation is defined whenever the initial function at t = 0
belongs to C+c – see [8] for further explanation for the case when n≡ 0.)

In fact, Theorem P and the remark preceding it are still true for this more
general setup. Our proof of Theorem 1 still works for this more general setup if [in
addition to (20), the boundedness of αφ and the product-criticality assumption of
the theorem] one requires that

sup
x∈Rd

∫ ∞
0
[φδ(x)k1+δ ∧ φ2(x)k2]n(x, dk) <∞ for some δ > 0.(26)

This will guarantee that the Hölder-type condition (32) in Lemma 25 is satisfied
for the nonlinearity f φ . Then Lemma 25 yields the existence of a unique smooth
invariant curve defined by (10) for the nonlinear equation (25).

We summarize the above in a proposition. Let us call the superdiffusion de-
scribed in this section the (L,β,f ;Rd)-superdiffusion. (The term “superdiffu-
sion” might suggest that the process has continuous trajectories; in fact, in the
general case, when f is not merely quadratic, X can have “jumps”.)
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PROPOSITION 20 [Scaling limit for (L,β,f ;Rd)-superdiffusions]. Let X be
the (L,β,f ;Rd)-superdiffusion with L as in the paragraph preceding Notation 1
and the nonlinearity f (x,u) given by (21) where (26) is satisfied. Let 0< λc <∞,
where λc denotes the generalized principal eigenvalue ofL+β on Rd . Assume that
the condition in (ii-b) of Theorem P (product criticality) holds. In addition, assume
that αφ is bounded from above.

Then, for anyX0 =µ ∈M(φ), there exists a nonnegative nondegenerate random
variable Nµ such that

lim
t↑∞ e

−λctXt (dx)=Nµφ̃(x) dx in law.(27)

(Here the convergence is with respect to the vague topology.)
Moreover, under the normalization 〈φ, φ̃〉 = 1, the law of Nµ is determined via

its Laplace transform as follows:

Ee−σNµ = exp〈µ,−ψ(σ)〉σ > 0,(28)

where σ �→ ψ(σ) is the invariant curve defined by (10) for the nonlinear
equation (25).

Furthermore,

ENµ = 〈µ,φ〉,(29)

and in particular, P(Nµ <∞)= 1.
If we assume in addition that φ is bounded away from zero, then X is M-valued

and (27) holds with respect to the weak topology.

Letting α ≡ 0 and choosing an appropriate n (see [5], Section 1.8), (21) has the
form

f (x,u)= c(x)u1+p, 0<p < 1,

with some nonnegative, nonzero continuous function c. In this case (23) and (26)
will be satisfied (with δ = p) if we assume that cφp is bounded from above.
(Alternatively, one can slightly modify the proof of Theorem 1 by writing u1+p in
place of u2 everywhere. Since f transforms into cφpu1+p under an h-transform
with h= φ, the proof goes through when assuming the boundedness of cφp.)

1.6. Outline. In Section 2 we present examples for Theorem 1. In Section 3
we state and prove two lemmas on invariant curves which play a key role in the
proofs. In Section 4 some preparations are made before turning to the proofs,
and we also state Theorem 3, an auxiliary result on the recurrence of diffusion
processes which we will use in the proof of our main theorem and which may be of
independent interest. Section 5 is devoted to the proofs of Theorems 1 and 2 and of
Proposition 20. Appendix A presents the proof of Theorem 3. Finally, Appendix B
collects some known auxiliary material on the criticality theory of second-order
elliptic operators.
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2. Examples. In this section we present applications of our main result for
three families of superdiffusions. In the first two examples the underlying motion
process (corresponding to the operator L) is recurrent; in the last example, it is
transient.

Our first example has actually been discussed in Section 1.4. In fact, as we
have seen, every superdiffusion X satisfying the conditions of Theorem 1 can
be h-transformed (with h = φ) into the type of superdiffusion of the following
example.

EXAMPLE 21 (Positive recurrent motion process, 0 < β = const). Let L
correspond to a positive recurrent diffusion and let 0< β = const. Finally, let α be
bounded from above. Then L+ β − λc = L, because λc(L)= 0 by the recurrence
property; and φ = 1. Furthermore, since the diffusion process is positive recurrent,
the operator L is product-critical (i.e., φ̃ ∈L1). Therefore, (14) holds for any finite
starting measure with λc = β .

To give a concrete example for a positive recurrent diffusion, let L correspond
to an Ornstein–Uhlenbeck process,

L= 1
2�− kx · ∇ on Rd, d ≥ 1,

where k > 0. [It is easy to see (cf. [13], Example 3, page 248) that φ̃(x) =
( k
π
)d/2 exp(−k|x|2).]

The next example can be considered as a smooth version of our Theorem 2.
(Recall that formally λc = 1/2 in that theorem.)

EXAMPLE 22 (Super-Brownian motion with compactly supported β). Let
L= 1

2� on Rd , d ≤ 2. Let β ∈ C+c be not identically zero. By the recurrence of
the one- and two-dimensional Brownian motions and by Theorem 4.6.3 in [13], we
have λc > 0. The criticality of L− λc follows by the recurrence of the Brownian
motion and by Theorem 4.6.7 in [13]. We now prove that φ ∈ L2(Rd) (product
criticality). To see this, first let d = 1. Note that φ satisfies (1

2�−λc)φ = 0 outside
a compact set and therefore φ(x)= const · exp(±√2λcx) for large |x|. By the so-
called minimal growth property at infinity (see [13], Theorem 7.3.8) it follows that
in fact φ(x)= const · exp(−√2λc|x|) for large |x|. The proof for d = 2 is similar:
using polar coordinates, it is easy to check that f (x) := exp(−√2λc|x|) satisfies
(1

2�− λc)f ≤ 0 outside a compact set. Putting this together with the fact that φ
satisfies (1

2�− λc)φ = 0 outside a compact set and the minimal growth property
of φ at infinity, we have that φ ≤ Kf for K large enough. Therefore, for both
d = 1 and d = 2, (11) holds in the present case, provided

α(x)≤K exp(
√

2λc|x|), K > 0,

and the starting measure µ=X0 satisfies 〈µ, exp(−√2λc|x|)〉<∞.
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Last, we present an example where L corresponds to a transient diffusion
process on Rd .

EXAMPLE 23. Let

L= 1
2�+ kx · ∇ on Rd, d ≥ 1,

where k > 0. (Note that the diffusion corresponding to L is transient.) Let β be
a constant satisfying β > kd . It is easy to see (cf. [13], Example 2, pages 247
and 266) that λc = β − kd and that L+ β − λc = L+ kd is product-critical with
φ(x) = exp(−k|x|2/2) and φ̃(x) = 1. Therefore, (11) holds with λc = β − kd ,
whenever the starting measure µ=X0 satisfies 〈µ, exp(−k|x|2/2)〉<∞ and

α(x)≤K exp(k|x|2/2), K > 0.

Note that, if β ≤ kd , the superdiffusion Xt exhibits local extinction for any
µ ∈Mc.

3. Two results concerning invariant curves. Let X be a Banach space and
let {Tt }t≥0 be a strongly continuous semigroup of bounded linear operators acting
on X. Let X+ ⊆X be a cone. Consider the equation

u(t)= Ttu(0)+
∫ t

0
Tt−s ◦ f (

u(s)
)
ds,(30)

for which we assume that it defines for any u(0) ∈X+ its semiorbit—a curve u(t),
t ≥ 0 in X+. We assume that f : X→X is smooth; that is, it is differentiable and
its derivative is bounded and uniformly continuous on bounded subsets of X. It is
easy to see in this case that the semiorbit u(t) defined by (30) is continuous with
respect to t and is smooth with respect to the initial condition u(0).

We also assume that

f (0)= 0, f ′(0)= 0(31)

and that for the derivative map F(u): du→ f ′(u) du we have

‖F(u)‖ ≤K‖u‖δ(32)

(in the usual operator-norm) for some positive constants K and δ and all small u.
It follows, in particular, that

‖f (u)‖ ≤K‖u‖1+δ.(33)

Concerning the linear semigroup Tt , we assume that it has an eigenvector φ,

Ttφ = eλtφ,(34)

for some λ > 0, and that φ ∈ int(X+) [here int(X+) denotes the interior of the
cone X+ in norm-topology]. Since the vector φ is defined only modulo a scalar
factor, we normalize it by ‖φ‖ = 1. We also assume that, for some constantM > 0,

‖Tt‖ ≤Me(λ+ε)t ,(35)
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where (and this is a crucial assumption)

ε < λδ,(36)

and δ is the exponent in the Hölder-type estimate (32).

DEFINITION 24. A curve Q in X is called invariant with respect to the
system (30) if for any point u(0) on Q its positive semiorbit u(t) lies in Q.

LEMMA 25 (Existence of a particular invariant curve). Under (31)–(36), there
exists a unique smooth invariant curve Q lying in X+, parametrically written as
u= ψ(σ), σ ∈ [0,∞), where ψ(0)= 0, ψ ′(0)= φ (i.e., Q starts at zero and it is
tangent at zero to the eigenvector φ of the linear semigroup), such that for any σ0,
for the point u(0)=ψ(σ0) on Q, its semiorbit is given by

u(t)=ψ(eλtσ0).(37)

REMARK 26. Note that for any point u(0) = ψ(σ0) on Q there exists
a negative semiorbit defined [just by (37)] for any t ≤ 0, such that it tends to zero
and is tangent at zero to φ as t→−∞.

REMARK 27. Note that we parametrize the curve Q in such a way that the
system becomes linear on Q: σ̇ = λσ .

REMARK 28. Although our proof is more or less standard (see [15] for
a comparison), our invariant curve result itself is not a standard one because we
do not require the usual spectral gap assumption [recall that ε ≥ 0 in (35)]. Note
that an analogous statement (in a different setting) can be found in [6].

PROOF OF LEMMA 25. It is enough to define the function ψ at small σ only
and show that ψ(σ) lies in X+ for small σ ’s: given any point u(0) = ψ(σ0) on
the curve Q with an arbitrarily small σ0 the function ψ is defined at all larger σ
by (37), because the positive semiorbit u(t) of u(0) is defined at all t ≥ 0 by
assumption.

So, take any sufficiently small σ and consider the equation

v(t)= σφ+ e−λt
∫ t

−∞
Tt−s ◦ f (

eλsv(s)
)
ds,(38)

where t ≤ 0. Here, the unknown is a bounded continuous function v: [−∞,0]
→X. We will find it as a fixed point of the operator v �→ v̄ defined by

v̄(t)= σφ + e−λt
∫ t

−∞
Tt−s ◦ f (

eλsv(s)
)
ds, t ∈ [−∞,0].(39)

Conditions (31)–(36) imply (see below) that for all sufficiently small σ it is
a smooth, contracting operator which maps the set V of continuous functions v(t)
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bounded, say, as ‖v(t)‖ ≤ 2|σ |, into V itself. Therefore, by the Banach principle
of contraction mappings, it has a uniquely defined fixed point in V , which depends
on σ smoothly. Equivalently, (38) has a unique solution v∗ for all small σ which
is uniformly bounded for all t ≤ 0:

sup
t≤0
‖v∗(t;σ)‖ ≤ 2|σ |.(40)

Note that v ≡ 0 solves (38) at σ = 0. Hence, by uniqueness,

v∗(t;0)≡ 0.(41)

Since v∗(t;σ) is a fixed point of a smooth contracting operator, its derivative
∂
∂σ
v∗ is found as the unique solution of the equation obtained by the formal

differentiation of (38):

∂

∂σ
v(t)= φ +

∫ t

−∞
Tt−s ◦ eλsf ′(eλsv∗(s;σ)) ∂

∂σ
v(s) ds.(42)

By (41) and (42) we immediately have

∂

∂σ
v∗(t;0)≡ φ.(43)

Now we define the function u∗(t;σ) ≡ eλtv∗(t;σ). By uniqueness of v∗, the
function u∗ is defined as the unique (bounded by 2|σ |eλt ) solution of

u(t)= σeλtφ +
∫ t

−∞
Tt−s ◦ f (

u(s)
)
ds(44)

[compare this with (38)]. Recall that we define the function v∗ at nonpositive t
only, so the function u∗ is, by now, defined only at t ≤ 0 as well. We define u∗(t;σ)
at t ≥ 0 as the positive semiorbit of the point u∗(0;σ) defined by the system (30).
Comparing (30) and (44) shows that the function u∗ satisfies (44) at all t (we take
into account that Ttφ = eλtφ by assumption).

Now take any τ > 0 and consider the function u∗∗(t;σ) = u∗(t + τ ; e−λτσ ).
It is immediately seen that, once u∗ satisfies (44), the function u∗∗ satisfies (44) as
well. Therefore, by uniqueness, u∗∗ ≡ u∗ at all nonpositive t and, in particular,

u∗(0, σ )≡ u∗(τ ; e−λτσ )(45)

for any τ ≥ 0. By definition, this means that the time τ shift [by the semiflow
defined by (30)] of the point u∗(0; e−λτσ ) is the point u∗(0, σ ). Thus, if we define
the sought function ψ as ψ(σ) = u∗(0, σ ) [≡ v∗(0, σ )], we will have that the
smooth curve u=ψ(σ) is invariant with respect to system (30) and satisfies (37).

Note also that ψ(0) = 0 and ψ ′(0) = φ, according to (41) and (43). Thus,
this invariant curve will indeed be tangent at zero to the eigenvector φ. Since
φ ∈ int(X+) by assumption, it also follows that ψ(σ) lies in X+ for all small σ ’s.
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To show the uniqueness of the curve Q: u = ψ(σ) satisfying (37) and
ψ ′(0)= φ, note that if we take any point u(0) on Q and consider its negative
semiorbit u(t)t≤0 defined by (37), then u(t) must satisfy (44), whose solution is
unique as we just have shown [the required boundedness of u(t) by 2σeλt follows
from (37) due to the assumed boundedness of ψ ′(0)].

To complete the proof it remains to check that the operator (39) is smooth and
contracting on the set V : {v(s)s∈(−∞,0],‖v(s)‖ ≤ 2|σ |} and maps this set into
itself. First, note that, in (39),

‖v̄(t)‖ ≤ |σ | +
∫ t

−∞
‖Tt−s‖e−λt

∥∥f (
eλsv(s)

)∥∥ds
(recall that ‖φ‖ = 1) and, by virtue of (33) and (35),

‖v̄(t)‖ ≤ |σ | +MKeεt
∫ t

−∞
e(λδ−ε)s‖v(s)‖1+δ ds.

Hence,

sup
t≤0
‖v̄(t)‖ ≤ |σ | + MK

λδ− ε
(

sup
s≤0
‖v(s)‖

)1+δ

(recall that ε < λδ by assumption). It is clear from this estimate that, for all σ small
enough, if sups≤0 ‖v(s)‖ ≤ 2|σ |, then ‖v̄(t)‖ ≤ 2|σ | at all t ≤ 0, which means that
the operator under consideration indeed maps the set V into itself.

The smoothness of this operator with respect to σ is obvious. To prove the
smoothness with respect to v we must check that the linear operator

�v(t) �−→
∫ t

−∞
Tt−se−λ(t−s)f ′

(
eλsv(s)

)
�v(s) ds(46)

obtained by formal differentiation of (39) is well defined and bounded on the space
of uniformly bounded �v(s)s∈(−∞,0], provided v(s) ∈ V . This is straightforward.
In fact, by (35) and (32), we obtain that∥∥∥∥∫ t

−∞
Tt−se−λ(t−s)f ′

(
eλsv(s)

)
�v(s) ds

∥∥∥∥
≤M

∫ t

−∞
eε(t−s)K(2|σ |)δeλδs‖�v(s)‖ds

≤ MK

λδ − ε (2|σ |)
δ sup
s∈(−∞,0]

‖�v(s)‖,

and we see that (46) for the derivative of (39) defines a bounded linear operator
indeed [one may also check in the same way that the higher order derivatives
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of (39) are bounded multi linear operators]. Moreover, the norm of this operator is
small (less than 1) for small σ , giving the required contraction. �

The following result is a version of the well-known λ-lemma from the theory
of finite-dimensional dynamical systems (see [15]; an infinite-dimensional version
can be found in [16]). The advantage of our result is that we do not assume the
spectral gap condition.

LEMMA 29 (Existence of the scaling limit). For some initial condition u0 let
the following limit relation hold:

lim
t↑∞ e

−λtTtu0 = σφ.(47)

Then there exists the limit

lim
t↑∞u(t; e

−λtu0)=ψ(σ),(48)

where u(t; ξ) denotes the solution of (30) starting with the initial condition
u(0) = ξ and σ �→ ψ(σ) is the equation of the invariant curve Q constructed
in Lemma 25.

PROOF. By continuity of the nonlinear semigroup defined by (30), it is enough
to prove that, for some small ρ > 0,

lim
t↑∞u(t;ρe

−λtu0)= ψ(σρ),(49)

because if we denote θ =− 1
λ

lnρ > 0, then u(t + θ; e−λ(t+θ)u0) is the time θ shift
of u(t;ρe−λtu0) and ψ(σ) is the time θ shift of ψ(σρ) [see (37)].

Write

v(t)= e−λtu(t + τ ; e−λτρu0), t ∈ [−τ,0].
By (30),

v(t)= ρe−λ(t+τ)Tt+τ u0+
∫ t

−τ
e−λtTt−s ◦ f (

eλsv(s)
)
ds.(50)

Let v∗(t;ρσ) be the solution of (38), that is,

v∗(t)= ρσφ +
∫ t

−∞
e−λtTt−s ◦ f (

eλsv∗(s)
)
ds.(51)

We will prove that

v(t)− v∗(t)→ 0(52)
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as τ →+∞, for any fixed t ≤ 0. Then putting t = 0 in (52) will give (49) and
finish the proof of the lemma. In fact, we will prove that

sup
t∈[−τ ′,0]

‖v(t)‖→ 0,(53)

for an appropriately chosen τ ′ which tends to +∞ as τ→+∞.
First, note that it follows from the existence of the finite limit (47) that e−λsTsu0

is uniformly bounded for all s ≥ 0:

sup
s≥0
‖e−λsTsu0‖ ≤L(54)

for some finite L. It is now easy to show that

‖v(t)‖ ≤ 2Lρ(55)

for all τ ≥ 0 and t ∈ [−τ,0], provided ρ is small enough. Indeed, this holds true
at t =−τ for any τ , and let t0 ≤ 0 be the maximal value of t for which (55) is still
valid. If t0 < 0, this means that ‖v(t0)‖ = 2Lρ. Now, by (54), using estimates (35)
and (33), we have, from (50),

‖v(t0)‖ ≤ Lρ +MK(2Lρ)1+δeεt0
∫ t0

−τ
e(λδ−ε)s ds ≤ Lρ

(
1+ 2MK

λδ − ε (2Lρ)
δ

)
.

If ρ was taken small enough, we get that ‖v(t0)‖ is strictly less than 2Lρ; hence
t0 = 0, which proves the claim.

Now take any τ ′ < τ such that τ ′ →+∞ as τ →+∞. We have∥∥∥∥∫ −τ ′

−τ
e−λtTt−s ◦ f (

eλsv(s)
)
ds

∥∥∥∥
≤MK

(
sup
s≤0
‖v(s)‖

)1+δ
eεt

∫ −τ ′

−τ
e(λδ−ε)s ds.

(56)

By (36) and (55), this integral tends to zero as τ ′ →+∞, uniformly for any t ≤ 0.
The same conclusion can be made with respect to the integral∫ −τ ′

−τ
e−λtTt−s ◦ f (

eλsv∗(s)
)
ds :

the estimate like (56) follows from (35) and (33), and the uniform boundedness
of v∗ was proven in Lemma 1 [see (40); note that the upper bound on the norm
on v∗ is also linear in ρ in the present notation; i.e., v∗ also satisfies (55) with an
appropriately chosen L].

Hence, for any t ∈ [−τ ′,0] we have the following from (50) and (51) [we use
estimates (32), (55) and (35)]:

‖v(t)− v∗(t)‖ ≤ ξ(τ ′)+MK(2Lρ)δ
(∫ 0
−τ ′ e(λδ−ε)s ds

)
× sup
s∈[−τ ′,0]

‖v(s)− v∗(s)‖ + o(1)τ ′→+∞,
(57)
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where

ξ(τ ′)= ρ sup
s∈[τ−τ ′,τ ]

‖e−λsTsu0− σφ‖.

Since ξ(τ ′)→ 0 as τ −τ ′ →+∞ [see (47)], it immediately follows from (57) that
at sufficiently small ρ the sought relation (53) holds, provided τ ′ is chosen such
that τ ′ → +∞, τ − τ ′ →+∞. �

Note that we never used in the proof of Lemma 29 (unlike in the proof
of Lemma 25) the completeness of the space X. Therefore, we may change
Lemma 29 (in order to adapt it to the particular problem we consider in this paper)
as follows.

LEMMA 30 (Scaling limit in a weaker norm). For any norm ‖ · ‖1 which is
weaker than the original norm ‖ · ‖0 in X, if the (linear) limit relation (47) holds in
the norm ‖ · ‖1 for some initial condition u0, then the (nonlinear) limit relation (48)
holds in the same norm, provided the following estimates are valid:

‖F(u)‖0 ≤K‖u‖δ0,(58)

‖F(u)‖1 ≤K‖u‖δ0,(59)

‖Tt‖0 ≤Meλt,(60)

‖Tt‖1 ≤Me(λ+ε)t(61)

with ε < λδ, where F(u) is the derivative map from (32).

PROOF. The proof repeats the proof of Lemma 29 with the following
modification: the estimate (55) (in the original ‖ · ‖0-norm) now follows directly
from (60). Then, it follows from (55), (59) and (61) that all the estimates of
Lemma 29 remain unchanged in the norm ‖ · ‖1. Finally, the required existence
and uniform boundedness (in the original norm ‖ · ‖0 and, hence, in the weaker
norm ‖ · ‖1) of the solution v∗ of the integral equation (38) are given by
Lemma 25. �

4. Some preliminary results for the proof of the main theorem. The
proofs of Theorem 1 and Proposition 20 are based on two propositions (see
Propositions 32 and 34 below) and on two lemmas stated and proved in Section 3
(Lemmas 25 and 30). We also use the following simple fact.
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LEMMA 31. For any 0< γ : Rd→R continuous define the γ -norm by

‖f ‖γ := ‖γf ‖,
on {f continuous :γf is bounded}. If γ ∈ C0 and if F is a uniformly bounded
family of functions, then the norm ‖ · ‖γ restricted to F is compatible with the
topology of uniform convergence on compacts.

PROOF. First, assume that fn tends to zero uniformly on compacts as n ↑∞.
Since γ ∈ C0 and by assumption ‖fn‖ ≤K, n≥ 1, for some K > 0, one can take
a large ball B ⊂Rd (depending on ε) such that

sup
x∈Rd\B

γ (x)fn(x) < ε, n≥ 1.

Since γfn also tends to zero uniformly on compacts as n ↑ ∞, we can pick an
N =N(ε) ∈N such that

sup
x∈B

γ (x)fn(x) < ε, n >N.

Then, altogether we have

sup
x∈Rd

γ (x)fn(x) < ε, n >N,

proving the γ -norm convergence for fn.
Conversely, assume that fn tends to zero in γ -norm and fix an arbitrary

nonempty ball B ⊂Rd . We have

sup
x∈B

fn(x)≤ C(γ,B) sup
x∈B

γ (x)fn(x)

with some C(γ,B) > 0. The right-hand side of the last formula tends to zero as
n ↑ ∞ by assumption, thus the same is true for the left-hand side. This proves
uniform convergence on compacts for fn. �

Let {St}t>0 denote the semigroup corresponding to the operator L + β − λc
on Rd (and acting on Cb). Note that

St = e−λctTt ,

where {Tt }t>0 is the semigroup defined in (6).

PROPOSITION 32 (Convergence for S
φ
t g in γ -norm). Assume that the

condition in (ii-b) of Theorem P is satisfied, and furthermore let 0< γ ∈ C0. Then,
for any g ∈ Cb,

lim
t↑∞S

φ
t g = 〈g,φφ̃〉 in ‖ · ‖γ .
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PROOF. Since L+ β − λc is critical on Rd , so is the h-transformed (h = φ)
operator (L+β−λc)φ . Let 0< χ and χ̃ denote the eigenfunctions corresponding
to the latter operator and to its adjoint, respectively. It is easy to see that χ = 1 and
χ̃ = φφ̃. In particular 〈χ, χ̃〉 = 〈φ, φ̃〉. Note that the φ-transformed operator

(L+ β − λc)φ =L+ a∇φ
φ
· ∇

has no zeroth-order part (it is a diffusion generator). Using this along with the
second part of [12], Theorem 4.4.9, we have that, for any g ∈Cb given,

lim
t↑∞S

φ
t g = 〈g,φφ̃〉,

in the topology of uniform convergence on compacts. Our goal is to verify that this
convergence holds also in ‖ · ‖γ . Using Lemma 31, it is enough to show that, for
any g ∈Cb given,

F := {(Sφt )g}t≥0

is a uniformly bounded family of functions. Recalling that the φ-transformed
operator has no zeroth-order part and denoting the corresponding expectations by
{Eφx }x∈Rd we have

(S
φ
t g)(x)= Eφx g(Yt ),

where Yt is the corresponding diffusion process. It then follows that

‖Sφt (g)‖ ≤ ‖g‖.
This completes the proof of the proposition. �

We now choose a particular function γ as follows. Let h be a positive function
satisfying the following:

1. (L+ β − λc)φh≤ 0 outside some compact set;
2. h(x)→∞ as |x| →∞.

The existence of such an h follows by the recurrence of the diffusion
corresponding to the operator (L+β−λc)φ and from the following theorem which
we feel is of independent interest. (For the proof see Appendix A.)

THEOREM 3 (Necessary condition for recurrence). Let L be as in (1),
and assume that it corresponds to a recurrent diffusion process Y . Given any
positive R1 and any function p(x) which tends to infinity as |x| → +∞, there
exists a supersolution on |x| ≥R1, that is, a positive C2,η-function U(x) such that

LU ≤ 0 on |x| ≥R1,(62)
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converging to infinity as |x|→+∞, asymptotically slower than p:

lim
r→+∞ inf|x|=r U(x)=∞, lim

r→+∞ sup
|x|=r

U(x)

p(x)
= 0.

The existence of such a supersolution growing to infinity is known as a sufficient
condition for the recurrence of L (see [12], Theorem 6.1.2). Our result here
shows that this is also a necessary condition for recurrence [earlier it was known
only in the one-dimensional case—then the statement follows easily from [12],
Theorem 5.1.1(i)].

REMARK 33. By the previous theorem, h can be chosen to be arbitrarily
slowly growing. This fact is used in the proof of Theorem 1.

Using the above h, we define γ as follows. Let

γ := 1/ĥ, where ĥ= h+K(63)

and K is a positive constant to be fixed later. Then, obviously, 0< γ ∈ C0.

PROPOSITION 34 (Estimate for Sφt in γ -norm). Assume that L + β − λc is
critical with the ground state φ and let {St}t>0 be as in Proposition 32. For any
ε > 0,

‖Sφt ‖γ ≤ eεt , t > 0,(64)

if K =Kε is large enough [K is defined in (63)].

PROOF. By a simple computation, the statement is equivalent to

‖Sφĥt ‖ ≤ eεt , t > 0.(65)

Recall that (L+ β − λc)φ has no zeroth-order part. Since the zeroth-order term of

(L+ β − λc)φĥ is

1

ĥ
(L+ β − λc)φĥ= 1

ĥ
(L+ β − λc)φh=: V,

we have that

V ≤ 0

outside a compact set by the first assumption on h. Also, if K is large enough, we
can obviously guarantee that

V ≤ ε on Rd .

The estimate under (65) now follows from this and (6) with g = 1 and β replaced

by V (but now with E corresponding to Lφĥ0 ). �
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5. Proof of Theorems 1 and 2 and Proposition 20.

PROOF OF THEOREM 1. The strategy of the proof is as follows. We will show
that the scaling limit exists in law for Xφ . More precisely, we will prove that, for
µ ∈M1/γ with γ given by (63),

lim
t↑∞E

φ
µ exp〈e−λctXφ

t ,−g〉 = E exp〈Zµ,−g〉, g ∈ C+b ,(66)

with some random measure Zµ having the form Zµ = N
φ
µφφ̃ dx, where the

random variable Nφ
µ is determined by (12) [or by (28) for a general nonlinearity]

and enjoys the properties stated in the theorem [note that in (12) or (28) the curve
σ �→ ψ(σ) is now replaced by a new curve corresponding to the φ-transformed
dynamics, i.e., to T

φ
t and αφ or f φ]. Having shown this, it will follow from

the definition of the h-transform that (11) holds for X starting with the measure
ν := 1

φ
µ [a simple computation shows that (12) holds for the original curve

σ �→ ψ(σ) when going back to X]. That is, when φ(h+K)ν [where h,K are
from (63)] is a finite measure. Putting this together with the fact that h can be
chosen to be arbitrarily slowly growing by Theorem 3, we will have that (11)
holds true whenever ν ∈Mφ . It will also follow that (66) is satisfied for X in place
of Xφ and C+b replaced by the class of all continuous g’s with g ≤ const · φĥ =
const · φ(h + K). In particular, (66) will hold for Xφ replaced by X, provided
that φ is bounded away from zero [recall that h(x)→∞ as |x| →∞]. This will
prove (14).

Now we show (66). To do this, let us summarize what we already know about
the nonlinear semigroup corresponding to Xφ . First, concerning the linear part
of the semigroup, T φt , we know that the rescaled semigroup Sφt corresponding to
(L+ β − λc)φ has the following properties:

(a) (L+ β − λc)
φ is a diffusion generator, that is, (β − λc)

φ = 0, and the ground
state φ transforms into 1.

(b) By Proposition 32, for any g ∈ Cb, Sφt g has the limit 〈g,φφ̃〉 in ‖ · ‖γ .

(c) By Proposition 34, Sφt satisfies the exponential estimate under (64). Also,
‖Sφt ‖ ≤ 1 since {Sφt }t≥0 is a diffusion semigroup (see the end of the proof
of Proposition 32).

In addition to the linear part of the semigroup, we have to control the nonlinear
term

f φ(u)= αφu2.

Here αφ = αφ. Thus, for the derivative map

F(u): du �→ 2αφudu,
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we have (recall that ‖ · ‖ denotes the supremum norm)

‖2αφudu‖γ ≤ ‖2αφu‖‖du‖γ .
That is,

‖F(u)‖γ ≤ ‖2αφu‖ ≤ 2‖αφ‖‖u‖.
By the same computation, also

‖F(u)‖ ≤ 2‖αφ‖‖u‖.
Altogether, working with the nonlinear dynamics corresponding to Xφ and

with ‖ · ‖γ , we are in the position to implement the invariant curve method
of Section 3. More precisely, we are going to apply Lemma 30 with X = Cb,
X+ = C+b , ‖ · ‖0 = ‖ · ‖ and ‖ · ‖1 = ‖ · ‖γ ; where furthermore Tt and φ are

replaced by T φt and the function 1. [Clearly, 1 ∈ int(C+b ) in sup-norm topology.]
Let 0 ≤ u(t, g, ·) denote the solution of (5) or (25) [but L,β and f replaced
with (L+ β − λc)

φ, (β − λc)
φ = 0 and f φ , respectively] with u(0, ·)= g(·). Let

furthermore σ �→ ψ(σ) be the invariant curve constructed in Section 3. Working
with ‖ · ‖γ and using the discussion at the beginning of this paragraph along with
Lemma 30 of Section 3, (3) and (5) or (25) applied to the φ-transformed setting
yields

E
φ
µ exp〈e−λctXφ

t ,−g〉 = exp〈µ,−u(t, e−λctg)〉
= exp〈µ/γ,−γ u(t, e−λctg)〉
→ exp

〈
µ/γ,−γψ(〈g,φφ̃〉)〉 as t→∞,

provided µ ∈M1/γ , γg ∈C+b (and in particular for g ∈C+b ). That is,

Eφ
µ exp〈e−λctXφ

t ,−g〉 −→ exp
〈
µ,−ψ(〈g,φφ̃〉)〉 as t→∞.

Now let us fix a µ ∈M1/γ . Note that the functional

Cµ(g) := exp
〈
µ,−ψ(〈g,φφ̃〉)〉

defined on C+b is positive definite (for the definition of positive definiteness
see, e.g., the proof of Theorem A in [8]), because it is the pointwise limit of
functionals possessing this property. Moreover, Cµ is continuous with respect
to bounded pointwise convergence, since φφ̃ dx ∈ M by assumption. Also,
Cµ(0)= 1, becauseψ(0)= 0. It follows from these properties by a standard result
(see the proof of Theorem A1 in [8]; see also [4], Lemma 3.1), that Cµ is the
Laplace functional of a random measure; that is, there exists a random measure Zµ
such that

Ee〈Zµ,−g〉 = exp
〈
µ,−ψ(〈g,φφ̃〉)〉,(67)
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for g ∈C+b . Therefore, altogether,

Eµ exp〈e−λctXφ
t ,−g〉 −→Ee〈Zµ,−g〉 as t→∞,

whenever g ∈ C+b . That is, e−λctXφ
t converges to Zµ in law.

To identify Zµ, note that if Nφ
µ is a nonnegative random variable satisfying (12)

(again, the existence of such a random variable is guaranteed by the positive
definiteness and continuity of s �→ exp〈µ,ψ(s)〉), then the random measure

Z∗µ :=Nφ
µφφ̃(x) dx

clearly satisfies (67) and thus by uniqueness Zµ =Z∗µ.
Using the fact that ψ ′(0) = φ, (13) follows. [To do this rigorously, recall that

ψ ′(0)= φ means that lims→0ψ(s)/s = φ in ‖ · ‖γ . Since µ ∈M1/γ , we can use
uniform convergence to conclude (13).]

Finally, we show that Nφ
µ is nondegenerate. Suppose to the contrary that Nφ

µ =
ENφ

µ = 〈µ,φ〉with Pµ-probability 1. By (12) this would imply that ψ(s)= sφ for
s > 0. But this is impossible because ψ is invariant with respect to the nonlinear
system (75). Consequently Nφ

µ is indeed nondegenerate. This completes the proof
of Theorem 1. �

PROOF OF PROPOSITION 20. The proof is the same as the proof of Theorem 1
except the following. For the general nonlinearity (21) we have

f φ(u)= αφu2+
∫ ∞

0
(e−ku − 1+ ku)nφ(x, dk),

where nφ(x, dk)= φ(x)−1n(x,φ(x)−1 dk). The derivative map is

F(u): du �→
[
2αφu+

∫ ∞
0

k(1− e−ku)nφ(x, dk)
]
du.

Here, we have∥∥∥∥∫ ∞
0

k(1− e−ku)nφ(x, dk) du
∥∥∥∥
γ

≤ sup
x∈Rd

∫ ∞
0
[u(x)φ(x)k2 ∧ uδ(x)φδ(x)k1+δ]n(x, dk)‖du‖γ .

By (26),

‖F(u)‖γ =O(‖u‖ + ‖u‖δ),
and, analogously,

‖F(u)‖ =O(‖u‖ + ‖u‖δ).
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These estimates are enough to obtain the results of Section 3, so the rest of
the proof for general nonlinearity goes exactly the same way as in the case
f (u)= αu2. �

PROOF OF THEOREM 2. The proof of Theorem 2 is very similar to that of
Theorem 1. We use the results of Section 3 in exactly the same way as in the case
of Theorem 1, but we have to replace the “linear result” with an analogous result
for the singular setting and moreover to replace the pde setting of Propositions 32
and 34 by using the integral equation (8). Fix a bounded continuous g, and set

u(x, t) := Esin
δx
〈Xt , g〉, x ∈R, t ≥ 0.(68)

Using (8), it is standard to verify the following integral equation for the
expectations [see [7], formula (91)]:

u(x, t)=
∫

R
dy p(t, y − x)g(y)+

∫ t

0
ds p(t − s, x)u(0, s),(69)

x ∈ R, t ≥ 0. [Symbolically, ut = 1
2�u + δ0u with u(x,0)= g.] Analogously to

the section preceding (7), let us define now the semigroup {Tt}t≥0 by

(Tt g)(·) := u(·, t).
(The semigroup property can be checked by direct calculation.) By Theorem EF
then, we know that e−t/2Ttg has a pointwise limit as t →∞ for any bounded
continuous g: R �→R+.

Let φ(x) := e−|x| (recall that the function x �→ e−|x| plays the role of the ground
state; this justifies our notation.) Define the φ-transformed semigroup by

T
φ
t (g) := e|x|Tt (e−|x|g) for e−|x|g ∈ C+b .

Define also Sφt (g) := e−t/2T
φ
t (g). Let µ= δx and rewrite (9):

lim
t↑∞(Stg)(x)= e−|x|〈e−|x|, g〉, g ∈C+b .

Let G := e|x|g. Then

lim
t↑∞(S

φ
t G)(x)= 〈e−2|x|,G〉.(70)

Now (70) holds for every G satisfying e−|x|G ∈ C+b . In particular, (70) holds for
every G ∈ C+b . We now show that this convergence is uniform on compacts. Let
us fix a K ⊂R compact. We must show that, for g ∈ C+b ,

e−t/2e|x|u(x, t)→ C(g) as t ↑∞(71)

uniformly for x ∈ K , where C(g) := 〈e−|x|, g〉. Exploiting the notation ux(t) :=
u(x, t) and px(t) := p(t, x), the Laplace transform of (69) (with respect to t) is

ûx(λ)=
∫

R
dy p̂y−x(λ)g(y)+ p̂x(λ)û0(λ),(72)
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where ûx and p̂x denote the Laplace transforms of ux and px , respectively.
Using (72), the Laplace transform of the left-hand side of (71) is

e|x|ûx
(
λ+ 1

2

)= e|x|
∫

R
dy p̂y−x

(
λ+ 1

2

)
g(y)+ e|x|p̂x(λ+ 1

2

)
û0

(
λ+ 1

2

)
=:M(x,λ)+N(x,λ)û0

(
λ+ 1

2

)
.

By continuity, M is bounded on K × [0, ε]. Let

a := inf
x∈K
λ<ε

M(x,λ) and A := sup
x∈K
λ<ε

M(x,λ).

In the proof of Theorem 4(b) in [7] we have shown that

û0

(
λ+ 1

2

)
∼ C(g)

1

λ
as λ ↓ 0(73)

and that

N(x,λ)→ 1 as λ ↓ 0,(74)

for each x ∈R. We now show that in fact the convergence in (74) is uniform on K .
To see this, note that N(x,λ) is continuous in x by monotone convergence. The
uniformity of the limit in (74) thus follows by Dini’s theorem. Let

b(λ) := inf
x∈K N(x,λ) and B(λ) := sup

x∈K
N(x,λ).

Then we have

a+ b(λ)û0
(
λ+ 1

2

)≤ e|x|ûx(λ+ 1
2

)≤A+B(λ)û0
(
λ+ 1

2

)
,

with

lim
λ↓0

b(λ)= lim
λ↓0

B(λ)= 1.

Using this, (73) and a well-known Tauberian theorem [10], formula (13.5.22)
along with the monotonicity of the Laplace transform, it follows that (71) holds
uniformly on K .

Similarly to the proof of Theorem 1, in order to conclude convergence in
γ -norm, we have to show that {Sφt G, t ≥ 0} is a uniformly bounded family, for
every given G ∈C+b . Let G ∈C+b with ‖G‖ =K . Since 〈e−2|x|,1〉 = 1, we have

lim
t↑∞(S

φ
t G)(x)≤K.

Consequently,

‖Sφt G‖ ≤K∗ for all t ≥ 0,
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with some K∗ >K ; that is, {Sφt G, t ≥ 0} is a uniformly bounded family, for every
given G ∈C+b . Thus, we have shown convergence in γ -norm for any γ ∈C0.

Now choose

γ := φ = e−|x|.

We look for a substitute of Proposition 34 for the nonregular setting. By
Theorem 4(a) in [8] we have that

lim
t↑∞ e

−t/2‖Tt‖ = 2.

A simple calculation reveals that

‖T φt ‖φ = ‖Tt‖.
Therefore, also

lim
t↑∞e

−t/2‖T φt ‖φ = 2,

and consequently

e−t/2‖T φt ‖φ ≤K for all t ≥ 0,

with some K > 2. This gives the required estimate for the φ-transformed linear
semigroup.

Finally, the φ-transformed superdiffusion Xφ can be defined in the usual way:
it will correspond to the integral equation

u(·, t)= T
φ
t g −

∫ t

0
ds T

φ
t−s

(
αφu2(·, s)).

The rest of the proof is virtually identical with the last part of the proof of
Theorem 1 (by setting λc = 1/2 and φ = e−|x| in that proof), except that the
convergence of the φ-transformed Laplace functional now holds for all g’s
with φg ∈ C+b (recall that γ = φ), thus yielding convergence far all nonneg-
ative bounded continuous functions when going back to the original Laplace
functional. �

APPENDIX A

PROOF OF THEOREM 3. Let Y denote the diffusion corresponding to L

on Rd with probabilities {Px, x ∈Rd}. Let τR := inf{t ≥ 0 | |Yt | =R}. Using Itô’s
formula, it is immediate that, for any fixed R0 > 0, Ū (x,R0,R) := Px(τR0 > τR)

is the unique solution to the boundary value problem

Lu= 0 at R0 ≤ |x| ≤R,
u= 0 at |x| =R0 and u= 1 at |x| =R.

(75)
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By the recurrence of Y , Ū (x,R0,R) tends to zero in the layer |x| ∈ [R0,R0+C],
as R→+∞, for any fixed finite C > 0.

Note that

0< Ū < 1 for |x| ∈ (R0,R).(76)

Let (r, ϕ) denote spherical coordinates (i.e., r = |x|). By the Hopf maximum
principle (see [12], Theorem 3.2.5),

Ū ′r (x;R0,R) > 0 both at r =R0 and at r =R.(77)

Next, we show that

Ū ′r
∣∣
r=R0

≤K(R0) sup
ϕ
Ū

∣∣
r=R0+1,(78)

where the constant K depends (continuously) only on the coefficients of L at
r ∈ [R0,R0 + 1]; that is, it is independent of the position of the outer boundary
(r = R). Hence,

Ū ′r
∣∣
r=R0

→ 0 as R→+∞.

To prove inequality (78), just note that

U∗(x)=U∗(r)= 1− e−K(r−R0)

1− e−K
is a supersolution for a sufficiently large K :

LU∗ = −K2e−K(r−R0)(∇r, a∇r)+O(K) < 0,

and, by construction, U∗(r = R0) = 0, U∗(r = R0 + 1) = 1. Hence, the product
U∗(x)(supϕ Ū |r=R0+1) is a supersolution with the boundary values at r = R0 and
r = R0 + 1 not smaller than those of Ū . By the elliptic comparison principle, this
implies that

U∗(x)
(
sup
ϕ
Ū

∣∣
r=R0+1

)
≥ Ū (x) at r ∈ [R0,R0 + 1]

and, in particular, Ū ′r (r =R0)≤U∗′r (r =R0)(supϕ Ū |r=R0+1), which proves (78).
When using this inequality we will always assume that K(R0) grows monotoni-
cally with R0.

To prove our theorem on the existence of supersolutions, we use an inductive
construction: we produce a sequence increasing to infinity R1 < R2 < · · · and,
having built a supersolution U(q) defined at R1 ≤ r ≤ Rq , we continue it to
the domain r ≤ Rq+1, where Rq+1 > Rq may be taken arbitrarily large (though
finite). The new supersolution U(q+1) will coincide with U(q) at r ≤ Rq − δq ,
where δq can be taken arbitrarily small. So this procedure, indeed, gives in the
limit a supersolution defined at all r ≥ R1 [recall that (r, ϕ) denote spherical
coordinates, r = |x|].
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At the first step (q = 2) we take

U(2)(x)= Ū (x;R1,R2);
that is, it is the solution of the boundary-value problem (75) for an arbitrary
R2 >R1.

Let us now assume that we have the supersolution U(q) defined at R1 ≤ r ≤Rq
such that

U(q)(Rq,ϕ)≡ uq = const(79)

and

inf
ϕ
U(q)′
r (Rq,ϕ) > 0.(80)

By construction [see (77)], these two requirements are satisfied at q = 2, with
u2 = 1.

Denote

α(ϕ)≡ U(q)′
r (Rq,ϕ).

Take any Rq+1 >Rq + 1 such that

K(Rq) sup
|x|∈[Rq−1,Rq+1]

Ū (x;Rq − 1,Rq+1) <
1

supϕ α(ϕ)
inf
ϕ
α2(ϕ).(81)

Choose a sufficiently small δq > 0 (arbitrarily small, in fact) and take the solution
Ū (x;Rq − δq,Rq+1) of the boundary-value problem (75). For brevity, we denote
Ū (x)≡ Ū (x;Rq − δq,Rq+1) below. We also use the notation

β(ϕ)≡ Ū ′r (Rq − δq, ϕ).
Since Ū (x;Rq − δq,Rq+1) ≤ Ū (x;Rq − 1,Rq+1) for any δq ∈ [0,1], it follows
[see (77), (78) and (81)] that

0< inf
δq∈[0,1]

inf
ϕ
β(ϕ)≤ sup

δq∈[0,1]
sup
ϕ
β(ϕ) <

1

supϕ α(ϕ)
inf
ϕ
α2(ϕ).(82)

This inequality allows us to find such constants λ and A that

λ > sup
δq∈[0,1]

sup
ϕ

β(ϕ)

α(ϕ)
(83)

and

inf
ϕ
α(ϕ) > A> λ sup

ϕ
α(ϕ).(84)
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Now let us define

U(q+1)(x)=



U(q)(x), for |x| ≤Rq − δq,
Ū (x)+ uq −Aδq, for Rq+1 ≥ |x| ≥Rq,
uq + (

U(q)(x)− uq)(1− ξ1)

+ (
Ū(x)−Aδq)ξ2, for |x| ∈ [Rq − δq,Rq],

(85)

where A is the constant from (84) and ξ1,2 are some C2,η-functions of z ≡
(r −Rq + δq)/δq such that

ξ(z)≡
{

0, at z≤ 0,

1, at z≥ 1,
(86)

and

0< ξ(z) < 1 at z ∈ (0,1).(87)

Moreover,

ξ ′(z) > 0 at z ∈ (0,1).(88)

In the rest of this section, any C2,η-function satisfying (86)–(88) will be called
nice.

Obviously, the function U(q+1) defined by (85) is C2,η and it is a supersolution
[i.e., it satisfies (62)] for r ≤ Rq − δq and r ≥ Rq . So, we must check that it is
a supersolution in the layer Rq − δq ≤ r ≤Rq too, for an appropriate choice of the
“gluing” functions ξ1,2. In this layer, the inequality to check is

−(
U(q)(x)− uq)Lξ1− 2(∇U(q), a∇ξ1)

+ (
Ū (x)−Aδq)Lξ2 + 2

(∇Ū (x), a∇ξ2
)≤ 0.

(89)

Note that at |x| ∈ [Rq − δq,Rq] we have

∇U(q)
∣∣
x=(r,ϕ) = α(ϕ) ∇r +O(δq),

∇Ū ∣∣
x=(r,ϕ) = β(ϕ) ∇r +O(δq),

U(q)(r, ϕ)= uq − [α(ϕ)+O(δq)](Rq − r),
Ū(r, ϕ)= [β(ϕ)+O(δq)](r −Rq + δq).

Also, it is easy to see that

∇ξ = 1

δq
ξ ′∇r

and

Lξ = 1

δ2
q

ξ ′′(∇r, a ∇r)+O
(

1

δq

)
ξ ′.
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Plugging this into (89) we arrive at the following condition which must be fulfilled
at all ϕ and at all z ∈ [0,1]:[

(1− z)ξ ′′1 − 2
(
1+O(δq))ξ ′1](z)

≤
[
A− β(ϕ)z+O(δq)
α(ϕ)+O(δq) ξ ′′2 − 2

β(ϕ)+O(δq)
α(ϕ)+O(δq)ξ

′
2

]
(z).

(90)

Since ξ ′1,2 is nonnegative by assumption, and since δq may be taken as small as
necessary, it is sufficient that, for some sufficiently small ν,

(1− z)ξ ′′1 (z)− (2− ν)ξ ′1(z)
≤ (

1− ν sign
(
ξ ′′2 (z)

))A− β(ϕ)z
α(ϕ)

ξ ′′2 (z)− (2− ν)λξ ′2(z),
(91)

where λ is the constant from (83), (84) [recall that A> β(ϕ) by (83), (84)]. Write

ξ0(z)= ξ1(z)− λξ2(z)

1− λ .(92)

By (83), (84), if ν is sufficiently small, then to satisfy the inequality (91) it is
enough to require that

(1− z)ξ ′′0 (z)− (2− ν)ξ ′0(z)≤ χ(z)ξ ′′2 (z),(93)

where

χ(z)=
{
χ+, for ξ ′′2 (z) > 0,

χ−, for ξ ′′2 (z) < 0,
(94)

for some appropriately chosen constants χ± which may be taken such that

0< χ+ < χ− < 1.(95)

Let us now take a smooth function ψ(z) with zeros at 0, at 1 and at some
ζ ∈ (0,1). Let ψ(z) > 0 at 0< z < ζ and ψ(z) < 0 at ζ < z < 1. Also, let∫ ζ

0
ψ(z) dz=−

∫ 1

ζ
ψ(z) dz= 1.(96)

Write

I+ν =
∫ ζ

0
ψ(z)(1− z)(1−ν) dz, I+ν =−

∫ 1

ζ
ψ(z)(1− z)(1−ν) dz.

Let

ξ2(z)= 1

I+0 + I−0

∫ z

0
(z− s)ψ(s) ds(97)
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at z ∈ [0,1]. It is easy to see that this defines a nice function ξ2 for any ψ

satisfying (96). Moreover,

ξ ′′2 (z)=
1

I+0 + I−0
ψ(z).(98)

We now assume that ξ2 is given by (98) where the choice of ψ will be specified
below. Note that the inequality (93) which must be satisfied by the function ξ0 is
rewritten as

(1− z)ξ ′′0 (z)− (2− ν)ξ ′0(z)≤
1

I+0 + I−0
χ(z)ψ(z).(99)

We look for a nice function ξ0 which satisfies the equation

(1− z)ξ ′′0 (z)− (2− ν)ξ ′0(z)= κ(z)χ(z)
ψ(z)

I+0 + I−0
, z ∈ [0,1].(100)

Here we write

κ(z)=
{
κ+, for z ∈ [0, ζ ],
κ−, for z ∈ [ζ,1],(101)

for some constant κ± such that

κ+ < 1< κ−.(102)

The integration of (100) gives

ξ0(z)=



κ+χ+
(I+0 + I−0 )(1− ν)
×

∫ z

0
ψ(s)

((
1− s
1− z

)1−ν
− 1

)
ds, for z ∈ [0, ζ ],

1+ κ−χ−
(I+0 + I−0 )(1− ν)
×

∫ 1

z
ψ(s)

(
1−

(
1− s
1− z

)1−ν)
ds, for z ∈ [ζ,1].

(103)

It is seen that ξ0(0)= 0, ξ0(1)= 1. We also have

ξ ′0(z)=



κ+χ+
(I+0 + I−0 )(1− z)2−ν
×

∫ z

0
ψ(s)(1− s)1−ν ds, for z ∈ [0, ζ ],

− κ−χ−
(I+0 + I−0 )(1− z)2−ν

×
∫ 1

z
ψ(s)(1− s)1−ν ds, for z ∈ [ζ,1].

(104)
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Thus, ξ ′0(z) > 0 at z ∈ (0,1) and

ξ ′0(0)= 0, ξ ′0(1)=−
κ−χ−

(I+0 + I−0 )(2− ν)
ψ(1)= 0.

One can also check that

ξ ′′0 (0)=
κ+χ+
I+0 + I−0

ψ(0)= 0 and ξ ′′0 (1)=−
κ−χ−

(I+0 + I−0 )(3− ν)
ψ ′(1).

It follows that to have a nice function ξ0 we must assume additionally that
ψ ′(1)= 0 and that the continuity conditions

ξ0(ζ − 0)= ξ0(ζ + 0), ξ ′0(ζ − 0)= ξ ′0(ζ + 0)

are fulfilled [the continuity of the second derivative would then follow from (100)
since ψ(ζ)= 0 by assumption]. By (103) and (104) the continuity conditions are
written as

κ+χ+I+ν = κ−χ−I−ν
and

1− κ−χ−
(1− ν)(I+0 + I−0 )

=− κ+χ+
(1− ν)(I+0 + I−0 )

[note that we took into account equality (96)]. This leads to the following formula:

κ± = (1− ν)
χ±I±ν

I+0 + I−0
(1/I−ν )− (1/I+ν ) .(105)

To fulfill (102) at a sufficiently small ν, it is enough to have

χ−
I+0

<
I+0 + I−0
I+0 − I−0

<
χ+
I−0

.(106)

By (95), this will be satisfied if I+0 is close enough to 1 and I−0 is close enough
to zero. To this aim, just take ψ sufficiently closely approximating the sum of the
delta-function near zero and the minus delta-function near 1.

So, fixing the choice of a smooth function ψ such that (106) and (96) were
satisfied [along with the requirements ψ(0)= 0, ψ(1) = 0, ψ ′(1)= 0, ψ(ζ) = 0
and ψ(z) > 0 at z ∈ (0, ζ ) and ψ(z) < 0 at z ∈ (ζ,1)], we obtain the nice
functions ξ2 and ξ0 satisfying (100) and (98), respectively. By (102), this means
that inequality (93) holds for these two functions.

It follows that the function ξ1 recovered from (92) is also nice and satisfies (91).
Hence, for such chosen functions ξ1,2 the function U(q+1) given by (85) is
a supersolution indeed at all r ∈ [R1,Rq+1].

As required, U(q+1) is constant at r =Rq+1:

U(q+1)(Rq+1, ϕ)= uq + 1−Cδq ≡ uq+1.
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Hence,

uq + 1≥ uq+1

and, by taking δq small, we may always ensure

uq+1 ≥ uq + 1
2 .

Therefore,

q ≥ uq ≥ q

2
.

By construction,

U(q+1)(x)≤ uq+1

and

U(q+1)(x)≥ uq+1− 1 at r ≥Rq.
It follows, first, that the supersolution U which we obtain in the limit of this

procedure as q→+∞ grows to infinity:

lim
r↑∞ inf|x|=r U(x)=+∞.

On the other hand, this growth can be made arbitrarily slow: it is seen that
U(x)≤ q at |x| ≤Rq but Rq may be taken growing as fast as necessary. �

APPENDIX B

A review of criticality theory. Let L be as in (1). Then there exists a cor-
responding diffusion process Y on Rd that solves the generalized martingale
problem for L on Rd (see [12], Chapter 1). The process lives on Rd ∪� with �
playing the role of a cemetery state. We denote by Px and Ex the corresponding
probabilities and expectations, and define the transition measure p(t, x, dy) for
L+ β by

p(t, x,B)= Ex

(
exp

(∫ t

0
β(Ys) ds

)
;Yt ∈ B

)
,

for measurable B ⊆Rd .

DEFINITION 35. If∫ ∞
0

p(t, x,B)dt = Ex

∫ ∞
0

exp
(∫ t

0
β(Ys) ds

)
1B(Yt ) dt <∞,

for all x ∈Rd and all bounded B ⊂Rd , then

G(x,dy)=
∫ ∞

0
p(t, x, dy) dt

is called Green’s measure for L + β on Rd . If the above condition fails, then
Green’s measure for L+ β on Rd is said not to exist.
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In the former case,G(x,dy) possesses a density,G(x,dy)=G(x,y) dy, which
is called Green’s function for L+ β on Rd .

For λ ∈R define

CL+β−λ = {
u ∈C2 : (L+ β − λ)u= 0 and u > 0 in Rd}.

The operator L+ β − λ on Rd is called subcritical if Green’s function exists
for L+ β − λ on Rd ; in this case CL+β−λ �=∅. If Green’s function does not exist
for L + β − λ on Rd , but CL+β−λ �= ∅, then the operator L + β − λ on Rd is
called critical. In this case CL+β−λ is one-dimensional. The unique function (up
to a constant multiple) in CL+β−λ is called the ground state of L+ β on Rd . The
formal adjoint of the operator L+β−λ on Rd is also critical with ground state φ̃.
If furthermore φφ̃ ∈L1(Rd), we call L+β−λ on Rd product-critical. (For φ = φ̃

this means that φ is an L2-eigenfunction.) Finally, if CL+β−λ =∅, then L+β−λ
on Rd is called supercritical.

If β ≡ 0, then L+β is not supercritical on Rd since the function f ≡ 1 satisfies
Lf = 0 on Rd . In this case L+ β = L is subcritical or critical on Rd according
to whether the corresponding diffusion process Y is transient or recurrent on Rd .
Product criticality in this case is equivalent to positive recurrence for Y . If β ≤ 0
and β �≡ 0, then L+ β is subcritical on Rd .

In terms of the solvability of inhomogeneous Dirichlet problems, subcriticality
guarantees that the equation (L+ β)u = −f in Rd has a positive solution u for
every 0 � f ∈ Cηc . (Here Cηc =Cc ∩Cη .) If subcriticality does not hold, then there
are no positive solutions for any 0 � f ∈ Cηc .

One of the two following possibilities holds:

1. There exists a number λc ∈ R such that L− λ on Rd is subcritical for λ > λc,
supercritical for λ < λc, and either subcritical or critical for λ= λc.

2. L− λ on Rd is supercritical for all λ ∈R, in which case we define λc =∞.

DEFINITION 36. The number λc ∈ (−∞,∞] is called the generalized
principal eigenvalue for L on Rd .

Note that λc = inf{λ ∈ R :CL+β−λ �= ∅}. Also, if β is bounded from above,
then case 1 holds.

If L + β is symmetric with respect to a reference measure ρ dx, then λc
equals the supremum of the spectrum of the self-adjoint operator on L2(Rd, ρ dx)

obtained from L+ β via the Friedrichs extension theorem.
Let h ∈C2,η satisfy h > 0 in Rd . The operator (L+ β)h defined by

(L+ β)hf = 1

h
(L+ β)(hf )

is called the h-transform of the operator L+ β . Written out explicitly, one has

(L+ β)hf =L+ a∇h
h
· ∇ + β + Lh

h
.
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All the properties defined above are invariant under h-transforms.
For further elaboration and proofs see [12], Chapter 4.
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