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We derive a precise Ornstein–Zernike asymptotic formula for the decay
of the two-point function Pp(0 ↔ x) of the Bernoulli bond percolation on
the integer lattice Zd in any dimension d ≥ 2, in any direction x and for any
subcritical value of p < pc(d).
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1. Introduction and results.

1.1. Ornstein–Zernike theory. The Ornstein–Zernike theory [16] gives a sharp
asymptotic description of density correlation functions in classical fluids away
from the critical point. In their original work Ornstein and Zernike clearly
perceived the mathematical structure of the model and, as often happens in
the physical literature, gave a convincing derivation of the asymptotic result,
assuming, though, the most formidable issue to be proven. We refer to Chapter 5
of [18] for a very clean and stimulating discussion of the physical background.

The abovementioned crucial property is a certain mass-gap condition (see
Section 1.3), and the focal point of our work here is to establish it in the context of
the subcritical Bernoulli bond percolation on Zd , which, for that matter, could be
thought of as a spatially discretized model of fluids.

An excellent reference for the percolation models is [11]. To set up notation,
let {η(b)} be a family of Bernoulli i.i.d. random variables, indexed by the nearest
neighbor bounds of the integer lattice Zd . We use Pp to denote the corresponding
joint probability distribution,

Pp

(
η(b) = 1

)= p.

Given a realization η, we say that a bond b is open if η(b) = 1; otherwise we shall
call it closed. Two points x, y ∈ Zd are said to be connected, {x ↔ y}, if there
exists a chain of open bonds leading from x to y. The event {x ↔ y} is, obviously,
measurable and, due to the symmetries of the lattice,

Pp(x ↔ y) = Pp(0 ↔ y − x).

In the fluid interpretation the connectivity function Pp(x ↔ y) is supposed to
describe the truncated correlation function between the particle densities at x

and y. Short range order of fluctuations corresponds, then, to the requirement that
the influence from the origin does not propagate along the lattice:

Pp(0 ↔∞) = 0,(1.1)

where the event {0 ↔ ∞} naturally means that the open cluster of the origin is
infinite. The percolation threshold pc = pc(d) is defined as

pc = sup{p : (1.1) holds}.
We say that the Bernoulli bond percolation model on Zd is subcritical if p < pc(d).

A fundamental result by Menshikov [15] and Aizenman and Barsky [1]
states that subcriticality is always reinforced with strong decay properties of
connectivities. Namely, in any dimension d

χd(p)
�= ∑

x∈Zd

Pp(0 ↔ x) < ∞,(1.2)



654 M. CAMPANINO AND D. IOFFE

whenever p < pc(d). An application of the BK inequality (cf. the proof of
Hammersley’s Theorem 5.1 in [11]) shows that (1.2) actually implies exponential
decay of connectivities: for every p < pc there exists c1 = c1(p) > 0 such that

Pp(0 ↔ x) ≤ e−c1‖x‖.(1.3)

On the other hand, the FKG property of the Bernoulli bond percolation implies
that the inverse correlation length ξp ,

ξp(x)
�=− lim

n→∞
1

n
logPp(0 ↔[nx]) or Pp(0 ↔ [x]) � e−ξp(x),(1.4)

is always defined and, moreover, is a finite, convex and homogeneous-of-order-1
function on Rd . By the subadditivity argument, which again follows from the FKG
property of Pp ,

Pp(0 ↔ x) ≤ e−ξp(x),(1.5)

for every x ∈ Zd . Thus, the Hammersley estimate (1.3) asserts that, for every
p < pc, the inverse correlation length ξp is a strictly positive function on
Rd \ {0}. In other words, for subcritical percolation models the inverse correlation
length ξp captures the nontrivial leading asymptotics of decay of point-to-point
connectivities Pp(0 ↔ x) on the logarithmic scale.

In this paper we derive a rigorous version of the Ornstein–Zernike theory which
gives a precise asymptotic description of connectivities up to the zero-order terms.

THEOREM A. Let d ≥ 2 and p < pc(d). Then, uniformly in x ∈ Zd ,
‖x‖→∞,

Pp(0 ↔ x) = �p(n(x))√
(2π‖x‖)d−1

e−ξp(x)
(
1 + o(1)

)
,(1.6)

where n(x) denotes the unit vector in the direction of x and �p is a positive real
analytic function on Sd−1.

REMARK. The explicit expression for �p will be given in Section 3.5.
The coefficient

√
(2π)d−1 in the denominator of the prefactor is, of course,

superfluous—we put it there only to stress that the result is a local limit-type
theorem for connectivities.

The relevant local limit behavior will be read from peculiar renewal structures
of the probabilities Pp(0 ↔ x). The corresponding analytic properties of multi-
dimensional moment generating functions already lie in the heart of the original
paper [16]. In our setup we follow [7], where an analog of Theorem A has been es-
tablished for on-axis directions of x. The lattice symmetries, therefore, played an
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essential role in the latter work. To treat off-axis directions we rely on general re-
sults on the local limit structure of multidimensional renewal arrays, as developed
in [12].

As we have already mentioned, the whole Ornstein–Zernike theory hinges
on the validity of a certain mass-gap condition. In the case of self-avoiding
walks [12] such a condition happens to be technically insensitive to various tiltings
of connectivities needed to explore decays in off-axis directions. Thus it could be
verified by an almost literal application of “on-axis” methods, which have been
developed earlier in [9] and [14].

Contrary to this, in the case of percolation the verification of the on-axis
mass-gap condition already requires tedious computation (see [7], Section 5); an
introduction of an additional tilt would have complicated the method employed
there beyond reason.

A very different approach to the problem of refining subadditive bounds on
connectivity-type functions has been developed in a series of papers by Alexander
[2, 3, 5, 4]. The renormalization ideas he has introduced in these works were not
designed to furnish exact local limit descriptions as in Theorem A, but helped to
illuminate the coarse-grained structure of the model to the extent of providing
complementary lower bounds with correct order of pre-factors near the decay
exponents. It should be mentioned that, unlike the refined renewal methods,
Alexander’s techniques require much less structure and apply to a large variety
of other models.

Our main observation in this work could now be formulated as follows: the
mass-gap condition in question is a coarse property in the realm of renormalization
estimates. Furthermore, an appropriate modification of the renormalization ideas
of Alexander leads to a relatively short proof. In other words, our version of
the Ornstein–Zernike theory comprises two steps; in the first stage “heavy-duty”
renormalization techniques are used to clean up the model from exponentially
improbable events; then the restructured model is tuned up with the help of more
delicate local-limit-type methods, based on the specific renewal properties of the
Bernoulli bond percolation.

Strict exponential decay of the two-point function, which, by the results of [15]
and [1], gives a sharp characterization of the subcritical percolation models, is
absolutely indespensable for our renormalization approach. On the other hand the
nearest neighbor structure of the bonds plays no role. A straightforward adjustment
of the methods we develop here would yield results similar to (1.6) in any
subcritical translation invariant Bernoulli bond percolation model with finite range
of bonds or in subcritical site percolation models. For the sake of the exposition,
however, we shall stick to the case of nearest neighbor bond percolation.

Ornstein–Zernike theory for high-temperature Ising models has been developed
in [8] and will appear elsewhere. While the renormalization procedures in the
latter work are built on those we employ here, the local limit part of the analysis
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has to be substantially modified—the random line representation of the Ising two-
point function does not enjoy factorization properties of independent percolation
models. Nevertheless, at the end of the day, the relevant local limit result for the
endpoints of random lines has exactly the same classical analytic nature as in the
independent case we consider here.

NOTATION. The constants c1, c2, . . . > 0 are updated with each section. We
use ‖ · ‖d and ‖ · ‖d−1 to denote the Euclidean norm on Rd and, respectively,
Rd−1. Similarly (·, ·)d and (·, ·)d−1 are used to denote the corresponding scalar
products.

1.2. Renewal structure of connectivities. The aforementioned renewal prop-
erties could be recorded in several different ways. In fact, we give here two al-
ternative proofs of Theorem A, which correspond to two different renewal setups.
The first approach is a “parameterized” one, and it has been previously introduced
in [7] and developed, to the state we are using it this work, in [12]. An advantage of
the parameterized approach is that it contains an explicit treatment of the relevant
(d −1)-dimensional local limit result. Also it illuminates several related geometric
issues (see Section 1.4) in a natural way. Most important, the parameterized ap-
proach is well suited for studying various related problems, such as scaling analy-
sis of percolation paths or, in the case of two dimensions, the refined fluctuation
analysis of phase boundaries. The corresponding results will appear elsewhere.

In the concluding Section 4 we work out an alternative “direct” proof. In this
direct approach both the underlying (d − 1)-dimensional local limit structure
and the intrinsic geometry of shapes are implicit. However, the proof itself is
technically more straightforward, and, moreover, it does not rely on the lattice
symmetries of the model and clearly illustrates the generality and the limitations
of the method. In particular, whereas the independence of bond variables and,
to a lesser extent, shift invariance are rather important for the whole approach,
the nearest neighbor structure of the bonds and the lattice symmetries of bond
variables play no role. As has been mentioned, we could have generalized our
techniques to the case of shift invariant Bernoulli percolation on Zd with, for
example, finite range of connecting bonds. For the sake of the clarity of the
exposition, however, we refrain from such an exercise.

The renormalization estimates, which are crucial for both parameterized and
direct approaches, are developed in Section 2.

Let us proceed and set up the notation for the parameterized approach. It would
be enough to prove the result for the lattice cone of points x ∈ Zd satisfying
x1 ≥ ‖x‖d /

√
d . Hence the motivation for a parameterization: fix a unit axis

direction e1 and write Zd = Z × Zd−1. Accordingly, we write x = (n, k) for
a point x ∈ Zd . We shall prove that, for every α > 0, the claim of Theorem A
holds uniformly over x belonging to the cone Cα:

Cα
�= {x = (n, k) :‖k‖d−1 ≤ αn}.(1.7)
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In view of the above parameterization, it happens to be convenient to establish
an analog of Theorem A first for modified connectivities, the so-called cylindrical
ones. We follow [7] and [12] for the notation and general setup:

Define lattice (d − 1)-dimensional hyperplanes Hn, n = 0, 1, . . . , as

Hn
�= {x ∈ Zd : x = (n, k)}.(1.8)

Similarly, given m, n ∈ N, define lattice strip Sm,n as

Sm,n
�=

n⋃
r=m

Hr = {x ∈ Zd : x = (r, k) with m ≤ r ≤ n}.(1.9)

DEFINITION. We say that a point x ∈ Hn is h-connected to the origin,

{0 h↔ x}, if the following hold:

(i) The point x is connected with 0 in the restriction of the percolation
configuration η to the strip S0,n.

(ii) Let Cn{0,x} be the corresponding common open cluster of x and 0 in S0,n.
Then

Cn{0,x} ∩H0 = {0} and Cn{0,x} ∩Hn = {x}.

For every n ∈ N and every x = (n, k) ∈ Hn, define

h(n, k)
�= Pp

(
0

h↔ (n, k)
)
.

Of course, h(n, k) < Pp(0 ↔ x), for every n ∈ N and x = (n, k) ∈ Hn. On the
other hand, it takes a soft argument (see [12], Proposition 3.2) to show that both
h(n, k) and Pp(0 ↔ x) have the same leading asymptotics on the logarithmic
scale: namely, for every α > 0,

ξp

(
1,

k

n

)
+ 1

n
log h(n, k) = o(1),(1.10)

uniformly (as n →∞) in x = (n, k) ∈ Cα , where Cα is the cone defined in (1.7).
In fact, as we shall prove in Section 3.5, h-connectivities approximate the full

ones in a much more stringent way:

LEMMA 1.1. Let d ≥ 2, p < pc(d) and α ∈ R+ be fixed. Then, uniformly in
x = (n, k) ∈ Cα ,

Pp(0 ↔ x) = �p

(�n(x)
)
h(n, k)

(
1 + o(1)

)
,(1.11)

where �p is a positive real analytic function on Sd−1+
�= {�n = (n1, . . . ,nd) ∈

Sd−1 :n1 > 0}.
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Thus, by the above lemma, and in view of the Zd -lattice symmetries of
Pp , it would be enough to restrict our attention to the asymptotic behavior of
h-connectivities. For every n ∈ N these induce a probability distribution Pn on
Zd−1 specified by the weights h(n, k),

Pn(k)
�= h(n, k)∑

j∈Zd−1 h(n, j)
.

Our study of the local limit properties of Pn is based on the specific renewal
structure of h-connectivities, which, following [7], we proceed to describe:

DEFINITION. Given n ≥ 1, the restriction of a percolation configuration η on
S0,n and a point x = (n, k) ∈ Hn let us say that x is f -connected to the origin,

{0 f↔ x}, if the following hold:

(i) x is h-connected to the origin;
(ii) for every m = 1, . . . , n− 1,

#(Cn{0,x} ∩Hm) > 1.

Notice that for n = 1 the notions of f - and h-connectivities coincide.
Define

f (n, k)
�= Pp

(
0

f↔ x
)
.

The event {0 h↔ x} depends only on the percolation configuration inside the

strip S0,n. Using the disjoint decomposition of {0 h↔ x} with respect to the smallest
index m satisfying #(Cn{0,x} ∩Hm) = 1, we, in view of the shift invariance of Pp,
obtain [7]

h(n, k) = 1

(1 − p)2(d−1)

n∑
m=1

∑
l∈Zd

f (m, l)h(n −m, k − l),

h(0, k)
�= (1 − p)2(d−1)δ0(k).

(1.12)

Normalizing h̃ = h/(1−p)2(d−1) and f̃ = f/(1−p)2(d−1), we arrive at the usual
(d − 1)-dimensional renewal relation

h̃(n, k) =
n∑

m=1

∑
l∈Zd

f̃ (m, l)h̃(n−m, k − l) and h̃(0, k) = δ0(k).(1.13)
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1.3. Local limit results and separation of masses. An appropriate general
local limit theorem for d-dimensional renewal arrays (1.13) has been established
in [12]. Given t̂ ∈ Rd−1, define moment generating functions

Hn(t̂ )
�= ∑

k∈Zd−1

h̃(n, k)e(t̂,k)d−1 and Fn(t̂ )
�= ∑

k∈Zd−1

f̃ (n, k)e(t̂,k)d−1 .

Of course, Hn(t̂ ) > Fn(t̂ ), and both sums above diverge for sufficiently large
values of ‖t̂‖d−1. In any case, however,

Hn(t̂ ) =
n∑

m=1

Fm(t̂ )Hn−m(t̂ ).(1.14)

DEFINITION. For every t̂ ∈ Rd−1 the masses mH(t̂ ) and mF(t̂ ) are defined as

mH(t̂ )
�= lim

n→∞
1

n
logHn(t̂ ) and mF(t̂ )

�= lim sup
n→∞

1

n
log Fn(t̂ ).

Notice that, by the renewal property (1.14), the limit in the above definition of
mH always exists (though it could be infinite). Furthermore, both mH and mF are
convex functions on Rd−1, and, of course, mF ≤ mH. Let us use DH to denote the
effective domain of mH,

DH
�= {t̂ ∈ Rd−1 : mH(t̂ ) < ∞}.

Because of (1.3), (1.4) and an obvious bound [x = (n, k)]

e−c2‖x‖d ≤ h(n, k) ≤ Pp(0 ↔ x),

the convex set DH is bounded and has a nonempty interior int(DH), 0 ∈ int(DH).
We finally formulate the separation-of-masses-type condition to which we have

referred on several occasions in the first subsection.

DEFINITION. Let us say that the mass-gap condition is satisfied at a point
t̂ ∈ int(DH) if

mH(t̂ ) > mF(t̂ ).(1.15)

We rely on the following local limit theorem [12] for multidimensional renewal
arrays:

THEOREM B. Assume that, for every point t̂ ∈ int(DH), the following hold:

(i) The mass-gap condition (1.15) is satisfied.
(ii) The Hessian D2mH(t̂ ) is nondegenerate,

det
(
D2mH(t̂ )

) �= 0.(1.16)
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Then, for every α ∈ R+,

h(n, k) = #p(�n(x))√
(2π‖x‖d)d−1

e−ξp(x)
(
1 + o(1)

)
,(1.17)

uniformly in x = (n, k) ∈ Cα . As before �n(x) is the unit vector in the direction of x,
and #p is a positive real analytic function on Sd−1+ .

REMARK. The proof of Theorem B as stated above relies on the lattice
symmetries of Pp [cf. (1.20) below, the general Theorem 2.1 in [12] and the
argument on pages 343–344 there].

The main impact of the mass-gap condition (1.15) at t̂ ∈ int(DH) is the validity
of the Lee–Yang type analyticity structure of moment generating functions Hn in
a (d − 1)-dimensional complex neighborhood of t̂ . In particular [12], for every
t̂ ∈ int(DH),

mH(t̂ ) > mF(t̂ ) �⇒ mH(ẑ) = lim
n→∞

1

n
log Hn(ẑ),(1.18)

in the sense of analytic functions on a Cd−1-neighborhood of t̂ . Thus, mH is real
analytic in an Rd−1-neighborhood of t̂ , as soon as the mass-gap condition (1.15)
is satisfied. Together with the nondegeneracy condition (1.16) such results enable
classical local limit analysis of the t̂ -tilted measure (cf. [12], Section 2).

The main technical result of this paper is stated as follows.

THEOREM C. Let d ≥ 2 and p < pc(d). Then both the mass-gap condi-
tion (1.15) and the nondegeneracy condition (1.16) hold for every t̂ ∈ int(DH).

The crux of the matter is to prove the mass-gap. Once this is accomplished, the
nondegeneracy follows by a simple conditional variance bound.

1.4. Geometry of Wulff shapes and equidecay profiles. Analytic properties of
connectivities have useful geometric counterparts: by (1.3), ξp is an equivalent
norm on Rd ,

0 < min
x∈Sd−1

ξp(x) ≤ max
x∈Sd−1

ξp(x) < ∞.(1.19)

Let us denote the corresponding ξp-unit ball as Up ,

Up = {x ∈ Rd : ξp(x) ≤ 1}.
We use the term equidecay profiles a ∂Up for the boundaries of the ξp-balls

aUp = {x ∈ Rd : ξp(x) ≤ a}.
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Similarly, because of (1.19), ξp is the support function of the compact convex set

Kp �= ⋂
n∈Sd−1

{t ∈ Rd : (t, n)d ≤ ξp(n)},

with nonempty interior int{Kp}, 0 ∈ int{Kp}.
Furthermore, the function ξp is symmetric with respect to permutations and

reflections across coordinate hyperplanes,

ξp

(
ε1xπ(1), . . . , εdxπ(d)

)= ξp(x1, . . . , xd),(1.20)

for every x = (x1, . . . , xd) ∈ Rd , every permutation {π(1), . . . , π(d)} of {1, . . . , d}
and every collection of numbers εi =±, i = 1, . . . , d . Consequently, both the polar
shape Kp and the equidecay profile Up enjoy the same symmetries as ξp . These
symmetries will substantially facilitate some of our arguments below.

We shall refer to Kp as the polar body or as the Wulff shape (which it really is
in the case of two dimensions). The first appellation, however, is justified by the
fact that the convex bodies Up and Kp are in the polar relation: for every t ∈ ∂Kp

and x ∈ ∂Up ,

ξp(x) = 1 = max
y∈Up

(t, y)d = max
s∈Kp

(s, x)d .(1.21)

Given x ∈ Rd \ {0}, let us say that a point t ∈ ∂Kp is polar to x if

(t, x)d = ξp(x) = max
s∈∂Kp

(s, x)d .(1.22)

Geometrically, t is orthogonal to a tangent hyperplane to the equidecay profile
ξp(x) ∂Up passing through x. A priori x might have many different polar points.
The collection of these points, however, always forms a convex set. Therefore
nonuniqueness of polar points at x is tantamount to an existence of a flat facet
on ∂Kp .

There is, of course, an intimate relation between the geometry of polar sets and
the mass mH.

PROPOSITION 1.2. If t̂ ∈ int(DH)⊂Rd−1, then t = (−mH(t̂ ), t̂ )∈∂Kp ⊂Rd .

PROOF. First of all, by the usual LD-style application of the Hölder inequality,
there exist δ > 0 and a constant Aδ < ∞ such that∑

‖k‖d−1≥Aδn

e(k,t̂ )d−1h(n, k) ≤ en(mH(t̂ )−δ).(1.23)

Thus, using (1.10) with α = Aδ , we obtain

lim
n→∞

1

n
log

{ ∑
‖k‖d−1≤Aδn

e−ξp(n,k)+(k,t̂ )d−1−nmH(t̂ )

}
= 0.



662 M. CAMPANINO AND D. IOFFE

It follows that there exists x ∈ Rd with√√√√ d∑
i=2

x2
i ≤ Aδx1,

satisfying

ξp(x) = (t, x)d , where t = (−mH(t̂ ), t̂
)
.

Hence, t ∈ ∂Kp . �

REMARK. Notice that because of the lattice symmetries (1.20) the above

proposition implies that the point t̃
�= (0, t̂ ) belongs to the convex set Kp whenever

t̂ ∈ int(DH). Since, by (1.3), Kp has a nonempty interior, we conclude

t̂ ∈ int(DH) ⇐⇒ t̃
�= (0, t̂ ) ∈ int(Kp).(1.24)

In particular, −mH(t̂ ) > 0 for every interior point t̂ ∈ int(DH).

Local validity of the assumptions of Theorem A leads to nice analytic properties
of the boundary ∂Kp .

PROPOSITION 1.3. Let t̂ ∈ int(DH). Assume that mH(t̂ ) > mF(t̂ ) and that
det(D2mH(t̂ )) �= 0. Then ∂Kp is analytic and strictly convex in a neighborhood of
t = (−mH(t̂ ), t̂ ).

As in [12], Theorem C implies the following result on the geometry of sets Kp

and Up:

THEOREM D. Assume that the assumptions of Theorem B are satisfied. Then
mH is a real analytic function on int(DH). In addition, mH is strictly convex and
steep: ⋃

t̂∈int(DH)

∇mH(t̂ ) = Rd−1.(1.25)

Furthermore, both Kp and Up are strictly convex bodies with analytic boundaries
∂Kp and ∂Up . Finally, the Gaussian curvatures of both ∂Up and ∂Kp are
everywhere strictly positive.

REMARK. In particular, Theorem D implies that the two-dimensional Wulff
shape is strictly convex and analytic for every supercritical (dual) value p∗ > 1/2.
This enables us to refine the results of [6] and [3] along the lines of [13].
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2. Coarse graining. Assume that 0 and x are connected. We use C{0,x} to
denote the corresponding common cluster. In this section we study the coarse-
grained structure of C{0,x}. The coarse graining is constructed around a self-
avoiding path γ : 0 → x (trunk) lying inside C{0,x} and disjoint leaves growing
from this trunk. What we roughly show is that on appropriate renormalization
scales the corresponding tree skeleton has, with an overwhelming probability,
a nice localized structure, in the sense that the trunk skeleton of γ goes in a more
or less straight way, with only a negligible number of backtracks, from 0 to x,
whereas the renormalized leaves become very sparse.

The coarse graining itself will boil down to a specific way to cover the cluster
C{0,x} by the balls of the type kUp(y), where k is the current renormalization scale,
and

kUp(y)
�= (y + kUp) ∩Zd .(2.1)

2.1. Alexander’s surcharge function. Given t ∈ ∂Kp define the surcharge
function st in the direction t as

st (x)
�= ξp(x) − (t, x)d .

By (1.21) st is always nonnegative and st (x) = 0 only if t is polar to x. Notice
that our definition here differs from the original one given in [2], but our approach
is definitely inspired by Alexander’s point of view on the relevant renormalization
procedures.

PROPOSITION 2.1. Let x ∈ Zd . Set y0 = 0 and yn = x. Then, for every
t ∈ ∂Kp and for any collection {y1, . . . , yn−1} of points from Zd ,

Pp(0 ↔ y1 ◦ y1 ↔ y2 ◦ · · · ◦ yn−1 ↔ x)

≤ exp

{
−

n−1∑
k=0

st (yk+1 − yk) − (t, x)d

}
.

(2.2)

PROOF. By the BK inequality,

Pp(0 ↔ y1 ◦ y1 ↔ y2 ◦ · · · ◦ yn−1 ↔ x)

≤ exp

{
−

n∑
k=0

ξp(yk+1 − yk)

}

= exp

{
−

n−1∑
k=0

st (yk+1 − yk) − (t, x)d

}
. �
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2.2. Coarse graining of a self-avoiding path γ . Fix a number k ∈ R+. Given
x ∈ Zd and a self-avoiding lattice path γ : 0 ↔ x,

γ = {γ (1), . . . , γ (n)}, γ (0) = 0 and γ (n) = x,

we construct the k-skeleton γ (k) = {y0, . . . , ym} of γ as follows:

Step 0. y0 = 0.
Step 1. n1 = min{l : γ (l) /∈ kUp(y0)} ∧ n. If n1 = n, then m = 1, ym = x and

the process terminates. Otherwise set y1 = γ (n1), i = 2 and proceed to the next
step.

Step i. ni = min{l > ni−1 : γ (l) /∈ kUp(yi−1)} ∧ n. If ni = n, then m = i,
ym = x and the process terminates. Otherwise set yi = γ (ni), and proceed to
Step (i + 1).

Let us use the symbol γ ∼ γ (k) to denote the fact that γ (k) is the k-skeleton
of γ . Given a k-skeleton γ (k) define the event

{
0

γ (k)

↔ x
} �= {

0 is connected to x by a self-avoiding path γ ;γ ∼ γ (k)
}
.

As follows immediately from Proposition 2.1, for every x ∈ Zd , every t ∈ ∂Kp ,
each renormalization scale k ∈ R+ and every k-skeleton γ (k),

Pp

(
0

γ (k)

↔ x
)≤ exp

{
−

m∑
l=1

st (yl+1 − yl) − (t, x)d

}
.(2.3)

2.3. Surcharge cones and typical k-trunks. Given t ∈ ∂Kp and ε > 0 let us
define the surcharge cone Cε(t) as

Cε(t)
�= {

x ∈ Rd : st (x) ≤ εξp(x)
}= {

x ∈ Rd : (t, x) ≥ (1 − ε)ξp(x)
}
.(2.4)

We quantify k-skeletons γ (k): 0
γ (k)

↔ x, γ (k) = {y0, . . . , ym}, by the number of
k-increments of γ (k),

g
(k) �= m = #

(
γ (k)),

and by the number of costly ε-backtracking full increments with respect to the
surcharge cone Cε(t),

#t,ε

(
γ (k)

)= #
{
1 ≤ l ≤ g(k) − 1 : yl − yl−1 /∈ Cε(t)

}
.

Notice that on the kth renormalization scale a “bad” increment yl − yl−1 /∈ Cε(t)

automatically satisfies

st (yl − yl−1) ≥ εk.(2.5)
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LEMMA 2.2. For every x ∈ Zd , ε > 0, t ∈ ∂Kp , δ ∈ R+ and every coarse-
graining scale k,

Pp

(
γ (k): #t,ε(γ (k)) ≥ δ‖x‖d

k
;0

γ (k)

↔ x

)

≤ exp
{

c1
log k

k
‖x‖d − δε‖x‖d − (x, t)d

}
.

(2.6)

PROOF. By the very construction of k-skeletons and by the BK inequal-
ity (2.3),

Pp

(
0

γ (k)

↔ x
)≤ exp

{−g
(k)k

}
,

uniformly in k-skeletons γ (k).
On the other hand, the number of skeletons

#
{
γ (k): 0

γ (k)

↔ x and #
(
γ (k)

)= m
}

is bounded above by

(c1kd−1)m = exp{c2m log k}.(2.7)

Consequently,

Pp

(
γ (k): 0

γ (k)

↔ x;g(k) ≥ m
)≤ exp

{
−m

2
k

}
,

as soon as k is sufficiently large. Since, by (1.19), ξp(x) ≤ c3‖x‖d , we infer that
there exist two positive constants c4 = c4(d, p) and c5 = c5(d, p) such that

Pp

(
γ (k): 0

γ (k)

↔ x;g(k) ≥ c4
‖x‖d

k

)
≤ exp{−c5‖x‖d − ξp(x)}

(2.8)
≤ exp{−c5‖x‖d − (x, t)d },

uniformly in x ∈ Zd and t ∈ ∂Kp . As a result we can restrict attention only to the
k-skeletons γ (k) satisfying

g
(k) = #(γ (k)) ≤ c4‖x‖d/k.(2.9)

By (2.7) the number of such skeletons is bounded above by

exp
{

c6
log k

k
‖x‖d

}
.

Finally, (2.3) and the lower bound (2.5) on the surcharge value of bad increments
imply that, for any t ∈ ∂Kp , ε > 0 and any skeleton γ (k),

Pp

(
0

γ (k)

↔ x
)≤ exp

{−c7εk#t,ε

(
γ (k))− (t, x)d

}
.

Patching the latter two estimates together we arrive at the conclusion (2.6) of
Lemma 2.2. �
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2.4. Coarse graining of clusters C{0,x}. Recall that if 0 is connected to x,
then we denote the corresponding common connected cluster as C{0,x}. With each
realization of C{0,x} we associate, on every coarse-graining scale k, a treelike

subset C(k)
{0,x} ⊂ Zd such that C{0,x} lies inside the k-neighborhood of C(k)

{0,x} in
the sense of the ξp-distance, that is,

∀y ∈ C{0,x}, min
z∈C(k)

{0,x}
ξp(y − z) ≤ k.(2.10)

The sets C(k)
{0,x} will always be composed of shifts of the lattice ξp-balls kUp:

C(k)
{0,x} =

⋃
y∈T(k)

kUp(y),(2.11)

where kUp(y) has been defined in (2.1).
It is convenient to describe the construction of C(k)

{0,x} or, equivalently, of its tree

skeleton T(k) algorithmically. For technical reasons we would like to construct T(k)

unambiguously; later this will enable a disjoint splitting of the relevant percolation
events with respect to different possible tree skeletons.

Choosing the self-avoiding trunk γ (k). Consider all possible self-avoiding
paths γ leading from 0 to x within C{0,x}, and let γ (k) = {y0, . . . , ym} be the
corresponding k-skeletons of γ . Of all these γ (k) we first choose skeletons of
minimal length g(k) and, provided that there are several such minimal-length
skeletons, we further choose the minimal one of them, say in the sense of
lexicographical order.

We shall refer to the resulting γ (k) = (y0, . . . , yg(k) ) as the self-avoiding trunk
of C{0,x} on the kth renormalization scale.

Define T(k) = {y0, . . . , ym} and, accordingly, define C(k)
{0,x} by (2.11). If (2.10) is

already satisfied, then stop.
Otherwise proceed to the following update step:
Update step. Reorder all the sites of T(k), for instance again according to

lexicographical order; T(k) = {z1, . . . , zt(k)}, where t(k) is used to denote the
cardinality of T(k),

t(k) �= #
{
T(k)

}
.

Set l := 1.
Step l (l ≤ t(k)). Screen the Zd lattice points attached to k ∂Up(zl) in the

lexicographical order. If there exists z ∈ k ∂Up(zl) such that one can find a self-
avoiding open path γz leading from z to ∂kUp(z) inside Zd \ C(k)

{0,x}, then add z to

T(k), that is, set

T
(k) := T

(k) ∪ {z} and C(k)
{0,x} := C(k)

{0,x} ∪ kUp(z),

and return to the update step.
Otherwise set l := l + 1 and proceed to Step l.
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FIG. 1. Construction of the renormalized clusters C(k)
{0,x}.

Step (t(k) + 1). Stop. We shall say that the resulting T(k) is the tree skeleton of
C{0,x} on the kth renormalization scale, and denote the corresponding percolation

event either as T(k) ∼ C{0,x} or as {0 T(k)↔ x}.
Clearly, once Step (t(k) + 1) is reached, condition (2.10) is satisfied.
We should still provide an argument that with probability 1 the process

terminates in a finite number of steps. This will follow from a much more precise
estimate on the number t(k), which we proceed to derive.

2.5. Renormalization: typical tree skeletons. By construction, the tree skele-
ton T(k) is composed of the original self-avoiding trunk γ (k) and of the set of
additional leaves L(k),

T(k) = γ (k) ∪L(k).

Thus, the corresponding set C(k)
{0,x} [defined in (2.11)] contains the following:

1. a self-avoiding path γ : 0 ↔ x with a k-trunk γ (k);
2. for each leaf z ∈ L(k), a self-avoiding path γz leading from z to k ∂Up(z);
3. by construction all these γz are disjoint and, moreover, each such γz is disjoint

from γ .

By the BK inequality the probability of a given tree skeleton T(k) is bounded
above as

Pp

(
T

(k)
)≤ Pp

(
γ (k)

)
e−c7l

(k)k,(2.12)

where the number of leaves l(k) is defined by

l
(k) �= #

(
L

(k))= t
(k) − g

(k).
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LEMMA 2.3. There exists a constant c8 = c8(d, p), such that, for every δ > 0
fixed,

Pp

(
L

(k): l
(k) ≥ δ‖x‖d

k
;0 ↔ x

)
≤ exp{−ξp(x) − c8δ‖x‖d },(2.13)

uniformly in k and for x sufficiently large.

PROOF. Given the skeleton γ (k) of a self-avoiding path γ : 0 ↔ x, let
us estimate the number of ways one can attach l leaves to the “trunk” γ =
{y0, . . . , ym}:

To each point y ∈ γ (k) one can attach at most

n = n(k, d)
�= c9kd−1

new points from k ∂Up . To each of these new points one can attach another point
again in, at most, n ways, and so on. Thus, the number of ways to attach li leaves to
a point yi ∈ γ (k) is bounded above by a number of connected trees with li vertices
and branching ratio n. By the well-known estimate of Kesten on the number of
lattice animals (see, e.g., [11]) the latter is bounded above by

{
max

q∈(0,1)
qli (1 − q)nli

}−1 ≤ exp{c10li log n} ≤ exp{c11li log k}.(2.14)

Finally, the number of ways to distribute l leaves to m different branches of the
trunk γ (k) is bounded above by(

m+ l

l

)
≈ exp

{
l log

(
1 + m

l

)
+m log

(
1 + l

m

)}
.(2.15)

By (2.8) it is no loss to assume that the the cardinality m of the k-skeleton γ (k)

satisfies m ≤ c5‖x‖/k. Thus,(
m+ l

l

)
≤ exp

{
c12l log

1

δ

}
,

whenever l ≥ δ‖x‖/k.
The bounds (2.12), (2.14) and (2.15) and the estimate (2.7) on the number of

different trunks γ (k) of the maximal cardinality c5‖x‖d/k readily imply that

Pp

(
#
(
L(k)

)≥ δ‖x‖d

k
;0 ↔ x

)

≤ exp
{
−ξp(x) − c7δ‖x‖d + c11

log(1/δ)

k
+ c13

log k

k
‖x‖d

}
,

and the conclusion (2.13) of the lemma follows. �
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3. Separation of masses. As we have seen in Proposition 1.2, any point
t̂ ∈ int(DH) gives rise to the point t = (−mH(t̂ ), t̂ ) on the boundary ∂Kp . To
prove the mass-gap at t̂ we shall fix this t and use it to quantify the surcharge costs
of the increments, as defined in the framework of the renormalization results of
the preceding section. Such an approach happens to be useful, if at some surcharge
value ε > 0, all ε-good increments have strictly positive e1-component. We shall
then argue that such a “forward” structure of typical T(k)-tree skeletons necessarily

decouples the event {0 f↔ x} into intersection of many localized independent
subevents, each of the latter having probability strictly less than 1.

The appropriate forward condition on the increments is formulated in Sec-
tion 3.1. Geometrically it boils down to certain strict convexity requirements on
the connectivity function ξp. Because of lattice symmetries (1.20) of ξp and, ac-
cordingly, of Kp the proof that such a condition always holds for the interior points
t̂ ∈ int(DH) is essentially trivial; see Lemma 3.1 below.

A more robust approach, which does not rely on lattice symmetries, is explained
and worked out in Section 4 in the course of giving a “direct” proof of Theorem A.

3.1. Positive cone property. Let t̂ ∈ int(DH). We say that t̂ satisfies the
positive cone property if there exists ε > 0 such that

α(t, ε)
�= min

x∈Cε(t)\{0}
x1

‖x‖d

> 0,(3.1)

where t = (−mH(t̂ ), t̂ ) and Cε(t) is the surcharge cone defined in (2.4).
Informally, the positive cone condition is satisfied if all st -reasonable incre-

ments x have a nontrivial forward component in the direction of the axis e1. By
continuity, the positive cone condition is satisfied, iff

min{x1 : x ∈ ∂Up and st (x) = 0} > 0.(3.2)

LEMMA 3.1. The positive cone property is satisfied for every t̂ ∈ int(DH).

PROOF. By the remark following the proof of Proposition 1.2, the point

t̃
�= (0, t̂ ) belongs to int(Kp), as soon as t̂ ∈ int(DH). With t defined as t =

(−mH(t̂ ), t̂ ), let us assume that there exists x = (x1, . . . , xd) ∈ ∂Up such that
(x, t)d = ξp(x) and x1 = 0. In this case, however, (x, t̃ )d = ξp(x), as well. This,
by (1.22), implies that t̃ ∈ ∂Kp , a contradiction. �

Our main result in this section is stated as follows:

LEMMA 3.2. If t̂ satisfies the positive cone property, then mH(t̂ ) > mF(t̂ ).

Consequently, the mass-gap condition is satisfied at any interior point t̂ ∈
int(DH). This sets the stage for local limit analysis of the multidimensional
renewal relation (1.12) along the lines of Theorem B; see Section 3.4.
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3.2. Reduction to regular tree skeletons. We wish to show that if t̂ ∈ int(DH)

satisfies the positive cone condition (3.1), then there exists ν > 0 such that

e−nmH(t̂ )
∑

k

Pp

(
0

f↔ (n, k)
)
e(t̂,k)d−1 ≤ e−νn,(3.3)

uniformly in n sufficiently large.

By Proposition 1.2 the point t
�= (−mH(t̂ ), t̂ ) ∈ ∂Kp . With the renormalization

estimates of the preceding section in mind, we rewrite (3.3) as∑
x∈Hn

Pp

(
0

f↔ x
)
e(t,x)d ≤ e−νn,(3.4)

where, as before, Hn denotes the lattice hyperplane (1.8).
In fact, we shall prove a slightly more general claim [see (3.5) below]:

DEFINITION. Given a point x = (n, k) ∈ Hn, let us say that it is d-connected

to the origin, {0 d↔ x}, if {0 ↔ x}, and the common cluster C{0,x} satisfies

#(C{0,x} ∩Hm) > 1 ∀ m = 1, . . . , n − 1.

Set

d(n, k) = Pp

(
0

d↔ x
)
.

DEFINITION. Given x = (n, k) and a cluster C{0,x}, let us say that a point y =
(m, l) is a regeneration point for C{0,x}, if 1 ≤ m ≤ n− 1 and C{0,x} ∩Hm = {y}.

Notice that clusters C{0,x} corresponding to d-connections could be defined as
those which have no regeneration points. Clearly, d-connectivities dominate the
f -connectivities, d(n, k) > f (n, k). We claim that there exists ν > 0 such that∑

x∈Hn

Pp

(
0

d↔ x
)
e(t,x)d ≤ e−νn.(3.5)

By (2.8) and (1.10),

lim
n→∞

1

n
log

( ∑
x∈Hn

Pp(0 ↔ x)e(t,x)d

)
= lim

n→∞
1

n
log

( ∑
k∈Zd−1

h(n, k)e(t,x)d

)
= 0.

Consequently, for the purpose of proving (3.5), one is entitled to work with
full clusters C{0,x} instead of the restricted clusters Cn{0,x} which appear in the
definition of h(n, k). The renormalization estimates of the previous subsections
imply that a nonnegligible contribution to the left-hand side of (3.5) could come
only from the clusters C{0,x} which are compatible with sufficiently well behaved
tree skeletons T(k). This enables several reductions in the sum (3.4). Specifically,
we have the following:
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Reduction in ‖x‖d . By (1.23) it would be enough to restrict summation only to
those x ∈Hn which satisfy ‖x‖n ≤ c1n.

Reduction in g(k) = #(γ (k)). In view of the reduction in ‖x‖ and by (2.8) it would
be enough to restrict the summation only to the case of k-skeleton (k large enough)
connections, which satisfy g(k) ≤ c2n/k.

Now fix ε = ε(t) and α = α(t, ε) as in (3.1).

Reduction in #t,ε(γ (k)). Fix any δ > 0. By Lemma 2.2,

Pp

(
γ (k): #t,ε(γ (k)) ≥ δ

n

k
;0

γ (k)

↔ x

)
≤ exp{−c3δεn− (t, x)d },

uniformly in n and x ∈ Hn, ‖x‖d ≤ c1n, as soon as the scale k is chosen to be
sufficiently large, that is, k ≥ k0(δ, ε, t̂ ).

Consequently, for all such scales k we obtain

∑
x∈Hn

e(t,x)d Pp

(
T(k): #t,ε(γ (k)) ≥ δ

n

k
;0

T(k)↔ x

)
≤ e−c4δεn.(3.6)

Reduction in l(k) = #(L(k)). Similarly, Lemma 2.3 implies that for every δ > 0
fixed

∑
x∈Hn

e(t,x)d Pp

(
T

(k): l
(k) ≥ δ

n

k
;0

T(k)↔ x

)
≤ e−c5δn,(3.7)

uniformly in n and for sufficiently large renormalization scales k.

To summarize all the reductions above, for every δ > 0 one can restrict
summation in (3.4) to the case of ‖x‖d ≤ c1n and the percolation clusters C{0,x}
which are, on sufficiently large renormalization scales k, compatible with tree
skeletons T(k) = γ (k) ∪L(k) satisfying

#
(
γ (k))≤ c2

n

k
, #t,ε

(
γ (k))≤ δ

n

k
and #

(
L

(k))≤ δ
n

k
.(3.8)

Let us say that T(k) is a δ-regular tree skeleton if it complies with (3.8). Similarly,
let us say that a cluster C{0,x} is (k, δ)-regular if its tree skeleton T(k) on the kth
renormalization scale is δ-regular.

Thus, it remains to show that, for an appropriate choice of k and δ,

∑
x∈Hn

Pp

(
0

d↔ x;C{0,x} is (k, δ)-regular
)
e(t,x)d ≤ e−νn.(3.9)
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3.3. Proof of the mass-gap. There is a transparent logic behind the latter
estimate: the condition on the cluster C{0,x} to be (k, δ)-regular forces most of
C{0,x} to be localized within chunks of kUp-balls centered around vertices of the
trunk γ (k) with successive ε-good increments. Notice that by the positive cone
condition (3.1) each ε-good increment shifts the e1-projection of the corresponding
endpoints by a fixed fraction of k, which gives rise to decoupling properties along
finite sequences of such successive vertices. Small values of δ insure a fixed
fraction of n/k of such disjoint sequences which, already, leads to the target
bound (3.9). Let us proceed with a rigorous implementation of the above idea:

For every x ∈ Hn, ‖x‖d ≤ c1n,

Pp

(
0

d↔ x; C{0,x} is (δ, k)-regular
)= ∑

T(k) is δ-regular

Pp

(
0

d↔ x;T(k) ∼ C{0,x}
)
.

Similarly,

Pp

(
0 ↔ x; C{0,x} is (δ, k)-regular

)= ∑
T(k) is δ-regular

Pp

(
0 ↔ x;T(k) ∼ C{0,x}

)
.

We claim that there exists ν > 0 such that

Pp

(
0

d↔ x;T(k) ∼ C{0,x}
)≤ e−νnPp

(
0 ↔ x;T(k) ∼ C{0,x}

)
,(3.10)

uniformly in all sufficiently large renormalization scales k and in all δ-regular tree
skeletons T(k).

Indeed, let us choose a sufficiently large number r ∈ N; below we shall specify
an appropriate choice; eventually it will depend on the value of α in the positive
cone condition (3.1), but not on the particular renormalization scale k. Given r we
associate, on every coarse-graining scale k, a sequence of slabs S

j
k,r , j = 1, 2, . . . ,

S
j
k,r

�= {x ∈ Zd : |x1 − 4jkr| ≤ rk}.(3.11)

In other words, S
j
k,r is the lattice slab of width 2kr centered at the point 4jrke1 =

(4jrk, 0). For a given tree skeleton T(k), let us say that a slab S
j
k,r is good if

4jrk < n, and

S
j
k,r ∩

⋃
z∈T

(k)
bad

kUp(z) = ∅,

where the bad part of T(k) is defined via

T
(k)
bad

�= L(k) ∪ {γ (k)(i) : γ (k)(i + 1)− γ (k)(i) /∈ Cε(t)
}
.

By (3.8) the number of good slabs S
j
k,r is, uniformly in all δ-regular tree skeletons

T(k), bounded below:

{j :Sj
k,r is good} ≥ n

8rk
,(3.12)
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FIG. 2. The renormalized cluster C(k)
{0,x}: the slabs S1, S4 and S5 are good; the slabs S2, S3 and

S6 are bad.

as soon as δ is sufficiently small, which, again by (3.8), amounts to choosing a
sufficiently large coarse-graining scale k.

So let us fix a δ-regular tree skeleton T(k), and let us renumber all good slabs
of T(k) as S

j1
k,r , . . . ,S

jm

k,r , m ≥ n/8rk. For every good slab S
jl

k,r and every cluster

C{0,x} compatible with T(k), the intersection C{0,x} ∩ S
jl

k,r is confined to the set

Rjl

T(k) ,

C{0,x} ∩ S
jl

k,r ⊆ Rjl

T(k)

�= ⋃
γ (k)(i)∈S

jl
k,r

2kUp
(
γ (k)(i)

)
.

By construction, for every jl , l = 1, . . . , m, the number of points #(Rjl

T(k) ) ≤
c3(rk)d . Also all the γ (k)-increments inside Rjl

T(k) are ε-good. Thus, if r > c4/α,

then, in view of (3.1), one can locally modify at most c5(rk)d bonds inside Rjl

T(k)

in such a way that the following hold:

1. the modified cluster is still compatible with T(k);
2. there is at least one regeneration point inside Rjl

T(k) .

Since these modifications could be performed independently in each of the sets
Rjl

T(k) , l = 1, . . . , m, m ≥ n/2rk, the inequality (3.10) follows.

3.4. Asymptotics of h-connectivities. With the mass-gap condition (1.15)
verified at all the points t̂ ∈ int(DH), we literally proceed as in [12]. In particular,
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the nondegeneracy condition (1.16) follows by the conditional variance argument
as in [12], pages 341–342.

Similarly, following the proof of Lemma 4.1 in [12], let us describe the analytic
function #p , which appears in the right-hand side of (1.17):

Given x = (n, k), choose the unique point t̂ = t̂ (n, k) = t̂ (�n(x)) ∈ DH which
satisfies

k

n
=∇mH(t̂ ).

The existence and uniqueness of such t̂ follows from Theorem D. Set t =
(−mH(t̂ ), t̂ ) ∈ ∂Kp and

κ(t̂ ) =
∞∑

n=1

nFn(t̂ )e−nmH(t̂ ).

Then

#p

(�n(x)
)= (1 − p)d−1

κ(t̂ )
√

(1 + ‖k/n‖2
d−1)ρ∂Kp(t)

,(3.13)

where, as before, ρ∂Kp(t) is the Gaussian curvature of the polar shape ∂Kp at the
point t .

3.5. Asymptotics of full connectivities. Because of the exponential bound (3.5)
we actually have all the data to proceed as in [7] and [12] (see the detailed
computation in [12], pages 347–349).

Namely, let α ∈ R+ be fixed, and let x = (n, k) ∈ Hn ∩ Cα . Choose t =
t (x) = (−mH(t̂ ), t̂ ) as in the preceding subsection. Of course, t is polar to x,
(t, x)d = ξp(x).

Decomposing the cluster C{0,x} with respect to the leftmost and rightmost
regeneration points on the interval [1, . . . , n− 1], we obtain

Pp(0 ↔ x) = d(n, k)+
n∑

r=1

∑
l∈Zd−1

u(r, l)h̃(n − r, k − l),

where u is the connectivity function along the clusters with exactly one regenera-
tion point, that is, by definition,{

0
u↔ x

} ⇐⇒ ∃ unique r ∈ [1, . . . , m− 1] : #(C{0,x} ∩Hr ) = 1.

We set u(r, l) = Pp(0
u↔ (r, l)).

As in the case of d-connectivities the results of Section 3 imply that there exists
ν′ > 0 such that

Ur(t̂ )
�= ∑

l∈Zd−1

u(r, l)e(t̂,l)d−1 ≤ e−ν′r+rmH(t̂ ),
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uniformly in r ∈ N. Using the local asymptotics (1.17) of h-connectivities, we,
therefore, arrive at (1.11) of Lemma 1.1 with

�p

(�n(x)
)= ∞∑

r=1

rUr(t̂ )e−rmH(t̂ ).

4. Direct approach.

4.1. Renewal along generic directions. Let t ∈ ∂Kp . Given x, y ∈ Zd we
define the hyperplane

H t
x = {z ∈ Rd | (t, z)d = (t, x)d }

and the slab

St
x,y = {z ∈ Rd | (t, x)d ≤ (t, z)d ≤ (t, y)d }.

If (t, x)d > (t, y)d , we set St
x,y = ∅.

We shall define connectivity functions ht , ft associated with t : Let e be a unit
vector in the direction of one of the axes such that the scalar product of e with t is
maximal.

DEFINITION. For x, y ∈ Zd let {x ht↔ y} denote the (possibly empty) event
that:

1. x and y are connected in the restriction of the percolation configuration to the
slab St

x,y . Let Ct
x,y denote the corresponding common cluster. If x �= y, then in

addition
2. Ct

x,y ∩ St
x,x+e = {x, x + e} and Ct

x,y ∩ St
y−e,y = {y − e, y}.

Set

ht (x)
�= Pp

(
0

ht↔ x
)
.

Notice that ht(0) = 1 and, by translational invariance, that ht (x) = Pp(z
ht↔ z+ x)

for every x, z ∈ Zd . Also, as in the case of the parameterized h-connectivities, it is
easy to show that

ξp(x) =− lim
n→∞

1

n
log ht ([nx]),(4.1)

for any t and x satisfying (t, x)d > 0.
The d-dimensional array of ht -connectivities possesses a natural renewal

structure, which we proceed to describe:

DEFINITION. For x, y ∈ Zd let us say that they are ft -connected, {x ft↔ y}, if
the following hold:
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(i) the event {x ht↔ y} happens, and x �= y;
(ii) for no z ∈ Zd \ {x, y} both{

x
ht↔ z

}
and

{
z

ht↔ y
}

(4.2)

take place.

Set

ft (x)
�= Pp

(
0

ft↔ x
)
.

Notice that ft (0) = 0, and, moreover, the ft -connectivities are Zd -shift invariant.
The parameterized construction of the preceding sections corresponds to the

choice of t along one of the axis directions. The point we are making here is
that it is natural to relate the asymptotics of Pp(0 ↔ x) to the asymptotics of the
ht0 -connectivities, where t0 ∈ ∂Kp is essentially chosen to be polar to x.

From now on we assume that t0 ∈ ∂Kp is not orthogonal to any of the axis
directions. We shall adjust the notion of regeneration point to the direction t0:
Let y ∈ Zd and assume that y is connected to the origin. We say that z ∈ Zd is
a regeneration point of C{0,y} if the following hold:

1. (t0, e)d ≤ (t0, z)d ≤ (t0, y)d − (t0, e)d ;
2. St

z−e,z+e ∩ C{0,y} contains exactly three points z − e, z and z + e, where e is
a unit axis direction, such that the scalar product (t0, e)d is maximal.

For any point y and for any realization of the cluster Ct0
0,y there are at most

a finite number of regeneration points. Notice that if 0 and y are ht0-connected
and z is a regeneration point, then (4.2) is satisfied (with x = 0). If there is no
such point at all, then, by definition, 0 is ft -connected to x. Otherwise, 0 is
ft -connected to the regeneration point z, which has the minimal t-projection.
Using the corresponding decomposition of the clusters Ct0

0,x one gets the following
“renewal type” equation:

ht0(y) = ∑
z∈Zd

ft0(z)ht0(y − z).(4.3)

4.2. Regeneration points. By compactness of ∂Kp for every ε ∈ (0, 1
2 ) one

can choose λ = λ(ε) > 0 such that, for every t0 ∈ ∂Kp ,

t ∈ Bλ(t0) ∩ ∂Kp �= {s ∈ Rd :‖s − t0‖d ≤ λ} ∩ ∂Kp

implies that Cε(t) ⊂ C2ε(t0)
(4.4)

uniformly in t0 ∈ ∂Kp .
This is the appropriate version of the positive cone condition for the t0-adjusted

renewal structure. Notice that the forthcoming proofs do not rely on the lattice
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symmetries of Zd . Let us use Rt0
x to denote the (random) set of t0-regeneration

points of C{0,x}. The following lemma gives a uniform probabilistic estimate on
the typical size of Rt0

x as ‖x‖d increases.

LEMMA 4.1. For every ε ∈ (0, 1
2 ) there exist δ > 0 and ν > 0 such that

Pp

(
#(Rt0

x ) < δ‖x‖d ;0
ht0↔ x

)
≤ exp

(−(t, x)d − ν‖x‖d

)
(4.5)

uniformly in t0 ∈ ∂Kp , t ∈ Bλ(t0)∩ ∂Kp and x ∈ Cε(t), where λ = λ(ε) is defined
in (4.4).

PROOF. The proof is identical to that of the estimate (3.10). The only required
modification is to redefine the slabs S

j
k,r as

S
j
k,r

�= {y ∈ Zd : |(t0) − 4jkr| ≤ rk},
instead of the parameterized definition employed there. �

For t0 ∈ ∂Kp and t ∈ Rd define

Ht0(t)
�= ∑

x∈Zd

ht0(x)e(t,x)d ,

Ft0(t)
�= ∑

x∈Zd

ft0(x)e(t,x)d .

An almost immediate consequence of Lemma 4.1 is the mass-gap-type
condition for the t0-adjusted connectivities.

LEMMA 4.2. For every ε ∈ (0, 1
2 ) there exists λ = λ(ε) > 0 such that,

uniformly in t0 ∈ ∂Kp ,

Ft0(t) < ∞ on Bλ(t0).(4.6)

Furthermore, for every t0 ∈ ∂Kp , the implicit description of ∂Kp in the ∂Kp ∩
Bλ(t0) neighborhood of t0 is given by

t ∈ ∂Kp ∩ Bλ(t0) ⇐⇒ Ft0(t) = 1.(4.7)

∂Kp is a real analytic surface and it is strictly convex with Gaussian curvature
uniformly bounded away from 0.

PROOF. Fix ε ∈ (0, 1
2) For every t ∈ Rd \ 0 define ηt to be the unique point

of the boundary ∂Kp in the direction of t ; ηt = t/ξ∗p(t), where ξ∗p is the support
function of Up . Of course,

Pp

(
0

ft0↔ x

)
≤ Pp(0 ↔ x) ≤ exp

(−(ηt , x)d − c1ε‖x‖d

)
,(4.8)
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whenever x /∈ Cε(ηt ). Consequently, there exists λ1 = λ1(ε) such that

Pp

(
0

ft0↔ x

)
≤ exp

(−(t, x)d − c1ε‖x‖d

)
(4.9)

uniformly in t0 ∈ ∂Kp , t ∈ Bλ1(t0) and x /∈ Cε(ηt ).
On the other hand, using the fact that ft0 -clusters have no regeneration point at

all we infer from (4.5) that there exist ν′ > 0 and λ2 > 0 such that

Pp

(
0

ft0↔ x

)
≤ exp

(−(t, x)d − ν′‖x‖d

)
(4.10)

uniformly over t0 ∈ ∂Kp , t ∈ Bλ2(t0) and x ∈ Cε(ηt ).
Thus (4.6) follows with λ(ε) = λ1(ε) ∧ λ2(ε).
Since for t ∈ int(Kp)∩Bλ(t0) the moment generating function Ht0 is finite and,

moreover,

Ht0(t) = 1

1 − Ft0(t)
,(4.11)

(4.7) follows by the continuity of Ft0 and the fact that Ht0 diverges on Bλ(t0) \Kp.
Given t0 ∈ ∂Kp , t ∈ Rd and x ∈ Zd let us define the measure

Qt
t0

(x) = ft0(x)e(t,x)d .(4.12)

By (4.6) and (4.7), Qt
t0

is a probability measure with exponentially decaying tails
whenever t ∈ Bλ(t0) ∩ ∂Kp .

In the latter case let µt0(t) ∈ Rd be the expectation of a random variable X

under the probability distribution Qt
t0

,

µt0(t) = Et
t0

X = ∑
x∈Zd

xQt
t0

(x) =∇ logFt0(t).(4.13)

Let At0(t) = Hess(logFt0(t)) be the corresponding covariance matrix. It is
straightforward to check that At0(t) is uniformly [in t0 ∈ ∂Kp and t ∈ Bλ(t0) ∩
∂Kp] nondegenerate. Consequently, as the measure Qt

t0
is concentrated on one side

of a hyperplane containing the origin, µt
t0
�= 0. By the analytic implicit function

theorem we infer that ∂Kp is a real analytic surface in a neighborhood of t0.
Similarly, strict convexity of and positive Gaussian curvature of ∂Kp at t0 follow
from the strict convexity of log Ft0 and nondegeneracy of At0 in a neighborhood of
this point. �

Using the general theory of convex bodies [12, 17] we can obtain a correspond-
ing result for the surface ∂Up which is polar to ∂Kp .

LEMMA 4.3. The surface ∂Up is an analytic convex surface with Gaussian
curvature uniformly bounded away from 0. The Gaussian curvatures of ∂Up and
∂Kp at two conjugate points x and t are reciprocals of one other.
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REMARK. It should be mentioned that our choice of the renewal relation (4.3),
and, accordingly, of the connectivity type functions ht and ft , is certainly not
the only possible one. This is, however, not that important—whatever notion of
regeneration points one employs, the localized structure of percolation clusters
(in the sense of renormalization results of Section 2) will lead to an appropriate
version of the entropic bound (4.5).

4.3. Tilted measures and strict convexity. It is instructive to give a direct proof
of the strict convexity of the norm ξp . Notice that the argument below suggests
that this property is, in fact, a purely entropic phenomenon.

LEMMA 4.4. The norm ξp is strictly convex.

PROOF. First of all we shall show that, for every t0 ∈ ∂Kp and each t ∈
Bλ(t0)∩ ∂Kp , the points t and µt0(t) [defined in (4.13)] are in polar relation:(

t, µt0(t)
)
d = ξp

(
µt0(t)

)
.(4.14)

Moreover, we claim that, for every µ �= µt0(t) with ‖µ − µt0(t)‖d ≤ 1 and
(µ, t)d = (µt0(t), t)d ,

ξp(µ) ≥ (µ, t)d + c4‖µ −µt0(t)‖2
d = ξp

(
µt0(t)

)+ c4‖µ − µt0(t)‖2
d ,(4.15)

for some strictly positive constant c4. Strict convexity of ξp then instantly follows.
Let X1, X2, . . . be a sequence of i.i.d. random variables distributed according

to Qt
t0

. One can then rewrite the renewal relation (4.3) as

ht0([nµ]) = δ0([nµ])
+ exp

(−(t, [nµ])d

)∑ k⊗
1

Qt
t0

(X1 + · · · + Xk = [nµ]).(4.16)

Since Qt
t0

is supported by {x ∈ Zd | (t0, x)d ≥ 0}, the expected value(
t0, µt0(t)

)
d = Et

t0
(t0, X1) > 0.

Thus, for t ∈ Bλ(t0) with λ sufficiently small, (t, µt0(t))d > 0 as well. For these
t ∈ Bλ(t0) there exist c5, c6 > 0 such that∥∥∥∥∥nµ −

k∑
i=1

Et
t0

Xi

∥∥∥∥∥
d

= ‖nµ− kµt0(t)‖d ≥ c5|n− k|‖µt0‖d + c6n‖µ −µt0‖d ,

for every k, n ∈ N. By the usual large deviation upper bound,

k⊗
1

Qt0

(
k∑

i=1

Xi = [nµ]
)

(4.17)

≤ exp
(
−c7

(n− k)2

k
∧ |n− k| − c8

n2

k
∧ n‖µ−µt0(t)‖2

d

)
.
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Substituting the latter estimate to (4.16), we obtain

ht0([nµ]) ≤ c9
√

n exp
(−(t, [nµ])d − c10n‖µ−µt0(t)‖2

d

)
.

The claim (4.15) follows from the asymptotic relation (4.1). �

4.4. Local limit structure of connectivities. Let us fix ε > 0 sufficiently small.
We shall give sharp large-‖x‖d asymptotics of ht0(x) uniformly over t0 ∈ ∂Kp

and x ∈ Cε(t0). As in the parameterized approach of Section 3.5, the passage from
the asymptotics of ht0(x) to the full asymptotics (1.6) is, in view of the mass-gap
assertion of Lemma 4.1, secured by the decomposition of the cluster C{0,x} with
respect to the leftmost and rightmost t0-regeneration points. In other words, the
claim of Theorem A follows, once we show that the following lemma holds.

LEMMA 4.5. Uniformly in t0 ∈ ∂Kp and in x ∈ Cε(t0)∩Zd ,

ht0(x) = #t0(�n(x))√
(2π‖x‖d)d−1

e−ξp(x)(1 + o(1)
)
.(4.18)

PROOF. We use notation and results from the previous subsections. Since
At0(t) = Hess(log Ft0(t)) is nondegenerate at t = t0, the cone Cε(t0) lies inside
the cone generated by the vectors{

µt0(t) = Et
t0

X1 | t ∈ Bλ(t0) ∩ ∂Kp}.
In particular, for every x ∈ Cε(t0) there exists t ∈ Bλ(t0) such that x and t are in
the polar relation, which, by (4.14) and (4.15), means that

�n(x) = µt0(t)

‖µt0(t)‖d

.(4.19)

Furthermore, there exists a number n = n(x) such that

‖x − nµt0(t)‖d ≤ c8,(4.20)

the latter estimate being uniform in t0 ∈ ∂Kp and x ∈ Cε(t0).
We now rewrite (4.16) as

ht0(x) exp
(
ξp(x)

)
= δ0(x) + exp

(−(t, x)d

) ∞∑
k=1

k⊗
1

Qt
t0

(X1 + · · · + Xk = x).
(4.21)

Fix α ∈ (0, 1
2). Notice that the support of Qt

t0
spans the whole lattice Zd . In

view of (4.20), uniform exponential bounds (4.6) on the tails of Qt
t0

and uniform
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nondegeneracy of At0 , we infer, by the usual d-dimensional local central limit
theorem, that

k⊗
1

Qt0(X1 + · · · +Xk = x)

= exp{−[(n − k)2/2n](A−1
t0

µt0, µt0)d(t)}√
(2πn)d det(At0(t))

(
1 + o(1)

)(4.22)

uniformly over t0 ∈ ∂Kp , x ∈ Cε(t0) satisfying (4.20) and k in the range |n− k| <

n1/2+α.
In the remaining range of k’s one has, proceeding as in (4.17),

∑
|k−n|≥n1/2+α

k⊗
1

Qt0(X1 + · · · + Xk = x) ≤ exp(−c9n2α).(4.23)

Substituting (4.22) and (4.23) into (4.21) we, using (4.20), recover (4.18) with

#t0

(�n(x)
)=

√√√√ ‖µt0(t)‖d−1
d

(A−1
t0

µt0, µt0)d(t) det(At0(t))
.

Finally, the analyticity of #t0 follows from the relation (4.19) and the analyticity
of logFt0 , which has been discussed in Section 4.2. �
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