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The p-variation of a function f is the supremum of the sums of the pth
powers of absolute increments of f over nonoverlapping intervals. Let F be
a continuous probability distribution function. Dudley has shown that the
p-variation of the empirical process is bounded in probability as n → ∞
if and only if p > 2, and for 1 ≤ p ≤ 2, the p-variation of the empirical
process is at least n1−p/2 and is at most of the order n1−p/2�log log n�p/2 in
probability. In this paper, we prove that the exact order of the 2-variation
of the empirical process is log log n in probability, and for 1 ≤ p < 2, the
p-variation of the empirical process is of exact order n1−p/2 in expectation
and almost surely.

Let Sj �= X1 +X2 + · · · +Xj. Then the p-variation of the partial sum
process for �X1�X2� � � � �Xn� is defined as that of f on �0� n
, where f�t� =
Sj for j − 1 < t ≤ j, j = 1�2� � � � � n. Bretagnolle has shown that the
expectation of the p-variation for independent centered random variables
Xi with bounded pth moments is of order n for 1 ≤ p < 2. We prove
that for p = 2, the 2-variation of the partial sum process of i.i.d. centered
nonconstant random variables with finite 2 + δ moment for some δ > 0 is
of exact order n log log n in probability.

1. Introduction. Wiener first defined p-variation in 1924 [19]. He mainly
focused on the case p = 2, the 2-variation. For p-variations with p �= 2,
the first major work was done by Young [20], partly with Love [12]. More
recent applications in probability theory include Bretagnolle [2], which proves
an important result for sums of independent mean zero random variables;
Lépingle [11], which treats the p-variation for semimartingales; and Pisier
and Xu [14], which treats martingales and Banach space interpolation. The p-
variation for empirical processes seems to have been first addressed explicitly
in a sequence of papers by Dudley [4, 6, 7].

The definitions of the empirical distribution function, the empirical process
and the p-variation of a function f are given as follows.

Definition 1.1. Let X1�X2� � � � �Xn be i.i.d. (independent, identically dis-
tributed) random variables with d.f. (distribution function) F. Let Fn�x� �=
n−1 ∑n

i=1 1�−∞� x
�Xi� and αn �= √
n�Fn −F�. Then Fn is called the empirical

d.f. of F and αn is the empirical process.

To introduce p-variation, we define the more general ψ-variation first.
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Definition 1.2. Let ψ be a Young–Orlicz modulus. That is, ψ is a strictly
increasing, convex function from �0�∞� onto itself. Let f be a function from
an interval J ⊂ R into R. The ψ-variation of f is defined by

vψ�f� �= sup
{ m∑
i=1

ψ��f�xi� − f�xi−1���� x0 ∈ J� x0 < x1 < · · · < xm ∈ J�

m = 1�2� � � �
}
�

If ψ�x� ≡ xp, where p ≥ 1, then the p-variation of f is vp�f� �= vψ�f�.
For a sequence of random variables X1�X2� � � � �Xn and Sj �= ∑j

i=1 Xi, the
p-variation for partial sums is defined by

vp��Xi�ni=1� �= max
{ k∑
i=1

�Sji
−Sji−1

�p� 0 = j0 < j1 < · · · < jk = n�

k = 1�2� � � � � n
}
�

Remarks. For p = 1, the p-variation is the usual total variation. For
p = 2, the 2-variation we are studying here is actually different from the
widely studied quadratic variation of a stochastic process, which is defined by
a limit in probability as the mesh of partitions goes to 0, or an almost sure
limit under further restrictions.

For p ≥ 1 and −∞ ≤ a < b ≤ +∞, let Wp �= Wp�a� b
 be the class of all real-
valued functions f on �a� b
 with finite p-variation vp�f� = vp�f� �a� b
� < ∞.
For any f ∈ Wp, define �f��p� �= vp�f�1/p. Then �f��p� is a seminorm which
is 0 only for constants. If we let �f��p
 �= �f��p� + �f�∞, where �f�∞ �=
supx �f�x��, then � · ��p
 is a norm on Wp. It can be shown that Wp is complete
for � · ��p
 and so Wp is a Banach space.

In [4], [6] and [7], Dudley suggests using the p-variation norm to replace
the supremum norm when considering the differentiability of some statistical
functionals. The reasons are severalfold: first, Fréchet derivatives often exist
for p-variation norms while they do not for the supremum norm. Second,
uniformly over all possible norms on spaces containing empirical distribution
functions, the p-variation norm gives remainder bounds in the differentiation
which are of the smallest possible order in a range of cases. Third, the p-
variation norm retains the good property of the supremum norm of being
invariant under all strictly increasing, continuous transformations of R onto
itself. Fourth, the central limit theorem for the ordinary empirical process in
the p-variation norms holds for p > 2. These as well as other results given in
[4], [6] and [7] show the importance and usefulness of the p-variation spaces
and norms.

For p > 2, the central limit theorem for empirical processes in p-variation
holds [4] and there exist versions α∗

n and B∗
n of the empirical process αn and

Brownian bridge B, respectively, on some probability space, such that E�α∗
n −
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B∗
n��p
 ≤ C�p�n�1/p�−1/2, where C�p� is a constant depending only on p and

the bound is optimal up to the constant C�p� [9]. For p ≤ 2, the central limit
theorem for empirical processes cannot hold since the p-variation norm of
the empirical process is not bounded in probability. Dudley ([7], Theorem 2.2)
shows the following:

Theorem A (Dudley). Let F be any d.f. and Fn be an empirical d.f. for
F. Then for 1 ≤ p ≤ 2� vp�n1/2�Fn − F�� = Op�n1−p/2�LLn�p/2� as n → ∞.
Conversely, if F is continuous, then almost surely for all n� vp�n1/2�Fn−F�� ≥
n1−p/2.

A Young–Orlicz modulus ψ as in Definition 1.2 is said to satisfy the �2
condition if, for some constant L < ∞, ψ�2x� ≤ Lψ�x� for all x > 0. Taylor
[18] proved the following:

Theorem B (Taylor). For the Brownian motion process xt on �0�M
� where
0 < M < ∞� almost surely vψ1

�xt� < ∞� where Lx �= max�1� log x�� ψ1�x� �=
x2/LL�1/x� for 0 < x ≤ e−e and ψ1�x� is defined for x > e−e in any way
such that ψ1�x� is a Young–Orlicz modulus satisfying �2. Moreover, if ψ1�x� =
o�ψ�x�� as x decreases to 0� then vψ�x� = +∞ almost surely.

In this paper, we will establish the exact order of vp�αn� in probability for
p = 2, and both in expectation and almost surely for 1 ≤ p < 2. In particular,
we show that for p = 2, the upper bound in Theorem A is sharp up to a
constant, while for 1 ≤ p < 2, the lower bound is sharp up to a constant. We
also show that for 1 ≤ p < 2, the almost sure bound is of the same order
as the bound in expectation, thus also is of the same order as the bound in
probability.

For the p-variation of partial sums, Bretagnolle ([2], Theorem 2) proved:

Theorem C (Bretagnolle). Let X1�X2� � � � �Xn be independent random
variables with EXi = 0 for i = 1�2� � � � � n. Then for p ∈ �0�2�� there exists a
constant cp� depending only on p� such that Evp��Xi�ni=1� ≤ cp

∑n
i=1 E�Xi�p.

The paper is organized as follows: In Section 2, we study the 2-variation
of partial sum processes. In Section 3, we use the connection between the
p-variation of the partial sum process and that of the empirical process to
obtain results for the empirical process. In Section 4, we study the almost
sure asymptotic behavior of the p-variation of Fn −F for a continuous d.f. F
and its empirical d.f. Fn with 1 < p < 2.

2. The 2-variation of partial sum processes. In this section, we show
that the 2-variation of the partial sum process of i.i.d. centered random vari-
ables Yi with finite 2 + δ moment for some δ > 0 is of order nLLn in prob-
ability.
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To get a lower bound for the 2-variation of the partial sum process of Yi,
we begin with the simple case in which Xi are i.i.d. N�0�1� random variables.
It is easily seen that the following holds for some c > 0 in place of 1/12. For
a proof of the given statement, see Qian ([15], Lemma 2.1).

Lemma 2.1. Let %�x� be the standard normal distribution function. Then
%�−x� = 1 −%�x� ≥ �1/12� exp �−3x2/4� for x ≥ 1.

Now, let �Xi�i≥1 be i.i.d. N�0�1�, Sk �= ∑k
i=1 Xi for k ≥ 1 and S0 �= 0. Let

K �= 25. Given n, let

l �= l�n� �=
⌊

log n

4 log K

⌋
and m �= m�n� �=

⌊
log n

2 log K

⌋
�(1)

where �x� is the largest integer ≤ x. Let Lx �= max�1� log x� and let

En �= En�ω�

�=
{
t ∈ {

0�1� � � � � n− �√n�}� ω ∈
m⋃
j=l

{
�St+Kj�ω� −St�ω�� ≥

√
Kj LLn/2

}}
�

Lemma 2.2. For n large enough (n ≥ n1, where n1 is an absolute constant)
and for any t ∈ �1�2� � � � � n − �√n��, P�ω� t ∈ En�ω�� > 1 − pn, where pn �=
exp�−�log n�1/5/�52 log K���

Proof. For the given n and t, let

Ej
n �= Ej

n�t� �=
{
ω� �St+Kj�ω� −St+Kj−1�ω�� ≥

√
Kj LLn

}
�

for j = l+ 1� l+ 2� � � � �m. Then by Lemma 2.1,

P�Ej
n� ≥ 1

12
exp

(
−3

4
Kj

Kj −Kj−1
LLn

)
≥ 1

12
exp

(
−4

5
LLn

)

= 1
12

�log n�−4/5 for n ≥ �ee� + 1 = 16�

(2)

Let E′
n �= E′

n�t� �=
⋃m

j=l+1 E
j
n�t�. Note that for different j’s, Ej

n�t� depend

on disjoint sums of i.i.d. random variables, so E
j
n�t� are independent, and for

n ≥ 16,

P�E′
n� = P

( m⋃
j=l+1

Ej
n

)
= 1 − P

( m⋂
j=l+1

�Ej
n�c

)
= 1 −

m∏
j=l+1

P��Ej
n�c�

≥ 1 −
m∏

j=l+1

(
1 − �1/12��log n�−4/5)

≥ 1 − exp
(−�1/12��m− l��log n�−4/5)

≥ 1 − exp
(−�1/12��log n/�4 log K� − 1��log n�−4/5)

> 1 − exp
(−�log n�1/5/�52 log K�) =� 1 − pn�
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where the last inequality holds for n ≥ n1 for an absolute constant n1 = 5104 <
5 × 1072.

So with probability greater than 1 − pn, there exists some j = l + 1� l +
2� � � � �m, such that �St+Kj�ω�−St+Kj−1�ω�� ≥

√
Kj LLn. Then either �St+Kj −

St� ≥
√
Kj LLn/2 or �St+Kj−1 − St� ≥

√
Kj LLn/2 ≥

√
Kj−1 LLn/2. This

implies that for ω ∈ E′
n�t�, we have t ∈ En�ω�; therefore, P�ω� t ∈ En�ω�� ≥

P�E′
n�t�� > 1 − pn holds for n ≥ n1. ✷

Lemma 2.2 holds for individual t. It can be extended by a Fubini argu-
ment, as in Taylor’s [18] proof of Theorem B, to a large portion of points in
�0�1� � � � � n− �√n�� simultaneously. Let Un be the discrete uniform distribu-
tion on �0�1� � � � � n− �√n��.

Lemma 2.3. For any n ≥ n1, P�ω� Un�En�ω�� > 1 −√
pn� > 1 −√

pn�

Proof. By Lemma 2.2, for each t,
∫
+ 1En�ω��t�dP�ω� = P�ω� t ∈ En�ω�� >

1 − pn. Then, interchanging an integral and a finite sum gives∫
+
Un�En�ω��dP�ω� =

∫ ∫
+

1En�ω��t�dP�ω�dUn�t� > 1 − pn�

If the lemma fails, a contradiction follows easily, so Lemma 2.3 is proved. ✷

The proof of Theorem 2.1 below will, again as in Taylor’s [18] proof of The-
orem B, use the following lemma of Vitali type:

Lemma 2.4 (e.g., Lemma 7.2.2 in [5]). Let λ�A� denote the Lebesgue mea-
sure of a set A in R. Let � be a collection of open intervals in R with bounded
union W. Then for any t < λ�W�, there is a finite, disjoint subcollection
�V1�V2� � � � �Vq� ⊂ �, such that

∑q
i=1 λ�Vi� ≥ t/3�

Theorem 2.1. Let �Xi�i≥1 be i.i.d. N�0�1� random variables and v2�n� �=
v2��Xi�ni=1�. Then for any c ∈ �0�1/12�, P�v2�n� ≥ cnLLn� → 1 as n → ∞.

Proof. By Lemma 2.3, we know that for n ≥ n1 with probability greater
than 1−√

pn, for more than M �= M�n� �= ��1−√
pn��n−�√n�+1�� integers

in �0�1� � � � � n− �√n��, say, t1� t2� � � � � tM, we can find corresponding integers
j�1�� j�2�� � � � � j�M�� such that �ti� ti + Kj�i��Mi=1 ⊂ �1�2� � � � � n� (for, Kj�i� ≤
Km ≤ �√n�) and �Sti+Kj�i� −Sti

� ≥
√
Kj�i� LLn/2 for i = 1�2� � � � �M�

Consider the open intervals with integer endpoints ti and ti + Kj�i� for
i = 1�2� � � � �M, that is, the open intervals ��ti� ti+Kj�i���Mi=1. Note that Kj�i� ≥
K > 1, �ti� ti + Kj�i��Mi=1 ⊂ �0�1� � � � � n� and for n large enough, M = ��1 −√
pn��n − �√n� + 1�� > c1n for any fixed c1 ∈ �0�1�. Therefore, the union of

these open intervals is an open set in �0� n
 with Lebesgue measure b, where
b �= b�n� ≥ M > c1n�

Applying Lemma 2.4, for c1n < b, yields a finite and disjoint subcollection of
the above open intervals, say, ��ti� ti+Kj�i���qi=1, such that

∑q
i=1 K

j�i� ≥ c1n/3�
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For the open disjoint intervals ��ti� ti+Kj�i���qi=1, the closures are nonover-
lapping except for possible intersections at endpoints. If we renumber the end-
points, we can get 0 ≤ t1 < t1+Kj�1� ≤ t2 < t2+Kj�2� ≤ · · · ≤ tq < tq+Kj�q� ≤
n� Thus, v2�n� ≥

∑q
i=1�Sti+Kj�i� −Sti

�2 ≥ �1/4�∑q
i=1 K

j�i� LLn ≥ �c1/12�nLLn.
Let c �= c1/12. Then P�v2�n� ≥ cnLLn� ≥ 1 −√

pn → 1 as n → ∞. ✷

Theorem 2.1 gives a lower bound for the 2-variation of partial sums of i.i.d.
N�0�1� random variables Xi. Now we prove a more general result for i.i.d.
random variables Yi with finite 2 + δ moment for some δ > 0.

Theorem 2.2. Let �Yi�i≥1 be i.i.d. with EY1 = 0, EY2
1 = 1 and E�Y1�2+δ <

∞ for some δ ∈ �0�1
. Let vY
2 �n� �= v2��Yi�ni=1�. Then for any c ∈ �0�1/12�,

P�vY
2 �n� ≥ cnLLn� → 1 as n → ∞.

Proof. Let Tk �= ∑k
i=1 Yi for k = 1�2� � � � � n, T0 �= 0 and L �= E�Y1�2+δ <

∞. Then by an extension of the Berry–Esséen theorem (e.g., [13], page 115),
there exists an absolute constant A > 0, such that

∀t� ∣∣P(Tn/
√
n ≤ t

)− P
(
Sn/

√
n ≤ t

)∣∣ ≤ A ·L/nδ/2 =� L′/nδ/2�

where Sn �= X1+X2+· · ·+Xn and the Xi’s are i.i.d. N�0�1� as in Theorem 2.1.
Let P

j
Y �= P�Tt+Kj −Tt+Kj−1 ≤ −

√
Kj LLn� and P

j
X �= P�St+Kj −St+Kj−1 ≤

−
√
Kj LLn� for j = l+ 1� l+ 2� � � � �m� recalling K �= 25 and for l�m defined

as in (1). Then, �Pj
Y−P

j
X� ≤ L′/�Kj −Kj−1�δ/2 for j = l+1� l+2� � � � �m. Note

that Kj −Kj−1 ≥ Kj−1 ≥ Kl ≥ n1/4/K for j = l+ 1� l+ 2� � � � �m. Therefore,
�Pj

Y −P
j
X� ≤ L′ ·Kδ/2/nδ/8.

Recall the definition of Ej
n (as in the proof of Lemma 2.2) and (2) which says

that P�Ej
n� ≥ �log n�−4/5/12 for j = l + 1, l + 2, � � �, m. So P

j
X = P�Ej

n�/2 ≥
�log n�−4/5/24 � L′ ·Kδ/2/nδ/8 for n large enough. Then for large n, we have
P

j
Y > P

j
X/2 ≥ �log n�−4/5/48. Let Ẽ

j
n �= �ω� �Tt+Kj − Tt+Kj−1 � ≥

√
Kj LLn�,

j = l + 1, � � �, m. Then, P�Ẽj
n� ≥ P

j
Y ≥ �log n�−4/5/48. One can continue the

proof just as in Theorem 2.1 since the rest of the proof only requires the
random variables be i.i.d. and not standard normal. ✷

Next we will establish an upper bound for the 2-variation of partial sums.

Theorem 2.3. Let �Xi�i≥1 be i.i.d. with mean 0 and variance 1. Then
v2�n� �= v2��Xi�ni=1� = Op�nLLn� as n → ∞.

Proof. Let �xt�t≥0 be a Brownian motion defined on the same probability
space as �Xi�i≥1 such that they are independent. By taking a product space,
we can assume such an �xt�t≥0 exists.

By Skorohod imbedding of sums (e.g., [1], Theorem 13.6), there is a sequence
of i.i.d. nonnegative random variables, τ1� τ2� � � � � defined on the same space,
such that the process �xT�i��ni=1 and the process �Si/

√
n�ni=1 have the same
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distribution, where T�i� �= τ1 + τ2 + · · · + τi and Si �= X1 + X2 + · · · +
Xi for i = 1�2� � � � � n. Furthermore, Eτ1 = E�X1/

√
n�2 = 1/n. Therefore, for

T�1� < T�2� < · · · < T�n�, ET�i� = iEτ1 = i/n, i = 1�2� � � � � n� In particular
ET�n� = 1. Then for any given ε ∈ �0�1�, if M > 1/ε, by Markov’s inequality,
for all n, P�En� ≤ 1/M < ε� where En �= �ω� T�n� > M�� Let ψ1�0� �= 0 and

ψ1�x� �=
{
x2/ log log�1/x�� if 0 < x ≤ e−e�

�x2 + �ee + e−e�x− 1�/2� if x > e−e�

Then ψ1�x� is a Young–Orlicz modulus satisfying the �2 condition.
Now we will get an upper bound for S �= supπ

∑k
i=1�xT�ji� −xT�ji−1��2 on the

set + \En, where the supremum is taken over all finite partitions π� 0 = j0 <
j1 < · · · < jk = n. Let

I �=
{
i ∈ �1�2� � � � � k�� �xT�ji� − xT�ji−1�� ≤ 1/

√
n
}

and

II �=
{
i ∈ �1�2� � � � � k�� �xT�ji� − xT�ji−1�� > 1/

√
n
}
�

Then

S = sup
π

∑
i∈I

�xT�ji� − xT�ji−1��2

+ sup
π

∑
i∈II

ψ1��xT�ji� − xT�ji−1��� ·
�xT�ji� − xT�ji−1��2

ψ1��xT�ji� − xT�ji−1���
=� SI +SII�

It is clear that SI ≤
∑

i∈I 1/n ≤ k/n ≤ 1�
For an upper bound for SII, let

φi �= �xT�ji� − xT�ji−1��2/ψ1��xT�ji� − xT�ji−1���� i ∈ II�

Then

φi =




log log
1

�xT�ji� − xT�ji−1��
� if

1√
n

< �xT�ji� − xT�ji−1�� ≤ e−e�

2�xT�ji� − xT�ji−1��2

�xT�ji� − xT�ji−1��2 + �ee + e−e��xT�ji� − xT�ji−1�� − 1
�

if �xT�ji� − xT�ji−1�� > e−e�

Let

φ
�1�
i �= φi1

{
1/

√
n < �xT�ji� − xT�ji−1�� ≤ e−e

}
and

φ
�2�
i �= φi1

{�xT�ji� − xT�ji−1�� > e−e
}
�
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where 1�· · ·� �= 1�···�. Then for any i ∈ II, φ
�1�
i ≤ log log

√
n ≤ log log n.

Also, since B �= �ee + e−e��xT�ji� − xT�ji−1�� − 1 > 0 if φ
�2�
i > 0, then φ

�2�
i =

2A/�A+B� < 2 for A �= �xT�ji� − xT�ji−1��2 > 0 and B > 0. Therefore,
for any i ∈ II, φi ≤ max�2� log log n� = log log n for n large enough. Then
SII ≤ log log n supπ

∑
i∈II ψ1��xT�ji� − xT�ji−1���.

In + \En, T�n� ≤ M, so supπ

∑
i∈II ψ1��xT�ji� − xT�ji−1��� ≤ vψ1

(
xt� �0�M
) <

∞ almost surely by Theorem B. Recall that P�+ \ En� ≥ 1 − ε for all n,
where ε > 0 is arbitrary. Letting ε → 0, we get S = SI + SII = Op�LLn�, as
n → ∞. Since

∑k
i=1�Sji

− Sji−1
�2 =�d� n

∑k
i=1�xT�ji� − xT�ji−1��2, it follows that

v2�n� = Op�nLLn� as n → ∞� ✷

Combining Theorems 2.2 and 2.3 gives the exact order of the 2-variation of
partial sums in probability up to some constant.

Theorem 2.4. Let �Xi�i≥1 be i.i.d. with EX1 = 0, EX2
1 = 1 and E�X1�2+δ <

∞ for some δ > 0. Then the 2-variation of partial sums of �Xi�ni=1 is of exact
order nLLn in probability. That is, it is Op�nLLn� and not op�nLLn�.

3. The p-variation of the empirical process. Recall the definition of
the p-variation of a function f in Section 1. We will treat the cases p = 2 and
p ∈ �1�2� separately.

Let F be any nondecreasing function from an interval J into an interval
L. Then for any real-valued function g on L, let �g ◦F��x� �= g�F�x��. It is
easy to see that for 0 < p < ∞, vp�g ◦F� ≤ vp�g�. If F is onto L, or onto its
interior and g is continuous at the endpoints, then vp�g ◦F� = vp�g�.

Let F be any d.f. and let Fn be an empirical d.f. for it. Let U be the uniform
�0�1
 d.f. and let Un be its empirical d.f. Then it is easy to see and known that
we can write Fn ≡ Un◦F and, of course, F ≡ U◦F. Thus Fn−F ≡ �Un−U�◦F.

The lower bound for the 2-variation of partial sums will imply the following
result for the 2-variation of the empirical process, which is sharp up to the
constant c0 since by Theorem A, v2�αn� = Op�LLn� as n → ∞.

Theorem 3.1. Let F be any continuous d.f. on R, let Fn be its empirical
d.f. and let αn �= √

n �Fn − F�. Then P�v2�αn� ≥ c0 LLn� → 1 as n → ∞,
where c0 is any constant in �0�1/12��

Proof. We can assume as just noted that F is the U�0�1
 d.f. U, since
Un is continuous at 0 and 1. Let X1�X2� � � � �Xn be i.i.d. observations with
distribution F. Since F is continuous, a.s. they are distinct, say, 0 =� X�0� <
X�1� < · · · < X�n� < X�n+1� �= 1. Denote the uniform spacings as si �= X�i� −
X�i−1�, i = 1�2� � � � � n + 1. Let r̃i �= �Fn − F��X�i�� − �Fn − F��X�i−1�� for
i = 1�2� � � � � n + 1. Then r̃i = 1/n − si for i = 1�2� � � � � n and r̃n+1 = −sn+1�
Recalling Definition 1.2, it is clear that

v2�αn� ≥ nv2
(�r̃i�n+1

i=1

)
�(3)
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For the uniform spacings si, there is a well known representation theorem as
follows:

Lemma 3.1 (e.g., [16], page 335). Let �γi�n+1
i=1 be independent standard ex-

ponentially distributed random variables and ;n+1 �= ∑n+1
i=1 γi. Then �sj�n+1

j=1

is distributed as �γj/;n+1�n+1
j=1 , and ;n+1 is independent of �γj/;n+1�n+1

j=1 .

Lemma 3.1 allows r̃i = 1/n − si to be replaced by ri �= 1/n − γi/;n+1 for
i = 1�2� � � � � n, r̃n+1 = −sn+1 by rn+1 �= −γn+1/;n+1 and

v2
(�ri�n+1

i=1

) =�d� v2
(�r̃i�n+1

i=1

)
�(4)

Now, let yi = �1 − γi�/;n+1 for 1 ≤ i ≤ n+1; zi = 1/n−1/;n+1 for 1 ≤ i ≤ n+1;
wi = 0 for 1 ≤ i ≤ n; and wn+1 = −1/n. For any u �= �ui�n+1

i=1 ∈ Rn+1, let
�u� �= �u��2� = �v2��ui�n+1

i=1 ��1/2. Recall that the so defined � · � is a seminorm.
As r = y+ z+w, we have ��r� − �y�� ≤ �z� + �w�. It is clear that �w� = 1/n,
�z� = ��n+ 1�/n− �n+ 1�/;n+1�, thus

��r� − �y�� = Op�n−1/2�(5)

holds by the central limit theorem and the law of large numbers. On the other
hand, ;n+1�y� = �v2��1−γi�n+1

i=1 ��1/2, and by Theorem 2.2, P�v2��1−γi�n+1
i=1 � ≥

c�n + 1�LL�n + 1�� → 1 as n → ∞. Note that ;n+1/�n + 1� → 1 a.s., so
P��y� ≥ c

√
LL�n+ 1�/�n+ 1�� → 1 as n → ∞. Combining this with (3), (4)

and (5) completes the proof for the uniform case, and so the general case of
Theorem 3.1. ✷

For 1 ≤ p < 2 and any continuous distribution function F, by just consider-
ing the jumps of height n−1/2 of αn at n distinct points, clearly vp�αn� ≥ n1−p/2.
Next we will establish an upper bound on Evp�αn� of the same order as this
lower bound, which implies that the exact order of vp�αn� for p ∈ �1�2� is
n1−p/2. The proof will be based on Theorem C Bretagnolle of [2].

Theorem 3.2. Let F be any d.f. on R, let Fn be an empirical d.f. for F and
αn �= n1/2�Fn − F�. Then for 1 ≤ p < 2, Evp�αn� ≤ Cpn

1−p/2, where Cp is a
constant depending only on p.

Proof. Again, we can assume F is the uniform �0�1
 d.f. U. Let X1�
X2� � � � �Xn be the n observations on which Fn is based. Almost surely they
are distinct. Let the order statistics be 0 =� X�0� < X�1� < · · · < X�n� <
X�n+1� �= 1.

Let αn�t−� �= lims↑t αn�s� for 0 < t ≤ 1. Let u2i �= X�i� and u2i−1 �=
X�i�− for i = 1� � � � � n, u0 �= 0, u2n+1 �= 1. It is easy to see that αn are
piecewise monotone functions. By properties of such functions, it can be shown
that vp�αn� = vp��αn�ui� − αn�ui−1��2n+1

i=1 � [15]. Let si �= X�i� − X�i−1�, i =
1�2� � � � � n+ 1, be the uniform spacings. Then αn�u2i−1� − αn�u2i−2� = −√

nsi
for i = 1�2� � � � � n+ 1 and αn�u2i� − αn�u2i−1� = 1/

√
n for i = 1�2� � � � � n.
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Let γi and ;n+1 be the same as in Lemma 3.1 and let ỹ2i−1 �= −si =�d�
−γi/;n+1 for i = 1�2� � � � � n + 1 and ỹ2i �= 1/n for i = 1�2� � � � � n. Let a �=
�ai�2n+1

i=1 for any ai. It follows that

vp�αn� = np/2vp�ỹ��(6)

Let G�n� �= �;n+1 ≥ n/2�. By independence of �sj�n+1
j=1 and ;n+1 (Lemma 3.1),

Evp�ỹ � = E�vp�ỹ ��G�n�� = E�vp�ỹ �1G�n��/P�G�n���
For all n, P�G�n�� ≥ 1/4 by Chebyshev’s inequality, so Evp�ỹ � ≤
4E�vp�ỹ �1G�n��. Let y2i−1 �= −γi/;n+1 for i = 1�2� � � � � n+ 1, y2i �= 1/;n+1 for
i = 1�2� � � � � n and let x2i−1 �= 0 for i = 1�2� � � � � n + 1, x2i �= 1/n − 1/;n+1
for i = 1�2� � � � � n. For any a� b ≥ 0 we have by Jensen’s inequality
�a+ b�p ≤ 2p−1�ap + bp�. As ỹ = y+ x, we have vp�ỹ � ≤ 2p−1�vp�y� + vp�x��.
So

Evp�ỹ � ≤ 4 · 2p−1E��vp�y� + vp�x��1G�n�
�(7)

For n < 2p/�2 − p�, the conclusion holds since vp�αn� is uniformly bounded
for such n, so assume n ≥ 2p/�2 − p�. It is clear that vp�x� = �1 − n/;n+1�p,
and by Hölder’s inequality,

E�1 − n/;n+1�p ≤ [
E��;n+1 − n��p·�2/p�]p/2 · [E�1/;n+1�p·�2/�2−p��]�2−p�/2

�= I1I2�

Since E�;n+1� = n + 1 and Var�;n+1� = n + 1, I1 = �n + 2�p/2. For I2, since
;n+1 has the density xne−x1x≥0/n!, we have

I2 =
[
E
(
;
−�2p�/�2−p�
n+1

)]�2−p�/2
=
[∫ ∞

0
xn−�2p�/�2−p�e−x/n!dx

]�2−p�/2

< ∞�

Using the asympotic approximations of the gamma function and n! by Stir-
ling’s formulas, it follows that I2 = O�n−p� as n → ∞. Thus

E�vp�x�1G�n�� ≤ Evp�x� = E�1 − n/;n+1�p = O�n−p/2��(8)

Next we will obtain an upper bound for E�vp�y�1G�n��. To do so, let zi �= ;n+1yi

for i = 1�2� � � � �2n+ 1.

Claim 3.1. Let wi �= z2i−1 + z2i = 1 − γi for i = 1�2� � � � � n. Then
E�vp��wi�ni=1�� ≤ γp · n, where γp is some positive constant depending only
on p.

Proof. �wi�ni=1 = �1−γi�ni=1 are i.i.d. with Ewi = 0 and Ew2
i < ∞. Apply-

ing Theorem C to �wi�ni=1, Claim 3.1 follows. ✷

The next claim is obvious, since each z2i = 1 and z2i−1 = −γi < 0 a.s.
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Claim 3.2. Let p > 1, let Tj �= ∑j
i=1 zi for j ≥ 1, T0 �= 0, and let 0 = j0 <

j1 < · · · < jk = 2n + 1 be such that
∑k

i=1 �Tji
−Tji−1

�p reaches the maximum

vp��zi�2n+1
i=1 �. Let �i �= Tji

−Tji−1
for i = 1�2� � � � � k. Then a.s. �i alternate in

sign. Since z1, z3, � � �, z2n+1 < 0 and z2, z4, � � �, z2n > 0, we have that k is an
odd integer, �1, �3, � � �, �k < 0 and �2� �4� � � � � �k−1 > 0. Furthermore, each �i

�i = 1�2� � � � � k� is a sum of an odd number of consecutive zi’s beginning and
ending with terms having the same sign as �i itself.

Claim 3.3. Let 1 ≤ p < 2. Then Evp��zi�2n+1
i=1 � = E�∑k

i=1 �Tji
− Tji−1

�p� ≤
βp n for some constant βp > 0.

Proof of Claim 3.3. For p = 1, we have a.s. ji ≡ i and the claim holds.
For 1 < p < 2, by Claim 3.2, vp��zi�2n+1

i=1 � = ∑k
i=1 ��i�p� where �i has the form

�i �=
{
z2l1�i�−1 + z2l1�i� + · · · + z2l2�i�−1� for i = 1�3� � � � � k�
z2m1�i� + z2m1�i�+1 + · · · + z2m2�i�� for i = 2�4� � � � � k− 1�

with 1 ≤ l1�i� ≤ l2�i� ≤ n+ 1 and 1 ≤ m1�i� ≤ m2�i� ≤ n for each i. Thus

�i =




l2�i�−1∑
j=l1�i�

wj + z2l2�i�−1� for i = 1�3� � � � � k�

z2m1�i� +
m2�i�∑

j=m1�i�+1

wj� for i = 2�4� � � � � k− 1�

Using the fact that �a+ b�p ≤ 2p−1
(�a�p + �b�p), it follows that

��i�p ≤




2p−1
(∣∣∣∣

l2�i�−1∑
j=l1�i�

wj

∣∣∣∣
p

+ �z2l2�i�−1�p
)
� for i = 1�3� � � � � k�

2p−1
(
�z2m1�i��p +

∣∣∣∣
m2�i�∑

j=m1�i�+1

wj

∣∣∣∣
p)

� for i = 2�4� � � � � k− 1�

Noting that each �i �i = 1�2� � � � � k� is a sum of disjoint consecutive zj’s, we
have

vp

(�zi�2n+1
i=1

) ≤ 2p−1�C1 + C2��
where C1 is part of a p-variation sum of �w1�w2� � � � �wn�, and C2 is a sum
of terms �zj�p for k distinct values of j. Thus, since E�z1�p ≥ 1 = E�z2�p and
likewise for other zi, i odd or even,

Evp

(�zi�2n+1
i=1

) ≤ 2p−1�EC1 + EC2� ≤ 2p−1�Evp��wi�ni=1� + �2n+ 1�E�z1�p

≤ 2p−1�γpn+ �2n+ 1�E�z1�p
 ≤ βpn

for some constant βp < ∞, thereby establishing Claim 3.3. ✷
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Recall that Evp��xi�2n+1
i=1 � = O�n−p/2� = o�n1−p� and that zi = yi;n+1. From

the definitions,

E�vp�y�1G�n�� = E�vp�z/;n+1�1G�n�
 ≤ �2/n�pEvp�z� = O�n1−p��
Now Theorem 3.2 follows from (6), (7) and (8). ✷

4. The almost sure asymptotic behavior of �Fn � F�[ p]. In the pre-
vious sections, we investigated the p-variation for partial sum processes and
empirical processes and obtained bounds in expectation �p < 2� or in prob-
ability �p ≤ 2� for them. In this section, we will look at the almost sure
asymptotic behavior of the p-variation norm �Fn −F��p
. In other words, we
will find numbers an such that 0 < lim supn→∞ �Fn − F��p
/an < ∞ almost
surely.

For p = 1, clearly �Fn − F��1� ≡ 2 for any continuous F. For p = ∞, the
p-variation seminorm of Fn − F, defined as �sup− inf ��Fn − F�, is within a
factor of 2 of the sup norm, for which there is the Smirnov–Chung LIL (law
of the iterated logarithm) as follows:

Theorem D (Smirnov [17] and Chung [3]). For p = ∞�

lim sup
n→∞

√
2n �Fn −F�∞/

√
LLn = 1

almost surely.

Theorem 4.1. For 2 < p < ∞, 1 ≤ lim supn→∞
√

2n �Fn −F��p
/
√

LLn <
∞ almost surely.

Proof. From [4],
√
n�Fn −F��p� is bounded in probability uniformly in n

for p > 2. It follows that the lim sup in the statement is finite a.s. (Theorem
4.1 in [8]). The lim sup is at least 1 by considering Fn�t�−F�t� at t = 1/2 and
the one-dimensional log log law. ✷

We see that for p = 1 and p > 2, actually the almost sure asymptotic order
of magnitude of the p-variation norm �Fn −F��p
 is either known or follows
directly from known results. Next, we will look at the case where p is between
1 and 2.

Theorem 4.2. For 1 < p < 2 and some constant λp < ∞, if F is any
continuous d.f. on R and Yn are any random variables having the distribution
of �Fn −F��p
 for each n but an arbitrary joint distribution,

1 ≤ inf
n≥1

Yn

n�1/p�−1
≤ lim sup

n→∞
Yn

n�1/p�−1
≤ λp a.s.

Proof. As discussed in Section 3, we can assume that F is the uniform
�0�1
 d.f. U. Let X1�X2, � � � �Xn be the n observations on which Fn is based.
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Let Gi�t� �= 1�Xi≤t� − t for 0 ≤ t ≤ 1 and i = 1�2� � � � � n. Then �Fn−F��t� =
n−1 ∑n

i=1 Gi�t�. It is obvious that �Gi��p
 ≤ 3 for i = 1�2� � � � � n. So E�Gi�2
�p
 ≤

9 for i = 1�2� � � � � n. By Theorem 3.2, for 1 < p < 2, Evp�αn� ≤ Cpn
1−p/2 for n

large. Then

E
∥∥∥∥ n∑
i=1

Gi

∥∥∥∥
�p


= √
nE�αn��p
 =

√
nE

(�vp�αn��1/p + �αn�∞
)

≤ √
nE�2�vp�αn��1/p� ≤ 2

√
n �Evp�αn��1/p

≤ 2
√
nC1/p

p n�1/p�−1/2 = λ1n
1/p �λ1 �= 2C1/p

p ��
where the second inequality follows from Jensen’s inequality and the third
from Theorem 3.2.

Now, p-variation norms can be evaluated over rational arguments and so
are measurable. So, we can apply Lemma 2.1 of Kuelbs [10] (cf. also Lemma 2.6
in [8]). Let τn �= 9n ≥ ∑n

i=1 E�Gi�2
�p
 and M �= 3 ≥ �Gi��p
, i = 1�2� � � � � n.

Then for any 0 ≤ γ ≤ 1/�2M� = 1/6 and for any D > 0, we have

P
(�Fn −F��p
/n�1/p�−1 > D

) = P
(∥∥∥∥ n∑

i=1

Gi

∥∥∥∥
�p


> Dn1/p
)

≤ exp
(

3γ2τn − γ

(
Dn1/p − E

∥∥∥∥ n∑
i=1

Gi

∥∥∥∥
�p


))

≤ exp
(
27γ2n− γ�Dn1/p − λ1n

1/p�)�
Take γ �= n�1/p�−1 ≤ 1/6 for n large. Then

P
(�Fn −F��p
/n�1/p�−1 > D

)
≤ exp

(
27n�2/p�−1 − �D− λ1�n�2/p�−1)

= exp
(−�D− λp�n�2/p�−1) where λp �= λ1 + 27�

By the Borel–Cantelli lemma, since for D > λp,
∑∞

n=1 exp�−�D−λp�n�2/p�−1�
converges, we have lim supn→∞ �Fn −F��p
/n�1/p�−1 ≤ D almost surely for any
D > λp, and hence for D = λp.

On the other hand, by only considering the jumps of Fn − F at each Xi,
we have �Fn −F��p
 ≥ n�1/p�−1 almost surely since F is continuous. The proof
holds for any Yn with the same distribution as �Fn − F��p
 for each n, so
Theorem 4.2 follows. ✷

Remark. For p = 2, the almost sure asymptotic order of �Fn − F��p
 re-
mains an open problem.
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