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UNPREDICTABLE PATHS AND PERCOLATION

BY ITAI BENJAMINI, ROBIN PEMANTLE1 AND YUVAL PERES 2

Weizmann Institute, University of Wisconsin and Hebrew University

� 4We construct a nearest-neighbor process S on Z that is less pre-n
dictable than simple random walk, in the sense that given the process
until time n, the conditional probability that S � x is uniformlyn� k
bounded by Ck�� for some � � 1�2. From this process, we obtain a
probability measure � on oriented paths in Z3 such that the number of
intersections of two paths, chosen independently according to �, has an

Žexponential tail. For d � 4, the uniform measure on oriented paths from
d .the origin in Z has this property. We show that on any graph where

such a measure on paths exists, oriented percolation clusters are transient
if the retention parameter p is close enough to 1. This yields an extension
of a theorem of Grimmett, Kesten and Zhang, who proved that supercriti-
cal percolation clusters in Zd are transient for all d � 3.

1. Introduction. An oriented path from the origin in the lattice Zd is
� 4determined by a sequence of vertices y where y � 0 and for eachn n� 0 0

n � 1, the increment y � y is one of the d standard basis vectors. Whenn n�1
these increments are chosen independently and uniformly among the d
possibilities, we refer to the resulting random path as a uniform random

Žoriented path. For d � 4, the number of intersections of two independently
. dchosen uniform random oriented paths in Z has an exponentially decaying

Ž .tail. Cox and Durrett 1983 used this fact to obtain upper bounds on the
or Žcritical probability p for oriented percolation. They attribute this idea toc

.H. Kesten.
In Z3, however, two independently chosen uniform random oriented paths

have infinitely many intersections a.s. Perhaps surprisingly, there is a dif-
ferent measure on oriented paths in Z3 with exponential tail for the intersec-

Ž .tion number see Theorem 1.3 below . The usefulness of such a measure goes
beyond estimates for por, since on any graph, its existence implies that for pc
close enough to 1, a.s. some infinite cluster for oriented percolation is tran-

Ž .sient for simple random walk see Proposition 1.2 below . In particular, for
sufficiently large p, oriented clusters are transient in Zd for all d � 3. This

Ž .extends a theorem of Grimmett, Kesten and Zhang 1993 , who established
transience of simple random walk on the infinite cluster of ordinary percola-
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UNPREDICTABLE PATHS AND PERCOLATION 1199

d Ž dtion in Z , d � 3 They obtain transience for all p � p but in Z this can bec
.reduced to the case of large p by renormalization; see Section 2 .

We construct the required measure in three dimensions from certain
nearest-neighbor stochastic processes on Z which are ‘‘less predictable than
simple random walk.’’

� 4DEFINITION. For a sequence of random variables S � S taking val-n n� 0
� Ž .4ues in a countable set V, we define its predictability profile PRE k byS k �1

�1 PRE k � sup P S � x S , . . . , S ,Ž . Ž .S n�k 0 n

where the supremum is over all x � V, all n � 0 and all histories S , . . . , S .0 n
Ž .Thus PRE k is the maximal chance of guessing S correctly k steps intoS

the future, given the past of S. Clearly, the predictability profile of simple
random walk on Z is asymptotic to Ck�1�2 for some C � 0.

Ž .THEOREM 1.1. a For any � � 1 there exists an integer-valued stochastic
� 4 � �process S such that S � S � 1 a.s. for all n � 1 andn n� 0 n n�1

2 PRE k � C k�� for some C � �, for all k � 1.Ž . Ž .S � �

Ž .b Furthermore, there exists such a process where the �1 valued incre-
� 4ments S � S form a stationary ergodic process.n n�1

Ž .Part b is not needed for the applications in this paper and is included
because such processes may have independent interest. The approach that
naturally suggests itself to obtain processes with a low predictability profile
is to use a discretization of fractional Brownian motion. However, we could
not turn this idea into a rigorous construction. Instead, we construct the
processes described in Theorem 1.1 from a variant of the Ising model on a

Žregular tree, by summing the spins along the boundary of the tree see
.Section 4 . This may be a case of the principle ‘‘when you have a hammer,

everything looks like a nail,’’ and we would be interested to see alternative
constructions.

Ž . Ž .DEFINITIONS. i Let G � V , E be an infinite directed graph with allG G
Ž .vertices of finite degree and let v � V . Denote by � � � G, v the collec-0 G 0

tion of infinite directed paths in G which emanate from v and tend to0
Ž .infinity i.e., the paths in � visit any vertex at most infinitely many times .

Ž . NThe set � G, v , viewed as a subset of E , is a Borel set in the product0 G
topology.

Ž . Ž .ii Let 0 � � � 1. A Borel probability measure � on � g, v has expo-0
� Ž .	nential intersection tails with parameter � in short, EIT � if there exists C

such that

� � n3 � � � � , � : � 
 � � n � C�� 4Ž . Ž .

� �for all n, where � 
 � is the number of edges in the intersection of � and � .
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Ž .iii If such a measure � exists for some basepoint v and some � � 1,0
Ž .then we say that G admits random paths with EIT � . Analogous definitions

apply to undirected graphs.
Ž . Ž .iv . Oriented percolation with parameter p � 0, 1 on the directed graph

G is the process where each edge of G is independently declared open with
probability p and closed with probability 1 � p. The union of all directed
open paths emanating from v will be called the oriented open cluster of v and

Ž .denoted CC v .
Ž .v A subgraph � of G is called transient if, when the orientations on the

edges are ignored, � is connected and simple random walk on it is a transient
Ž .Markov chain. As explained in Doyle and Snell 1984 , the latter property is

equivalent to finiteness of the effective resistance from a vertex of � to
infinity, when each edge of � is endowed with a unit resistor.

PROPOSITION 1.2. Suppose a directed graph G admits random paths with
Ž .EIT � . Consider oriented percolation on G with parameter p. If p � � then

with probability 1 there is a vertex v in G such that the directed open cluster
Ž .CC v is transient.

REMARK. The proof of the proposition, given in Section 2, also applies to
Ž .site percolation. If the graph G is undirected and admits random undirected

paths with exponential intersection tails, then the same proof shows that for
p close enough to 1, a.s. some infinite cluster of ordinary percolation on G is
transient.

� 4 dRecall that a path 	 in Z is called oriented if each increment 	 � 	n n�1 n
is one of the d standard basis vectors. The difference of two independent,
uniformly chosen, oriented paths in Zd is a random walk with increments

� d 4generating the d � 1 dimensional hyperplane Ý x � 0 . As noted by Coxi�1 i
Ž .and Durrett 1983 , it follows that the uniform measure on oriented paths in

d Ž .Z has EIT � . Clearly, a different approach is needed for d � 3.d

THEOREM 1.3. There exists a measure on oriented paths from the origin in
Z3 that has exponential intersection tails.

The rest of this paper is organized as follows. In Section 2 we prove
Proposition 1.2 by constructing a flow of finite energy on the percolation
cluster. For d � 4, this yields a ‘‘soft’’ proof that if the parameter p is close
enough to 1, then oriented percolation clusters in Zd are transient with
positive probability; for d � 3, Theorem 1.3 is needed to obtain the same
conclusion. We also explain there how transience of ordinary percolation
clusters in Zd for d � 3 and all p � p can be reduced to transience of thesec
clusters for p close to 1. In Section 3 we relate the predictability profile of a
random process to the tail of its collision number with a fixed sequence, and
establish Theorem 1.3. Theorem 1.1 is proved in Section 4. The main ingredi-
ent in the proof is an estimate on the distribution of the population vector in
a certain two-type branching process, when this vector is projected in a
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nonprincipal eigendirection. Section 5 contains auxiliary remarks and prob-
lems. After this paper was submitted, the methods introduced here were
refined and extended by several different authors, and some of the questions
we raised were solved. The paper concludes with a brief survey of these
recent developments.

2. Exponential intersection tails imply transience of clusters. To
show that an infinite connected graph � is transient, it suffices to construct a
nonzero flow f on �, with a single source at v , such that the energy0

Ž .2 � Ž .	Ý f e of f is finite see Doyle and Snell 1984 .e� E�

PROOF OF PROPOSITION 1.2. The hypothesis means that there is some
Ž . Ž .vertex v and a probability measure � on � � � g, v that has EIT � . We0 0

first assume that

The paths in the closed support of � are self-avoiding and
4Ž . tend to infinity uniformly.

A path is self-avoiding if it never revisits a vertex; the second part of the
assumption means that there is a sequence r � � such that for all N � 1N

Ž .and all paths � in the support of �, the endpoint of � is not in B v , r ,N 0 N
Ž .where B v , r denotes the ball of radius r centered at v in the usual0 0

Ž .graphical distance. The assumption 4 certainly holds in our main applica-
tion, where � is supported on oriented paths in G � Zd; at the end of the

Ž .proof we show how to remove the assumption 4 .
Ž .For N � 1 and any infinite path � � � G, v , denote by � the finite path0 N

consisting of the first N edges of �. Consider the random variable

5 Z � p�N 1 d� � .Ž . Ž .HN �� is open4N
�

Except for the normalization factor p�N , this is the �-measure of the paths
that stay in the open cluster of v for N steps.0

Ž .Since each edge is open with probability p independently of other edges ,
Ž .E Z � 1. The second moment of Z isN N

E Z 2 � E p�2 N 1 d� � d� �Ž . Ž .Ž . H HN �� and � are open4N N
� �6Ž .

� p�� � 
 � � d� � d� � .Ž . Ž .H H
� �

Ž . � n �n Ž �1 .By 3 , the last integral is at most Ý C� p � C� 1 � � p .n�0
By Cauchy�Schwarz,

2 �1E Z 1 � � pŽ .N� 	7 P CC v � N � P Z � 0 � � .Ž . Ž .0 N 2 CE ZŽ .N

Ž .This shows that the cluster CC v is infinite with positive probability.0



I. BENJAMINI, R. PEMANTLE AND Y. PERES1202

Ž .The next step is to construct a flow f of finite mean energy on CC v . For0
each N � 1 and every directed edge e in E , we defineG

8 f e � p�N 1 1 d� � .Ž . Ž . Ž .HN �� is open4 �e� � 4N N
�

Ž . Ž .Then f is a flow on CC v 
 B v , r � 1 from v to the complement ofN 0 0 N 0
Ž . Ž .B v , r , that is, for any vertex v � B v , r except v , the incoming flow0 N 0 N 0

Žto v equals the outgoing flow from v. The strength of f the total outflowN
.from v is exactly Z .0 N

Next, we estimate the expected energy of f :N

2 �2 NE f e � E p 1 1 1 d� � d� �Ž . Ž . Ž .Ý ÝH HN �� , � are open4 �e� � 4 �e� � 4N N N N
� �e�E e�EG G

� � �� � 
 � �� � 
 � p d� � d� � .Ž . Ž .H H
� �

Another application of exponential intersection tails allows us to bound the
last integral by

�
n �n10 C� npŽ . Ý

n�0

� Ž .4which is finite for p � � . For each edge e of G, the sequence f e isN
bounded in L2, so it has a weakly convergent subsequence. Using the

� Ž .4diagonal method, we can find a single increasing sequence N k suchk �1
Ž .that for every edge e, the sequence f e converges weakly as k � � to aN Žk .

Ž .limit, denoted f e . Recalling that Z is the strength of f , we deduce thatN N
Ž .f e converges weakly as k � � to a limit, denoted Z . Since r � �, theN Žk . � N

Ž .limit function f is a.s. a flow of strength Z on CC v . Exhausting G by finite� 0
sets of edges, we conclude that the expected energy of f is also bounded by
Ž .10 . Thus

� 	P CC v is transient � P Z � 0 � 0,Ž .0 �

� Ž . 	so the tail event 
 v: CC v is transient must have probability 1 by Kol-
mogorov’s zero�one law.

Ž .Finally, we remove the assumption 4 . Any path tending to infinity
Žcontains a self-avoiding path, obtained by ‘‘loop-erasing’’ erasing cycles as

. Ž .they are created ; see Chapter 7 in Lawler 1991 . Thus we may indeed
assume that � is supported on self-avoiding paths. Since all paths in � tend
to infinity, by Egorov’s theorem there is a closed subset �� of � on which this

Ž . Ž .convergence is uniform, such that � �� � � � �2. Restricting � to �� and
Ž .normalizing, we obtain a probability measure �� on �� that satisfies 4 and

Ž .3 with 4C in place of C, so the proof given above applies. �

Ž .REMARK. Let � � � G, v � � denote the set of paths with unit speed,1 1 0
that is, those paths such that the nth vertex is at distance n from v , for0
every n. In most applications of Proposition 1.2, the measure � is supported
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on � . When that is the case, the flows f considered in the preceding proof1 N
converge a.s. to a flow f , so there is no need to pass to subsequences. Indeed,

Ž .let BB be the �-field generated by the status open or closed of all edges onN
� 4 2paths � with � � �. It is easy to check that Z is an L martingaleN N N �1

� 4 � 4 2adapted to the filtration BB . Therefore Z converges a.s. and in L toN N �1 N
a mean 1 random variable Z . Moreover, for each edge e of G, the sequence�

� Ž .4 � 4 2f e is a BB -martingale which converges a.s. and in L to a nonnegativeN N
Ž .random variable f e .

� Ž .	COROLLARY 2.1 Grimmett, Kesten and Zhang 1993 . Consider ordinary
bond percolation with parameter p on Zd, where d � 3. For all p � p , thec
unique infinite cluster is a.s. transient.

PROOF. Transience of the unique infinite cluster is a tail event, so it has
d Žprobability 0 or 1. Since Z admits random paths with EIT for d � 3 see

.Theorem 1.3 and the discussion preceding it , it follows from Proposition 1.2
that the infinite cluster is transient if p is close enough to 1. As remarked
before, this conclusion also applies to site percolation.

Recall that a set of graphs B is called increasing if for any graph G that
contains a subgraph in B, necessarily G must also be in B.

Consider now bond percolation with any parameter p � p in Zd. Follow-c
Ž .ing Pisztora 1996 , call an open cluster CC contained in some cube Q a

crossing cluster for Q if for all d directions there is an open path contained in
CC joining the left face of Q to the right face. For each v in the lattice NZd,

Ž . Ž .denote by Q v the cube of side-length 5N�4 centered at v, and let A NN p
d Ž .be the set of v � NZ with the following property: the cube Q v contains aN

Ž .crossing cluster CC such that any open cluster in Q v of diameter greaterN
Ž .than N�10 is connected to CC by an open path in Q v .N

Ž .Proposition 2.1 in Antal and Pisztora 1996 , which relies on the work of
Ž . Ž .Grimmett and Marstrand 1990 , implies that A N stochastically domi-p

Ž . dnates site percolation with parameter p* N on the stretched lattice NZ ,
Ž . �where p* N � 1 as N � �. Related renormalization arguments can be

Ž . Ž .found in Kesten and Zhang 1990 and Pisztora 1996 ; general results on
domination by product measures where obtained by Liggett, Schonmann and

Ž .	Stacey 1996 . This domination means that for any increasing Borel set of
graphs B, the probability that the subgraph of open sites under independent

Ž . � Ž . 	site percolation with parameter p* N lies in B, is at most P A N � B .p
If N is sufficiently large, then the infinite cluster determined by the site

Ž . dpercolation with parameter p* N on the lattice NZ , is transient a.s. By
� Ž .	Rayleigh’s monotonicity principle see Doyle and Snell 1984 , the set of

subgraphs of NZd that have a transient connected component is increasing,
ˆŽ . Ž .so A N has a transient component A N with probability 1.p n

Ž . Ž .Recall from Doyle and Snell 1984 that the ‘‘k-fuzz’’ of a graph 	 � V, E
Ž .is the graph 	 � V, E where the vertices v, w � V are connected by ank k

edge in E iff there is a path of length at most k between them in 	. Thek
�k-fuzz 	 is transient iff 	 is transient See Section 8.4 in Doyle and Snellk
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Ž . Ž . 	 d1984 , or Lemma 7.5 in Soardi 1994 . By assigning to each v � NZ a
ˆŽ . Ž . Ž .different vertex F v in the intersection CC 
 Q v , we see that A N isp N p

Ž .disomorphic to a subgraph of the 2 5N�4 -fuzz of the infinite cluster CC inp
the original lattice. It follows that CC is also transient a.s. �p

3. A summable predictability profile yields EIT. The following
lemma will imply Theorem 1.3.

� 4LEMMA 3.1. Let 	 be a sequence of random variables taking values in an
� Ž .	countable set V. If the predictability profile defined in 1 of 	 satisfies

� Ž .Ý PRE k � �, then there exist C � � and 0 � � � 1 such that for anyk�1 	

� 4sequence v in V and all l � 1,n n� 0

l� 411 P � n � 0: 	 � v � l � C� .Ž . n n

� Ž .PROOF. Choose m large enough so that Ý PRE km � 
 � 1, whencek�1 	

� 4for any sequence v ,n n� 0

P 
 k � 1: 	 � v 	 , . . . , 	 � 
 for all n � 0.n�k m n�k m 0 n

� 4It follows by induction on � 1 that for all j � 0, 1, . . . , m � 1 ,

r12 P � k � 1: 	 � v � r � 
 .� 4Ž . j�k m j�k m

� 4 � 4If � n � 0: 	 � v � l then there must be some j � 0, 1, . . . , m � 1 suchn n
that

� k � 1: 	 � v � l�m � 1.� 4j�k m j�k m

Ž . 1� m �1 Ž .Thus the inequality 11 , with � � 
 and C � m
 , follows from 12 . �

� 4PROOF OF THEOREM 1.3. Let S be a nearest-neighbor process on Zn n� 0
Ž .starting from S � 0, that satisfies 2 for some � � 1�2 and C � �. Denote0 �

Ž . � 4 � �4W � n � S �2 and suppose that the processes W and W are indepen-n n n n
� 4 � 4dent of each other and have the same distribution. Clearly W and S haven n

the same predictability profile. We claim that the random oriented path,

� 4 � �	 � W , W , n � W � W½ 5n � n �2 � 	 n �2 
 � n �2 � 	 n �2 
ž /n�0 n�0

in Z3 has exponential intersection tails.
� 4First, observe that 	 is indeed an oriented path; that is, 	 � 	 is onen n�1 n
Ž . Ž . Ž . Ž .of the three vectors 1, 0, 0 , 0, 1, 0 , 0, 0, 1 for every n. Second, PRE k �	

Ž .2 2 � ��2 � � 4 Ž .PRE k�2 � C k�2 is summable in k, so 	 satisfies 11 for some� �S � n
� 4 � 4C � � and 0 � � � 1. Denote the distribution of 	 by �, and let 	* be ann

� 4 Ž .independent copy of 	 . Integrating 11 with respect to �, we getn

� l� 4� l � � � � n � 0: 	 � 	 � l � C� .n n

For two oriented paths 	 and 	� in Zd, the number of edges in common is at
� 4 Ž .most the collision number � n � 0: 	 � 	* and hence � has EIT � . �n
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4. Summing boundary spins yields an unpredictable path. In this
section we prove Theorem 1.1. The engine of the proof is Lemma 4.1 concern-
ing the distribution of the population in a two-type branching process. Let
l � 2 and r � 1 be integers and write h � l � r. Denote by T the infiniteb
rooted tree where each vertex has exactly b children. Consider the following

� Ž .4labeling � v of the vertices of T by �1-valued random variables, calledb
�spins because of the analogy with the Ising model cf. Moore and Snell

Ž .	 Ž .1979 . Let � root � 1. For any vertex v of T with children w , . . . , w ,b 1 b
Ž . Ž .assign the first l children the same spin as their parent: � w � � v forj

Ž . Ž .j � 1, . . . , l and assign the other r children i.i.d. spins � w , . . . , � wl�1 b
Ž .that take the values �1 with equal probability and are independent of � v .

Ž � �.As N varies, the population vectors Z , Z , which count the number ofN N
spins of each type at level N of T , form a two-type branching process withb
mean offspring matrix

l � r�2 r�2
.ž /r�2 l � r�2

� Ž . 	See Athreya and Ney 1972 for background on branching processes. The
Perron eigenvalue of this matrix is b, but we are interested in the scalar

Ž .product of the population vectors with the eigenvector 1, �1 which corre-
sponds to the second eigenvalue l of the mean offspring matrix.

LEMMA 4.1. The sum of all spins at level N,

13 Y � � v � Z� � Z� ,Ž . Ž .ÝN N N
� �v �N

satisfies the inequality

� 	 �N14 P Y � x � ClŽ . N

for all N � 1 and all integer x, where the constant C depends only on l and r.

REMARK. A closer examination of the proof below shows that the inequal-
' 'Ž .ity 14 is sharp iff l � b . The significance of the condition l � b is

'Ž .explained by Kesten and Stigum 1966 in a more general setting. If l � b
then the distributions of Y b�N �2 converge to a normal law.N

PROOF OF LEMMA 4.1. By decomposing the sum in the definition of YN� 1
into b parts according to the first level of T , we see thatb

l b
Ž j. Ž j.15 Y � Y � � w Y ,Ž . Ž .Ý ÝN�1 N j N

j�1 j�l�1

� Ž .4b � Ž j.4bwhere � w are r i.i.d. uniform spins, and Y are i.i.d. variablesj j�l�1 N j�1
with the distribution of Y , that are independent of these spins. Conse-N
quently, the characteristic functions

ˆ16 Y � � E exp i�YŽ . Ž . Ž .Ž .N N
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satisfy the recursion
rˆ ˆY � � Y �� rŽ . Ž .N Nl lˆ ˆ ˆ ˆ17 Y � � Y � � Y � �Y � ,Ž . Ž . Ž . Ž . Ž .Ž .N� 1 N N Nž /2

ˆ ˆ� �where � denotes real part. Using the polar representation Y � Y �N N
Ž Ž .. Ž . Ž . �exp i� � , the last equation implies that � � � l� � mod � . NoteN N�1 N

ˆ ˆ i�Ž . 	 Ž .that �Y � may be negative. By definition Y � 1, and therefore Y � � e ,N 0 0
Ž . Ž . Nso � � � �. Consequently, � � � l � mod � for all N. Taking absolute0 N

Ž .values in 17 yields
b rNˆ ˆ18 Y � � Y � cos l � .Ž . Ž . Ž . Ž .N� 1 N

By induction on N, we obtain
N k� 1r bN�kˆ19 � N � 0 Y � � cos l � .Ž . Ž . Ž .ŁN

k�1

ˆ N� Ž . �Since Y � is an even function with period � , changing variables t � l �N
gives

� ��2ˆ ˆ20 Y � d� � 4 Y � d�Ž . Ž . Ž .H HN N
�� 0

N k� 1NŽ . r bl � �2�N �k� 4 l cos l t dt .Ž .ŁH
0 k�1

Ž . � k�1 k 	Denote � � cos ��2 l . For t � l ��2, l ��2 , the kth factor in the right-
Ž . r b k� 1

most integrand in 20 is bounded by � , and the other factors are at
most 1. Consequently,

N k
� � l � k� 1�N r b �Nˆ21 Y � d� � 4 l � � � Cl ,Ž . Ž . ÝH N ž /2 2�� k�1

where C depends only on l and r, since the sum Ý� l k� r b k� 1
converges.k�1

Ž .Finally, Fourier inversion and 21 imply that for any integer x,
� �1

�i � x �Nˆ ˆ� 	P Y � x � Y � e d� � Y � d� � Cl . �Ž . Ž .H HN N N2� �� ��

Ž .PROOF OF THEOREM 1.1. a Given integers l � 2 and r � 1, let b � l � r
as above. Embed the regular tree T in the upper half-plane, with the root onb
the real line and the children of every vertex arranged from left to right

� Ž .4above it. Label the vertices of T by �1-valued spins � v as described atb
N � 4b N

the beginning of this section. Let M � 1 and suppose that b � M. Let vj j�1
be the vertices at level N of T , enumerated from left to right. For m � M,b

m Ž .denote S � Ý � v and observe that the joint distribution of the Mm j�1 j
� 4Mrandom variables S does not depend on N. Using Kolmogorov’s consis-m m�1

� 4�tency theorem, we obtain an infinite process S . We claim that them m�1
predictability profile of this process satisfies

� ��22 PRE k � 2b Ck for all k � 1,Ž . Ž . Ž .S
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Ž . Ž .where � � log l�log b, and C � C l, r � 1 is given in 14 . Since we can take
Ž .l arbitrarily large and r � 1, establishing 22 for k � 2 will suffice to prove

the theorem.
Given n � 0 and k � 1, choose n such that b N � n � k, so the random

� 4n�kvariables S may be obtained by summing spins along level N of T .j j�0 b
There is a unique h � 0 such that

23 2bh � k � 2bh�1 .Ž .
� � Ž .For any vertex v, denote by v its level in T , and for i � 1 let D v beb i

i � � Ž .the set of its b descendants at level v � i. By 23 , there exists at least
Ž .one vertex v at level N � h of T , such that D v is contained inb h

� 4v , v . . . , v in the left-to-right enumeration of level N. Denote byn�1 n�2 n�k
Ž . � Ž . �D v � � D v the set of all descendants of v, and by FF the sigma-fieldi�1 i v

� Ž . Ž .4generated by all the spins � w : w � D v . The random variable

Ỹ v � � v � wŽ . Ž . Ž .Ýh
Ž .w�D vh

is independent of FF
� and has the same distribution as the variable Yv H

Ž .defined by 13 . Clearly, we can write

˜ �S � � v Y v � S ,Ž . Ž .n�k h n�k

� h Ž .where S , the sum of n � k � b spins labeling vertices not in D v , isn�k h
FF

�-measurable. Consequently, for any integer x,v

� � � �h˜�24 P S � x FF � P Y v � � v x � S FF � Cl ,Ž . Ž . Ž . Ž .n�k v h n�k v

by Lemma 4.1. The definition of � and h imply that l�h � b�h � and bh �
Ž .k�2b, so we infer from 24 that

�� ���� x � Z P S � x FF � 2b Ck .Ž .n�k v

� Ž .Since S , S , . . . S are FF -measurable, this yields 22 and completes the0 1 n v
Ž .proof of part a of the theorem.

Ž . Ž .b The property 2 is stable under shifts, mixtures, weak limits and
passing to ergodic components, so it is possible to obtain the desired station-
ary process as an ergodic component of a weak limit point of the averages
Ž .Ž n�1 .1�n S � �S � ��� �� S , where � is the left shift.

We now describe such a process more explicitly, by modifying the construc-
Ž . Ž .tion in part a . Let � root be a uniform random spin; define the other spins

Ž . � N 4from it as in part a . Given N � 1, choose U uniformly in 1, . . . , b and
define

U�n�1
NS̃ � � v for n � b � U � 1,Ž .Ýn j

j�U

� 4b N
where v is the left-to-right enumeration of level N to T . To extend thej j�1 b

˜sequence S further, we consider the root of T as the Jth child w of a newb J
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� 4 Ž . Ž .vertex �, where J is chosen uniformly in 1, . . . , b . If J � l, let � � � � w ,J
Ž .and if J � l let � � be a uniform random spin, independent of the spins on

the original tree. We can view the original tree T as a subtree of a newb
˜ NŽ .b-tree T rooted at �. Since J � 1 b � U is uniformly distributed inb

N�1 ˜� 41, . . . , b , the vertex v is uniformly distributed in level N � 1 of T .U b
Repeating this rerooting procedure and enlarging N as needed, yields the

˜ �� 4 Ž .desired process S . The proof given in part a also shows that thisj j�1
Ž .process has the unpredictability property 2 . Stationarity and ergodicity of

the increments can be derived from the invariance and ergodicity of the Haar
measure on the b-adic integers under the operation of adding 1; we omit the
details. �

5. Concluding remarks and questions.

1. Consider the following three properties that an infinite connected graph G
may have:
Ž .i G admits random paths with EIT.
Ž .ii There exists p � 1 such that simple random walk is transient on a

percolation cluster of G for bond percolation with parameter p.
Ž .iii A random walk in random environment on G defined by i.i.d. resis-
tances with any common distribution is almost surely transient.

Ž . Ž . Ž .In Pemantle and Peres 1996 it is shown that properties ii and iii are
Ž . Ž .equivalent. Proposition 1.2 of the present paper shows that i implies ii ;

Ž . Ž .does ii imply i ? Note that there exist transient trees of polynomial
� Ž .	growth see, e.g., Lyons 1990 , and these cannot admit random paths

with EIT since they have p � 1.c
d Ž . Ž2. Does Z with d � 3 admit random paths with EIT � for all � � p ? Thisc

.question was suggested to us by Rick Durrett. A similar equation can be
asked for other graphs in place of Zd, for example, for transient Cayley
graphs. A positive answer to this question when the graph in question is a

Ž .tree follows from the work of Lyons 1990 . Indeed, a flow from the root of
the tree can be identified with a measure on paths, and the energy of the
flow � in the kernel p�� x � y � can be identified with an exponential moment
of the number of intersections of two paths chosen independently accord-
ing to �.

Ž .3. Lyons 1995 finds a tree with p � 1 contained as a subgraph in thec
Cayley graph of any group of exponential growth. It follows that such
Cayley graphs admit paths with EIT.

4. It is easy to adapt the proofs of Theorem 1.3 and Corollary 2.1 to show that
�Ž . 3 � � � �4 3for any � � 0, the cone x, y, z � Z : z � � x in Z admits random

paths with EIT and contains a transient percolation cluster for all p � p .c
�Ž . 3 � � � � �4 ŽDoes the subgraph x, y, z � Z : z � x share these properties? This

.subgraph is sometimes viewed as a model for a ‘‘2 � � dimensional lattice’’.
d Ž .5. Does oriented percolation in Z admit transient infinite clusters CC v for

all parameters p � por? The challenge here is to adapt the renormaliza-c
tion argument used in the proof of Corollary 2.1 to the oriented setting.
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˜� 46. Consider the stationary processes S constructed at the end of then 'previous section, and let � � l�b with b � l � b. Do the rescaled step
�� ˜ � 	functions t � n S on 0, 1 converge in law? Is the limit a Gaussian� �nt

˜ ˜ 2 2 �� � � �process? It is easily verified that E S � S 
 n � m , which is remi-n m
niscent of fractional Brownian motion. The proof of Lemma 4.1 implies

�� N Ž .that b Y converges in law to a non-Gaussian distribution withN
k� 1i s � �k r b '� Ž .	 Ž .characteristic function s � e Ł cos l s . Recall that l � b .k�1

Ž .7. How fast can the predictability profile 1 of a nearest-neighbor process on
Ž �� .Z decay? By Theorem 1.1, a decay rate of O k is possible for any � � 1.

Ž .On the other hand, a decay rate of O 1�k is impossible. Indeed, if there
exists a nearest-neighbor process with predictability profile bounded by
� Ž .4g k , then there exists such a process with stationary ergodic incre-

Ž . Ž .ments; then g k � O 1�k is ruled out by the ergodic theorem.
� 48. Among nearest-neighbor processes S on Z, clearly simple random walkn

has the most unpredictable increments, in any conceivable sense. Heuristi-
cally, there is a tradeoff here: when the increments are very unpredictable
Ž .e.g., their predictability profile tends rapidly to 1�2 , cancellations domi-
nate, and the partial sums becomes more predictable. Our construction in
Section 4 sacrificed the independence of the increments to make their
partial sums less predictable. It would be quite interesting to establish a
precise quantitative form of this tradeoff.

9. Is there a construction of a measure on paths in Z3 with exponential
intersection tails, which is simpler than that given in Section 3 an 4?

5.1. Recent developments. After a previous version of the present paper
was circulated, some of the problems raised above were solved, and several
further extensions of the fundamental transience theorem of Grimmett,

Ž .Kesten and Zhang 1993 were obtained.

Ž .1. Haggstrom and Mossel 1998 constructed processes with predictability¨ ¨
� Ž Ž .	 Ž j.profiles bounded by C� k f k , for any decreasing f such that Ý f 2 �j

�. They gave two different constructions, one based on the Ising model on
trees and the other via a random walk with a random drift that varies in
time. Haggstrom and Mossel also answered affirmatively question 4 above,¨ ¨
by constructing paths with exponential intersection tails in ‘‘2 � � ’’ dimen-
sions. Remarkably, they were able to show that for a class of ‘‘trumpet-
shaped’’ subgraphs G of Z3, transience of G implies a.s. transience of an
infinite percolation cluster in G for any p � p .c

Ž .2. In a brief but striking paper, Hoffman 1998 improved the bounds in
question 7 above and showed that the constructions of Haggstrom and¨ ¨
Mossel are optimal. Specifically, he used a novel renormalization argu-

Ž j.ment to prove that if f satisfies Ý f 2 � �, then there is no nearest-j
� Ž .	neighbor process on Z with predictability profile bounded by C kf k .

Ž .3. Hiemer 1998 proved a renormalization theorem for oriented percolation
that allowed him to extend our result on transience of oriented percolation
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clusters in Zd for d � 3, from the case of high p to the whole supercritical
phase p � por.c

4. Consider supercritical percolation on Zd for d � 3. The transience result
Ž .of Grimmett, Kesten and Zhang 1993 is equivalent to the existence of

Ž .2a nonzero flow f on the infinite cluster such that the two-energy Ý f ee
is finite. Using the method of unpredictable paths, Levin and Peres
Ž .1998 sharpened this result and showed that the infinite cluster sup-

� Ž . � qports a nonzero flow f such that the q-energy Ý f e is finite for all q �e
Ž .d� d � 1 . Thus the infinite cluster has the same ‘‘parabolic index’’ as the

� Ž . 	whole lattice. See the last chapter of Soardi 1994 for the definition.
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