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ASYMPTOTIC BEHAVIOR OF CONDITIONAL LAWS AND
MOMENTS OF a-STABLE RANDOM VECTORS, WITH
APPLICATION TO UPCROSSING INTENSITIES!

By J. M. P. ALBIN AND M. R. LEADBETTER

University of North Carolina, Chapel Hill

We derive upper bounds for the conditional moment E{|X|?|Y = y} of
a strictly a-stable random vector (X, Y) when a # 1 and ¢ < 2 and prove
weak convergence for the conditional law (X/u | Y = u) as u — oo when
a > 1. As an example of application, we derive a new result in crossing
theory for a-stable processes.

1. Introduction. Given an « € (0, 1)U(1, 2), we write Z € S,(o, B8) when
Z is a strictly a-stable random variable with Fourier transform (characteristic
function)

(1.1) E{exp[i0Z]} = exp{—|0|*c“[1 + i BT, sign(6)]},

where 7, = tan(7(2 — a)/2). Here the scale 0 = o, > 0 and the skewness
B = Bz €[—1, 1] are “free” parameters.

Given measurable functions f, g: R — R, we put £ = |f|*sign(f) and
define

(= F@de. (Fla=(F),

1Flla = (AFIDY Af 8na = ("8™)

(where n € N is required if f # 0). Moreover L*(R) = {(~: R — R): | A, < oo}.

Let {£(t)},cp be an a-stable Lévy motion with skewness 8 = —1, so that
£(t) has independent stationary increments and &(¢) € S,(|¢|Y®, —sign(2)).
Assuming that f, g € L*(R), it is then well known that the bivariate a-stable
random vector (X,Y) = ([, [ dé, [ g d§) satisfies

of o))

(1.2) 0X + oY € Sa<||0f+gog||a,—||0f+¢g”a

Further, each bivariate strictly a-stable vector (X, Y') has this representation
in law for some choice of f and g. See, for example, Samorodnitsky and Taqqu
(1994) [hereafter denoted (ST) (1994)] Chapters 1-3, on these and other basic
properties of a-stable random variables.
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Of course (when needed), random variables and processes that appear in
the sequel are assumed to be defined on a common complete probability space
(Q, 5, P).

Cioczek-Georges and Taqqu (1994, 1995a) showed that

for some v > o if o < 2,
(13) E{|X[]?]Y =y} <oco & (IflIgha <0 .

forv=pif o =2
for o € (0,2 A (2a + 1)], thereby sharpening earlier findings of Samorodnitsky
and Taqqu (1991) and Wu and Cambanis (1991). Note that the condition on
the right-hand side in (1.3) is void when g < a.

In Section 2 we characterize the unique continuous (wrt. y) regular con-
ditional law (X | Y = y) for a strictly a-stable vector (X, Y) by means of
specifying its Fourier transform: When [as in (1.3)] making statements about
conditional probabilities and expectations, we assume that they are computed
according to this law, and so there is no ambiguity concerning what versions
these statements refer to.

In Section 3 we use a result of Albin (1997) to investigate the asymptotic
behavior of the moment E{X? | Y = u} as u — oo when a > 1.

In Section 4 we derive two upper bounds for E{|X|¢ | Y = y}: The first
bound is valid whenever g < 2 A (¢ + 1) and E{|X|? | Y = y} < oo, but is not
sharp as |y| — 0o0. The second bound is sharp for all y but applies when a > 1
and ¢ < « only.

Bounds on conditional moments are important because they make it pos-
sible to use Markov- and Tjebysjev-like inequalities in multivariate a-stable
contexts. Indeed, the bounds of Section 4 are crucial in the proof of weak con-
vergence of conditional a-stable laws with a > 1 in Section 5, as well as in the
treatment of upcrossing intensities for a-stable processes in Section 6.

In Section 5 we prove weak convergence of (X/u | Y = u) as u —» o©
for & > 1. From this follows convergence of the moment E{|X/u[?I;x /-, |
Y = u} when ¢ < a and, under the additional condition (f,[gl)s , < oo,
when o € [a,2). We also discuss convergence of probabilities and moments
conditioned on Y > u.

The expected number of upcrossings of a level u by a stationary and dif-
ferentiable symmetric a-stable (SaS) process {n(¢)},c; such that (n'(0), n(0))
possesses a continuous density function £, ) 5 is given by Rice’s formula,

(1.4) w(I; 1) = length(I) /O f v(0y.m(0)(%> 1) dx.

Michna and Rychlik (1995) proved this result under quite restrictive addi-
tional conditions, and Adler and Samorodnitsky (1997) extended it to a vir-
tually optimal setting. See also Marcus (1989) and Adler, Samorodnitsky and
Gadrich (1993).

In Section 6 we prove a version of (1.4) that is valid without any require-
ments about stationarity, symmetry or existence of joint densities. Our proof
is based on the counting device for upcrossings described in Leadbetter, Lind-
gren and Rootzén [(1983), Section 7.2]. Despite the fact that our proof produces
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a more general result, it is considerably shorter and easier than proofs by pre-
vious authors.

2. Conditional distributions for a-stable random vectors. Choose
functions f1,..., f,, & € L*(R) where | g||, > 0, and consider the a-stable
random vector

2.1) (X,Y):(Xl,...,Xn,Y)z</Rf1d§,...,/and§,ngd§>.

In Proposition 1 below we prove the existence of and characterize the unique
regular conditional distributions Fxy(- | y) that depend continuously on
y e R.

Let Z be an a-stable random vector in R™ with spectral measure I'j; [as
defined in, e.g., ST (1994), Section 2.3]. By Kuelbs and Mandrekar [(1974),
Lemma 2.1], the linear dimension L(dF ;) of the support of the distribution
of Z equals that of the support of I'; L(I';). Further, the Fourier transform
of Z is integrable (so that Z has a bounded and continuous density function)
if L(I'y) = m [cf. ST (1994), Lemma 5.1.1]. It follows that if Z has a density
[so that L(dF ;) = m], then Z has a bounded and continuous density:

Henceforth we shall without loss assume that a-stable density functions are
bounded and continuous when they exist. In particular, the component Y of
the vector (X, Y) defined in (2.1) has a bounded and continuous density fy
since L(I'y) =1 when || g||, > 0 [cf. ST (1994), Example 2.3.3].

PROPOSITION 1. Consider the a-stable random vector (X,Y) in R*"! given
by (2.1) where a € (0, 1)U(1, 2) and ||g||, > 0. Then there exists a unique family
of distribution functions {F x|y (- | ¥)}yeint(supp(v)) O R with the properties that

(2.2) / - h(x)dF xy(x | y) is a version of E{h(X)|Y = y}

for each measurable map h: R" — R satisfying E{|h(X)|} < oo, and that
(2.3) Fle( | y) —>d FX\Y( | yo) asy— Y (Contlnulty)

Further, writing ((0, x)) = 01x1 + -+ + 0,x,, the law Fxy(- | y) has Fourier
transform

24) dxv(0] 9) = 5 [ exp(—ienEfexsli(((6. X)) + )]} de

for 6 € R", and if (X,Y) possesses a density function fx y(x, y), then
(2.5)  Fxy(-|y) hasdensity function fxy(-|y)=fxv(, )/ fy(y)

Proposition 1 allows us to refer to conditional probabilities and expectations
for a-stable random vectors in the same easygoing manner as for Gaussian
vectors. The result does not seem to have been observed previously, but a
related discussion is given in ST [(1994), Section 5.1]: in the sequel, probabil-
ities and expectations conditioned on the event that Y = y are assumed to be
computed according to the law F x|y (- | y) specified by (2.4).
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PROOF. As is well known [e.g., Breiman (1968), Section 4.3], there exists
a so-called regular family of distributions {F;;gy(- | %)} yeint(supp(v)) Such that

(2.6) / . h(x) dFl;ng(x | y) 1is aversion of E{A(X)|Y = y},
xeR™

whenever E{|A(X)|} < co. Further observe the fact that [cf. (1.1) and (1.2)]

[E{exp[i(((0, X)) + ¢Y)]}| = exp{~[ ({0, £)) + o2}
< exp{—|[[ ({6, £, — lelllglla|}.

Since the density [y is continuous and locally bounded away from zero, it
follows that ¢ xy(6 | y) is a well-defined continuous function of (0, y) € R+l
and that

E{exp(i ({0, X)) (oo} = [

(x, y)eR"x[a, b

]eXp(i((G, x)))dFx y(x,y)

b
= [ bx (0 9)Fr(x)dy

for —0o < a < b < co. Hence ¢ xy(0 | y) is a version of E{exp[i((0, X))] | Y =
vy}, and in view of (2.6) we therefore conclude that

(2.7) dxy(0]y)= /xERn exp(i((6, x)))dFr;;'gY(x | y) for 6 Q"

for almost all y € int(supp(Y)). By continuity in 6, (2.7) extends to all 0, and
s0 ¢xy(0 | y) is the Fourier transform of some distribution Fxy(- | y) for
almost all y. By continuity in y, this statement in turn extends to all y, and
(2.3) must hold. Further, since by (2.7), Fxy(- | ¥) =4 FI;‘?Y(- | ¥) a.e., (2.6)
implies (2.2).

If a density fx y(x,y) is continuous in y, then the fact that /'y is contin-
uous and locally bounded away from zero and the theorem by Scheffé (1947)
show that

/ fxyy(x|y)dx 1is continuous in y for every measurable A C R".
xcA

Hence the laws with densities {f xy (- | ¥)},ecint(supp(v)) Satisfy (2.2) and (2.3),
and thus coincide with the laws {Fxy(- | ¥)},cint(supp(v)) SPecified through
(2.4). O

3. Conditional second moments. Let o > 1 and take functions f and
g in (1.2) such that (f,|g|)s o, < oo and either g > 0 or g < 0 a.e. Extending
results by Wu and Cambanis (1991), and complementing results by Cioczek-
Georges and Taqqu (1995b), it was shown in Albin (1997), Theorem 1, that

E{X?2|Y =y}
3.1) dot (f8)%a 4

o Fy(y) gz

_ _ (f’|g|>2,a _ (f’g>ia OOny(Z)
= ”( lels el )/
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Note a minor error in Albin (1997): in (2.3) and (2.4) (as well as in later
occurrences) [;° 2f y(z) dz should be corrected to [ 2fy(2) dz.

In Theorem 1 and Corollary 1 below we use (3.1) to determine the asymp-
totic behavior of E{X? | Y = u} as u — oo.

THEOREM 1. Consider the a-stable random variable (X,Y) given by (1.2),
where a € (1,2), | gll, > 0 and (f,|g|)s, . < 0c. Further, define the sets

Gt ={xeR: g(x)>0} and G~ ={xeR: g(x) <0}
(i) Suppose that g > 0 a.e., so that By = —1. Then we have
lim u?E{X* | Y = u} = (f, 8)] ./(2)2

u—0o0

When (f, g)1. . = 0 we further have

@ 2—a 1/(a-1)
uh_% u(Z—a)/(a—I)E{X2 1Y =u} = (a— 1)(COS((7T</§§2(2 — a))) (f, g>2,a‘

If {(f,8)1.a =(f> 8)2.a =0, then we have f =0 a.e., so that X =0 a.s.
(i) Suppose that (g~), > 0, so that By > —1. Then we have
lim u?E{X?|Y =u} = (fls, 8 )o.a/(8 )a

u— 0o

When (flg-, 8 )o.o =00but (fIg:, 8%)1 o > 0 we further have

' _ F'2a—1){fIg:, g+>%,a
s B Y =) = s - ) (),

while (fI1g-, 8 )o.a=(flg+ 8 )1, =00but (flg:, g%)s ., > 0 implies that
lim E{X?|Y = u} =2(a~ D[{fIg:, 8 )2,/ (8") ] E{[Salllg" o =T}

If (flg-, 8 )o.a=(flg+ 8 )2 o =0,then we have f =0a.e.,sothat X =0a.s.

PROOF OF (i). By, for example, ST [(1994), Chapter 1], we have
B.2)  fs(o-1)(®) ~ Ao N (u/o) VD exp{—B, (u/0)*/* )}

as u — oo, where A, > 0 and B, = (a — 1)[cos((7/2)(2 — a))/a*]/@ D are
constants. Defining w = w(u) = [a(g),/ cos((7/2)(2 — a))]V/ @Dy -1/« (3.2)
and easy calculations show that (v + xw)fy(u + xw)/(ufy(u)) - e * and

w)fy(u + xw)

) B

[ 3vdy = wopy( [

~uw(u)fy(u).
Using that uw(u) = o(x?) and g = |g| a.e., (3.1) now yields the statement (i).

(3.3)
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PrOOF OF (ii). Writing C, = a(a—1)/[I'(2 — a) cos((7/2)(2 — @))], we have
(3.4) uh_)nolo ua“fsu(g’ p(u) = %Ca(l + B)o“
[e.g., ST (1994), Chapter 1]. First assume that g <0 a.e., so that 8y =1 and

|g| = g~ a.e. Using (3.4) in an easy calculation, we then obtain

(3.5) [ vy dy ~ (@~ 1) " fy(u) asu— oo

Inserting (3.5) in (3.1), and observing that since (f, |g])s, , < 00 we must have
f=0a.e. when (fI;-, g7 )2 o, =0, the statement (ii) of the theorem follows.
Now suppose that By < 1 and let

(X x)=([7de [ foae) and (v =([(e)de [ £ ae).
where f, = Ig.f and f_ = I5-f. Then we have
E{X? | Y:u}sz(E{Xi Y, =x}+E{X%|Y_=u—x}
+2E{X, |Y,=x}E{X_|Y_=u—x})
o fY+(x)fY,(u_x) dx
fy(uw)

[since (f,|g])2 o < oo implies that Iy g+ug-)f = 0 a.e.]. Using the formulas
for linear regression [cf. ST (1994), equation 5.2.27],

E{X |Y,=y}=(fs g+>1,ay/<g+>a’
E{X [Y_ =y}=(/_.8)1.0/(8 )a
together with (3.1), we therefore obtain
E{X?|Y =u}
z(a_l)(<f+’g+>2,a <f+’g+>%,a>

(gDe (272
o0 ZfY+(Z)fY,(u —x)

) /R[/Ix fy(w)
(f—:g7>2a (f—ag>%,a>

Ha_l)( &) | (g2

(3.6) o0 ZfY,(Z)fn(x)
AT = e

(f+s g+>%,a / x2fY+(x)fY,(u —x)
(gh)e Jm fy(u)

n (-, g_>%,a / (u— x)2fY+(x)fY,(u —x)
(g7)8 Jm fy(u)
2(f1, 814 8 )1 / iy, () —0)fy (u—-x)

(8T)al8 )a R fy(w)

dzi| dx

dx

+

dx

dx.

+
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Here applications of (3.2)—(3.5) in straightforward calculations reveal that

fyl(u) A‘Q[ ‘: ZfY+(Z)fY7(u - x) dzi| dx
2(g )a

(1 +By)lalg
-2

e fR[ fl oy (Dfy.(x) dz} dx

L1 2(87)a
a—1(1+B8y)lgly’

fR[ oA dz} dx,

a—2
fu (u) /R’“zf v, (0)fy (u—x)dx
(3.7) Y 2(g™). (g") o gl
@+ plali Ol Ty %
u72
fy(u) /R(u - x)zfn(x)fyf(u —x)dx
28
1+ Bylels’
-1
fl;(u) /Rfo+(x)(u —x)fy (u—x)dx
287
@t By)lale o+
Note that

/R[/x zfy+(2) dz] dx = ZE{[Sa(||g+”w _1)+]2}’
1+ By)lgly =2(g7), and
00 xlfa
/o A1 @ =1C-al2a-1) /T(a+1).
Inserting (3.7) in (3.6) and using that (fI-, 87)s . =0and (fIg+, 87)2 4 =0
implies (f_, £7)1, = 0 and (f, &%)1.« = 0, respectively, the statement (ii)

now follows. O

An inspection of the proof of Theorem 1 shows that a version of the theorem
applies in the case often encountered when X depends on u, that is, when

3.8 (X, Y)=(X,,Y)= (/R fu dé,/Rgdf) with £,(-), g € L*(R).

COROLLARY 1. Consider the a-stable random variable (X,,Y) given by
(3.8), where a € (1,2), ||g]l, > 0 and limsup,_, .(f,,|8|)2. o < 0©.
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(i) Suppose that g > 0 a.e. and that liminf,_,  [(f,, g)17a| > 0. Then we
have

E{X2|Y =u}~u*(f,. 8)1./(8)2 asu— .

(ii) Suppose that (g~), > 0 and that liminf, (f,Ig-, 8 )2 4 > 0. Then
we have

E{XZ | Y:u}~u2<fulG*7 g_>2,a/<g_>a as u — oQ.

4. Upper bounds on conditional moments. In Theorems 2 and 3 and
Corollaries 2 and 3 below we employ Fourier transforms to derive bounds on
the moment E{|X|¢ | Y = y}. The usefulness of Fourier techniques when
dealing with conditional a-stable moments was discovered by Samorodnitsky
and Taqqu (1991) and Wu and Cambanis (1991), and subsequently developed
by Cioczek-Georges and Taqqu (1994, 1995a, b).

The bounds in Theorem 2 and Corollary 2(i) apply whenever E{|X|? | Y =
y} is finite and o < 2 A (a + 1), but are not sharp for large values of |y|.
In Theorem 3 and Corollary 2(ii) these results are improved to bounds that
possess the right rate as |y| — oo in the particular case when o < « and
a>1.

THEOREM 2. Consider the a-stable random variable (X,Y) given by (1.2)
where a € (0,1) U (1,2) and | g|, > 0. Suppose that ¢ € [0,v A (a + 1)) for
some v € [a, 2) such that (|f],|g|),, . < 00. Then we have

K, (fl,18). gl t
v =0 °fy(y)

for A > 0 and y € int(supp(Y)), where K, , > 0 is a constant that depends on
a and v only.

E(IX|°L 0 |Y =) < exp(2]£]3A~)

Observe that it is sufficient to prove the theorem in the case when A = 1.

PROOF OF THEOREM 2 WHEN « > 1. There exist constants K, (1) K 5{2,)» >0
such that

(t8) o — (t8 + 5 )4 !
4.1) KO(IF], 181, a5t + | Flles®
gl = g + sF1e] ( " )
and

2(tg)e — (tg + 8f)o — (18 — $f)a
(4.2) | . . l < KD(If1,181), a8t
121tglls — litg + sf 1l — litg — sf 3|
for s, t > 0: The proofs of these inequalities only use the elementary fact that

1+ax < |14 x* <1+ ax+ KO, min{|x|*, |x|'} for x e R,
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for some constant K &0),, > 0. To prove (4.2), for example, one observes that
2(t9) ) — (tg + ) — (tg — s))| = |tg + sf|* + |tg — sf|* — 2ltg|*
< 2KQ)|sf|"|tgl*™
when [sf| < |tg|, while
2(2)) — (tg + sf)* — (tg — sf)*
| g ' ) | 2014 2efl = 214 2of
2|tg|* — |tg + sf|* — |tg — sf|°]
when |sf| > |tg|. It follows that (4.2) holds with K%, = max{2K "}, 2(1+2%)}.
We will also need the elementary inequality

|2 cos(x) — cos(y) — cos(2)|

- 2x — y — 2
cos2<y 1 Z) sin( X 4y z) sin(#)
sin? y—z cos 2x —y—z cos 2x +y+z
4 4 4

| 2

=4

(4.3)

§|2x—y—z|+%|y—z for x,y,z e R,
and its corollary | cos(x) — cos(y)| < |x — y|, as well as the facts that
e — e < ez )
(4.4) |2e7 —e™Y —e7?|
<exp(—(x Ay A2))(|2x — y — 2| +2]x — y[2 +2|x — 2[?).

Combining these inequalities with (4.1), (4.2) and using symmetry, we get

+ s€(0,1) |t|p [COS(ty - Ta<tg>a) eXP(—”tgHg)
teR

dsdt

sl+o

—cos(ty — 7, (sf + t8),) exp(—|sf + tg|2)]

==+ |01 |£]° [cos(ty — T,(t8)s) — cos(ty — T, (sf + t8)a)]
teR

dsdt

slto

x (exp(=|sf + tgll3) — exp(—|ltg]|3))

£ Jseto, 1) |7 cos(ty — T4 (tg)a)

teR*

dsdt
x (2exp(—|tg) — exp(—|tg + sfllg) — exp(—|ltg — Sfllfi))sl—ﬂ,
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£ Jec0.1) |£17[2 cos(ty — 7,(tg)s) — cos(ty — To(tg + 5f)a)

teR™

— cos(ty — 7,(tg — sf).)] exp(—|tg| )ds a

<7 [ro 111 1428)0 = (57 + t)a 212 — ISF + 2]

teR

dsdt

sl+o

x exp(—([Isf +tgls A Itg12)

Lo 117 (I20E218 = 2 + sF12 — 12 — 5F 1)

teR™
+ 2| ltglz — litg + s 5[ + 2 tglls — lieg - f12[°)
dsdt

sl+o

x exp(—(lltg + sflla A litg — sl A litgllz))

70 [ 119 ([20t8). — {1 + 5F)0 — (1 — 57|

teR*
1 9 . dsdt
(4.5) + 5 7el(tg = sf)o = (tg + sF)a|”) exp(-ltgl2) 7
1 ? P (1) 2 a—1 a a2
< (57 +2) feon PED(FL Ighast™™ + 1 ls%)
teR*
dsdt
< exp(|£1% — g /212~
a—v o a det
(7 + 1) [y PEDAIFL gD 08"t exp(I£15 — 1t /21) g
teR*
1 204211 ((p + 2a — 1)/a) (£, 121)3
_ fa+2) (KO < oxp(] ]
<2 «2-0) lglla® ! )

20 ((p + @) /) (If 1 1811, oI FIIE

1 2
+ <§Ta + 2) (KD)y?

O[(a + 1-— Q) ”g”g;a exp(”f”a)
1 2 29+1F((p +1)/a) ”fllza
- (1)\2 2 Y
+ <2ra + 2) (Kg7) aZa—0) gt exp(|| £1|%)

gptatl—ovp a+1—-—7v)/a -
T (r + KD, lpZw Lo )ﬁ'fl"p'i'ﬁ” xp(| £

3
- Kt(l,)V,p<|f|7 |g|>v,a
— 164 1 14
(v —o)lgla™

xp(2|f]|2) for p > 0, for some constant K(3) >0

a, v, p
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(that depends on «, v and p only). Here we used the inequalities (|f], |g])1 o <
IFlallglls™ and 71l < (I£1, 181}y« 8127 together with the elementary fact
that ||f||© < elfli for k € [0, ae], to obtain the last inequality.

Let X be a random variable with Fourier transform ¢ x. Using the inequal-
ity

1 1
[ 090 — cos(t))de > [ O de = for ¢ € [0, 2),
0 0

_1
4(2-0)

in a calculation inspired by Ramachandran and Rao (1968) and Ramachan-
dran (1969) [cf. ST (1994), Theorem 5.1.2], we get

t= \x\ 1 — cos(?)
s=1 1 — cos(s|x|)
(4.8) < / N / . dsdF(x)

Z/O 9%(1—¢X(3))81—fg.

Adapting this estimate to the context (1.2) and (2.4), (4.5) now shows that

27
ﬁE{'X'”{XH} 1Y =)
1 . ]
< /o EYt(/R exp(—ity)[dx v(0,t) — dx y(s, t)] dt) slfg
4.7) = /se(o,1>(005(ty — 1.(tg).) exp(—|tg]%)
teR

dsdt
— cos(ty = o(sf + 18)a) exp(~lsf +18]12)) g

(3
KaVO<|f|’|g|>V,a a
< e exp(2] ).

PROOF OF THEOREM 2 WHEN a« < 1 AND 90 < a«+ 1. Whenv > a+1, the fact
that 0 < a + 1, together with Holder’s inequality show that (|f], |g]); . < o©
for some v € (o, a + 1). Therefore we can without loss assume that v < a + 1.

The inequality (4.2) holds also for ¢ < 1, while instead of (4.1) we now have

|<tg>a - (tg+8f>a}

3 < K35, min{(|£], 1g1)s o8t | Fllas*)
Itglis — litg + sf 5]
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for some constant K fy » > 0, where 7 = v A 1. Combining appropriate parts of
the sequences of estimates (4.5) and (4.7) we therefore readily obtain

27
OB ¥ =)

< ooy (€08(2y = 7. (12),) exp(~2])
teR

dsdt

— cos(ty — 7o(sf +tg).) exp(~llsf + tg2)) iy

1 ? 4) \2 Vya—v @ o
< (317l +2) Lo o EEHILLeDsos eI s

teR*

ds dt
x exp(|Iflg — lltg/2]3 )

dsdt

sl+o

+(I7al + 1) [ 0.0 KOAIFL 1800 o8t exp(lIfll — Itg/2115)

teR™

2T (ot 1= B)/e) (£ 1gl)s, ol Fl
= (72 +2|7,| + 4)(KD,)? h Tgleris
(a | | )( a,V) a()j+a—Q) “g”g+171}

x exp([I£12)

27T ((a+ 1= v)/a) (If], 181)s, a
1 K(2)
+ (I7el +1) a(v — 0) gl

exp(||£1)

KO(f1, &
~ (v-o)lglatt

exp(2|f|%) for some constant Kff)y > 0.

1/v a(v—1)/v y—
Here we used the estimates (|f], |g])1.o < (If], [g])/allglla® ™" and | £|2-! <

(1F1,18D)ea” I gl """ together with the fact that ||£]*+" < exp(]|f]%)
when 7 = 1, and the fact that ||| < exp(| f||¢) only when ¥ = v. O

THEOREM 3. Consider the a-stable random variable (X,Y) given by (1.2)
where a € (1,2) and || g, > 0. If 0 € [0, ) we have

K, I fllgAe™
E{|X|1 x.0 | Y =y} <

o= g max{lyl, |2l 7y (y) “PENaA™)

for A > 0and y € R, where K, > 0 is a constant that depends on « only.
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PrROOF. Taking v = « in (4.5) we obtain

* [0 111 [cos(ty — 7. (t8).) exp(~tg]19)
teR
dsdt

sl+Q

(4.8) — cos(ty — 7, (sf + tg).) exp(—lsf + tg]) ]

®3) a
- Ka,a,pllflh11
(a—o)lgla

Replacing the use of inequality (4.3) with that of

exp(2[f]%) for p = 0.

|2 sin(x) — sin(y) — sin(z)|

- 2x —y — 2
cos2<y4z>sin< i 4y Z)cos( x+4y+z>
(4.9) |

. ofy—=z 2¢—y—2z\ . (2x+y+z
+ sin (—) cos(—) sm(—)'
4 4 4 |

1
5‘2x—y—z|+z|y—z|2 for x, y, z € R,

=4

the sequence of estimates (4.5) further readily carry over to prove the bound

£ [0,y £ [sin(ty — 7. (t8).) exp(—l2g]12)
teR

. dsdt
(4.10) — sin(ty — 7, (sf +tg)a) exp(—lsf +tell%) | o

(3) @
__EQufI

=7 gl exp(2[fllg) for p = 0.
a—o0 @

Using the elementary inequality | |x|*! — |y|*| < |x — y|*! we obtain
|ltg|*™t —|tg + sf 17| < |(t&) ™V — (tg + s) V| < (L + 27 )|sf|*!
< 25|t
(by treating the cases |tg| > |sf| and |¢g| < |sf| separately). This in turn gives

(8,t8)1,0 — (8,18 + 5[ )1,
(4.11) | b Ll <2%(g|, |f ) als|e! fors,teR.

‘(g’ |tg|>1,a - (g> |tg+sf|>l,a|

Now let T' = T'(«) denote the unique solution ¢ = T in (1, 00) to the equation
(t+1)*"1 4 (¢ — 1)1 = 2. Clearly we have

>0 when [sf|/|ig] =T
2ltg|*™t — |tg + sf " — |tg — sf|*!
<0 when |sf|/|tg] = T.
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By integration by parts it therefore follows that

/[%+|2<g’ |tg|>1,a - (g7 |tg+sf|>1,a - <g7 |tg_ sf|)1’a|exp(—||tg||g)dt

< [rer 21t(0)17 — [t (x) + sf ()| = [tg(x) — sf (x)|7Y|

xeR

l&(x)|
exp([|Zgll5)

= ﬁeR (Itg(x) + sf(2)|* " + |tg(x) — sf (2)| " — 2tg(x)|* )
O<t<sf(x)/Tg(x)

dxdt

lg(x)|

———————dxdt
exp(||zg||)

+

xeR
t>sf(x)/Tg(x)

x (2ltg(0)|* " — [tg(x) + sf (x)|** — [tg(x) — sf (x)|* ")

l&(®)l
exp(||zg%)

-1
= [oce lglae
O<t<sf(x)/Tg(x)

x ([tg(x) + sf (2)] + [tg(x) — sf ()] — 2[tg(x)])

sign(g(x))
exp([|zg||)

dxdt

dxdt

-1
+ feer leligee

t>sf(x)/Tg(x)
x (2[tg ()] — [tg(x) + sf ()] — [tg(x) — sf(x)])

sign(g(x))
exp(liglz) © 4

[ | Qg+ 570+ [rg() = 5761 — 2Arz(0] )

sign(g(x))

aexp(||zg|3)

t=sf(x)/Tg(x)
} dx

t=0



1482 J. M. P. ALBIN AND M. R. LEADBETTER
+ | @1 ~ ) + @1 - () - s @]")

sign(g(x)) ]f‘w s

aexp(|tgll2) t=sf(x)/Tg(x)

< fw gt t2(tg)a — (tg + sf)a — (tg — sF)a| exp(~ltgll3) dt

+/ 2T +1)* — (T~ 1)" — 2] [sf(x)] sign(g(x))
R aTe

x exp(—| gllalsf (x)/Tg(x)|") dx.

By inspection of (4.5) we thus readily conclude that

[0, |28 811,00 = (& 18 + 5F1)1.o— (& 1t8 = 5F )1
teR*

dsdt

X EXP(_HtgHg)sl—w

< .1y 181627 2(t8) o — (tg + )0 — (t8 — 5f)a
teR*
(4.12)
nasdt
x exp(=|ltglla) g

20T +1)*—(T—-1D)*=2|, ... o ds
+ T IFllas* g
3

Kaaoz— o @ 2|(T+1)a_(T_1)a_2|
= = =y IflGexp@IfI) +

ala — )T«

171

Using the elementary inequality (1 + x)“ 1 + (1 — x)(©1) < 2 we similarly
obtain

/SE(O,I)‘Z(& t8)1,a — (& 18+ 5f)1,0 — (8 18 — 5[ )1,a

teR*

dsdt

« S
X eXP(—”tgHa)sl—w

= ‘/;6(0,1)<2<g5 tg)l,a - (g’ tg+sf>1,a - (g’ tg—sf}l,oz)
teR*

dsdt

S
(4.13) x exp(—ltglle) g
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= gl frco 0y = (2081 — litg + sF15  lieg — Iz

teR*
wnasdt
< exp(~ gl 1 s
L @ a a a t=c0 (s
2 [ (@l g + 71— g — sf 1) exp(—llegs)] . o
- o — Q «a o a(a — Q) ar
Integrating (4.7) by parts, the estimates (4.1), (4.3), (4.4) and (4.8)—(4.13) yield
27yfy(y)
lmE{|X|Ql{|X|>1} Y =y}
Y ] ds |
< ;/0 %" /Rexp(—lty)[d’x,y((), )= dx v(s,D]dt) |
1 N ds
= /36(071) S(a exp(—zty)%[qu,y(o, t)— dx.v(s, t)]) dtsl_w
teR

= | [0 (7acoS(ty = 7. (t8).) (& |t81)1, 0 exp(—1t2]12)
teR

— 7,c08(ty — T, (Sf +18)a) (&, ISf +t8])1. a
x exp(—||sf + 22[3)

+sin(ty — 7,(t8).) (&, t8)1. o €xp(—|2g %)
—sin(ty — 7, (sf + 18)a) (g, Sf + €)1, a

dsdt'

x exp(—|lsf + tg112) 7

= |70 [0 (& It81) 1. a(cos(ty — 7. (t8)) exp(~1t2]12)
teR

dsdt

glto

— cos(ty — 7,(sf + tg),) exp(—||sf + tg|2))

-7, ﬁe(o’l)(cos(ty — T, (t8) o) — cos(ty — 7, (sf +t€)4))

teR

dsdt
x ({2, 1t81)1,a — (& |sf + t8])1,) exp(—|sf + tglli)sl—ﬂ,

+ To fge(o’ 1) COS(ty - Td<tg>a’)(<g’ |tg|>1,a - (g’ |Sf + tg|>1,a)

teR
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dsdt
x (exp(—|lsf + tglly) — exp(—|tg]%)) N

+ Ta fge(o’ 1)(2<g7 |tg|>1,a - (ga |tg+ Sf|>1,a - <g> |tg - sfl)l,a)
teR*

dsdt
x cos(ty — 7,(t8)a) eXP(_||tg||g)81_+Q

+ 5€(0,1) (g’ tg)l, a(sjn(ty - Ta<tg>a) eXp(_”tg”g)
teR

. v dsdt
— Sln(ty - Ta/<8f + tg)a) eXp(_”Sf + tg”a)) 81+Q

- /se(o, ) (sin(ty — 7,(tg),) — sin(ty — 7, (sf + tg)a))
teR

dsdt
x (8 18)1,0 = (8 sf +18)1.a) exp(=sf + t815) 7

+ 5€(0,1) Sin(ty - Ta<tg>a)(<gs tg)l,a - <g7 Sf + tg)l,a)
teR

dsdt
x (exp(—|sf + tglly) — exp(—|ltglls)) A

+ se(O,l)(2<g’ tg)l,a - (g’ tg+sf>1,a - <g5 tg_sf)l,a)
teR™

. nasdt
x sin(ty — 7, (t8)4) eXP(—”tg“a)Sl—w
(3) )
< 7,——|flaexp(2] fl3)
a—Q0

+72[9€(0’1)|<tg>a - <Sf+tg>a| |<g’ |tg|>l,a - (g’ |Sf+tg|>1,a|

teR

L asdt
x exp(—|lsf + 28l

70 oo (8 168110 — (& 1F + 121}l [I5F + 221 — gl

teR
dsdt
< exp(—(lsf + tgls A ligl2)) To
3)
Kaaafl 2|(T+1)a_(T_1)a_2|
s &y (¢4 2 3 (43
| Smm ezl 1z + 2 = = R e

Kt()z?:)a, a—1 @ @
+ ————|Ifllzexp2[fI3)
a—Q0
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+7a/‘;€(0’1)|<tg>a - <sf+tg>a| |<g5 tg)l,a - <g7 sf+tg>1,a|
teR

nasdt
x exp(—|lsf + tglle)

+ 0.0 (8 1€)1.0 = (&0 SF + 1)1, ] 15 + tgls — 2]
teR

dsdt
 exp(—(1of + 112 A I18]1)) o
s Koot e ol + — 21
aso TN Dt aa—o s

< (T + 17 [0y KPP 18D 1 a8t + 1 F155%)2°(1 81, 1F 1)1, a8
teR

N PRI -3¢ £
x exp(| £z = lglalz8) <r5g

K®
+2(7e + 1)%”1””3 exp(2|/£1l)

. 2(T+1)* = (T —1)*-2]
“ ala — )T

171

2 o
+m||f||a

= (1o + D’KL2%( 8l 1)1,

27 f 18N a | AT/IFIIE )
(o olgh * aae 1 oar) P

Ko (7 + 1) = (T 1) —2)
e R e
1 a
e LLAL

2 flallglla 4T(1/a)||f||f§)

= (DK%l ”g_l( oa—o)els | aa= o)l
< exp(I£11%)

3)
Kaaafl |(T+1)a_(T_1)a_2| 1

+2ra+1[ e + }

SO s o{a = o) T (o= 0)

x Ifllaexp2£12)

< K&G)m exp(2[|f]|¢) for some constant K(® > 0
a—o :
(depending on « only),
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where we used that ||£]|¢~! < exp(||£]¢) in the last step. The theorem follows
from combining this bound with the bound obtained taking » = « in Theo-
rem 2. O

COROLLARY 2. Consider the a-stable random variable (X, Y) given by (1.2)
where a € (0,1)U (1, 2) and | g|, > O.

(i) Suppose that ¢ € [0, vA(a+1)) for some v € [a, 2) with (|f],|&]),.« < o©.
Then we have

K, (fl, g8
ElX|°Y = d
UXIY =3} < G lgle ™ Fr e

(i1) Suppose that a € (1,2) and o € (0, a). Then we have
K,|fla
[(a — @) max{|yl, [ gll.}fy(¥)

for y € int(supp(Y)).

for y e R.

E{|X|°]Y =y} < iBE

PROOF OF (i). Theorem 2 shows that
Koo (If] g allgle

(v—0)A¢fy(y)
Taking A = [(|£], |g]),.«/((v = @)l gllg* " Fy(¥))]"/” this becomes

(I71,181)s,a )‘”V

(v—olgla"Fy(y)
2[(v — o)llgllafy(»)] IFII2 ”

(11, lghealgls ™"

Now note the fact that (3.4) implies (albeit not immediately so)
(4.15) fs.(o,p)(%) < Dyo(|x]| + o)) for x € R,
for some constant D, > 0. In particular we have | g|,.fy(y) < D,. Using

a/v (v—a)a/v
a

the elementary inequality || f||¢ < {|f], |g])v | £l we therefore conclude
that the bracket on the right-hand side of (4.14) is bounded by a constant that
depends on « and v only.

E{|X|°)Y =y} =A%+ exp(2[|f|2A~*) for A > 0.

E(|X[°[Y = )] < (
(4.14)

X [1 + Ka,,,exp{

PROOF OF (ii). By Theorem 3 we have

K, I7llgAe™
a — o max{|y|, [|gll.}Fy(¥)
Taking A = |£]l./[(a — 0)max{|yl, |gll.} f¥ ()], it follows that

_ IF1E[1 + K exp(2(a — o) max{|yl, lglle} Y]

(@ — o) max{|yl, llglla}F¥ ()]

Here the bracket in the numerator on the right-hand side is bounded by a
constant that depends on « only, since max{|y|, | gll.}fy(y) < D, by (4.15). O

E{|X|°|]Y =y} =A%+ exp(2|f||¢A™*) for A > 0.

E{|X|°]Y =y}
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COROLLARY 3. Consider the a-stable random variable (X,,Y) given by
(3.8) where a € (1,2) and (g7), > 0. If o € (0, @) we have

. K, limsup, . [|f,]&
limsupE{| X, /u|®|Y =u} < —= L
u—o0 { } [(a—0)(g7)alo"

For the proof, take y = u in Corollary 2(ii) and use (3.4).

5. Asymptotic behavior of conditional probabilities and moments.
In Theorem 4 we prove weak convergence of (X/u |Y = u) as u — oo when
a > 1 by approximating X with a random variable X such that ox_x is small,
and such that the limit lim, .. P{X/u > A | Y = u} can be calculated. The
remainder X — X is controlled via Corollary 3 and the Markov inequality.

Clearly, one expects the proof of convergence of (X/u | Y = u) to be easier
in the case @ < 1, than in the (usually more interesting) case when a > 1.
However, our bound on conditional moments in Corollary 3 is only valid when
a > 1. Thus our proof of Theorem 4 (which builds on Corollary 3) can only be
adapted to the case a < 1 if (a suitable version of) Corollary 3 is proved for
that case.

Besides Corollary 3, the important mechanism in the proof of Theorem 4
is subexponentiality: the essential contribution to a large value for a sum of
subexponential random variables comes from a single variable; compare (5.4)
below. [See for example Samorodnitsky (1988) and Rosiniski and Samorodnit-
sky (1993) for earlier examples on the use of subexponentiality in asymptotic
analysis of a-stable phenomena.]

THEOREM 4. Consider the a-stable random vector (X,Y) in R**! given by
(2.1) where a € (1,2) and (g~ ), > 0. Then we have (with obvious notation)

(X/u|Y =u) >, Z where P{Z < 2} = (18" {xcG-: f(x)/g(x)<2})/ (& )a-
To explain how Theorem 4 relates to subexponentiality, we approximate the
functions g~ and f;I4 [in (2.1)] by simple functions g~ = Z]Je-zl gjlg, and

fi_ = Zf-zl fgj)IEj, where {Ej}ﬁzl are disjoint sets in G~ = {x € R: g(x) < 0}
such that |~ — g7, and ||f; —filg ||, are “small.” Then we have

Y_=/Rg*d§w?_=/ﬂgfd§

(in the sense of convergence in probability), and

PlX/u<z|Y=u}~P{X/u<z|Y_=u}~P{X/u<z|Y_=u}
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for u large, since the tail of Y — Y _ [cf. (3.2)] is much lighter than that of Y _
[cf. (3.4)]. However, by subexponentiality and (3.4) we have asymptotically

P{X/u§z|l7_=u}

~ ( k P{ﬁ{Xi/u <z}
=1

i=1

gj/EV dé = u}fgjij dg(u)>

~—

k
(Z fgjfE/, d._f(u))
J=1 '

~ (j:P{i(i{fﬁf)ij dg/u < zi}

k
(Z Fart, d§<u>>
j=1

n k
I, ,v]85] dx > g8 dx)
(j—l(i—l e ‘}) J/Ef )/(j—l J/Ef

~ (18T (xeG-: f(x)/g(x)<e})/ (& Va-

8; fE dé = u}fgjij dg(u))

M= T~~~

&

PrOOF OF THEOREM 4. By considering the vectors (£X,...,+X,, Y),
convergence for (X/u | Y = u) will follow provided that we can prove

(5.1) ull_{glCP{X/u > A | Y = u} = <|g|a1{xeG*: f(x)/g(x)>/\})/<g_)a

for continuity points A > 0 (with components A4, ..., A,, > 0) of the distribution
of Z. To that end we define (again using obvious notation)

v = / I,,gd¢ where A, =[x € G*: (k—1)eg(x) < f(x) < keg(x)),
? R
YY) = [ 15,gdé where B, =[x G : keg(x) < f(x) < (k- 1)eg(x))
for ¢ > 0 and k € Z". Further let G° = {x e R: g(x) =0}, X© = [ I50f d§,

fED = 3 (I keg+1pkeg) and [ =Y (I, keg+1Ipkeg),
I%ll<2 kezr
where ||| = max{|k,],..., |k,|} for k € Z". Setting f&) = I - f we have
77— 9] < elg| fori = 1,..., n, so that £i” € L(R). Writing X|") = keY,")
and X E;i = ksY;), we may thus define the a-stable vectors

&

x e EfRf(l,s) dé= Y (ng,); + Xge_t)s)
[l %l <t

XO= [ f9de= ¥ (X0 + X)),

keZn
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To proceed, we note that by Corollary 3 and since X(¥ is independent of Y,

lim sup limsup E{|(X — X“9),/u| | Y = u}

>0 u—>00

< limsupE{|(X - X(i))i/ul Y = u}

u—0o0

+limsup E{[(X® — X@),/u| | Y = u}

+limsuplimsup E{|(X® — X)), /u| | Y = u}
l—o0 Uu—>0o0

< limsupE{|X§0)/u| |Y = u}

u—0o0

+ K| = 121 [(e— ()]

+limsup K, |7 = 75 /[(@ = 1)(g )]

[—o00

— 1/a
<0+ K,elgla/[(a — 1){g )] +0
[where X&) = [, f d¢£]. For a vector § = (8, ..., 8,) > 0 we hence have

limsupP{X/u > A |Y =u}

u—00

< hmsuplimsup(P{X(l’ V/u>A-38|Y =u}

-0 u—00
"1

(5.2) +3 5—E{|(X —XE) ul|Y = u})
i=1 Y1

<limsuplimsupP{X"9/u > A1~ 8|Y =u}

l— 00 u—00

+0(e) asel0

and

lIminf P{X/u > A|Y = u}
> hgninfliminf(P{X(l’s)/u >A+8|Y =u}
|
(5.3) -y 5—E{|(X —XEN . u||Y = u}>
i=1 %1

= lifninflimian{X(l"g)/u >A+8|Y =u}

—00 u—0oo

—0O(e) ase 0.
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Now observe that by calculations similar to those that are featured in (3.7),
fY;JfZ(x)fy_y(]e*l(u - x)

(+) ’
PUX, Jul > Al |]Y =u} = dx =0
{ k, } /‘;xeR: |kex|>|Alu} fY(u)

as u — oo for k € 7" and A € R* \ {0}, while

fvo(X)fy_vo(u—x)
P{ngg)/u>)\|Y:u} = / Yie ¥ x
’ {xeR: kex>Au} fy(u)
0 for ke — A # 0,

- 2|I o
M for ke — A > 0,
1+ By)lglle

when A = (A4, ..., A,) > 0. Further, we have

P{IX)/ul > N, X5 /ul = 1y | Y =u)

J. e

(5.4) {(x, y)eR2: |jex|>|Mu, |key|>|ylu}
Fye () yor (Nfy_ye)_yo (e —x—y)
dx dy
fy(w)
— 0 for A,y # 0 and distinct j, & € Z".

Given vectors A, § > 0 with A — 48 > 0, these asymptotic relations yield

limsupP{X"9/u>A—-6|Y =u}

< limsupP{ > ngg)/u >A—28 ' Y = u}
umee I %l<
: ! (+) i
+limsup )~ > P{(Xk Qi/u> ————Y = u}
u—oo ;1 Ikl<l ? (2l + 1)
= limsupP{ > X:‘)g/u > A — 28,
umoe %l <t
) 1]
o fict 7
e 20+ 1)
< limsupP{ > Xgeji/u > A — 28,
umoo &<l

U [{ix2ml > 52

lill<t
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S e [

7=t j#i

(5.5) +limsupP{ > X;i/u >\ — 28,

umee lI-ll<

U HlXE;’/m > %}

llel<t
N {|X‘.‘)/u| . - ” Y—u}
e (20 + 1) B

lill=t, j#i

<limsup Y. P{X\)ju>21-35|Y =u}

&
v i<t

i -) 5]
+limsup >~ > P{|Xi’£/u| > 0
u=00 i<t | i<t (2l +1)
i
) 9]
X _ Uy =
Xl > oy =)
2T, gl
< )3 I15,8ll%

B {iez": |i||<l, ie>r—45} (1 + BY)”g”g

= (18" [ xea-: fx)7ax)=r—45})/ (& )a asl—ooand e |0
(in that order). Similarly, we obtain

liminf P{X"9/u > A+8|Y =u}

u—oo

> limian{ > X\ s )\+25|Y - u}

u—00
I %)<

—limsup ) > P{(Xﬁ:ri)i/u <= |Y
= ’ 2+ 1)

:u}

> limian{ U (x4 u> )\+36}'Y = u}

Uu—00
%)<

—limsupP{ U [{Xge_i/u > A+ 38}

umee [l %1l <

ot
56 ﬂ||JL|J|Sl{|XJ’8/u|>(2l+1)” v
J#k
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> liminf Y P{X} )/u>1+38|Y =u)

%<2

~limsup Y. Y P{X})/u>A+38X)/u>1+358]Y =u)

&
U kNt l<t

J#k
—1i ) ) 18] _
limsup > > P{X,,/u>A\+38|X, /ul> |y =u
U klI<t | jll<t (21+1)

J#h

2|15 gll
. 3 11,8l i
(kezr: k=L he=rsasy (1 BYIIEIG

= (181" Lxe: f(x)/g(x)=r+40})/ (8 ) @81 —> oo and e | 0.

Now (5.1) follows from combining (5.2) and (5.3) with (5.5) and (5.6). O

COROLLARY 4. Let {f,: R — R"},., be a family of maps with components
fui€l*(R)fori=1,...,n, and consider the R**1valued a-stable random
vector

X 0) = ([ £ude, [ 2ag) = ([ Fardte [ funds. [ 2de),

where a € (1,2) and g € L*(R) with (g7), > 0.If f, ; > 1«w) fi as u — oo for
i=1,...,n, for some map f: R — R", we have

(Xu/u |Y = u) —q Z where P{Z <z} = (|g|a1{xeG*: f(x)/g(x)fz})/(g_>a'

PrROOF. Writing X = [, f dé, Corollary 3 shows that E{|(X, — X);/u| |
Y=u}—>0fori=1,...,n. Hence the corollary follows from Theorem 4. O

When the conditional law (X/u | Y = u) converges weakly, convergence
of moments of order o € (0, @) follows from Corollary 3, while convergence
of moments of order ¢ € [a,2) follows from Theorem 1 if (f,|g|)s , < o0.
Moreover, probabilities and moments conditoned on the event that Y > u also
converge:

COROLLARY 5. Consider the a-stable random variable (X,,Y) given by
(3.8) where a € (1,2), (g7), > 0 and f, —«w) f as u — oco. Suppose that
0 €(0,a), or that ¢ € [, 2) and limsup,,_, . (f,,|&|)2 o« < 00. Then we have

lim B{|X,,/ul®lx, 0y | Y = u)
5.7 umoe
= (|f|9|g|a_91{xeG*: f(x)/g(x)>A}> / (87 )a
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for continuity points A € R of the function on the right-hand side. Moreover,
Jim B{[(X, /)1 | Y = u} = (F98°0) I ) /().
lim E{[(X,/u)71° | Y =u} = ((F¢“ )15 ) /(g )
lim B{|X, /ul® | Y =u} = (If1°|g]*1g-) /(& )
J =

lim E{(X,/0)'? | Y =u} = (g 1) /(g )0

PrROOF. Since (X,/u|Y =u) —, Z by Corollary 4, it follows that

(1X,/ul®Ix, jyny|Y = 1) >4 | Z|°L 5.
when (|8l ycq-: f(x)/g(x)=r}) = 0. Further, we obviously have

(181 (xec: rexyay=ny) = (IF1°181° 7% tyci-: pixyaey=n)/IA°

for A # 0. Hence continuity points A # 0 for the right-hand side of (5.7) also
are continuity points for (|g|“I( cq-: f(x)/g(x)>1})- The fact that (5.7) holds for
continuity points A # 0 thus follows if the family {(|X,/u
u)},~0 is uniformly integrable. However, by Corollary 3 when ¢ < «, and
by Corollary 1 when o € [a,2) and limsup, ... (f,,|8l)2.« < o0, we have
limsup, . E{|X,/ul? | Y = u} < oo for some p > g. By elementary consider-
ations this establishes uniform integrability.
By application of (5.7), for continuity points A # 0, we readily obtain

(F9g ) I )/(87)a
= <|f|0|g|a_gl{xeG*: f(x)/g(x)>0}>/<g_>a - hmlsoup |8|Q

< lilillionf<|f|g|g|a791{xeG7: f(x)/g(x)>£}>/<g7>a

<limsupliminf B{| X, /u|®I;x ;.. | Y = u}

€40 u— 00
< liminf E{[(X,/u)"]°|Y = u)
<limsup E{[(X,/u)"]°|Y = u}

<hm1nf11msupE{|X Jul®lix ey | Y = u}

u—0o0
< list(,)up(|f|9|g|°‘_91{x€(;7: r@ya@=er)/ (&8 Ve
<(If1°181° ® I 1yce-: f(x)a)-03)/ (&8 )+ limTSOUP |le]€.

This completes the proof of (5.7), and by application of what has already
been proved to the variable — X, the proof of the whole corollary. O
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EXAMPLE 1. For a moving average process X (t) = [ s &(t+ x) dé(x) with
g € l*(R) and (g7}, > 0, we have (X(¢1)/u,..., X(t,)/u| X(0)=u) >4 Z
where

P{Z = Z} = <I{xeG*: g(t1+x)/g(x)§zl,...,g(t,,,+x)/g(x)§zn}|g|a>/<g_>a

Under the hypothesis of Corollary 4, (3.4) and Corollary 4 imply that

P{X,/u>z|Y>u} = /:OP{& > EIYzyu}%

ady
—>f (181 T xec-: fx)/ax)>2/v}) a+1/<g Ja-

In the case when f, = f (so that X, = X) this was shown via a direct argu-
ment by Samorodnitsky (1988), Theorem 3.1. We now address convergence of
moments.

COROLLARY 6. Consider the a-stable random variable (X,,Y) given by
(3.8) where a € (1,2), (g7)y > 0 and f, —«m) [ as u — oo. For each
0 € (0, @), we have

a— adxdy
—/y SO L s e e

f@)g@ e \ade
[1v<Ag(x>/f(x>>]“‘9> for e

PrROOF. In view of the obvious fact that

- [, (r@ lg@re -

a—0

X,
E{ e I{Xu/u>)\}Y>u}
> L[| X yufy(yu)dy
= El| =% 1 Y = AR LAt s
/1 {l uy I {Xu/w)=A/ 3} ”y} P{Y > u}

the corollary follows from (5.7) and a change of the order of integration in
the resulting limit if we can establish dominated convergence. However, dom-
inated convergence is a simple consequence of (3.4) and Corollary 3. O

6. Upcrossings of «-stable processes. Choose an interval [=
[a, b] where —oc0 < a < b < oo and a class of maps {f,(-) € L*(R): ¢t € I}
where a # 1, and consider the a-stable process

(6.1) 1(¢) = separable version of /OO fi(x)dé(x) fortel.

Each non-pathological (separable in probability) strictly a-stable process has
this representation in law [e.g., ST (1994), Theorem 13.2.1].
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We shall assume that there exists a power v € [, 2) N (1, « + 1) such that
(6.2) im  sup  ([(t—8)[fi—Fo— =] Ifsl), =0

el0 5 tel, 0<|t—s|<e
for some class of maps {f,(:) € L*(R): ¢ € I}. Further we require that

(6.3) ?ﬂﬂHﬂmﬂ<w-

When a < 1 we make the additional assumption that

(6.4) lim| sup |f,—fil], =0
810 "5 tel, 0<|t—s|<e

Note that (6.2) and (6.3) imply sup,c; || f: > SupPser || £ lle < 00. By continuity
of I >t ||f,|l, € R we further have inf,_; ||f,||, > O when || f,]|, > 0 for ¢ € I.
When o« > 1 we may take v = «, so that (6.2) and (6.3) reduce to

lim sup |t =) [fr—fs— (@ —9)f]

|0 s, tel,0<|t—s|<e

=0 and sup|f;]. < oo.
“ tel

The process n(t) given by (6.1) is stationary when the integrals

[

n o o /1 (a)
buf ()] dx and [ (Lofa(@)  do
i=1 % \i=1

do not depend on 4. For a stationary process n(¢) with « > 1, (6.2) and (6.3)
thus boil down to

lim| £ [£,() = o) = Fo()l], =0 for some £i() € L(R).

The difference between our requirements (6.2) and (6.3) and the differen-
tiability conditions used by Adler and Samorodnitsky (1997) in their study of
stationary SaS-processes appears to be minusculous. In essence these require-
ments mean that n(¢) has a stochastic derivative n'(¢) such that E{n/(¢) | n(¢)}
exists for all ¢ € I.

Writing 7'(t) = [ f; d&, Theorem 5 below states that the expected number
of upcrossings of a level u by {n(¢)};c; is given by

(6.5) u(Iiw) = [ B{n (' [n(0) = u} () d.

Rice (1944, 1945) proposed this formula for differentiable processes. Under
additional technical conditions, proofs were given by Leadbetter (1966) and
Marcus (1977) for stationary and nonstationary processes, respectively, but,
although natural and reasonable, even in the stationary case these conditions
are so forbidding that they have been verified for very few processes except
Gaussian ones. Indeed, when Adler and Samorodnitsky (1997) verify Marcus’s
conditions for SaS-processes (via a ten-page argument), the key ingredient
in their proof is that symmetric a-stable processes allow representations as
mixtures of centered Gaussian processes.
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If (n'(¢), n(¢)) has a density [, ) ), then (2.5) and (6.5) show that

wliw) = [ [ L e w) dx] dt.

Our proof of (6.5) builds on Lemmas 7.2.1 and 7.2.2 in Leadbetter, Lindgren
and Rootzén (1983). Albeit these lemmas are stated for stationary processes,
only the last paragraph of the proof of Lemma 7.2.2(iii) uses stationarity. All
other arguments are valid for processes {n(¢)},.; possessing continuous paths
a.s. and a continuous univariate marginal distribution function F, ) at each
t € I. Further the mesh used when approximating 7n(¢) with a step process
need not be uniform.

For each family of sequences {a = sgn) < s(ln) <...< sSL”) < 35:21 =b:nc¢e N}

such that qgen) = sgen) - sgen)l satisfy lim,, ., sup;—p-,1 qgen) = 0, we thus have

n+1
(6.6) p(lu) = lim Y Pn(st”;) < u < n(s{”)).
n—o00 el

THEOREM 5. Consider the process {n(t)};c; given by (6.1) where the maps
{f:(-) € L*(R): t € I} satisfy (6.2) and (6.3) with a € (0, 1)U(1,2) and ||f;|. > 0
for t € I. If o < 1 we also assume that (6.4) holds and that u < int(supp(7n(¢)))
for t € I. Then the expected number of upcrossings u(Il;u) of the level u by
{n(¢)}.cs satisfies Rice’s formula (6.5).

PrOOF. To be able to use the formula (6.6) we must prove that 7(¢) is
continuous: when « > 1 we can choose a power ¢ € (1, @) and use (6.2) and
(6.3) to obtain

E{ln(t) - n(s)I°} = sup E{|S,(1, B)|°}
Bel-1.1]

< [Ife = Fo=@E=8)filla+ 1t =sllfilla]

< constant x |t —s|® for s, t e I.

A well-known and classic argument [e.g., Cramér and Leadbetter (1967), Sec-
tion 4.2] therefore shows that 7(¢) has continuous sample paths a.s.
When a < 1 n(t) is continuous a.s. if and only if || sup,.; |flll. < oo and

length({x € R: f;(x) is not uniformly continuous in ¢ € I}) =0

[cf. ST (1994), Theorem 10.4.2]: Clearly these requirements are satisfied when
(6.4) holds with f, € L*(R) for ¢ € I.

Now take 8 € (0,1) and A € (1, 00), and let £/ = a + k(b — a)/n for k =

(n) (n)]

0,...,n.Define a mesh {sgen)}Zi(l) by setting sf)n) = a, choosing s(kn) e(tp 1.t
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so that

[P > (- o ) = w4 ) o (a4 ) dx — 6

A
< inf / P{n/(s) > (1— 8)x|n(s) = u + (s — sv") )]
se(ty. 6179

X [ (@+ (s — s(n_)l)x) dx
for k=1,...,n [where q(n) sge ) sgan)l as above], and setting 3n+1 =b. Also
note that for o € (1,v), Corollary 2(i) together with (4.15) shows that

P{n/(s) > (1 — 8)x|n(s) = u+ (s — sy )x} F ey (1 + (5 — 551)%)
6.7 _ K Df D
= = 0 (L~ s

Using (2.3) and dominated convergence [ensured by (6.7)], we therefore obtain

for x >0 and s € I.

jas ) n) (n)
hmsuquk / {n'(s;”)> (1 - 8)x|n(sk)—u+q x}

x f (sm)(u + qgen) x)dx

<hmsuPZf<n) [/ {n'(s) > (1= 8)x|n(s) = u+ (s — s )x}

n—-oo k=1

X [+ (s — sk 1)x) dx] ds
(6.8)
+lim sup[2(b — a)/n](A — 8) SuPers. o] F (ot + 4\1%)

+6(b—a)
= / [/ {n'(s) > (1= 8)x|n(s) = u} dx] a(s)(@)ds +0+ (b —a)
N / E{n/(s)" | n(s) = u}fos)(w)ds as s 0and A1 .
Define another mesh by setting sgn) = a, choosing sgen) € (tgi)l, tgen)] so that
A (n) (n) (n)
/6 P{n/(sy")) > (1+ 8)x|n(sy”) = u+ gy %} f (o (u + g} x) dx + 8
. (n)
= sup [P{n(9)> A+ 0)x [ m(s) = ut(s - 5,")x)
sty 117

X [+ (s — ssen_)l)x) dx



1498 J. M. P. ALBIN AND M. R. LEADBETTER

(n)

for k=1,...,n, and setting s, /; = b. By (2.3) and Fatou’s lemma, we have
n+1 A
liminf 3" q}" /5 Pln'(sy") > (1+8)x | n(sy”) = u + ¢\"x)
k=1

(n)
X fn(sgo)(u +4q), x)dx

n sgen) A
= liminf 3 | [A P{n/(s) > (1+8)x | n(s) = u + (s — sy )x]
k=1"5k-1
(6.9) X [+ (s — sgen_)l)x) dx:| ds
_5(b—a)

_/b[/ﬁp{ () > (1+8)x | (s)—u}dx]f (w)ds—8(b—a)
a5 T n(s) = 7(s)
- fb E{n'(s)"|n(s) = u}fs(u)ds as 8| 0and A+ co.

By application of (6.6) together with an obvious modification of (6.7) we get
m([a, b];u)

n+l o S(n) _ S(n)
= lim Z/ qi”)P UGl O > x n(sﬁj)) = u+q§en)x
n—o0 = Jo qgen)

X f sy (u + q\x) da

-1
dx
o

n+l s ()

. n
<limsup ) f q; Da”fs(n)
n—oo 5,170 k

A (n) (n) (n)
+ lim sup Z/ﬁ q, P{n'(s,)> 1 =8)x|n(s, )=u+gq, x|

(n)
X fn(sg))(u +4q;, x)dx

n+l A (n) Ka, V(i(QSen))il[fsgy - fsgl)l - qgen)f;(n)] ] |fs§e”)|)f,/:
+limsup ) / aq; = o ’“/V dx
= D" (v = )2 |If golla T (Bx)e

_ /v
1o Ko (@) e = F Il 1 o)
. k k-1 k >
+ lim sup Z/ qy o1 I-(r—a)o/v
n—soo  ,_1YA D, (y — Q)Q/V||fs§:) ||a x©

Sending 6 | 0 and A 1 oo, and invoking (6.2), (6.3) and (6.8), it follows that

b
Mw¢p05ﬁEm%ﬁ|mg=wm@wW&
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In a similar but somewhat simpler way we obtain

m([a, b];u)
> lirrlrii£f Z / q(n)P {n (s(n)) > (1+ B)xln(sk )) =u+ q( " x}
x £ o (u+ q(n)) dx
n(sy ") k
it Ko M@)o = F o, =@ Flll- F o)
— lim sup Z/ q py oo dx.
nooo ot D™ (v = )| f gl (6x)?

Sending 6 | 0 and A 1 oo, and using (6.2), (6.3) and (6.9), we therefore conclude
b
u(la, bl w) = [ E{n/(s)* | n(s) = u}f () ds. 0

In the particular case when 7(t) is stationary, (6.6) readily yields
(6.10) p(Il;u) =length(l) hl%l sTIP{n(-s) < u < n(0)}.

Taking off from (6.10) rather than (6.6), and using the Markov inequality
and Corollary 2(i), the proof of (6.5) reduces to just a few lines of elementary
calculations.
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