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Stochastic integral representation of martingales has been undergoing
a renaissance due to questions motivated by stochastic finance theory. In
the Brownian case one usually has formulas (of differing degrees of exact-
ness) for the predictable integrands. We extend some of these to Markov
cases where one does not necessarily have stochastic integral representa-
tion of all martingales. Moreover we study various convergence questions
that arise naturally from (for example) approximations of “price processes”
via Euler schemes for solutions of stochastic differential equations. We
obtain general results of the following type: let U, Un be random variables
with decompositions

U = α+
∫ ∞

0
ξs dXs +N∞	

Un = αn +
∫ ∞

0
ξns dX

n
s +Nn

∞	

where X, N, Xn, Nn are martingales. If Xn → X and Un → U, when
and how does ξn → ξ?

1. Introduction. Consider a sequence Xn of square-integrable martin-
gales, which converge to another square-integrable martingale X; this con-
vergence may hold in a strong sense (as in �2) and all the Xn’s and X are
on the same probability space, or it may hold in the weak sense (convergence
in law) and each Xn is defined on its own probability space. Let also 
 be a
bounded continuous functional (say, on the Skorokhod space of all right con-
tinuous functions with left limits), and set Un = 
�Xn� and U = 
�X�, so
that Un converges to U. Suppose in addition that we have the martingale
representation property for each Xn and for X, so we can write Un and U as
stochastic integrals as follows:

Un = αn +
∫ ∞

0
ξns dX

n
s 	 U = α+

∫ ∞

0
ξs dXs	(1.1)

where αn and α are random variables measurable w.r.t. the relevant initial
σ-fields, and ξn and ξ are predictable processes. Then an important theoretical
problem is to find whether the sequence ξn converges in law, for a suitable
topology, to ξ.
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This problem has also much practical relevance. For example, in financial
mathematics suppose that X models the price of a stock, and U is a claim
based upon this stock, and for simplicity the riskless bond has constant price
1. If the model is complete and with no arbitrage opportunity, then X is a
martingale under the unique risk neutral equivalent measure, the price of
the claim is the expectation E�U� = α under this measure, and we have the
martingale representation property w.r.t. X; then the process ξ in (1.1) is the
so-called hedging strategy. Now, for computational purposes we might want
to take a discrete time approximation for X, for example, a binomial approx-
imation Xn which thus converges in law to X, or an Euler approximation
Xn which thus converges strongly to X when this process is the solution of
a stochastic differential equation. If one also has the martingale represen-
tation property for the discrete time models (as is the case for the binomial
approximation), then it is important to know whether the “approximate” hedg-
ing strategies ξn do converge in some sense to ξ. Such questions have been
touched upon in [6] for example.

The above brief description immediately gives rise to two kinds of problems.
The first one comes from the fact that the martingale representation property
quite often does not hold; it holds under reasonably general conditions when
the basic martingale X is continuous, but it is usually lost as soon as X has
jumps, and in particular in the discrete time setting (except for the binomial
model).

The second problem is to find an adequate topology for which the ξn’s might
converge. This is not obvious, because these processes have a priori no reg-
ularity in time (they are predictable, but otherwise neither right continuous
nor left continuous in general).

To begin with, let us consider the first problem described above. Let X be
a locally square-integrable martingale on a filtered space �
	� 	 ��t�t≥0	P�
having � = ∨

t �t and U be a square-integrable random variable. Using the
theory of “stable” subspaces generated by a martingale (see [5], [15] or [9] for
this fact, as well as for all results on martingales and stochastic integrals), we
have the decomposition

U = α+
∫ ∞

0
ξs dXs +N∞	(1.2)

where α = E�U��0� andN is a square-integrable martingale (i.e., a martingale
such that supt �Nt� is square-integrable), orthogonal toX and ξ is a predictable
process and this decomposition is unique up to null sets; it comes in fact from
the (unique) decomposition of the square-integrable martingaleMt = E�U��t�
as a stochastic integral w.r.t X, plus an orthogonal term. Recall also that two
locally square-integrable martingalesM andN are orthogonal if their product
MN is a local martingale, and this is denoted by M ⊥ N.

Observe that α and N are defined uniquely up to a P-null set, while ξ is
defined uniquely up to a null set w.r.t. the following measure:

QX�dω	dt� = P�dω�d
X	X�t�ω�(1.3)
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on 
×�+. Here, 
X	X� denotes the “angle” (or predictable) bracket. We will
denote the process ξ by ξ�X	U�, which is square-integrable w.r.t. QX.

Section 2 of this paper is devoted to finding an “explicit” expression for the
process ξ above: first in the discrete time setting, where it is very simple,
next in some Markovian situations, when U has the form U = f�YT� for a
fixed time T and an underlying Markov process Y and X is a locally square-
integrable martingale on this Markov proces. We thus extend the well-known
Clark–Haussmann formula, usually given for Brownian motion, in two direc-
tions: the Brownian motion is replaced by a rather general Markov process,
and we do not assume the maringale representation property. But we are still
limited to variables U of the form U = f�YT� or more generally of the form
U = f�YT1

	 � � � 	YTk
� for fixed times T1 < · · · < Tk.

Let us come back to the financial interpretation of (1.2): if the martingale
representation property w.r.t. X does not hold, the variable N∞ in (1.2) is in
general not equal to 0. We are in the incomplete model case, and the process ξ
is shown to be a risk minimizing strategy for hedging the claimU; see Föllmer
and Sondermann [7].

Let us now turn to convergence results. To get an idea of what to expect
as far as convergence results are concerned, here is a trivial special case: we
have a sequence Un of random variables tending to a limit U in �2�P�, and
a fixed locally square-integrable martingale X. Writing Mn, αn, ξn and Nn

for the terms associated with Un and X in (1.2), the three variables αn − α,∫∞
0 �ξns −ξs�dXs andNn

∞−N∞ are orthogonal in �2�P� and add up toUn−U, so
they all go to 0 in �2�P�. Since the expected value of �∫∞

0 ηs dXs�2 is QX�η2�,
we deduce in particular that

Un
�2�P�−→U ⇒ ξ�X	Un��

2�QX�−→ ξ�X	U��(1.4)

This leads us to consider first the case where all locally square-integrable
martingales Xn and X are defined on the same space �
	� 	 ��t�t≥0	P� with
� = ∨

t �t. The simplest result one can state in this direction is as follows.

Theorem A. Assume that Xn and X are locally square-integrable martin-
gales on a filtered space, such that 
Xn −X	Xn −X�t → 0 in probability for
all t ∈ �+ and that Un converges to U in �2�P�. Then ξn converges to ξ in
QX-measure.

We also give a series of other results, which are more difficult to state and
which mainly concern discrete time approximations of a given martingale X,
of various kinds: stepwise approximations, or Euler schemes when X is the
solution of a stochastic differential equation. All these results are proved in
Section 3.

Section 4 is devoted to weak convergence results. First, we take advantage
of the explicit results of Section 2 in the Markov case to show that ifXn is the
solution of the equation dXn

T = gn�Xn
t−�dZn

t andX is the solution of a similar
equation with g andZ, whereZn andZ are Lévy processes, and if gn → g and
Zn converges in law to Z, then under some mild additional assumptions the
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processes ξn converge to ξ for a suitable topology, when Un = f�Xn
T� and U =

f�XT� and f is a differentiable function (typically Z is a Brownian motion,
but the Zn’s are not, so we have the martingale representation property w.r.t.
X, but not w.r.t. Xn). We also give a discrete time version of this result.

Finally, we give an analogous convergence result when Un = 
�Xn� and
U = 
�X� for a continuous bounded function 
 on the Skorokhod space, when
X is the solution of an equation as above with Z a Brownian motion, and the
Xn’s are discrete time solutions of difference equations converging to X. As
an example, particularly relevant in financial applications, let us mention the
case where

�Xn
i+1 = �Xn

i + g� �Xn
i �Yn

i+1	

where for each n the �Yn
i �i≥1 are i.i.d. bounded variables, centered with vari-

ance 1/n. Then the processes Xn
t = �Xn

�nt� converge in law to the solution of
dXt = g�Xt�dWt, where W is a Brownian motion, as soon as g is Lipschitz.
In this situation, with Un = 
�Xn� and U = 
�X� with 
 as above, the pro-
cesses ξn [naturally defined as some sort of interpolations of the discrete time
processes ξ� �Xn	Un�] do converge in a suitable sense to ξ, in law.

2. Explicit representations of the integrand. In this section our aim
is to give an “explicit” form for the integrand ξ�X	U� in essentially two specific
cases: one is the discrete-time case, with an extension to the discretization of
a continuous-time process; the other is a Markov situation. It seems hopeless
to obtain such an explicit form in general, but other cases are found in the
literature, essentially on the Wiener space and using Malliavin calculus; see,
for example, [14] and the references therein.

Before starting we wish to make precise the various notions of (locally)
square-integrable martingales used in this paper, since they play a crucial role.
As said in the introduction, a processX given on a stochastic basis, either with
discrete or with continuous time, is called a square-integrable martingale if it
is a martingale and if the supremum of X over all time is square-integrable;
then the limit X∞ exists and is a square-integrable variable. X is called a
locally square-integrable martingale if there is a sequence Rn of stopping
times increasing to +∞, such that the processX stopped at anyRn is a square-
integrable martingale. In between, we say that X is a martingale square-
integrable on compacts if the process X stopped at any finite deterministic
time is a square-integrable martingale; for example, the Wiener process is a
martingale square-integrable on compacts in this sense.

2.1. The discrete-time case. In this subsection, time is discrete: we have
the basis �
	� 	 ��i�i∈�	P� with � = ∨

�i and with a given locally square-
integrable martingale X. We also have a square-integrable variable U. For
any process Y we write  Yi = Yi − Yi−1. In this discrete-time case, (1.2)



MARTINGALE REPRESENTATIONS 1751

becomes

U = α+
∞∑
i=1

ξi Xi +N∞	(2.1)

where the series converges in �2 and ξi is �i−1-measurable andN is a square-
integrable martingale orthogonal to X. Here the orthogonality of X and N
amounts to say that

E� Xi Ni��i−1� = 0 ∀ i ≥ 1�(2.2)

The above conditional expectation is to be understood in the “generalized
sense”: that is, the variable  Xi Ni might be not integrable but it is inte-
grable on each �i−1-measurable set �Rn ≥ i� (where Rn is associated with X
as above), and the left side of (2.2) equals E� Xi Ni1�Rn≥i���i−1� on the set
�Rn ≥ i�, and ⋃

n�Rn ≥ i� = 
. The same comment applies below.

Proposition 2.1. Assume thatX is a locally square-integrable martingale,
and let Mi = E�U��i�. Then a version of ξ = ξ�X	U� is given by

ξi = E� XiU��i−1�
E�� Xi�2��i−1�

= E� Xi Mi��i−1�
E�� Xi�2��i−1�

�(2.3)

Proof. By definition of M and by the property E� Xi��i−1� = 0 (where
again the conditional expectation is in the generalized sense), the last equality
in (2.3) is obvious. Define ξ by (2.3). The measurability condition is obviously
met. Set

 Ni = E�U��i� −E�U��i−1� − ξi Xi =  Mi − ξi Xi

and Ni = ∑i
j=1  Nj. Then N is a square-integrable martingale with (2.2).

That (2.1) holds is then obvious. ✷

2.2. Discretization in time. Here we have a basis �
	� 	 ��t�t≥0	P� such
that � = ∨

t �t. We consider a square-integrable martingale X. We also con-
sider a locally finite subdivision τ of �+, consisting of an increasing sequence
τ = �Ti� i ∈ �� of stopping times such that

T0 = 0	 Ti < ∞ ⇒ Ti < Ti+1	 lim
i
Ti = ∞ a.s.(2.4)

The discretized process is then

�Xi = XTi
i ∈ �	(2.5)

which makes sense even on the set �Ti = ∞�. Then the sequence � �Xi�i∈� is
a square-integrable martingale w.r.t. the discrete-time filtration ��Ti

�i∈�. If
U ∈ �2, we then have the two decompositions (1.2) and (2.2), namely

U =



α+

∫ ∞

0
ξs dXs +N∞	

α+
∞∑
i=1

ξ̄i �Xi + �N∞	
(2.6)



1752 J. JACOD, S. MÉLÉARD AND P. PROTTER

where N is a square-integrable martingale w.r.t. ��t�t≥0 orthogonal to X, and
�N is a square-integrable martingale w.r.t. ��Ti

�i∈� orthogonal to �X and α =
E�U��0�. Then it is natural to call the discretized version of the integrand ξ
the following continuous-time process:

ξ′
t = ξ̄i if Ti−1 < t ≤ Ti	 i ≥ 1�(2.7)

In a sense, this process ξ′ naturally occurs if we replace X by the discretized
version along the subdivision τ.

Our aim here is to compute ξ′ in terms of ξ. This is simple, after recalling
that the process ξ is square-integrable w.r.t. the finite measure QX defined
by (1.3), and after introducing the σ-field � ′ on 
̃ = 
×�+ which is generated
by the sets D× �Ti	Ti+1�, where i ∈ � and D ∈ �Ti

.

Proposition 2.2. Assume that X is a square-integrable martingale. With
the above notation we have ξ′ = QX�ξ�� ′� �the conditional expectation of ξ
w.r.t. � ′ for the finite measure QX�.

Proof. Set A = 
X	X� and Bt = ∫ t
0 ξs dAs. If Mt = E�U��t�, then (1.2)

yields Mt = α + ∫ t
0 ξsdXs +Nt, hence 
X	M� = B + 
X	N� = B because X

andN are orthogonal. So an application of Proposition 2.1 yields the following
explicit form for ξ̄:

ξ̄i = E�BTi
−BTi−1

��Ti−1
�

E�ATi
−ATi−1

��Ti−1
� �(2.8)

For D ∈ �Ti−1
we have

QX�1D×�Ti−1	Ti�ξ� = E�1D�BTi
−BTi−1

�� = E�1DE�BTi
−BTi−1

��Ti−1
���

By (2.8) and (2.7) this is equal to

E�1Dξ̄i�ATi
−ATi−1

�� = QX�1D×�Ti−1	Ti�ξ
′��

Since ξ′ is obviously � ′-measurable, this implies the result. ✷

Remark 2.3. Exactly the same result (with the same proof ) holds if we
assume thatX is a locally square-integrablemartingale, such that each stopped
process �XTi

t = XTi∧t�t≥0 is a square-integrable martingale.

2.3. A Clark–Haussmann formula for Markov processess. In this subsec-
tion we give an alternative form of the Clark–Haussmann formula giving the
integrand ξ�X	U�: see [14] for a general form of this formula.

The setting is as follows: we have a quasi-left continuous �d-valued strong
Markov process Y on �
	� 	 ��t�	Px�, where Px is the probability measure
under which Y0 = x a.s., and we assume also that Y is a semimartingale
under each Px. Let µ be the jump measure of Y and �B	C	 ν� its characteris-
tics: we refer to [9] for the latter notion and we recall only that C and ν are
indeed intrinsic, while B depends on a “truncation function”; the results below
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do not depend on B, hence neither on the truncation function, but in the proofs
we do use the special truncation function x �→ x1��x�≤1�. We also refer to [3]
for the following structural results, showing in particular that in our Markov
setting �B	C	 ν� do not depend on the starting point: there exist a continuous
increasing additive functional A, a Borel �d-valued function b, a Borel non-
negative symmetric �d ⊗ �d-valued function c and a transition measure F
from �d into itself integrating z��z�2∧1 (the “modified Lévy measure”), such
that

Bt =
∫ t

0
b�Ys−�dAs	

C
ij
t =

∫ t

0
c�Ys−�ij dAs	(2.9)

ν�ω	ds	dz� = dAs�ω�F�Ys−�ω�	 dz��
Note that in general A is an arbitrary continuous additive functional, but
in almost all practical situations the choice of At = t is possible. We denote
by �Pt� the transition semigroup of Y.

Now we work under the measure P of the form P = ∫
m�dx�Px (so m

is the law of Y0). Denote by �T the class of all Borel functions f such that
f�YT� ∈ �2�P� and that the function �t	 y��Ptf�y� on �0	∞� × �d is once
differentiable in t and twice differentiable in y, with all partial derivatives
being continuous.

Next, our basic locally square-integrable martingale X is of the form

Xt = X0 +
∫ t

0
γTs dY

c
s +

∫ t

0

∫
�d
γ̄�s	 z��µ− ν��ds	dz�	(2.10)

where Yc denotes the continuous martingale part of Y, and “T ” denotes the
transpose, and γ = �γi�1≤i≤d and γ̄ are predictable functions on 
 × �+ and

× �+ × �d, such that for all t < ∞:

∫ t

0
as dAs < ∞ where as = γTs c�Ys−�γs +

∫
F�Ys−	 dz�γ̄�s	 z�2�(2.11)

Observe that under (2.11),X is well defined and is a locally square-integrable
martingale under each Px and P, with angle bracket 
X	X�t = ∫ t

0 as dAs.

Theorem 2.4. Let f ∈ �T and U = f�YT� for a given T ∈ �+. Then a
version of the process ξ = ξ�X	U� is given for s > T by ξs = 0 and for s ≤ T by

ξs = 1
as

(
γTs c�Ys−�∇�PT−sf��Ys−�

+
∫
F�Ys−	 dz�γ̄�s	 z��PT−sf�Ys− + z� −PT−sf�Ys−��

)
�

(2.12)

We use here the traditional convention 0
0 = 0, since when as = 0 the numer-

ator in the right side of (2.12) is also 0. Observe that the process ξ does not
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depend on the measure m in Pm �= P = ∫
m�dx�Px, as long as f�YT� is in

�2�Pm�.

Proof. Since U is �T-measurable, that ξs = 0 for s > T is trivial. By the
Markov property, Mt = E�U��t� is given for t ≤ T by Mt = g�t	Yt�, where
g�t	 y� = PT−tf�y�. By hypothesis, g is once differentiable in t and twice
differentiable in y with continuous partial derivatives. By Itô’s formula,

Mt = α+
∫ t

0

∂

∂s
g�s	Ys−�ds+ 1

2

∫ t

0

∑
1≤i	 j≤d

∂2

∂yi∂yj
g�s	Ys�c�Ys−�ij dAs

+
∫ t

0

∑
1≤i≤d

∂

∂yi
g�s	Ys−�b�Ys−�i dAs +

∫ t

0

∑
1≤i≤d

∂

∂yi
g�s	Ys−�dYi	 c

s

+
∫ t

0

∫
�d

∑
1≤i≤d

∂

∂yi
g�s	Ys−�zi1��z�≤1��µ− ν��ds	dz�

+
∫ t

0

∫
�d

(
g�s	Ys− + z� − g�s	Ys−�

− ∑
1≤i≤d

∂

∂yi
g�s	Ys−�zi1��z�≤1�

)
µ�ds	dz��

The first three integrals above are predictable process of finite variation. The
last integral may be rewritten as the sum of the stochastic integral w.r.t. the
measure martingale µ−ν, plus the integral w.r.t. ν, which again is a predictable
process of finite variation. SinceM is a martingale, the sum of all predictable
processes of finite variation must equal 0, and after a simple transformation
we get

Mt = α+
∫ t

0

∑
1≤i≤d

∂

∂yi
g�s	Ys−�dYi	 c

s

+
∫ t

0

∫
�d

�g�s	Ys− + z� − g�s	Ys−���µ− ν��ds	dz��

Then (1.2) and (2.10) give for t ≤ T,

Nt =
∫ t

0

∑
1≤i≤d

(
∂

∂yi
g�s	Ys−� − ξsγ

i
s

)
dYi	 c

s

+
∫ t

0

∫
�d

�g�s	Ys− + z� − g�s	Ys−� − ξsγ̄�s	 z���µ− ν��ds	dz��

Then we get


N	X�t =
∫ t

0

( ∑
1≤i	j≤d

(
∂

∂yi
g�s	Ys−� − ξsγ

i
s

)
c�Ys−�ijγjs

+
∫
�d
F�Ys−	 dz��g�s	Ys− + z� − g�s	Ys−� − ξsγ̄�s	 z��γ̄�s	 z�

)
dAs�
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In view of (2.11), this becomes


N	X�t =
∫ t

0

(
−ξsas + ∑

1≤i	j≤d

∂

∂yi
g�s	Ys−�c�Ys−�ijγjs

+
∫
�d
F�Ys−	 dz��g�s	Ys− + z� − g�s	Ys−��γ̄�s	 z�

)
dAs�

Since ξ is characterized by the orthogonality ofN andX, that is, by 
N	X� =
0, a version of ξ is thus given by (2.12), and we have proved the claim. ✷

The class �T of functions for which (2.12) holds is rather restrictive. It
might be of interest to enlarge this class. To this effect, for each x ∈ �d we
introduce the set � ′

T of all functions f for which there is a sequence fn ∈ �T

(called an “approximating sequence”) such that fn�YT� → f�YT� in �2�P�.
The measure QX associated by (1.3) with X (and relative to P) is here

QX�dω	dt� = P�dω�dAt�ω�at�ω�.
Finally, let � ′′

t be the subset of all f ∈ � ′
T such that y�Ptf�y� is differen-

tiable for 0 < t ≤ T, and for which there is an approximating sequence fn in
�T, such that for all t ∈ �0	T� and y ∈ �d we have

Ptfn�y� → Ptf�y�	 ∂

∂yi
Ptfn�y� → ∂

∂yi
Ptf�y�	(2.13)

and that for QX-almost all �ω	 t� with t ≤ T we have

∫
F�Yt−�ω�	dz�γ̄�ω	t	z��PT−tfn�Yt−�ω�+z�−PT−tfn�Yt−�ω���

→
∫
F�Yt−�ω�	dz�γ̄�ω	t	z��PT−tf�Yt−�ω�+z�−PT−tf�Yt−�ω����

(2.14)

Observe that (2.13) implies (2.14) as soon as f, the fn’s and the �∂/∂yi�Pt

fn’s are uniformly bounded for each t, by virtue of (2.11) and of the fact that∫
F�y	dz���z�2 ∧ 1� < ∞.

Corollary 2.5. (a) If f ∈ � ′
T with the approximating sequence fn, then a

version of the process ξ�X	f�YT�� is the limit of ξ�X	fn�YT�� in �2�QX�.
(b) If, further, f ∈ � ′′

T, then a version of the process ξ�X	f�YT�� is given by
�2�12� for s ≤ T and by 0 for s > T.

Proof. The claim (a) readily follows from (1.4). Assume now that f ∈ � ′′
T,

with the approximating sequence fn. Then if ξ′ is given by (2.12), on the one
hand ξ�X	fn�YT��s�ω� → ξ′

s�ω� for QX-almost all �ω	 s�, and on the other
hand (1.4) holds: hence ξ′ = ξ�X	f�YT��QX-a.s., and we have (b). ✷
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2.4. A particular case. Theorem 2.4 and its corollary are not quite satis-
factory, because they give ξ�X	U� for a variable U of the form U = f�YT�,
while one would like to have it for U = f�XT�. It becomes more satisfactory
whenX itself is Markov. We give in some detail a simple case of this situation,
namely when X is the solution of the equation dX = g�X−�dZ, where Z is
a one-dimensional Lévy process and g a smooth enough coefficient.

Since we wish X to be a locally square-integrable martingale, it is natu-
ral to assume first that the Lévy process Z, which is defined on some space
�
	� 	 ��t�t≥0	P�, is a locally square-integrable martingale itself. This in fact
implies that it is then a martingale square-integrable on compacts, and its
characteristic function has the form

E�eiuZt� = exp t
(

−cu
2

2
+

∫
F�dx��eiux − 1 − iux�

)
	(2.15)

where c ≥ 0 and the Lévy measure F integrates x2. We set

c̃ = c+
∫
F�dz�z2	(2.16)

so 
Z	Z�t = c̃t, and of course we assume that c̃ > 0 (otherwise Z = 0 and
what follows is empty). Next we have a continuously differentiable function g
with bounded derivative g′, and for any x we consider the solution Xx of the
following stochastic differential equation:

Xx
t = x+

∫ t

0
g�Xx

s−�dZs�(2.17)

A classical argument [see (A.2) in the Appendix] yields that Xx is a square-
integrable martingale over each finite interval �0	T�. Further, the solution of
the following linear equation:

X′x
t = 1 +

∫ t

0
g′�Xx

s−�X′x
s− dZs	(2.18)

is also a square-integrable margtingale over each finite interval �0	T�. So for
each measurable function f with at most linear growth we can set

Ptf�x� = E�f�Xx
t ��	 Qtf�x� = E�f�Xx

t �X′x
t ��(2.19)

Observe that �Pt� is the semigroup ofXx, which is a Markov process. We then
have the following.

Theorem 2.6. Assume that g has a continuous and bounded derivative.

(a) For any T ∈ �+ and any differentiable function f with bounded deriva-
tive f′ the variable f�Xx

T� is square-integrable, and a version of ξ�Xx	f�Xx
T��

is given by

ξs�Xx	f�Xx
T�� = η�s	Xx

s−�1�0	T��s�	(2.20)
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where

η�s	 y� = QT−sf
′�y�

+1
c̃

∫
F�dz�z2

∫ 1

0
�QT−sf

′�y+ g�y�zu� −QT−sf
′�y��du�

(2.21)

(b) The same holds when f is the difference of two convex functions, with
a right derivative f′

r bounded and f′ above replaced by f′
r, provided we have

Pt�y	 ·� has no atom for all t ∈ �0	T�, y ∈ �.

In the last claim one can of course replace the right derivative f′
r by the

left derivative f′
l. The last condition is obviously satisfied when Pt�x	 ·� has a

density; this is the case when c > 0 as soon as g does not vanish (or does not
vanish in the set in which the process Xx takes its values). When c = 0, one
can find conditions implying the existence of a density in, for example, [2].

Proof.
Step 1. Our assumptions always imply that f and g have at most linear

growth. Then the property f�Xx
T� ∈ �2�P� follows from (A.2) in the Appendix.

Step 2. We first prove the result under the three additional assumptions
that Z has bounded jumps (which is equivalent to saying that F has com-
pact support), that g is infinitely differentiable with bounded derivatives of
all orders and that f is twice continuously differentiable with f, f′ and f′′

bounded.
By virtue of Theorem 2.4 applied to Y = Xx, it suffices to prove that f ∈ �T

and that (2.12) reduces to (2.21) in our situation. The first property is proved in
Lemma A.1 of the Appendix. So it remains to identify (2.12) with (2.21). With
Y = X we have b = 0, c�y� = cg�y�2, At = t and F�y	 ·� is the image of the
measure F under the map z �→ g�y�z, while in (2.10) we must take γs = 1 and
γ̄�s	 z� = z. So if a�y� = cg�y�2 +∫

F�dz�z2g�y�2, (2.11) becomes as = a�Xs−�,
while ∇Ptf = Qtf

′ by (A.3). Then (2.12) yields that we have (2.20) with η′

instead of η, given by

η′�s	y�= g�y�2cQT−sf′�y�+∫
F�dz�zg�y��PT−sf�y+g�y�z�−PT−sf�y��
g�y�2�c+∫

F�dz�z2�

if g�y� != 0, and η′�s	 y� = 0 if g�y� = 0. By Taylor’s formula and again
the property ∇Ptf = Qtf

′ and (2.16), we note that η′�s	 y� equals η�s	 y� as
given by (2.21) when g�y� != 0. Finally the process ξ�Xx	f�Xx

T�� is unique
up to a QXx -null set, and the set ��ω	 t�� g�Xx

t−�ω�� = 0� is QXx -negligible;
hence (2.20) gives a version of ξ�Xx	f�Xx

T��.
Step 3. Second, we prove the result when f and g are once continuously

differentiable with bounded derivatives f′ and g′, and further f is bounded,
and when Z is a locally square-integrable martingale.
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First we replace Z by a sequence of Lévy processes Zn obtained by trun-
cating the jumps of Z of size bigger than n. More precisely, we may write

Zt = Zc
t +

∫ t

0

∫
�
z�µ− ν��ds	dz�	

where Zc is the continuous martingale part of Z (of the form cW, where W
is a Wiener process), µ is the jump measure of Z and ν�ds	dz� = ds⊗F�dz�.
Then we set

Zn
t = Zc

t +
∫ t

0

∫
�
z1��z�≤n��µ− ν��ds	dz��

We have 
Z	Z�t = c̃t where c̃ = c + ∫
F�dz�z2, and 
Zn	Zn�t = c̃nt where

c̃n = c+ ∫
F�dz�z21��z�≤n�, and obviously,


Z−Zn	Z−Zn�t → 0�(2.22)

Next, let φ be an infinitely differentiable function with compact support and
integral equal to 1. Then we replace g by gn�x� = ∫

nφ�ny�g�x− y�dy and f
by fn�x� = ∫

nφ�ny�f�x − y�dy. Thus gn and fn are infinitely differentiable
with bounded derivatives of all orders, and there exists K such that for all n,

�gn�0�� ≤ K	 �g′
n�x�� ≤ K	 �fn�x�� ≤ K	 �f′

n�x�� ≤ K(2.23)

and moreover

gn → g	 g′
n → g′	 fn → f	 f′

n → f′ locally uniformly�(2.24)

Now, denote by Xn	x and X′n	x the solutions of (2.17) and (2.18), with Z
and g substituted with Zn and gn, and by Qn

t the kernel associated by (2.19).
Since Zn, gn and fn satisfy the conditions of step (2), ξn = ξ

(
Xn	x	 fn�Xn	x

T �)
is given by (2.20), with ηn given by

ηn�s	 y� = Qn
T−sf

′
n�y�

+ 1
c̃n

∫
F�dz�z21��z�≤n�

∫ 1

0
�Qn

T−sf
′
n�y+ gn�y�zu� −Qn

T−sf
′
n�y��du�

By virtue of (2.22) and (2.24), stability results for stochastic differential
equations (see [10]) imply that �Xn	yn	X′n	yn� converges locally uniformly
(in time) in probability to �Xy	X′y� for any sequence yn → y, and further
fn�Xn	yn

t � → f�Xy
t � and f′

n�Xn	yn
t � → f′�Xy

t ) in probability by (2.24), hence
also in �p�P� for all p by (2.23). Thus, applying c̃n ≤ c̃, (A.2) of the Appendix
and (2.19), we see that

Qn
t f

′
n�yn� → Qtf

′�y�	 �Qn
t f

′
n�y�� ≤ Kt(2.25)

for a constant Kt independent of n and x. If, further, we use the facts that
c̃n → c̃ and that

∫
F�dz�z2 < ∞, (2.24) and (2.25) allow us to deduce that if η

is defined by (2.21),

yn → y ⇒ ηn�s	 yn� → η�s	 y��(2.26)
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Finally, we have

X
n	x
t −Xx

t =
∫ t

0
gn

(
Xn	x

s−
)
d�Zn −Z�s +

∫ t

0

(
gn

(
Xn	x

s−
) − g

(
Xx

s−
))
dZs	

hence


Xn	x −Xx	Xn	x −Xx�t ≤ 2�c̃− c̃n�
∫ t

0
gn

(
Xn	x

s

)2
ds

+ 2c̃
∫ t

0

(
gn

(
Xn	x

s

) − g
(
Xx

s

))2
ds�

Using c̃n → c̃, (2.23), (2.24) and the fact that Xn	x
s → Xx

s uniformly in s ∈
�0	 t� in probability, we readily deduce that 
Xn	x −Xx	Xn	x −Xx�t → 0 in
probability.

Since fn�Xn	x
T � → f�Xx

T� in �2�P�, we are in a position to apply a result
proved in the next section (not based upon the present theorem, of course),
namely Theorem 3.3; this theorem asserts that ξn converges to ξ�Xx	f�Xx

T��
in QX-measure. Then, since ξns = ηn�s	Xn	x

s− �1�0	T��s� and since Xn	x con-
verges locally uniformly in time, in probability, to Xx, we deduce (2.20)
from (2.26).

Step 4. For (a) it remains to consider the case where f has a continuous
bounded derivative but is not bounded itself. We can find a sequence �fn�
of bounded continuously differentiable functions such that �f′

n�x�� ≤ K for
some constant K and fn�x� = f�x� for all �x� ≤ n and �fn� ≤ �f�. Then
ξn = ξ�Xx	fn�Xx

T�� is given by (2.20) with ηn given by (2.21), where f is
substituted with fn. That fn�Xx

T� → f�Xx
T� in �2�P� and that (2.25) holds

with Qt instead of Qn
t are obvious by the previous estimates on fn and f′

n

and (A.2) of the Appendix. If follows as above that ηn → η pointwise, where
η is given by (2.21). Then by (1.4) we have (2.20).

Step 5. It remains to prove (b). We set fn�x� = ∫
nφ�ny�f�x − y�dy as in

step (3). Then fn → f locally uniformly, while f′
n → f′

r everywhere except on
an at most countable set D, and we still have �f′

n�x�� ≤ K and �fn�0�� ≤ K for
some constant K. Therefore, exactly as in step 3, we have fn�Xy

t � → f�Xy
t �

and f′
n�Xyn

t � → f′
r�Xy

t � (as yn → y) in �2�P�, at least when restricted to
the set 
y	 t = �ω� Xy

t �ω� !∈ D�. Now, if Pt�y	 ·� has no atom, the set 
y	 t is
P-negligible; then we have (2.25) with Qt instead of Qn

t , and the rest of the
proof follows as in step 4. ✷

Remark 2.7. When c = 0 and F is a finite measure, the process Z is
a compensated compound Poisson process, and the situation is much simpler.
One can show with the same methods used in Steps 3 or 4 above that the result
hold without any differentiability condition. We need f to be continuous, and
both f and g with linear growth, and (2.21) takes the following simple form
(with 0

0 = 0):

η�s	 y� =
∫
F�dz�z�PT−sf�y+ g�y�z� −PT−sf�y��

g�y� ∫ F�dz�z2 �(2.27)
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Of course in this simple situation we could also write an “elementary” proof
which looks like the proof of Proposition 2.1. This is no surprise, since the
compound Poisson case has a “discrete” structure.

Remark 2.8. We have considered above the “homogeneous” situation,
where the coefficient g does not depend on time. Similar formulas would obvi-
ously hold when the coefficient depends on time, and also when the process Z
is a nonhomogeneous process with independent increments.

Remark 2.9. Let f be a function on �k (say, with linear growth) and
0 < T1 < · · · < Tk be deterministic times, and ξ = ξ�Xx	U� where U = f
�Xx

T1
	 � � � 	Xx

Tk
�. Then the martingale Mt = E�U��t� when Ti−1 ≤ t ≤ Ti is

Mt = ∫
PTi−t�Xx

t 	 dy�fXx
T1
	���	Xx

Ti−1
�y�, where

fx1	���	xi−1
�y� =

∫
PTi+1−Ti

�y	dxi+1� · · ·PTk−Tk−1
�xk−1	 dxk�

× f�x1	 � � � 	 xi−1	 y	 xi+1	 � � � 	 xk��
By iteration of the previous result we then get that

ξs =
k∑
i=1

ηi"Xx
T1
	���	Xx

Ti−1
�s	Xx

s−�1�Ti−1	Ti��s�	

where
ηi"x1	���	xi−1

�s	 y� = QTi−sf
′
x1	���	xi−1

�y�

+ 1
c̃

∫
F�dz�z2

∫ 1

0
�QTi−s f

′
x1	���	xi−1

�y+ g�y�zu�

−QTi−s f
′
x1	���	xi−1

�y��du�
Of course we need smoothness conditions of f to do that; that f is continuously
differentiable with all partial derivatives bounded is enough, in which case we
need to reproduce the proof of the previous theorem.

We do not have an explicit form for ξ�X	U� when U is a function of the
whole path of Xx over �0	T�. However, the variables of the form above are
dense into the set of square-integrable variables, measurable w.r.t. the σ-field
σ�Xx

s � s ≤ T�. This is to be compared to the Clark–Haussmann formula in
the Wiener case (see, e.g., [14]). In this case one has an “explicit” form for
ξ�Xx	U� for variables U that are smooth in the Malliavin sense [and thus
include the variables f�Xx

T1
	 � � �� for smooth f’s]. But this approach is limited

to theWiener space, and the explicit form involves the not-so-explicit Malliavin
derivatives and predictable projections of such derivatives.

3. Strong convergence results.

3.1. Discretization of a process. Here we consider the situation of
Section 2.2, and we look at what happens when we have a sequence of sub-
divisions whose meshes go to 0. More precisely, we have a square-integrable
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martingale X on a basis �
	� 	 ��t�t≥0	P� with � = ∨
t �t, and for each n a

subdivision τn = �T�n	 i�� i ∈ �� satisfying (2.4). The sequence �τn� satisfies
sup
i≥1

�T�n	 i� ∧ t−T�n	 i− 1� ∧ t� → 0 a.s. as n → ∞�(3.1)

Then set �Xn
i = XT�n	 i�. For each n the sequence � �Xn

i �i∈� is a square-integrable
martingale w.r.t. ��T�n	 i��i∈�. Finally, let U ∈ �2�P� be fixed. We have the first
decomposition (2.6), and the second one for each n with the process ξ̄n, and we
associate with ξ̄n and τn the process ξ′n by (2.7). Then we have the following.

Theorem 3.1. Under �3�1�	 and ifX is a square-integrable martingale and
U ∈ �2�P�	 the functions ξ′n tend to ξ in �2�QX�.

Proof. For each n we endow the space 
̃ with the σ-field � ′
n generated

by the sets D × �T�n	 i − 1�	T�n	 i�� �= ��ω	 t�� ω ∈ D	T�n	 i − 1��ω� < t ≤
T�n	 i��ω��, where i ≥ 1 and D ∈ �T�n	 i−1�. By virtue of Proposition 2.2, we
have ξ′n = QX�ξ�� ′

n�. Recall that here QX is a finite measure.
The sequence �ξ′n� is bounded in �2�QX�, and thus is in a compact set for

the weak topology in �2�QX�. So there exists a subsequence, again denoted by
ξ′n for simplicity, which converges weakly to a variable ξ′ in �2�QX�.

Let us first show that ξ′ = ξQX-a.s. Take η = 1D×�s	 t�, where D is �s-
measurable. Then QX�ξ′nη� → QX�ξ′η�. Consider the two stopping times
Sn = inf�T�n	 i�� i ∈ �	T�n	 i� ≥ s� and Tn = inf�T�n	 i�� i ∈ �	T�n	 i� ≥ t�.
Then

QX�ξ′nη� = QX�ξ′n1D×�Sn	Tn�� +QX�ξ′n1D×�s	Sn�� −QX�ξ′n1D×�t	Tn��	
QX�ξη� = QX�ξ1D×�Sn	Tn�� +QX�ξ1D×�s	Sn�� −QX�ξ1D×�t	Tn���

(3.2)

If A�n	 s	 ε� = �Sn > s+ ε� we have

QX�D× �s	Sn�� ≤ QX�A�n	 s	 ε� × �+� +QX�
× �s	 s+ ε���
Since QX�· × �+� is absolutely continuous w.r.t. P and since (3.1) implies
P�A�n	 s	 ε�� → 0 as n → ∞, we also haveQX�A�n	 s	 ε�×�+� → 0 as n → ∞
for all ε > 0. On the other hand, QX�
× �s	 s+ ε�� → 0 as ε → 0 because QX

is a finite measure, so we deduce that QX�D× �s	Sn�� → 0. The variables ξ′n

beingQX-uniformly integrable, we deduce thatQX�ξ′n1D×�s	Sn�� → 0, and sim-
ilarly QX�ξ′n1D×�t	Tn�� → 0, and QX�ξ1D×�s	Sn�� → 0 and QX�ξ1D×�t	Tn�� → 0.
Since further D×�Sn	Tn� ∈ � ′

n, we get QX�ξ′n1D×�Sn	Tn�� = QX�ξ1D×�Sn	Tn��.
It then follows from (3.2) and from the fact that QX�ξ′nη� → QX�ξ′η�, that
QX�ξ′η� = QX�ξη�. Then by a monotone class argument, this relation holds
for all bounded predictable η, which yields ξ = ξ′ QX-a.s. (Recall that ξ and
all ξ′n, hence ξ′ as well, are predictable.)

In particular, QX��ξ′n�2� = QX�ξ′nξ� tends to QX�ξ2�. Now, if a sequence
ξ′n in �2�QX� converges weakly to ξ and the norms of ξ′n converge to the norm
of ξ, we have indeed strong convergence. Thus the �2�Qx�-convergence of the
original sequence ξ′n to ξ follows. ✷
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Remark 3.2. When the subdivisions �τn� are finer and finer, the σ-fields
� ′
n are increasing, hence ξ′n = QX�ξ�� ′

n� implies that the sequence ξ′n is a
square-integrable martingale and the convergence to ξ readily follows from
the fact that � ′

n “increases” to � up to QX-null sets [by (3.1)]. Indeed, ∪n�
′
n

clearly generates the σ-field � in restriction to 
 × �0	∞�; the restriction of
∪n�

′
n to 
× �0� is trivial by construction, which is not the case for � (except

if �0 is the trivial σ-field), but QX�
× �0�� = 0.

3.2. A general continuous time convergence theorem. We have again a
stochastic basis �
	� 	 ��t�t≥0	P� with � = ∨

�t, supporting locally square-
integrable martingales X and Xn and square-integrable variables Un and U.
We have the following (unique) decompositions, as in (1.2):

U = α+
∫ ∞

0
ξs dXs +N∞	

Un = αn +
∫ ∞

0
ξns dX

n
s +Nn

∞	
(3.3)

where α = E�U��0� and αn = E�Un��0� and N (resp. Nn) is a square-
integrable martingale orthogonal to X (resp. to Xn).

Below, we consider again the measure QX associated with X by (1.3). It is
not necessarily finite, so we recall that ξn →QX ξ means that ξn → ξ in R-
measure for one (hence for all) finite measure R equivalent to QX. Our main
result is the following.

Theorem 3.3. Assume that Un → U in �2�P� and that X and Xn are
locally square-integrable martingales satisfying


Xn −X	Xn −X�t → 0 in probability for all t > 0�(3.4)

Then ξn → ξ in QX measure. �We denote ξn
QX→ξ�.

Proof. Step 1. To begin, we introduce the following orthogonal decom-
positions for the locally square-integrable martingales Xn and the square-
integrable martingales Nn [recall (3.3)]; below the processes Ln are locally
square-integrable martingales and Tn are square-integrable martingales
(recall also that the orthogonality between local martingales is denoted
by ⊥):

Xn
t = Xn

0 +
∫ t

0
γns dXs +Ln

t 	 Ln ⊥ X	(3.5)

Nn
t =

∫ t

0
λns dXs +Tn

t 	 Tn ⊥ X�(3.6)

In what follows we prove a bit more than is strictly necessary for the present
theorem, but the following facts will also be used in the subsequent results.
The orthogonality of Xn and Nn yields∫ t

0
γns λ

n
s d
X	X�s + 
Ln	Tn�t = 0 ∀ t a�s�(3.7)
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We also have


Xn −X	Xn −X�t =
∫ t

0
�γns − 1�2d
X	X�s + 
Ln	Ln�t	(3.8)

QX��ξnγn + λn − ξ�2� ≤ E��Un −U�2� → 0	(3.9)

E�
Tn	Tn�∞� ≤ E�
Nn	Nn�∞�	

E
(∫ ∞

0
�ξns �2 d
Ln	Ln�s

)
≤ E

((∫ ∞

0
ξns dX

n
s

)2) ≤ E��Un�2� ≤ K(3.10)

for some constant K, and where we have used that Un → U in �2�P� for the
last two properties.

Step 2. After these preliminaries, we can go the proof of our claim. First,
we can write the (pathwise) Lebesgue decomposition of the process 
Ln	Tn�,
which is of locally bounded variation, w.r.t. the increasing process 
X	X� as

Ln	Tn�t = ∫ t

0 ρ
n
s d
X	X�s + An

t , where An is a function of locally bounded
variation which is singular w.r.t to 
X	X�. Then (3.7) yields

γnλn + ρn = 0	 QX -a.s.(3.11)

But it is well known by the Kunita–Watanabe inequality that the variation
of the process 
Ln	Tn� over �0	 t� is smaller than or equal to

√
Ln	Ln�t×√
Tn	Tn�t, while by the above Lebesgue decomposition it is bigger than∫ t
0 �ρns �d
X	X�s. Then we readily deduce from (3.4), (3.8) and (3.10) that∫ t
0 �ρns �d
X	X�s

P→0 for all t, so in view of (3.11) we get

γnλn
QX→ 0�(3.12)

Next, (3.4) and (3.8) on the one hand, (3.9) on the other hand, give us

ξnγn + λn
QX→ ξ	 γn

QX→ 1�(3.13)

Now, combining (3.12) and (3.13) readily gives us ξn
QX→ ξ. ✷

Associated with this theorem, we have a result about the rate of
convergence.

Theorem 3.4. Assume that Un → U in �2�P� and that X and Xn are
locally square-integrable martingales satisfying �3�4�. Assume further that
there is a sequence �an� in �+ going to +∞ such that the sequence
�an�Un − U�:n ≥ 1� is bounded in �2�P� and that for each t the sequence of
variables �a2n
Xn −X	Xn −X�t:n ∈ �� is uniformly tight. Then the sequence
�an�ξn − ξ�:n ∈ �� is uniformly tight with respect to any finite measure equiv-
alent to QX.
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This result holds for any sequence �an	Xn	Un� satisfying the stated assu-
mptions. In practice Un and U are often the values of the same smooth func-
tion evaluated atXn andX, respectively, and the sequence �an�Un−U�:n ≥ 1�
is bounded in �2�P� as soon as the sequence �a2n
Xn −X	Xn −X�t:n ∈ �� is
tight. For instance, if X is the solution of a continuous stochastic differential
equation driven by a Wiener process and Xn is its Euler approximation with
stepsize 1/n, then an = √

n; see Corollary 3.7 below.

Proof. Step 1. We choose a finite measureR equivalent toQX. Let us first
recall that if �un� is a sequence of processes such that for all t the sequence
of random variables �∫ t0 �uns �d
X	X�s:n ≥ 1� is tight, then the sequence �un�
is R-tight.

Applying this to (3.8) and (3.9) multiplied by a2n gives that

the two sequences an�γn − 1�	 an�ξnγn + λn − ξ� are R-tight�(3.14)

We also deduce from (3.8) that for each t the sequence �
Ln	Ln�t:n ≥ 1� is
tight. Exactly as in the last step of the previous proof, we deduce that the
sequences �∫ t0 an�ρns �d
X	X�s:n ≥ 1� are tight, hence the sequence �anρn� is
R-tight. In view of (3.11) we deduce that

the sequence anγ
nλn is R-tight�(3.15)

Now we can write

an�ξn − ξ� = anξ
n�1 − γn��1 + γn� + anγ

n�γnξn + λn − ξ�
− anγ

nλn + anξ�γn − 1��
We also know that the sequences �γn� and �ξn� are R-tight [by (3.13) and the
previous theorem]. Then the result readily follows from (3.14) and (3.15). ✷

3.3. A discrete version of Section �3�2�. Now we consider for each n a sub-
division τn = �T�n	 i�� i ∈ �� of stopping times on the basis �
	� 	 ��t�	P�
with � = ∨

�t, satisfying (2.4), and we suppose that the sequence �τn� sat-
isfies (3.1). For each n we have a square-integrable martingale Xn and a
square-integrable variable Un. Analogous to (2.5), we set �Xn

i = Xn
T�n	 i�. As

in (2.6) we have (3.3), as well as the decomposition

Un = αn +
∞∑
i=1

ξ̄ni  
�Xn
i + �Nn

∞�(3.16)

Then, as in (2.7) we set

ξ′n
t = ξ̄ni if T�n	 i− 1� < t ≤ T�n	 i��(3.17)

Theorem 3.5. Assume that Un → U in �2�P�, that Xn and X are square-
integrable martingales and that

E�
Xn −X	Xn −X�∞� → 0�(3.18)

Then the sequence ξ′n converges to ξ = ξ�X	U� in QX-measure.
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Proof. In view of Proposition 2.2 we have ξ′n = QXn�ξn�� ′
n�, where � ′

n

is the σ-field on 
̃ defined in the proof of Theorem 3.1. Let also � be the
predictable σ-field on 
̃. We consider the decomposition (3.5) for Xn.

We can find a probability measure R on �
̃	� � which dominates all the
finite measures QX and QLn , and such that QX ≤ aR for some constant a.
We can thus find nonnegative R-integrable and predictable functions V, Vn

such that V ≤ a and

QX = V •R	 QLn = Vn •R
(this means, e.g., that QX is the measure having the Radon–Nikodym deriva-
tive V w.r.t. R). Then we have QXn = Wn •R, with Wn = �γn�2V+Vn.

Now, (3.18) and (3.8), then (3.9), then (3.10), yield

γn
�2�QX�−→ 1	 QLn

�1� → 0	(3.19)

ξnγn + λn
�2�QX�−→ ξ	(3.20)

QTn�1� ≤ K	 QLn
��ξn�2� ≤ K�(3.21)

Furthermore, we get QX��ρn�� ≤ √
QLn�1�√QTn�1�, exactly as in the proof of

Theorem 3.3, and in view of (3.19), (3.21) and (3.11), we obtain

γnλn
�1�QX�−→ 0�(3.22)

Then (3.19) and (3.20) yield that �γn�2ξn + γnλn → ξ in �1�QX�, hence
also �γn�2ξn → ξ in �1�QX� by (3.22). Since V is bounded, we readily deduce
that �γn�2Vξn → Vξ and �γn�2V → V in �1�R� [use (3.19) again for the
later]. Furthermore Vn → 0 in �1�R� by (3.19), while we have R�Vn�ξn�� ≤√
R�Vn�√R�Vn�ξn�2�, which goes to 0 by (3.19) and (3.21): then Vnξn → 0 in

�1�R�. Putting all these results together yields

Wn
�1�R�−→ V	 Wnξn

�1�R�−→ Vξ�

It readily follows that

R�Wn�� ′
n� −R�V�� ′

n�
�1�R�−→ 0	 R�ξnWn�� ′

n� −R�Vξ�� ′
n�

�1�R�−→ 0�(3.23)

On the other hand, Bayes’ rule yields

ξ′n = QXn�ξn�� ′
n� = R�ξnWn�� ′

n�
R�Wn�� ′

n�
�(3.24)

Now let us apply the proof of Theorem 3.1 to R instead of QX: first with V
instead of ξ, which, since V is bounded, yields R�V�� ′

n� → V in �2�R�. Next
with ξV instead of ξ, which, since V ≤ a and thus R��ξV�2� ≤ aR��ξ�2V� =
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aQX��ξ�2� < ∞, yields R�ξV�� ′
n� → ξV in �2�R�. Combining this with (3.23)

yields

R�Wn�� ′
n� → V	

R�ξnWn�� ′
n� → ξV in �1�R�	 hence also in QX-measure�

Since, further, we have V > 0 QX-a.s., it follows from (3.24) that ξ′n → ξ in
QX-measure, and we are done. ✷

In the previous theorem, we would like to replace (3.18) by (3.4), with X
and Xn being only locally square-integrable martingales. But we have been
unable to prove such a result under “reasonable” conditions.

3.4. Application to the Euler scheme. We apply the previous results to the
Euler approximation scheme for a stochastic differential equation. The setting,
somewhat similar to that of Section 2.4, is as follows: we have a locally square-
integrable martingale Z on a space �
	� 	 ��t�t≥0	P� with � = ∨

�t and
a locally Lipschitz continuous function with linear growth g, and X is the
(unique) solution of the following stochastic equation (where X0 is a given
�0-measurable square-integrable variable):

Xt = X0 +
∫ t

0
g�Xs−�dZs�(3.25)

In comparison with Section 2.4, we relax the assumptions on g and Z
and allow an arbitrary initial condition X0. We also consider subdivisions
τn = �T�n	 i�� i ∈ �� of stopping times satisfying (2.4), such that (3.1) holds.
With φn0 = 0 and φnt = T�n	 i − 1� for T�n	 i − 1� < t ≤ T�n	 i�, we have the
“continuous” Euler approximation at stage n, which is the solution of

Xn
t = X0 +

∫ t

0
g�Xn

φns
�dZs�(3.26)

Let U and Un be square-integrable variables such that Un → U in �2:
typically U = f�Xt� and Un = f�Xn

t � for some t, where f is a bounded
continuous function. In this case, since by a well-known results (see, e.g., [11])
Xn goes in probability to X, locally uniformly in time, we do indeed have
Un → U in �2.

Note that X and Xn are locally square-integrable martingales. Recall also
(1.3). Then as a corollary of Theorem 3.3 we get the following theorem.

Theorem 3.6. Let Un → U in �2�P�, and let ξ = ξ�X	U� and ξn =
ξ�Xn	Un�. Then ξn QX→ ξ.
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Proof. It is enough to prove that (3.4) holds. Note that


Xn −X	Xn −X�t =
∫ t

0
�g�Xn

φns
� − g�Xs−��2d
Z	Z�s

≤ 2
∫ t

0
�g�Xn

φns
� − g�Xφns

��2d
Z	Z�s

+ 2
∫ t

0
�g�Xφns

� − g�Xs−��2d
Z	Z�s�

We have already mentioned that Xn goes to X uniformly in time, in
P-measure. Thus the sequence sups≤t��Xs� + �Xn

s �� is bounded in probabil-
ity and, since g is continuous and locally bounded, it follows that the first
term in the right side of the above inequality goes to 0 in probability for each
t. On the other hand φns → s and φns < s for all s > 0: thus for all ω and
all s > 0 we have Xφns

�ω� → Xs−�ω�. Thus, by the continuity of g again, the
second term in the right side of the above inequality goes to 0 for all ω: hence
(3.4) is proved. ✷

Corollary 3.7. IfZ above is a Brownian motion and if T�n	 i� = i/n, then
as soon as the sequence �√n�Un−U�� n ≥ 1� is bounded in �2�P�, the sequence
�√n�ξn−ξ�� n ≥ 1� is uniformly tight with respect to any finite measure equiv-
alent to QX. In particular, this is the case when Un = h�Xn

t1
	 � � � 	Xn

tk
� and

U = h�Xt1
	 � � � 	Xtk

� for a bounded Lipschitz function h on �k and 0 ≤ t1 <
· · · < tk.

Proof. It is proved in [11] that the sequence of processes Vn = √
n�Xn −

X� converges in law to a continuous limit as soon as g is continuously differ-
entiable, and it is tight as soon as g is locally Lipschitz with linear growth,
which is our present setting. Furthermore, it also holds that for any t > 0 the
sequence �sups≤t �Vn

s �� is bounded in �2�P�.
Now the tightness of the sequence �Vn� implies the tightness of the sequence

of quadratic variation processes �
Vn	Vn�� (since each Vn is a continuous
martingale: apply Corollary 6.7 of [9] for convergent subsequences). Then the
first claim follows from Theorem 3.4 with an = √

n.
If Un = h�Xn

t1
	 � � � 	Xn

tk
� and U = h�Xt1

	 � � � 	Xtk
� for a bounded Lipschitz

function h, we have
√
n�Un −U� ≤ C supt≤tk �Vn

t � for a constant C. Hence our
second claim. ✷

Let us now pass to the “discrete” Euler approximation,

�Xn
i = Xn

T�n	 i��(3.27)

Here we have some problems of integrability, because in order to apply the pre-
vious results we need each �Xn to be a discrete-time locally square-integrable
martingale. On the other hand we do not wish to assume that X, Xn and Z
are square-integrable up to infinity.
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In order to resolve this problem, we suppose that Z is a martingale square-
integrable on compacts, and also that there is a constant K such that for
all i	 n,

T�n	 i� −T�n	 i− 1� ≤ K�(3.28)

Then the process Z stopped at any time T�n	 i� [which is bounded by (3.28)]
is a square-integrable martingale, and �Zn

i = ZT�n	 i� is a martingale square-
integrable on compacts w.r.t. ��T�n	 i��i≥0. Due to the linear growth of g, and
similarly to (A.2) of the Appendix, one checks easily that �Xn

i = Xn
T�n	 i� is also

a martingale square-integrable on compacts w.r.t. the filtration ��T�n	 i��i≥0.
As soon as Un is square-integrable, analogous to (3.16), we may thus write

Un =




αn +
∞∑
i=1

ξ̄ni  
�Xn
i + �Nn

∞	

αn +
∞∑
i=1

χ̄ni  
�Zn
i + �N′n

∞	
(3.29)

where �Nn (resp., �N′n) is a square-integrable martingale w.r.t. ��T�n	 i��i≥0, null
at 0 and orthogonal to the discrete time locally square-integrable martingale
� �Xn

i �i≥0 (resp., ��Zn
i �i≥0�, and ξ̄ni and χ̄ni are �T�n	 i−1�-measurable. Further, we

set
ξ′n
t = ξ̄ni 	

χ′n
t = χ̄ni 	

if T�n	 i− 1� < t ≤ T�n	 i��(3.30)

Recall that ξ = ξ�X	U�, and set χ = ξ�Z	U�. Then we have the following
theorem.

Theorem 3.8. Assume �3�28� and that Z is a martingale square-integrable
on compacts. If the variables Un and U are �T-measurable for some T ∈ �+
and satisfy Un → U in �2�P�, we have ξ′n →QX ξ and χ′n →QZ χ.

Proof. Step 1. Take T′ = T + K, where K occurs in �3�28�. Then the
processes χn are the same if we replace Z by the stopped process ZT′

in
(3.29), and also χ = ξ�ZT′

	U�. So we can assume that Z = ZT is square-
integrable. Applying Theorem 3.5 with Xn = X = Z then yields that χ′n → χ
in QZ-measure.

Step 2. In (3.29) we may write, in view of (3.26) and (3.27),

Un = αn +
∞∑
i=1

ξ̄ni g� �Xn
i−1� �Zn

i + �Nn
∞	

Un = αn +
∞∑
i=1

χ̄ni 1�g� �Xn
i−1�!=0� �Zn

i +
∞∑
i=1

χ̄ni 1�g� �Xn
i−1�=0� �Zn

i + �N′n
∞�

The last three terms above are orthogonal martingales, and thus identification
with the previous expression we get that a.s.,

ξ̄ni g� �Xn
i−1� = χ̄ni 1�g� �Xn

i−1�!=0��(3.31)
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This yields

ξ′n
s g�Xn

φns
� = χ′n

s 1�g�Xn
φns

�!=0�	 QZ-a.s.(3.32)

A similar argument shows that

ξsg�Xs−� = χs1�g�Xs−�!=0�	 QZ-a.s.(3.33)

As seen in the proof of Theorem 3.6, g�Xn
φns

� → g�Xs−� in probability for
all s. Then one deduces from the fact that χ′n → χ in QZ-measure and from
(3.32) and (3.33) that ξ′n → ξ in QZ-measure on the set ��ω	 t�� �g�Xt−�ω��� ≥
ε�, for every ε > 0. Hence the same convergence holds also on the set A =
��ω	 t�� g�Xt−�ω�� != 0�, and since QX is absolutely continuous w.r.t. QZ and
does not charge the complement of A, we deduce that ξ′n → ξ in
QX-measure. ✷

Remark 3.9. The same proof as above would also work for Theorem 3.6;
we have χn = ξ�Z	Un� → χ = ξ�Z	U� by (1.4), while the relation (3.32) holds
between χn and ξn.

4. Weak convergence results. In this section we consider the weak con-
vergence of integrands: we have a sequence Xn of locally square-integrable
martingales, each defined on its own probability space �
n	� n	 �� n

t �	Pn�,
and for each n a square-integrable variable Un on the relevant space. The
aim is to prove that if �Xn	Un� converges in law to �X	U�, with X a locally
square-integrable martingale and U a square-integrable variable on the space
�
	� 	 ��t�	P�, then �Xn	 ξ�Xn	Un�� converges in law to �X	ξ�X	U�� in
some sense.

It seems impossible to solve such a general problem, so we will concentrate
on some particular cases.

4.1. Application of the Clark–Haussmann formula. Here we consider a
sequence of processes of the form studied in subsection 2.4. More precisely,
we have Z, g and Xx as in this subsection, given on �
	� 	 ��t�	P�. For each
n, we also have a Lévy process Zn which is a martingale square-integrable
on compacts on a space �
n	� n	 �� n

t �	Pn�, satisfying (2.15) with cn and Fn,
and as before, we assume that the numbers

c̃ = c+
∫
F�dz�z2	 c̃n = cn +

∫
Fn�dz�z2

are finite and strictly positive.
Then we have differentiable functions gn, and we consider (2.17) and (2.18)

w.r.t.Zn and gn, and whose solutions are denoted byXn	x andX′n	x. We make
the following assumptions. First on gn and g:

�gn�0�� ≤ K	 �g′
n�x�� ≤ K	 �g′

n�x� − g′
n�y�� ≤ K�x− y�	(4.1)

gn → g	 g′
n → g′ pointwise�(4.2)
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Next on Zn and Z: we basically assume that Zn converges in law to Z, plus a
slightly stronger assumption which is reminiscent of the Lindeberg condition;
more precisely we assume that

c̃n → c̃	
∫
Fn�dz�h�z� →

∫
F�dz�h�z�(4.3)

for h continuous, bounded and vanishing in a neighborhood of 0,

A�x� = sup
n

∫
Fn�dz�z21��z�≥x� → 0 as x → ∞�(4.4)

These two conditions imply that the second convergence in (4.3) also holds
when h is continuous, and h�x� = O�x2� at infinity, and h�x� = o�x2� at 0.
They imply the convergence in law of Zn to Z (see, e.g., [9]).

Then we can state the following.

Theorem 4.1. Assume �4�1�, �4�2�, �4�3� and �4�4�. Let f be a differentiable
function with a bounded and Lipschitz derivative and T > 0. The processes
ξ = ξ�Xx	f�Xx

T�� and ξn = ξ�Xn	x	 f�Xn	x
T �� have versions which are left

continuous with right limits, and if we set ξ�+�s = limt↓s	 t>s ξt and ξ�+�ns =
limt↓s	 t>s ξ

n
t , the processes �Xn	x	 ξn�+�� converge in law of the Skorokhod

topology on �2 to �Xx	 ξ�+��.

Proof. Step 1. A version of ξ is given by (2.20), with η given by (2.21). We
wish to prove here that this version is left continuous with right limits. We
can rewrite η as

k�s	 y	 z� =
∫ 1

0
�QT−sf

′�y+ uzg�y�� −QT−sf
′�y��du	

η�s	 y� = QT−sf
′�y� + 1

c̃

∫
F�dz�z2k�s	 y	 z��

(4.5)

In view of (A.9) of the Appendix and of the properties of f, we have for 0 ≤
s ≤ t ≤ T,

�k�s	 y	 z�� ≤ C	

�k�s	 y	 z� − k�t	 y	 z�� ≤ C�1 + �y��1 + �z���√t− s
(4.6)

for a constant C. Now, (4.3) and (4.4) yield that
∫
F�dz�z21��z�≥x� ≤ A�x�, so

the above estimates and (A.9) again yield that for all N > 1
∨
T−1/4 and for

two other constants C′, C′′,

�η�s	 y� − η�t	 y�� ≤ C′�1 +N�y��√t− s+CA�N�
≤ C′′�1 + �y���t− s�1/4 +A��t− s�−1/4�

(4.7)

[take N = �t − s�−1/4 to get the last estimate]. On the other hand, as in the
proof of Theorem 2.6 we have (2.25) with Qt instead of Qn

t ; hence it is clear
from (4.5) and (4.7) and another application of (5.9) that �s	 y� �−→ η�s	 y�
is continuous: hence (2.20) readily yields that ξ is left continuous with right
limits.
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Step 2. Similarly, for each n we associate with Zn	Fn	 c̃n	 gn the functions
kn and ηn given by (4.5). Exactly as before, we obtain that ξn, as given by (2.20)
with ηn and Xn	x instead of η and Xx, is left continuous with right limits.
Moreover, in view of the Appendix and of (4.1), (4.3) and (4.4), it is clear
that the estimates (4.6) and (4.7) hold for all kn and ηn with constants C	C′

independent of n.
Step 3. Now we apply again the stability results of [10]: by (4.1), (4.2) and

(4.3), for any sequence yn → y, the processes �Xn	yn	X′n	yn� converge in law
to �Xy	X′y�, and further the estimate (A.2) of the Appendix yields that each
sequence �X′n	yn

t �n≥1 is uniformly integrable. Hence if Qn
t is associated with

�Xn	x	X′n	x� by (2.19) we readily deduce that (2.25) holds.
We will deduce that if yn → y and sn → s we have

ηn�sn	 yn� → η�s	 y��(4.8)

Indeed, by (2.25) and (A.9) of the Appendix, we have Qn
T−snf

′�yn� → QT−s
f′�y�" hence also kn�sn	 yn	 zn� → k�s	 y	 z� as soon as zn → z because of
(4.2). Hence for (4.8) it remains to prove that if hn�z� = kn�sn	 yn	 z� and
h�z� = k�s	 y	 z�,

1
c̃n

∫
Fn�dz�z2hn�z� → 1

c̃

∫
F�dz�z2h�z�	(4.9)

knowing that hn�zn� → h�z� if zn → z and h is continuous and �hn� ≤ C for a
constant C. Now, consider the probability measures Gn�dz� = 1

c̃n
�Fn�dz�z2 +

cnε0�dz�� and G�dz� = 1
c̃
F�dz�z2 + cε0�dz�. Since hn�0� = h�0� = 0, (4.9)

reads as Gn�hn� → G�h�. Furthermore (4.3) and (4.4) imply that Gn converges
weakly to G.

By the Skorokhod representation theorem we can find random variables
Vn	V on a suitable probability space, such that Vn and V have laws Gn

and G, and that Vn → V everywhere. Then Gn�hn� = E�hn�Vn�� and G�h� =
E�h�V��, and the fact that hn�zn� → h�z� if zn → z yields that hn�Vn� → h�V�
everywhere. Since further �hn� ≤ C, it follows that Gn�hn� → G�h�: hence (4.9)
and (4.8) are proved.

Step 4. Observe that ξ�+�ns = ηn�s	Xn	x
s �1�0	T��s� and ξ�+�s = η�s	Xx

s �
1�0	T��s�. Further, (4.8) implies that ηn → η locally uniformly. Since Xn	x

converges in law to Xx and since Xx has no fixed time of discontinuity, an
application of the continuous mapping theorem yields that �Xn	xξ�+�n� con-
verges in law for the Skorokhod topology to �Xx	 ξ�+��. ✷

Remark 4.2. Suppose now that f is a continuously differentiable function
on �k with all partial derivatives bounded and Lipschitz, and let
0 < T1 < · · · < Tk. Set ξ = ξ�Xx	f�Xx

T1
	 � � � 	Xx

Tk
�� and ξn = ξ�Xn	x,

f�Xn	x
T1
	 � � � 	X

n	x
Tk

��, as in Remark 2.9. Then the statement of Theorem 4.1
holds, with exactly the same proof.
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4.2. A discrete time version. Here we consider a “discrete time” version of
the previous results. The setting is as follows and will also be the same in the
next subsection.

For each n we have a sequence �Yn
i �i≥1 of i.i.d. variables on a given space

�
n	� n	Pn�, with

En�Yn
i � = 0	 En��Yn

i �2� = 1
n
	 En��Yn

i �4� ≤ εn
n
	(4.10)

where εn → 0� These conditions imply that the partial sums processes

Zn
t =

�nt�∑
i=1

Yn
i(4.11)

converge weakly to a standard Wiener process Z = W, defined on a (possibly
different) filtered space �
	� 	 ��t�t≥0	P�. We also have a function g on �
which is differentiable with a bounded Lipschitz derivative, and we consider
the difference equation

�Xn	x
0 = x	 �Xn	x

i = �Xn	x
i−1 + g� �Xn	x

i−1�Yn
i 	(4.12)

whose solution is a square-integrable martingale w.r.t. the discrete-time fil-
tration � n

i = σ�Yn
j � j ≤ i�. We also consider the associated continuous-time

martingale w.r.t. the filtration �� n
�nt��t≥0,
X

n	x
t = �Xn	x

�nt��(4.13)

This processXn	x can be viewed as the solution of the stochastic differential
equation

X
n	x
t = x+

∫ t

0
g�Xn	x

s− �dZn
s(4.14)

and by stability theorems (see [10]) it converges weakly to the unique strong
solution of the following equation:

Xx
t = x+

∫ t

0
g�Xx

s �dZs�(4.15)

We even have that the pair �Zn	Xn	x� weakly converges to �Z	Xx�. Further
Xn	x and �Xn	x are also related by (2.5) with Ti = i/n, and Xn	x is a locally
square-integrable martingale.

Now we let T > 0 and f be a differential function with a bounded and
Lipschitz derivative. ThenUn = f�Xn	x

T � is square-integrable. We can consider
the decomposition (3.16), which gives ξ̄ni , and we associate ξ′n as in (3.17) with
T�n	 i� = i/n. On the other hand U = f�Xx

T� is also square-integrable, and
we set ξ = ξ�Xx	U�.

Here again, by construction ξ′n is left continuous with right limits, and
we set ξ�+�′n

s = limt↓s	 t>s ξ′n
s . On the other hand, the version of ξ given by

Theorem 2.6 is not only left continuous, but even continuous except at time T:
this is because the function η of (2.21) is continuous, and the process Xx also
is continuous: then the process ξs = η�s	Xx

s �1�0	T��s� is another version of ξ,
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which is right continuous with left limits (and also continuous except at T)
and differs from the first version at time T only.

Theorem 4.3. Assume �4�10�, �4�11�, �4�12�, �4�14� and �4�15� with g dif-
ferentiable with a bounded and Lipschitz derivative. Let f be a differentiable
function with a bounded and Lipschitz derivative and let T > 0. Then the
processes �Xn	x	 ξ�+�′n� converge in law for the Skorokhod topology on �2 to
�Xx	 ξ�.

Proof. The explicit form of ξ is given by (2.20), with η taking the simple
form η�s	 y� = QT−sf′�y�. Now, if Pn

t f�x� = E�f�Xn	x
t ��, we readily deduce

from Proposition 2.1 and from (4.10) and (4.12) and (4.13) that a version of ξ̄ni
is given by

ξni =



n

g�Xn	x
i−1�

∫
µni �dy�yPn

T−i/nf� �Xn	x
i−1+g� �Xn	x

i−1�y�	 if
i

n
<T	g� �Xn	x

i−1� !=0,

0	 otherwise,

where µni denotes the law of Yn
i . In view of the properties of g, we readily

deduce by induction on i that x �→ �Xn	x
i is differentiable (for all ω), hence

x �→ �Xn	x
t is also differentiable and its derivative satisfies

X
′n	x
t = 1 +

∫ t

0
g′�Xn	x

s− �X′n	x
s− dZn

s 	

and we set Qn
t f�x� = E�f�Xn	x

t �X′n	x
t �. Then by virtue of (4.10) and of the

properties of g again, one easily checks that Qn
t f

′�y� is bounded in �n	y� and
continuous in y, and that �∂/∂y�Pn

t f�y� = Qn
t f

′�y�" since further the Yn
i ’s are

centered, we get

∫
µni �dy�yPn

T−�i/n�f
( �Xn	x

i−1 + g
( �Xn	x

i−1

)
y
) = g

( �Xn	x
i−1

)
n

Qn
T−�i/n�f

′( �Xn	x
i−1

) + εni 	

where supi �εni � →p 0. Therefore if φn�s� = i/n when i/n < s ≤ �i + 1�/n, we
deduce that a version of ξ�+�′n is given by

ξ�+�′n
s = Qn

T−φn�s�f
′(Xn	x

φn�s�
)
1�0	 φn�T���s� + ξ′′n

s 	

where sups �ξ′′n
s � →p 0. By the same argument as in Theorem 4.1 one has

Qn
sn
f′�yn� → Qsf

′�y� when sn → s and yn → y. Since Xn	x converges in law
to Xx, the result then follows as in Theorem 4.1 again. ✷

Remark 4.4. Exactly as in Remark 4.2, the same result holds when instead
of f�Xx

T� and f�Xn	x
T � we consider the variables f�Xx

T1
	 � � � 	Xx

Tk
� and

f�Xn	x
T1
	 � � � 	X

n	x
Tk

�, where f is a continuously differentiable function on �k

with all partial derivatives bounded and Lipschitz, and 0 < T1 < · · · < Tk.
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4.3. Another discrete time version. Here we consider exactly the same set-
ting as in the previous subsection: we have (4.10), (4.11), (4.12), (4.13), (4.14)
and (4.15).

The only two differences are that we only assume g to be locally Lipschitz
with at most linear growth, and that we will prove a convergence theorem for
more general variables than f�Xx

T�, but in a much weaker sense.
More precisely, we consider a function 
 on the Skorohod space � of all right

continuous with left limits functions on �+, which is bounded, continuous for
the local uniform topology, and measurable w.r.t. the σ-field �T generated by
the coordinates on � up to some time T > 0 (recall that if 
 is continuous
for the Skorokhod topology; it is a fortiori continuous for the local uniform
topology). Then we take U = 
�Xx� and Un = 
�Xn	x�.

For each n we can write the decomposition (3.29) for Un, and define the
continuous time processes ξ′n and χ′n by

ξ′n
t = ξ̄ni 	

χ′n
t = χ̄ni 	

if
i− 1
n

< t ≤ i

n
�(4.16)

Set also ξ = ξ�Xx	U� and χ = ξ�Z	U�.
To finish with our preliminaries, we need to introduce the topology w.r.t.

which our processes will converge. We write � for the space of all Borel func-
tions on �+	 and F for the set of all bijective increasing maps from �+ into
itself (= the set of continuous time changes). We define the probability mea-
sure ρ on �+ by ρ�dt� = e−tdt, and denote by  a distance metrizing the
convergence in ρ-measure. Then for x	y ∈ � and with Id denoting the identity
map on �+	 we set

d0�x	y� = inf
λ∈F

� �λ	 Id� +  �x ◦ λ	y��	

d�x	y� = d0�x	y� + d0�y	x��
(4.17)

This defines clearly a distance on �, and a sequence xn converges to x for this
topology iff there is a sequence λn of time changes converging locally uniformly
to Id and such that  �xn ◦λn	 y� → 0. This type of convergence is a weakening
of convergence in Legesgue measure, studied by many authors in the context
of processes (see, e.g., [8], [4] or [12]).

Finally, we endow the product �×�×� with the product of the local uniform
topology on � and the topology induced on � by the distance d in (4.17). Then
we have the theorem:

Theorem 4.5. Assume (4.10), (4.11), (4.12), (4.14) and �4�15� with g locally
Lipschitz with at most linear growth. The processes �Xn	x	Zn	χ′n� converge
in law to �Xx	Z	χ� in the product space � × � × � with the above topology.

If, further, the functions s �→ g�Xx
s � does not vanish, the processes

�Xn	x	Zn	 ξ′n� converge in law to �Xx	Z	 ξ� in the same space.
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Proof. Step 1. The idea of the proof is to embed in the Skorohod sense
the random walk in the Wiener process.

Our basic space here will be �
	� 	 ��t�t≥0	P� on which the Wiener process
Z is defined, as well as the solutionXx of (4.15). By Skorohod embedding (see,
e.g., Skorokhod [16] or Azéma and Yor [1]), for each n we can find an increasing
sequence �T�n	 i��i≥0 of stopping times with T�n	0� = 0 and such that if
S�n	 i� = T�n	 i� − T�n	 i − 1�, the variables �S�n	 i�	ZT�n	 i� − ZT�n	 i−1��i≥1
are independent and ZT�n	 i� −ZT�n	 i−1� has the same law as Yn

i , and further
[cf. (4.10)],

E�S�n	 i�� = 1
n
	 E�S�n	 i�2� ≤ 4εn

n
�(4.18)

In other words, since we are interested in convergence in law only and since
thus the concrete realization of the variables Yn

i does not matter, we can
and will assume that Yn

i = ZT�n	 i� −ZT�n	 i−1�. Then the process Zn of (4.11)
becomes Zn

t = ZT�n	 �nt��. The solutions of (4.12), (4.13) and (4.15) are all
defined on the space �
	� 	 ��t�t≥0	P�, w.r.t. the sameZ, as well asU = 
�Xx�
and Un = 
�Xn	x�, and thus also ξ̄ni 	 χ̄

n
i 	 ξ

′n	 χ′n	 ξ and χ.
Step 2. Set Fnt = T�n	 �nt�� and φnt = T�n	 i−1� if T�n	 i−1� < t ≤ T�n	 i�.

Note that in (4.16) the time discretization is along the sequences i/n, while
with the above representation of the Yn

i ’s it is rather related to the sequences
T�n	 i�. This leads us to consider the equation

V
n	x
t = x+

∫ t

0
g�Vn	x

φns
�dZs	(4.19)

which is the Euler approximation of (4.15) along the T�n	 i�′s. Note that
V
n	x
T�n	 i� = �Xn	x

i [see (4.12)], hence

X
n	x
t = V

n	x
Fnt
�(4.20)

Similarly, we will replace χ′n by

ψ′n
t = χ̄ni if T�n	 i− 1� < t ≤ T�n	 i�	(4.21)

so if F′n is such that F′n
i/n = T�n	 i� and is linear on each interval ��i −

1�/n	 i/n�, we have

χ′n
t = ψ′n

F′n
t
�(4.22)

In the sequel we can assume without loss of generality that T is an integer.
If t ≤ T we have Fnt ≤ T�n	nT�, so (4.20) implies that Un = 
�Xn	x� is
�T�n	nT�-measurable. It follows from (3.29) that χ̄ni = 0 for i > nT, and ψ′n

t = 0
for t ≥ T�n	nT�. Similarly, U is �T-measurable and we have χt = 0 for t > T.
Therefore, for defining the process ψ′n we can use the stopped process Hn

t =
Zt∧T�n	nT�, and for the process χ we can use the stopped process Ht = Zt∧T.
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Therefore, ψ′n and χ are associated with Hn and H exactly as ξ′n and ξ
are associated with Xn and X in Theorem 3.5. So we will deduce from this
theorem that

ψ′n → χ in QH-measure	(4.23)

provided we prove that

E��Un −U�2� → 0	 E�
Hn −H	Hn −H�∞� → 0�(4.24)

Step 3. Recalling (4.18) and the independence of the S�n	 i�′s for i ≥ 1, we
have that the mean of T�n	 �nt�� is �nt�/n, and its variance is smaller than
4tεn: therefore we have T�n	 �nt�� → t in �2�P�. Therefore

Fnt → t	 F′n
t → t locally uniformly in t in�2�P��(4.25)

As already mentioned, Vn	x converges locally uniformly in probability to
Xx, and the limit Xx is continuous, so (4.20) and (4.25) imply that Xn	x

also converges locally uniformly in probability to Xx. Since 
 is bounded and
continuous for the local uniform topology we have the first half of (4.24). As for
the second half, since 
Z	Z�t = t, it amounts to E��T−T�n	 �nt���� → 0: this
is again a consequence of (4.25), hence (4.24) and (4.23) hold. Furthermore,
since χt = 0 for t > T and ψ′n

t = 0 for t > T�n	nT�, and since QZ�dω	dt� =
P�dω� ⊗ dt, we readily deduce from (4.23) and (4.25) that we even have

ψ′n → χ in QZ-measure�(4.26)

Now Zn → Z locally uniformly for all ω, and Xn	x → Xx locally uniformly
in probability as seen above. Finally, (4.25) and (4.22) implies that d�χ′n	 χ� →
0 in probability, where d is defined in (4.17). That is, �Zn	Xn	x	 χ′n� converges
in probability to �Z	Xx	χ� in �×�× � for the desired topology, and the first
claim is proved.

Step 4. For the second claim, we observe that, exactly as in the proof of
Theorem 3.8, the relations (3.31) and (3.33) hold, and thus also

ξ′n
s g�Xn	x

s− � = χ′n
s 1�g�Xn	x

s− �!=0�	 QZ-a.s.(4.27)

We have also seen that Xn	x → Xx locally uniformly in probability. So the
second claim readily follows from the first one and from (3.33) and (4.27). ✷

Remark 4.6. The second claim is not very satisfactory, since it assumes
that g�Xx� does not vanish. If S = inf �t� g�Xx

t � = 0� is not everywhere
infinite, than Xx is constant after S, and in the above proof we have the
convergence of ξ′n to ξ on the set �0	 S�, but not necessarily on �S	∞�: when we
go back on the original sequence Yn

i and the original processes Xn	x, defined
on possibly different spaces, one can no longer compare ξ′n and ξ “pathwise,”
and the convergence in law “in restriction to �0	 S�” makes no sense.

This is in contrast with Theorem 4.3, in which we obtained the convergence
in law without restriction. Another difference with this theorem is that here
the convergence of χ′n and ξ′n is in a much weaker sense, because the limiting
processes χ and ξ are no longer left continuous with right limits.
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Remark 4.7. When the variables Yn
i are 	 �0	1/√n�, the embedding in

the previous proof is trivially realized with T�n	 i� = i/n. Then there is no
time change involved; the convergence in law takes place in � × � × �, with
� endowed with the topology of convergence in Lebesgue measure [i.e., with
respect to the distance  in (4.17)]. It does not seem to be true in general.

Remark 4.8. The fact that our convergence holds w.r.t. the metric dmakes
it probably difficult to use in practice. However the reader should observe
that at best d can be replaced by  (as in the previous remark), which still
makes it difficult to apply. This is best because if we take for example the
“strong” setting of Theorem 3.3 with Xn = X is a Wiener process, then as
soon as αn → α with the sequence �Un�2 being uniformly integrable, then the
condition  �ξn	 ξ� →P 0 is necessary and sufficient for UN →�2 U.

Remark 4.9. The conditions (4.10) are far too strong for our result. In fact,
Theorem 4.5 remains valid if the Yn

i ’s have

En�Yn
i �� n

i−1� = 0	 En��Yn
i �2�� n

i−1� = δni 	 En��Yn
i �4�� n

i−1� ≤ εn
n
	(4.28)

where � n
i = σ�Yn

j � j ≤ i� and εn → 0 (the εn are constants) and the variables

δni satisfy
∑�nt�

i=1 δ
n
i → t in law for each t. The proof is almost the same: observ-

ing that δni is a function hni �Yn
1 	 � � � 	Y

n
i−1�, the only difference is that the first

equality in (4.18) is replaced by E�S�n	 i���T�n	 i−1�� = hni �S�n	1�	 � � � 	 S�n	 i−
1�� (using also the fact that embedding a random variable depending measur-
ably on a parameter gives rise to a stopping time depending also measurably
on this parameter, as is the case in the construction of Azema and Yor [1]).

Remark 4.10. One could perhaps also consider the case of i.i.d. variables
Yn
i (or more generally triangular arrays of martingale increments, as in

Remark 4.9). such that the processes Zn of (4.11) converge in law to a Lévy
process Z: this would probably require the embedding technique of Monroe
[13], but we have not tried to do this.

APPENDIX

Some complements on stochastic differential equations. Here we
gather some results about (2.17). First, assume that Z is a Lévy process and
a locally square-integrable martingale, so that 
Z	Z�t = c̃t for some c̃ > 0.
We are also given a differentiable function g, such that

�g�0�� ≤ K	 �g′�x�� ≤ K�(A.1)

In this case both (2.17) and the linear equation (2.18) have unique (strong)
solutions. We have the following estimates, which rely upon Gronwall’s lemma
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and the property 
Z	Z�t = c̃t:

E

(
sup
s≤t

�Xx
s �2

)
≤ �2x2 + 1� exp�4K2c̃t�	

E

(
sup
s≤t

�X′x
s �2

)
≤ 2 exp�2K2c̃t��

(A.2)

Second, we prove the following lemma, which is less well known than the
previous results.

Lemma A.1. Assume that the Lévy process Z above has bounded jumps, and
that the coefficient g is infinitely differentiable with bounded derivatives of all
order, and define Pt and Qt by �2�19�. Then for every twice continuously dif-
ferentiable function f which is bounded as well as its two first derivatives, the
function �t	 x� �−→ Ptf�x� is twice differentiable in x and once differentiable
in t, and all the partial derivatives are continuous in �t	 x� and

∂

∂x
Ptf�x� = Qtf

′�x��(A.3)

Proof. Step 1. In addition to (2.17) and (2.18), consider also the linear
equation

X′′x
t =

∫ t

0

(
g′′�Xx

s−��X′x
s−�2 + g′�X′x

s−�X′′x
s−
)
dZs�(A.4)

Then we have the following properties, to be proved below:

the maps x �→ Xx
t 	X

′x
t 	X

′′x
t are differentiable in �2�P�	(A.5)

the derivatives of x �→ Xx
t 	X

′x
t are X′x

t and X′′x
t 	 respectively	(A.6)

the variables ��Xx
t �2	 �X′x

t �2	 �X′′x
t �2�t∈�0	T� are uniformly integrable�(A.7)

We readily deduce from these properties that (5.3) holds and, moreover,

∂2

∂x2
Ptf�x� = E�f′′�Xx

t ��X′x
t �2 + f′�Xx

t �X′′x
t �(A.8)

holds. Further, the processesXx	X′x andX′′x are continuous in time, in prob-
ability. Hence (A.6) and (A.7), together with (2.19) and (A.8), readily imply that
Ptf�x� and its two first derivatives in x are continuous in �t	 x�.

Moreover, it is well known that f belongs to the domain of the infinitesimal
generator 
 of �Pt�, and


 f�x� = c

2
g�x�2f′′�x� +

∫
F�dz��f�x+ g�x�z� − f�x� − f′�x�g�x�z��

Hence �∂/∂t�Ptf�x� = PtAf�x� exists and is continuous in �t	 x�, because 
 f
is bounded and continuous.
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Step 2. It remains to prove that (A.5), (A.6) and (A.7) hold. For this, we will
apply some results of Chapter 5 to [2]. The continuous martingale part of Z is
Zc = cW for some c ≥ 0 and a Wiener processW; let µ be the jump measure of
Z, whose compensator is v�dt	dx� = dt⊗F�dx�, whereF is the Lévy measure
of Z, which by hypothesis has compact support. The function η�x� = x is thus
in �p�F� for all p ≥ 2. Then we set for λ ∈ � and y = �y1	 y2	 y3� ∈ �3,

H
λ	1
t �ω� = x+ λ	 H

λ	2
t �ω� = 1	 Hλ	3 = 0	

Aλ = 0	

Bλ	1�y	ω	 t� = g�y1�	 Bλ	2�y	ω	 t� = g′�y1�y2	

Bλ	3�y	ω	 t� = g′′�y1��y2�2 + g′�y1�y3	

Cλ�y	ω	 t	 z� = Bλ�y	ω	 t�z�
Then the set of the three equations (2.17), (2.18) and (A.4) for x+λ instead of x
reduces to Equation (5-22) of [2], with Yλ = �Xx+λX′x+λ	X′′x+λ�. The assump-
tions of Theorem 5-24 of [2] are then obviously satisfied, and this theorem
states that Yλ

t is differentiable in all �p�P� in λ, at λ = 0	 and that the
derivative is obtained by formal differentiation of the equation giving Yλ, and
that all powers of the derivatives �Y′0

t �p are uniformly integrable when t runs
through any finite interval; these properties imply (A.5), (A.6) and (A.7). ✷

Step 3. Now we give an estimate as in (A.2) for the kernel Qt.

Lemma A.2. Assume (A.1). If f is a bounded Lipschitz function, for all
s ≤ t we have with C = sup��f�x��	 �f�x� − f�y��/�x− y�� x	y ∈ �	 x != y�,

�Qtf�x�� ≤ 2CeK
2 c̃t	

�Qtf�x� − �Qsf�x�� ≤ 8KC
√
1 + x2 e3K

2 c̃t
√
t− s�

(A.9)

Proof. The first estimate in (A.9) follows from (A.2). For s < t we have

Xx
t −Xx

s =
∫ t

s
g�Xx

r−�dZr	

X′x
t −X′x

s =
∫ t

s
g′�Xx

r−�X′x
r− dZr�

Hence by (A.1) and (A.2) we readily get

E��Xx
t −Xx

s �2� ≤ 4K2�1 + x2�e4K2 c̃t�t− s�	
E��X′x

t −X′x
s �2� ≤ 2K2e2K

2 c̃t�t− s��
Now we write

Qtf�x� −Qsf�x� = E�f�Xx
t ��X′x

t −X′x
s �� +E��f�Xx

t � − f�Xx
s ��X′x

s �	
and the second estimate in (A.9) follows from what precedes and from (A.2)
again. ✷
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[1] Azéma, J. and Yor, M. (1979). Une solution simple au probléme de Skorokhod. Sémiṅaire
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