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UNIQUENESS FOR A CLASS OF ONE-DIMENSIONAL
STOCHASTIC PDES USING MOMENT DUALITY

By Siva Athreya1 and Roger Tribe

University of British Columbia and University of Warwick

We establish a duality relation for the moments of bounded solutions
to a class of one-dimensional parabolic stochastic partial differential equa-
tions. The equations are driven by multiplicative space-time white noise,
with a non-Lipschitz multiplicative functional. The dual process is a system
of branching Brownian particles. The same method can be applied to show
uniqueness in law for a class of non-Lipschitz finite dimensional stochastic
differential equations.

1. Introduction and statement of results. We consider solutions to the
one-dimensional stochastic partial differential equation (SPDE)

∂tu = 1
2�u+ b�u� +

√
σ�u�Ẇt�x� u0 = φ�(1.1)

where Ẇt�x is space-time white noise. We study bounded solutions ut�x� that
are continuous in t and x. When b and σ are analytic functions and the coef-
ficients of their power series satisfy certain technical conditions, we establish
a duality relation (Section 1.5) for the moments E�ut�x1� · · ·ut�xN��. This du-
ality relation implies uniqueness in law for the solutions.

1.1. Motivation. Our interest in such equations is motivated by two key
examples:

Example 1 [b�u� = bu� σ�u� = σuγ]. When b = 0 and γ = 1, a solution
of this SPDE is given by the density of one-dimensional super-Brownian mo-
tion [12, 6]. The solution can be obtained as a high density limit of a branching
Brownian particle system [3]. The particles in the approximating system in-
dependently die at a constant rate and are replaced by a random number of
offspring with mean one and variance σ . The noise arises from fluctuations in
particle density due to the branching. When b �= 0, a similar particle system
approximation holds with the offspring mean suitably approaching one in the
limit. One expects, for various σ�u� and b�u�, a similar particle approximation
holds for the solutions with the offspring mean and variance depending on lo-
cal particle density. This has been shown in the case b = 0 and for γ ∈ �1�2�
[7]. An exponential duality method can be used to show uniqueness in law for
the above examples [9].
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Example 2 [b�u� = 0� σ�u� = u�1 − u�]. This is the stepping stone model
of populations genetics [13]. A formula for the moments E�ut�x1� · · ·ut�xN��
exists in terms of a dual system of coalescing Brownian motions. Since the
solutions take values in the interval 
0�1�, these moments characterize the
law.

Perkins [11] studies classes of interactive branching processes in �d and
their high density limits. One expects, when d = 1, these processes to solve
stochastic PDEs. The interactions have smoothness conditions that do not
cover the zero-range interactions represented by equation (1.1).

An account of existence and properties of solutions to (1.1) can be found
in [16, 10, 14]. Uniqueness for solution to (1.1) is important for justifying the
equation as a viable model and is a useful step in showing the approximating
particle system converges. When

√
σ�u� is Lipschitz, pathwise uniqueness

holds [16]. The above key examples motivate the importance of establishing
uniqueness for the non-Lipschitz case. There is no known proof of pathwise
uniqueness for this case. Uniqueness in law has been shown only in special
cases (the above examples) using the method of duality. However, the proofs
break down if small changes are made to the functions b�u� and σ�u�.

1.2. Objective. The aim of this paper is to show that the duality method for
finding moment formulae can be extended to a class of analytic b and σ that
is closed under small analytic perturbations. We suppose that the functions b
and σ have power series representations

b�u� =
∞∑
k=0
bku

k� σ�u� =
∞∑
k=0
σku

k�

The dual process will be a system of branching Brownian particles where
the branching probabilities are given in terms of the coefficients of the power
series for b and σ . These processes are rather complicated making the mo-
ment formulae hard to use directly, although for the stepping stone model
they were exploited successfully by Mueller and Tribe [8] to investigate ran-
dom interface solutions. Our main interest is that, in many cases, the mo-
ments E�ut�x1� � � � ut�xN�� determine the law of ut (as a random element of
the space of continuous functions). It is then possible to recast the SPDE as
a martingale problem and apply the well known result ([4], Theorem 4.4.2)
that uniqueness of the one dimensional distributions implies the uniqueness
for the martingale problem, which in turn can be shown to imply uniqueness
in law for solutions. To check whether the moments do characterize the one-
dimensional distributions we may try to check the Carleman condition. The
following lemma shows that moments do suffice if the coefficients b and σ do
not grow too rapidly.

Lemma 1. Suppose �ut� is a solution to (1.1) with bounded initial condi-
tion. Suppose 
b�u�
 ≤ C�1+
u
s�� for some s < 1 and 
σ�u�
 ≤ C�1+
u
r��
1. If r < 1, then the distribution of ut is uniquely determined by its moments.
2. If ut is bounded below (or above) and r < 3/2, then the distribution of ut is
uniquely determined by its moments.
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The proof of this lemma is based on estimates using the best constant in the
Burkholder-Davis-Gundy inequality followed by a standard Gronwall argu-
ment as in Lemma 3.3 [16]. We do not include the proof as the main result of
this paper only applies to bounded solutions to (1.1).

1.3. Dual particle system. Our dual process will be a finite system of one-
dimensional Brownian particles with an interactive branching mechanism.
For a detailed construction (which is not central to this paper) of the dual
process we refer the reader to [1]. The particles are labeled by an index set
I. The position of a particle with label γ ∈ I at time t is denoted Xγ

t . It is
the set of labels of particles that are alive at time t. At time zero there are N
particles positioned at x1� � � � � xN� During their lifetime the particles perform
independent Brownian motions. There are two independent types of births:

1. Single-particle births. Each particle independently dies at rate µdt and,
on dying, is replaced by a random number Z1 of offspring. The generating
function for the offspring law is E�sZ1� = ∑

k≥0 qksk.

2. Two-particle births. Two particlesXβ
t andX

γ
t simultaneously die (indepen-

dent of other pairs) at the rate νdLβ�γt , where Lβ�γt denotes the local time of
the process Xβ

t −Xγ
t at zero. At the moment of death the pair of particles

is replaced by a random number Z2 of offspring. The generating function
for the offspring law is E�sZ2� = ∑

k≥0pksk.
The offspring start at their place of birth and independently follow the above

rules. The number of offspring is independent for each birth and independent
of all other variables. For convenience we shall take a left continuous version
of the process, in that at a death time τ the offspring emerge only for t > τ.
Finally we set

Lt = 1
2

∫ t
0

∑
β∈Is

∑
γ∈Is\�β�

dLβ�γs �

the total local time accrued by all pairs of particles before time t.
The quadratic nature of the local time branching leaves the possibility that

the dual system might obtain infinitely many particles in finite time. We im-
pose a suitable non-explosion hypothesis [(H1) in Theorem 1] to prevent this.

1.4. A formal duality relation. The duality technique is described in
Ethier and Kurtz [4], Section 4.9. We present the basic details of the required
form keeping our SPDE in mind. Consider a functionH�u�X�, where u is the
solution to (1.1) andX = x = �x1� � � � � xn� is the dual particle system. Suppose
the following duality identity holds,

LuH�u�x� = LXH�u�x� + α�x�H�u�x� for all u�x�

where Lu (the generator of u) acts on the u variable and LX (the generator of
X) acts on the x variable. Then, under suitable integrability and regularity
assumptions, one is able to show that

E�H�ut�X0�� = E�H�u0�Xt� exp
(∫ t

0
α�Xs�ds�

)
for all t ≥ 0.
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The function H�u�x� is called the duality function. The duality function we
use is based on the moment duality function �f� �x1� � � � � xn�� → ∏n

k=1 f�xk��
For simplicity we consider the case b�u� = 0, in which case the dual process

has no single particle births. Fix x1� � � � � xm. Writing
mg= for equality up to a

martingale increment, we may formally apply Itô’s formula to obtain

d
∏
i

ut�xi� mg=
∑
i

( ∏
j�j �=i

ut�xj�
)

1
2�ut�xi�dt

+ 1
2

∑
i�j�j �=i

( ∏
l�l�=i�j

ut�xl�
)
δ�xi=xj�

∞∑
k=0
σku

k
t �xi�dt�

(1.2)

We have written a delta function for the correlation of the space-time white
noise. Also solutions are too rough for the derivative �us to exist. We treat
both these problems rigorously in the next section.

To match this generator (1.2) with that of the dual we shall include a cru-
cial factor that counts the number of births having offspring numbers taking
values in a set S ⊆ �0�1�2� � � �� that will be chosen soon. Let Kt be the total
number of two particle births by time t that involved offspring whose cardi-
nality Z2 lies in S. Then we have, for a fixed function h�x�,

d�−1�Kt
∏
β∈It

h�Xβ
t �

mg= �−1�Kt
∑
β∈It

( ∏
γ∈It\�β�

h�Xγ
t �

)
1
2
�h�Xβ

t �dt

+ ν
2

�−1�Kt
∑

β�γ∈It�β �=γ

( ∏
α∈It\�β�γ�

h�Xα
t �

)

×
∞∑
k=0
pk

(
�−1�I�k∈S�hk�Xβ

t � − h�Xβ
t �h�Xγ

t �
)
dL

β�γ
t

= �−1�Kt
∑
β∈It

( ∏
γ∈It\�β�

h�Xγ
t �

)
1
2
�h�Xβ

t �dt

+ ν
2

�−1�Kt
∑

β�γ∈It�β �=γ

( ∏
α∈It\�β�γ�

h�Xα
t �

)

×
∞∑
k=0
pk�−1�I�k∈S�hk�Xβ

t �dLβ�γt

−ν�−1�Kt

( ∏
α∈It

h�Xα
t �

)
dLt�

(1.3)

We follow the convention that
∏
γ∈It φ�Xγ

t � = 1 whenever It = �� We can

formally write the term dL
β�γ
t as 2δXβ

t =Xγ
t
dt. Then the expressions (1.2) and
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(1.3) will satisfy the duality identity provided we set
ν = ∑

k


σk
/2� pk = 
σk
/2ν� S = �k � σk < 0�

and α�Xt�dt = �−1�KtνdLt. This suggests a duality relation

E

(
N∏
i=1
ut�xi�

)
= E

( ∏
γ∈It

φ�Xγ
t ��−1�Kt exp�νLt�

)
�(1.4)

The idea of using the alternating term �−1�Kt is similar to that of annihilating
duality used in interacting particle systems (see [5]). It does not seem to have
been exploited for stochastic PDEs.

The integrability needed to establish (1.4) does not typically hold. Suppose
for instance, the power series for σ�u� converges for all u so that ρ�u� =∑
k≥0 
σk
uk is well defined. Replacing σ by ρ in (1.1) leads to an equation

that has the same formal duality relation as (1.4) but without the alternating
term �−1�Kt . However the function

√
ρ�u� has superlinear growth (except if

σk = 0 for k ≥ 3) and one would expect the moments of u to be infinite. This
suggests that the exponential exp�νLt� in (1.4) has infinite expectation and
the integrability conditions needed to apply the duality theorem in Ethier and
Kurtz may not hold. In cases where the moments are known to be finite, for
example when σ has linear growth, it leaves the possibility that the right hand
side of (1.4) might be interpreted as a limit of truncated expectations. This
paper does not pursue this possibility but rather exploits a trick, described
below, that allows a restricted class of functions σ to be treated.

The coefficients σ2 and p2 play a special role in the generator equations
(1.2) and (1.3). The terms corresponding to σ2 and p2 are multiples of the
duality function and can be included into the exponential factor α�X�. In the
dual process this has the effect of not allowing any births that have two off-
spring and changing the overall rate of births to ν′dLt, where ν′ = ∑

k �=2 
σk
/2.
Since two-particle births with two offsprings cannot be observed from view-
ing the particle positions alone, this leaves the dual process essentially un-
changed. However if σ2 < 0 the process Kt is changed as it no longer in-
creases for births with two offspring. The exponential exp�νLt� also changes
to exp��ν′ +�σ2/2��Lt�. This leads to a slightly different duality relation where
the exponential moment of Lt is reduced and the alternating term �−1�Kt is
adjusted. We shall show that this small change solves the integrability prob-
lems for a class of functions σ , essentially where σ2 is sufficiently negative. If
σ2 > 0 the formal duality relation is unchanged.

When b�u� is non-zero we must include single particle branching where the
probabilities of various size offspring are determined by the coefficients bk.
Again the term corresponding to the coefficient b1 is included in the exponen-
tial factor α�X�.

1.5. Main result. We need to restrict to bounded solutions, to help with
integrability as we indicate later. Here is the situation we have in mind.
Suppose: there is a finite interval 
a1� a2� with σ�u� ≥ 0 for u ∈ 
a1� a2�;
σ�a1� = σ�a2� = 0; and b�a1� ≥ 0 and b�a2� ≤ 0. Then one can construct
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solutions to (1.1) that remain bounded between a1 and a2 using the methods
of Shiga [14] in his construction of non-negative solutions to non-Lipschitz
SPDEs.

We define the parameters of the dual process X described in Section 1.3:
the branching rates and probabilities as

ν = 1
2

∑
k �=2


σk
� µ = ∑
k �=1


bk
�

pk =
{ 
σk
/2ν� if k �= 2,
0� if k = 2, qk =

{ 
bk
/µ� if k �= 1,
0� if k = 1;

the sets
S1 = �k ≥ 0 � bk < 0� k �= 1�� S2 = �k ≥ 0 � σk < 0� k �= 2��

and the counting process:
K1
t = the number of single particle births with offspring size Z1 ∈ S1

by time t�

K2
t = the number of two particle births with offspring size Z2 ∈ S2

by time t�

Kt =K1
t +K2

t �

We write 
It
 for the cardinality of the set It, the number of particles alive
at time t. The main result below establishes a duality formula for bounded
solutions under the conditions that σ2 and b1 are sufficiently negative. These
can be expressed conveniently with the help of the following functions

σ̃�z� = ∑
k �=2


σk
zk−2� b̃�z� = ∑
k �=1


bk
zk−1�(1.5)

Theorem 1. Suppose that u is a solution to (1.1) satisfying 
ut�x�
 ≤ R0
for all t� x and the power series for σ and b are convergent in the interval

−R1�R1� for some R1 > R0� Suppose that:

(H1) R1 > 1� σ̃ ′�1� ≤ 0 and b̃′�1� ≤ 0.

(H2) For some R > R0, σ2 < −σ̃�R� and b1 < −b̃�R�.
Then the following duality relation holds for any T ≥ 0 �

E

(
N∏
i=1
uT�xi�

)

= E
( ∏
γ∈IT

φ�Xγ
T��−1�KT exp

((
ν + σ2

2

)
LT + �µ+ b1�

∫ T
0


Is
ds
))
�

(1.6)

If b = 0, then the parts of the hypotheses that refer to b may be removed. (H2)
alone implies uniqueness in law for the solutions to (1.1).

Hypothesis (H1) ensures that the branching rates ν and µ are finite and the
dual process is non explosive. In fact, as we show in section 2.2, the equation
can always be scaled so that this assumption holds and then a moment formula
holds for the scaled equation. We conclude this subsection with two examples
of σ satisfying the hypothesis of the theorem.
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Example 1. b�u� = 0� σ�u� = u− u2 − εu3 for sufficiently small ε�

Example 2. b�u� = 0� σ�u� = cosu (taking R = 1�7).

Various other examples of b and σ are discussed in Section 3.

1.6. Layout of the paper. The remaining sections of the paper are orga-
nized as follows. In Section 2 we establish an approximate duality relation,
Proposition 1, for a modified version of the SPDE and the dual process. For
these modified processes the integrability problems disappear but the duality
formula no longer holds exactly, since there are error terms that arise from
the modifications. We then establish the integrability, Lemma 2, needed to
control these error terms and complete the proof of Theorem 1.

In Section 3 we give some examples, make several comments and describe
some variants of our result. We comment on how the hypotheses changes if the
SPDE is scaled or considered under a change of measure. The conditions for
integrability needed to establish the duality formula are largely independent
of the motion of the dual particles. Thereby we can consider generators other
than the Laplacian in the SPDE. Systems of equations can also be treated
by this method and we end by stating a variant for some finite dimensional
stochastic ODEs that we do not believe are covered by current uniqueness
results.

2. Proof of the duality relation.

2.1. An approximate duality relation. In this section we consider the dual
particle system up to the time of the mth birth for each m = 1�2� � � �. For de-
tails of a construction of the dual process see [1]. Define the following stopping
times:

τm = the time of the mth birth�

ρl = inf
{
t ≥ 0 � Lt ≥ l or

∫ t
0


Is
ds ≥ l
}
�

τl�m = ρl ∧ τm�
Similarly we consider the solution u of (1.1) up to a stopping time ηn, where

ηn = inf
{
t ≥ 0 � 
ut�x�
 ≥ n for some x ∈ �

}
�

We shall assume that P�supn ηn = ∞� = 1. This follows, for example, if we
consider solutions that decay at infinity (Shiga [14] considers solutions in
Crap, the space of continuous functions decaying faster than any exponential
at infinity).

The approximate duality relation, Proposition 1, is presented for all such
solutions u, even though Theorem 1 considers only bounded solutions where
the assumption is immediate. At present we are unable to establish a duality
relationship for unbounded solutions. However we note that Proposition 1
clearly identifies the integrability problems that need to be solved to establish
a duality relationship for unbounded solutions.
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The basic idea is to fix n�m� l and to stop the stochastic PDE at the time ηn
and the dual process at the time τl�m. However it will be convenient to allow
the PDE to follow the heat flow after time ηn but without forcing noise, and
to allow the dual particles to perform Brownian motions after time τl�m but
without any branching. So we define the modified process ũ by

ũt =
{
ut� if t ≤ ηn�
Pt−ηnuηn� if t > ηn�

where Pt is the Brownian semi-group. Note that ũ is still continuous and
solves the SPDE

∂tũ = 1
2�ũ+ I�t≤ηn�b�ũ� + I�t≤ηn�

√
σ�ũ�Ẇt�x�(2.7)

Choose n ≥ 1 so that supx 
φ�x�
 ≤ n� Then 
ũt�x�
 ≤ n for all t� x.
We also define a modified dual process X̃ as follows. Let �Wγ

t � γ ∈ I� be an
independent collection of Brownian motions. Define

X̃
γ
t =

{
X
γ
t � if t < τl�m�

X
γ
τl�m +Wγ

t−τl�m� otherwise;

Ĩt =
{
γ � X̃γ

t that are alive at time t
}

�

J̃t = �µ+ b1�
∫ t∧τl�m
0


Ĩs
ds+
(
ν + σ2

2

)
Lt∧τl�m �

K̃t = Kt∧τl�m �

L̃
β�γ
t = the local time of X̃β − X̃γ at zero�

To clearly define the assumptions on σ and b, we consider two cases:

�S1� If u is unbounded, then assume that the power series for σ and b is
convergent everywhere.

�S2� If u is bounded by R0, then assume that the power series for σ and b is
convergent in an interval 
−R1�R1� for some R1 > max�R0�1�.

Proposition 1. Assume (S1) or (S2). For all T ≥ 0 we have

E

(
N∏
i=1
ũT�xi�

)
= E


 ∏
γ∈ĨT

φ�X̃γ
T��−1�K̃T exp�J̃T�


 + �1 + �2(2.8)

where the error term �1 is given by

1
4E

∫ T
0

(
I�T−t≤ηn� − I�t≤τl�m�

)
�−1�K̃t exp�J̃t�

× ∑
β�γ∈Ĩt�β �=γ


 ∏
α∈Ĩt\�β�γ�

ũT−t�X̃α
t �


σ�ũT−t�X̃γ

t ��dL̃β�γt �
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and the error term �2 is given by

E
∫ T
0

(
I�T−t≤ηn� − I�t≤τl�m�

)
�−1�K̃t

× exp�J̃t�
∑
β∈Ĩt


 ∏
γ∈Ĩt\�β�

ũT−t�X̃γ
t �


 b�ũT−t�X̃β

t ��dt�

Proof. For any function f, define fε�x� = f ∗ pε�x� which is the convo-
lution of f with the function pε�x� = �2πε�−1/2e−x

2/2ε. The process ũεs�x� will
then be a semimartingale and, as ũ solves (2.7), we know that for any t ≥ 0,

ũεt �x� = φε�x� +
∫ t
0
� 12�ũεs�x� + I�s≤ηn�b�ũs� ∗ pε�x��ds

+
∫ t
0

∫
I�s≤ηn�

√
σ�ũs�y��pε�x− y�dWy�s�

Applying Itô’s formula, and taking expectations, we have

E
N∏
i=1
ũεt �xi� −E

N∏
i=1
φε�xi�

= E
∫ t
0

N∑
i=1

(
N∏

j=1�j �=i
ũεs�xj�

) ( 1
2�ũ

ε
s�xi� + I�s≤ηn�b�ũs� ∗ pε�xi�

)
ds

+ 1
2E

∫ t
0
I�s≤ηn�

N∑
i�j=1�i�=j

(
N∏

k=1�k �=i�j
ũεs�xk�

)

×
∫
pε�y− xi�pε�y− xj�σ�ũs�y��dyds�

(Since ũ is bounded by n, it is easy to see that the stochastic integral arising
from Itô’s formula is a true martingale.) For our purposes, we would like to
replace xi’s in the previous identity with a random, but independent, set of
points �X̃β

r � β ∈ Ĩr� and insert the independent function �−1�K̃r exp�J̃r�
suitably. Namely, fixing r ∈ 
0�T�,
E

∏
β∈Ĩr

ũεt �X̃β
r ��−1�K̃r exp�J̃r� −E ∏

β∈Ĩr
φε�X̃β

r ��−1�K̃r exp�J̃r�

= E
∫ t
0
�−1�K̃r exp�J̃r�

∑
β∈Ĩr


 ∏
γ∈Ĩr\�β�

ũεs�X̃γ
r�


 1

2�ũ
ε
s�X̃β

r �ds

+E
∫ t∧ηn
0

�−1�K̃r exp�J̃r�
∑
β∈Ĩr


 ∏
γ∈Ĩr\�β�

ũεs�X̃γ
r�


 b�ũs� ∗ pε�X̃γ

r�ds(2.9)

+ 1
2E

∫ t∧ηn
0

�−1�K̃r exp�J̃r�
∑

β�γ∈Ĩr�β �=γ


 ∏
α∈Ĩr\�β�γ�

ũεs�X̃α
r�




×
∫
pε�y− X̃γ

r�pε�y− X̃β
r �σ�ũs�y��dyds�
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As indicated earlier ũ is bounded by n and by definition of the stopping time
τl�m, J̃r is bounded by �ν + �σ2/2� + b1 + µ�l. The integrand in the last term
is bounded by

C�l��2πε�− 1
2 sup


z
≤n

σ�z�


∫ t
0


Ĩr
2n
Ĩr
−2dr

≤ C�ε� σ� l� n�T� sup
r≤T


Ĩr
2n
Ĩr


≤ C�ε� σ� l� n�T� δ� sup
r≤T

�n+ δ�
Ĩr


(2.10)

for any δ > 0. There are at mostm births up to τl�m. Hence, we may bound the
maximum increase in 
Ĩs
 by the sum of independent copies of the offspring
random variables Z1 and Z2. So the expected value of the dominating term
(2.10) is less than or equal to

C�ε� σ� l� n�T� δ�N� [
E�n+ δ�Z1

]m [
E�n+ δ�Z2

]m
Using (S1) or (S2), we can conclude that E�n+δ�Zi <∞. Hence, the last term
is integrable. Analogously, the integrand in the other terms can be shown to
be integrable. Identity (2.9) follows from Fubini’s theorem. In the calculations
that follow, there will be repeated applications of Fubini’s theorem. All such
calculations can be justified similarly with the help of the dominating term
(2.10).

By considering the compensators for the jumps in �X̃γ
t � γ ∈ It� at the times

of births we have, for h ∈ C2
b���,

E
∏
β∈Ĩt

h�X̃β
t ��−1�K̃t exp�J̃t� −E

N∏
i=1
h�xi�

= E
∫ t
0
�−1�K̃s exp�J̃s�

∑
β∈Ĩs


 ∏
γ∈Ĩs\�β�

h�X̃γ
s �


 1
2
�h�X̃β

s �ds

+E
∫ t∧τl�m
0

�−1�K̃s exp�J̃s�
∑
β∈Ĩs


 ∏
γ∈Ĩs\�β�

h�X̃γ
s �




×
( ∞∑
k=0
qk

(
hk�X̃β

s ��−1�I�k∈S1� − h�X̃β
s �

))
µds

+E
∫ t∧τl�m
0

�−1�K̃s exp�J̃s�
∑

β�γ∈Ĩs�β �=γ


 ∏
α∈Ĩs\�γ�β�

h�X̃α
s �




×
( ∞∑
k=0
pk

(
hk�X̃γ

s ��−1�I�k∈S2� − h�X̃β
s �h�X̃γ

s �
))
ν

2
dL̃β�γs
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+E
∫ t∧τl�m
0

�−1�K̃s exp�J̃s�

 ∏
β∈Ĩs

h�X̃β
s


(

�µ+b1�
Ĩs
ds+
(
ν+ σ2

2

)
dL̃s

)

= E
∫ t
0
�−1�K̃s exp�J̃s�

∑
β∈Ĩs


 ∏
γ∈Ĩs\�β�

h�X̃γ
s �


 1
2
�h�X̃β

s �ds

+E
∫ t∧τl�m
0

�−1�K̃s exp�J̃s�
∑
β∈Ĩs


 ∏
γ∈Ĩs\�β�

h�X̃γ
s �


 b�h�X̃β

s ��ds

+1
4
E

∫ t∧τl�m
0

�−1�K̃s exp�J̃s�
∑

β�γ∈Ĩs�β �=γ


 ∏
α∈Ĩs\�γ�β�

h�X̃α
s �


σ�h�X̃β

s ��dL̃β�γs �

The last equality is a consequence of the definitions of µ� ν� qk�pk. The process
ũεr is smooth and bounded. Hence the above identity holds with h replaced by
the independent random function ũεr. Specifically,

E
∏
β∈Ĩt

ũεr�X̃β
t ��−1�K̃t exp�J̃t� −E

N∏
i=1
ũεr�xi�

= E
∫ t
0
�−1�K̃s exp�J̃s�

∑
β∈Ĩs


 ∏
γ∈Ĩs\�β�

ũεr�X̃γ
s �


 1

2�ũ
ε
r�X̃β

s �ds

+E
∫ t∧τl�m
0

�−1�K̃s exp�J̃s�
∑
β∈Ĩs


 ∏
γ∈Ĩs\�β�

ũεr�X̃γ
s �


 b�ũεr�X̃β

s ��ds(2.11)

+ 1
4E

∫ t∧τl�m
0

�−1�K̃s exp�J̃s�
∑

β�γ∈Ĩs�β �=γ


 ∏
α∈Ĩs\�γ�β�

ũεr�X̃α
s �


σ�ũεr�X̃β

s ��dL̃β�γs �

We now follow the method of duality outlined in Theorem 4.4.11, [4]. Set

g�t� s� ε� = E ∏
β∈Ĩs

ũεt �X̃β
s ��−1�K̃s exp�J̃s��

For any T ≥ 0 we have

∫ T
0
g�r�0� ε� − g�0� r� ε�dr

=
∫ T
0

�g�T− r� r� ε� − g�0� r� ε��dr−
∫ T
0

�g�r�T− r� ε� − g�r�0� ε��dr�
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We now use (2.9) and (2.12) to expand the integrands, obtaining

∫ T
0
g�r�0� ε� − g�0� r� ε�dr

= E
∫ T
0

∫ T−r

0
�−1�K̃r exp�J̃r�

∑
β∈Ĩr


 ∏
γ∈Ĩr\�β�

ũεs�X̃γ
r�


 1

2�ũ
ε
s�X̃β

r �dsdr(2.12)

+E
∫ T
0

∫ T−r

0
I�s≤ηn��−1�K̃r exp�J̃r�

× ∑
β∈Ĩr


 ∏
γ∈Ĩr\�β�

ũεs�X̃γ
r�


 b�ũs� ∗ pε�X̃γ

r�dsdr(2.13)

+ 1
2E

∫ T
0

∫ T−r

0
I�s≤ηn��−1�K̃r exp�J̃r�

∑
β�γ∈Ĩr�β �=γ


 ∏
α∈Ĩr\�β�γ�

ũεs�X̃α
r�




×
∫
pε�y− X̃γ

r�pε�y− X̃β
r �σ�ũs�y��dydsdr(2.14)

−E
∫ T
0

∫ T−r

0
�−1�K̃s exp�J̃s�

∑
β∈Ĩs


 ∏
γ∈Ĩs\�β�

ũεr�X̃γ
s �




× 1
2�ũ

ε
r�X̃β

s �dsdr(2.15)

−E
∫ T
0

∫ T−r

0
I�s≤τl�m��−1�K̃s exp�J̃s�

× ∑
β∈Ĩs


 ∏
γ∈Ĩs\�β�

ũεr�X̃γ
s �


 b�ũεr�X̃β

s ��dsdr(2.16)

− 1
4E

∫ T
0

∫ T−r

0
I�s≤τl�m��−1�K̃s exp�J̃s�

× ∑
β�γ∈Ĩs�β �=γ


 ∏
α∈Ĩs\�γ�β�

ũεr�X̃α
s �


σ�ũεr�X̃β

s ��dL̃β�γs dr�(2.17)

Using the domination given by (2.10) we may apply Fubini’s theorem and
terms (2.12) and (2.15) cancel. Now that �ũε term has been canceled we let
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ε → 0 in the remaining terms to obtain∫ T
0
g�r�0�0� − g�0� r�0�dr(2.18)

= E
∫ T
0

∫ T−r

0
I�s≤ηn��−1�K̃r exp�J̃r�

× ∑
β∈Ĩr


 ∏
γ∈Ĩr\�β�

ũs�X̃γ
r�


 b�ũs�X̃β

r ��dsdr(2.19)

+ 1
4E

∫ T
0

∫ T−r

0
I�s≤ηn��−1�K̃r exp�J̃r�

× ∑
β�γ∈Ĩr�β �=γ


 ∏
α∈Ĩr\�β�γ�

ũs�X̃α
r�


σ�ũs�X̃β

r ��dsdL̃γ�βr(2.20)

−E
∫ T
0

∫ T−r

0
I�s≤τl�m��−1�K̃s exp�J̃s�

× ∑
β∈Ĩs


 ∏
γ∈Ĩs\�β�

ũr�X̃γ
s �


 b�ũr�X̃β

s ��dsdr(2.21)

− 1
4E

∫ T
0

∫ T−r

0
I�s≤τl�m��−1�K̃s exp�J̃s�

× ∑
β�γ∈Ĩs�β �=γ


 ∏
α∈Ĩs\�γ�β�

ũr�X̃α
s �


σ�ũr�X̃β

s ��dL̃β�γs dr�(2.22)

Only the term (2.20) needs careful justification and we give this after complet-
ing the rest of the proof. The other terms (2.19), (2.21) and (2.22) follow imme-
diately from dominated convergence using (2.10). Assuming we have justified
(2.20), the final step is to show that the terms almost cancel, leaving behind
the error terms mentioned in the statement of the proposition. Applying a
change of variable and then Fubini’s theorem, the previous terms reduce to∫ T

0
g�r�0�0� − g�0� r�0�dr

= E
∫ T
0

∫ s
0

�I�s−t≤ηn� − I�t≤τl�m���−1�K̃t exp�J̃t�

× ∑
β∈Ĩt


 ∏
γ∈Ĩt\�β�

ũs−t�X̃γ
t �


 b�ũs−t�X̃β

t ��dtds

+ 1
4E

∫ T
0

∫ s
0

�I�s−t≤ηn� − I�t≤τl�m���−1�K̃t exp�J̃t�

× ∑
β�γ∈Ĩt�β �=γ


 ∏
α∈Ĩt\�β�γ�

ũs−t�X̃α
t �


σ�ũs−t�X̃β

t ��dLγ�βt ds
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Using the continuity of ũt, the left continuity of the dual process and the
domination given by (2.10) we can check that r→ g�r�0�0� is continuous and
r → g�0� r�0� is left continuous. Then differentiating both sides of the above
equation from the left at T, we have that g�T�0�0�−g�0�T�0� = �1 +�2 and
this completes the derivation of the approximate duality relation.

It remains only to justify the passage to the limit in the term (2.14). We
need the following lemma, proved at the end of this section.

Lemma 2. Consider two independent Brownian motions B1
t �B

2
t adapted to

a filtration �t. Let f � R → 
0�∞� be a bounded continuous function, Xt =
B1
t − B2

t , and Yt be a ��t� predictable process satisfying E�∫ t0 
Ys
ds� < ∞�
Then, for t ≥ 0�

2
∫ t
0
f�Xs�Ysds =

∫ ∫ t
0
f�z�YsdLXs�zdz a.s.,(2.23)

where LXs�z is the local time of X at z until time s.

After the substitution y→ y+X̃β
r we may rewrite the term (2.14) in the form

∑
β�γ∈I�β �=γ

∫ ∫ T
0
pε�y+ X̃β

r − X̃γ
r�pε�y�Yβ�γr �y�drdy

where

Yβ�γr �y� = I�β�γ∈Ĩr��−1�K̃r exp�J̃r�
∫ T−r

0
I�s≤ηn�


 ∏
α∈Ĩr\�β�γ�

ũεs�X̃α
r�




×σ�ũs�y+ X̃β
r ��ds�

Define a filtration by �t = σ��X̃β
q� � β ∈ Ĩq�� K̃q� J̃q � q ≤ t� ∨ σ�ũq � q ≤

T�. Then Yβ�γr �y� is ��r� adapted and left continuous and (2.10) gives the
integrability needed to apply Lemma 2. Note that the paths X̃β

r and X̃γ
r are

defined only when β� γ ∈ Ĩr. However a careful construction of the dual can
be made so that these paths are segments of entire Brownian paths defined
for all r ∈ 
0�T� (see [1]). Moreover note that Yβ�γr is zero whenever β� γ �∈ Ĩr.
Applying Lemma 2 for a fixed y we have∫ T

0
pε�y+ X̃β

r − X̃γ
r�Yβ�γr �y�dr =

∫ ∫ T
0
pε�y+ z�Yβ�γr �y�dL̃β�γr�z dz

where L̃β�γr�z is the local time of the process X̃β
r − X̃γ

r at the point z. Both sides
of this last equality are continuous in y and so the equality holds for all y
simultaneously, with probability one. Integrating over y we may rewrite the
integrand in (2.14) as∑

β�γ∈I�β �=γ

∫ ∫ ∫ T
0
pε�y+ z�pε�y�Yβ�γr �y�dL̃β�γr�z dzdy�(2.24)
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Note that the above sum is a finite sum with probability one. We can now let
ε → 0 to obtain ∑

β�γ∈I�β �=γ

∫ T
0
Yβ�γr �0�dL̃β�γr �

To justify this we fix β� γ and argue pathwise. Note that Yβ�γr �y� is bounded
and is piecewise continuous in r. Since y → Y

β�γ
r �y� is continuous at zero

uniformly in r ≤ T we may replace Yβ�γr �y� by Yβ�γr �0� at the cost of an error
that is small in ε. Then replace the path r → Y

β�γ
r �0� by a Riemann sum

approximation that is uniformly close. This replaces the dL̃β�γ integral by a
sum where it is easy to take the limit ε → 0 using the continuity of the local
time.

It remains only to justify taking the limit ε → 0 inside the expectation.
Bounding J̃t and ũt as before in (2.10) we can dominate the variable (2.24) by

C�T�σ� l� ∑
β�γ∈I�β �=γ

∫ ∫ ∫ T
0
pε�y+ z�pε�y�n
Ĩr
dL̃β�γr�z dzdy

= C�T�σ� l� ∑
β�γ∈I�β �=γ

∫ ∫ T
0
p2ε�z�n
Ĩr
dL̃β�γr�z dz(2.25)

≤ C�T�σ� l� ∑
β�γ∈I�β �=γ

sup
r≤T

n
Ĩr
 sup
z
L̃
β�γ
T�z�

The local time L̃β�γT�z can only be non-zero if both particles labeled β� γ came into
existence before time T. We need here to be more explicit about the labeling
scheme for the dual particles. Since there at most m births we may label
particles by the pair β = �j� k�, for j = 0�1� � � � �m and k ≥ 1, representing
the kth offspring of the jth birth. When j = 0 then k runs between 1 and
N labeling the original N particles. The jth birth might be a single or a two
particle birth but we can construct the dual so that the probability the particle
labeled �j� k� was ever born (when j ≥ 1) is at most pk + qk.

We have shown in (2.10) that the variable supr≤T�n+δ�
Ĩr
 is integrable for
small δ > 0. Also, for fixed particles β� γ, the expectation E�supz�Lβ�γT�z�p� is
finite for any p. So applying Hölder’s inequality we may bound (2.25) by

C�T�σ� l�R� ∑
β�γ∈I�β �=γ

P�particles β� γ ever born�1/r for some r > 1

≤ C�T�σ� l�R�N�

×
(
1+

m∑
j�j′=1

∞∑
k′≤k=1

P�particles �j� k� and �j′� k′� ever born�1/r
)

≤ C�T�σ� l�R�N�m�
(
1+

∞∑
k=1
k�pk + qk�1/r

)

≤ C�T�σ� l�R�N�m� r�
(
1+ �

∞∑
k=1
k2r�pk + qk��1/r

)
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which is finite using the convergence of b̃�R� and σ̃�R� for some R > 1. This
domination allows us to take this limit inside the expectation and, after sub-
stituting in the expression for Yr�0�, we obtain the term (2.20) in the limit.

✷

Proof of Lemma 2. As f is continuous, by Proposition 6.17. in [2], we
have that for all t ≥ 0

2
∫ t
0
f�Xs�ds =

∫
f�y�Ltydy a.s.

Now if Ys was a simple predictable process, i.e. of the form,
∑n
i=0Ki1�ai�bi��s�,

whereKi are bounded �ai measurable and 0 = a0 ≤ b0 ≤ a1 ≤ b1 ≤ a2 ≤ · · · ≤
bn, then

2
∫ t
0
f�Xs�Ysds =

n∑
i=0

2Ki

∫ bi∧t
ai∧t

f�Xs�ds

=
n∑
i=0
Ki

∫ ∫ bi∧t
ai∧t

f�z�dLXs�zdz

=
∫ ∫ t

0
f�z�YsdLXz�sdz a.s.

IfYs is any bounded predictable process, then we approximateY by a sequence
of simple processes Yn, that converge to Y pointwise. As (2.23) holds for Yn,
and f�Y are bounded, it holds for the limit Y via dominated convergence. For
positive Y the result then holds via monotone convergence, approximating
with Y ∧ n. Split a general Y into positive and negative parts and use the
integrability to recombine the two parts. ✷

2.2. Proof of Theorem 1. We first show that under assumption (H1) the
dual process is non-explosive. The expected change in the number of parti-
cles at a two-particle birth (respectively one-particle birth) is

∑
k pk�k− 2� =

σ̃ ′�1�/2ν (respectively b̃′�1�/µ). So, under (H1), the total number of particles

It
 is a supermartingale and hence converges. Since any death changes the
number of particles, the deaths cease for large t. So the dual process is well
defined for all t and τl�m → ∞ as l�m→ ∞.

The following lemma establishes the integrability that is needed to control
the error terms �1 and �2. Recall the definitions of b̃ and σ̃ given in (1.5).

Lemma 3. Suppose that α�β� γ ∈ � satisfy

α+ 1
2 σ̃�eγ� < ν� β+ b̃�eγ� < µ�

Then for all T ≥ 0�

E

(
sup
0≤t≤T

exp
(
αLt + β

∫ t
0


Is
ds+ γ
It

))

<∞�
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Proof. Considering the jumps of 
It
 we see that the compensator of the
pure jump process exp�γ
It
� is given by

∑
k

∫ t
0
νpk

(
eγ�
Is
+k−2� − eγ
Is


)
dLs + ∑

k

∫ t
0
µqk

(
eγ�
Is
+k−1� − eγ
Is


)

Is
ds

= ( 1
2 σ̃�eγ� − ν) ∫ t

0
eγ
Is
dLs + �b̃�eγ� − µ�

∫ t
0
eγ
Is

Is
ds

provided that b̃�eγ� and σ̃�eγ� are finite. Set Zt = exp�αLt+β
∫ t
0 
Is
ds+γ
It
��

By Itô’s formula we have

dZt = �α+ 1
2 σ̃�eγ� − ν�ZtdLt + �β+ b̃�eγ� − µ�Zt
It
dt+ dMt(2.26)

where Mt is a local martingale. Because of the strict inequalities in the
assumptions of the lemma, we can find θ > 1 so that Z

θ

t = exp�θαLt +
θβ

∫ t
0 
Is
ds+θγ
It
� is a non-negative supermartingale. This implies, by Doob’s

optional stopping argument, that P�supt≥0Zθ

t ≥ c� ≤ exp�θγN�/c (whereN is
the initial number of particles) and the conclusion of the lemma follows. ✷

The above integrability lemma is the key to this method of establishing
the duality relation. Any weakening of the hypotheses would lead directly
to uniqueness for a larger class of equations. Increments in the local time
dLt are roughly the size of 
It
2dt so that if the coefficient of ZtdLt in the
decomposition (2.26) for Zt is strictly negative this may allow the coefficient of
Zt
It
dt in (2.26) to be arbitrary, which would lead to removing the hypothesis
on the drift b�u�. In the finite dimensional setting in Section 3.4 we shall
show that this is easy to implement. We have not been able to weaken the
hypothesis on σ . In particular when considering unbounded SPDEs one needs
to control expectations of terms of the form

∏
α∈It us�Xα

t �. These, after taking
expectations conditional on the dual and using moment estimates for SPDEs,
lead to terms of the form at least as bad as exp�c
It
 log 
It
�. The above lemma
suggests that these will not be integrable and this is the reason that we treat
only bounded SPDEs.

To complete the proof we must pass to the limit as n�m� l → ∞ in the
approximate duality given by Proposition 1. Our assumptions are that the
solutions are bounded by R0 so the stopping time ηn is infinite for n > R0
and plays no role. Setting ηn = ∞ and using the bound 
ut�z�
 ≤ R0 we can
bound the error term �1 by

1
4 sup


z
≤R0


σ�z�
E
∫ T
0
I�t≥τl�m� exp�J̃t�R
Ĩt
−2

0 dL̃t

= C�σ�R−2
0 E exp�J̃τl�m�R
Ĩτl�m 


0 �L̃T − L̃τl�m�+�

Let ��t� be the natural filtration for the dual process. After time τl�m the
modified dual particles have no more deaths. So the expected local time gained
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by any pair of these particles after this time is at most E�l√2T�, where lt is
the local time of a standard Brownian motion at zero. So we estimate

E��L̃T − L̃τl�m�+
�τl�m� ≤ 1
2 
Ĩτl�m 

Ĩτl�m − 1
I�τl�m≤T�E�l√2T��

Using this we further bound the error term �1 by

C�σ�T�R0�EI�τl�m≤T� exp�J̃τl�m�
Ĩτl�m 
2R
Ĩτl�m 

0

≤C�σ�T�R0�R�EI�τl�m≤T� exp�J̃τl�m�R
Ĩτl�m 
 for any R>R0

=C�σ�T�R0�R�EI�τl�m≤T� sup
t≤T

exp
(

�µ+b1�
∫ t
0


Is
ds

+
(
ν+ σ2

2

)
Lt+ log�R�
It


)
�

A similar but simpler estimate shows that the error term �2 is bounded by the
same expression (with a different constant). The hypotheses on σ2 and b1 and
Lemma 3 now ensure that both error terms vanish as l�m → ∞. The same
integrability gives the domination needed to pass to the limit on both sides
of the approximate duality relation (2.8) and complete the proof of the true
duality relation (1.6).

The duality relation implies uniqueness since we only consider bounded
solutions. To show that assumption (H1) is not needed for uniqueness we make
a series of reductions. We shall suppose that b and σ are non-zero functions.
(Uniqueness when σ = 0 holds since b is Lipschitz. The case where b = 0 is
covered by the argument below by ignoring all references to b.) We claim that
without loss of generality we may assume that b�0� and σ�0� are non-zero.
For if not then consider the equation for û = u + ε. This solves the SPDE
with new drift and diffusion functions b̂�û� = b�û − ε� and σ̂�û� = σ�û − ε�.
By the analyticity of b and σ we can find arbitrarily small ε so that b̂�0� and
σ̂�0� are both non-zero. But the hypothesis (H2) involves strict inequalities
and will still hold for small enough ε. Uniqueness for û implies uniqueness
for u.

Now we scale the solution by setting v = Bu. This solves the SPDE with
new drift and diffusion functions b̂�v� = Bb�v/B� and σ̂�v� = B2σ�v/B�. As-
sumption (H1) for b̂ and σ̂ becomes

∞∑
k=0


σk
B2−k�k− 2� ≤ 0�
∞∑
k=0


bk
B1−k�k− 1� ≤ 0�

Using b0 �= 0� σ0 �= 0 and taking B large enough this assumption will hold. If
u was bounded by R0 then v is bounded by BR0 and it is easy to check that
hypothesis (H2) is unchanged by this scaling of the equation. Uniqueness for
v implies uniqueness for u, completing the proof. ✷
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3. Remarks.

3.1. Linear scaling. Consider the scaled process defined by the linear
change of variables vt�x� = BuCt�Dx�, where B �= 0� C�D > 0. This satis-
fies the SPDE

∂tv = C

2D2
�v+ b̂�v� +

√
σ̂�v�Ẇt�x�

where σ̂�v� = �B2C/D�σ�v/B� and b̂�v� = CBb�v/B�. If C = D2 hypothesis
(H2) is unchanged. If C �= D2 then a dual process with Brownian particles run
at speed

√
C/D is needed and again it can be checked (see Section 3.2) that

hypothesis (H2) is unchanged. So this linear scaling does not change our ability
to establish uniqueness. For sufficiently large values of B we obtain a duality
formula for v which can then be written as a duality formula for u. However
these are different for each value of B since the branching probabilities for
the dual depend on B.

The change vt�x� = ut�x�−A produces an unintuitive effect on the hypothe-
ses. The coefficients b and σ are now expanded around the base point A. This
may lead to an improvement. For example, the equation with b�u� = 0 and
σ�u� = u − u3 has solutions bounded in the interval 
0�1�. The criteria fails
since σ2 = 0. However, considering the equation for v = 1 − u the diffusion
function becomes ρ�v� = 2v − 3v2 + v3 and it can be checked that hypothesis
(H2) holds. Hence uniqueness in law holds for this equation.

3.2. Spatial inhomogeneity. The technique of this paper should apply to
equations where the spatial motion process of the dual particles is different
or where the drift of diffusion functions are spatially inhomogeneous. We do
not seek generality but give some examples to indicate some of the changes
that are necessary.

Suppose, for example, we consider the following spde ∂tu = Lu+√
σ�u�Ẇt�x�

where the dual particles will follow a diffusion with generator Lu =
�1/2�c�x�u′′�x� + d�x�u′�x�, where c�x� > 0 for all x ∈ �. Then the two-
particle branching rate should be νc�Xβ

t �−1dLβ�γt and the process Lt in the
duality relation should be changed to

Lt = 1
2

∫ t
0

∑
β�γ∈Is�β �=γ

c�Xβ
s �−1dLβ�γs �

The definitions of ν� µ�pk� qk are unchanged. Some regularity conditions on c
and d and growth conditions on c� d� c−1 will be needed. For example if c and
d have bounded continuous derivatives and c−1 is bounded then the duality
relation holds under the same hypotheses as before.

If an inhomogeneous diffusion σ�x�u� has a power series expansion∑
σk�x�uk with continuous functions σk�x� then the dual particles will have

spatially dependent branching rates ν�x� and branching probabilities pk�x�
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given by the analogous formulae. The exponential of Lt in the duality formula
must be replaced by

exp

(
1
2

∫ t
0

∑
β�γ∈Is�β �=γ

(
ν�Xβ

s � + σ2�Xβ
s �

2

)
dLβ�γs

)
�

Suppose that the function ν�x� is bounded. If we replace the hypotheses with
versions that hold uniformly in z [i.e., there exists R > R0 so that σ2�z� <
−σ̃�z�R� for all z] then the duality relation holds with the above changes.

The extension to colored noise, which would allow the equation to be treated
in dimensions higher than one, does not follow. The generator for the SPDE
would then include a term of the form

∑
i�=j

( ∏
k �=i�j

ut�xk�
) √

σ�ut�xi��σ�ut�xj��f�xi − xj�dt

where f is the spatial correlation function of the colored noise. The square
root singularities are evaluated at different points and there is no obvious
dual particle system.

3.3. Change of measure. Girsanov’s theorem can sometimes be used to
change the drift term b�u� in the SPDE. However many drift terms cannot be
treated by this method. Suppose that solutions are positive and σ�u� vanishes
at u = 0. If b�0� is strictly positive then the law of solutions with the drift b
should not be absolutely continuous with respect to that of solutions with no
drift. When b�0� = 0 and the solutions are integrable in x then one can hope,
with growth conditions on b�u�, to apply Girsanov’s theorem. There are also
problems treating solutions non-integrable in space since one cannot expect
absolute continuity. Tribe [15] gives an example (of an equation with non-
integrable solutions) where, by changing the drift only over large intervals,
uniqueness for the equation with drift can be deduced from uniqueness for
the equation without drift.

We now give an example to show that use of Girsanov’s theorem can add
a drift that helps to make hypothesis (H2) hold. To avoid the integrability
problems in space we consider the SPDE acting on the one dimensional torus
�, where the dual particles perform Brownian motions on the torus. Consider
the case σ�u� = u�1 − u�, where the drift satisfies b�0� > 0 and b�1� < 0 and
where we consider solutions taking values in 
0�1�. As an example consider
b�u� = 1− 2u2 for which the hypotheses of Theorem 1.1 fail. Under a change
of measure, detailed below, this drift becomes b�u� = 1− 2u for which the hy-
potheses of Theorem 1.1 do hold. More generally if b�u� = b+�u�−b−�u� where
the functions b+� b− have power series expansions with coefficients given by
b+
k = bk ∨ 0 and b−

k = �−bk� ∨ 0. We shall check that a change of measure
can be made to to alter the drift to b+�u� − b−�1�u. Then the hypothesis (H2)
for this new drift becomes −b−�1� < − infR>1

∑
k �=1 b

+
kR

k−1. The right hand
side is at least −b+�1� and so the assumption that b�1� < 0 implies that
the hypothesis (H2) holds. Theorem 1 then implies uniqueness. The change



MOMENT DUALITY FOR SPDEs 1731

of measure needed is the exponential martingale associated to the stochas-
tic integral

∫ t
0

∫
hs�x�dWs�x where h = �b−�u� − b−�1�u�/�u�1 − u��1/2. Since

b�0� > 0 we must have that b−�0� = 0. Hence b−�u�−b−�1�u vanishes at both
u = 0 and u = 1. The integrand h is now bounded and the change of measure
is valid.

3.4. Stochastic ODEs. Theorem 1 can be extended to systems �u1� � � � � un�
of stochastic PDEs provided the drift and noise functions are analytic functions
of all the variables �u1� � � � � un�. Rather than work with PDEs we illustrate
the method for a multidimensional stochastic ODE. The method is similar to
the one established for the SPDEs earlier. Hence to avoid being repetitive we
shall leave out many of the details in the arguments that follow.

Consider the solution Yt of the following finite dimensional stochastic dif-
ferential equation:

dYit = Bi�Yt�dt+
r∑
k=1
Bik�Y1

t � � � � �Y
d
t �dWk

t �

Yi0 = yi� i = 1� � � � � d� r ≥ 1�
(3.27)

where Wk
t are independent Brownian motions in �. Let A = BBT. Let �d =

�� ∪ �0��d For α ∈ �d, we set 
α
 = ∑d
i=1 αi. Let ei denote the canonical co-

ordinate vectors in �d. For each y ∈ �d set yα = ∏d
i=1 y

αi
i . We suppose that

the functions Aij and Bi have power series representations

Aij�y� = ∑
α

aijα y
α� Bi�y� = ∑

α

biαy
α�

where the summations are over all multi-indices α ∈ �d� The dual process will
be a multitype branching process, where the branching probabilities for each
type i (resp. types i and j) are given in terms of the coefficients of the power
series for Bi (resp. Aij). The dual can be written as �Zkt � k = 1� � � � � d�, where
Zkt is the number of particles of type k alive at time t, with initial condition
Zk0 =Nk. There are two types of births:

1. Single-particle births. Each particle of type i dies at a rate µidt and, on
dying, is replaced by a random vector of ξi of offspring. The generating
function for the offspring law is E�sξi� = ∑

α q
i
αs
α�

2. Two-particle births. Each pair of particles of type i and j ≤ i die at a rate
νijdt and, on dying, is replaced by a a random vector of ξij of offspring. The

generating function for the offspring law is E�sξij� = ∑
α p

ij
α sα�

For each i� j = 1� � � � � d, we define: the branching rates to be

νij = ∑
α �=ei+ej


aijα 
� µi = ∑
α �=ei


biα
�
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the branching probabilities to be

pijα =
{


aijα 
/νij� for α �= ei + ej�
0� for α = ei + ej�

qiα =
{ 
biα
/µi� for α �= ei�
0� for α = ei�

the special sets

S1
i = �α ∈ �d � biα < 0� α �= ei�� S2

ij = �α ∈ �d � aijα < 0� α �= ei + ej��

and the factors K1�i
t the number of births (given by a particle of type i) with

offspring size ξi ∈ S1
i by time t,K2�ij

t the number of births (given by particles of
type i� j) with offspring size ξij ∈ S2

ij by the time t,Kt = ∑d
i=1K

1�i
t +∑

j≤i K
2�ij
t �

For notational convenience, we introduce âij = aijei+ej and b̂i = biei � Let

Jt =
∫ t
0

d∑
i=1

�b̂i + µi�Zis + ∑
j≤i

�âij + νij�
Z
j
s �Zis − δij�
1+ δij

ds�

An analogous approximate duality formula for the processes
∏d

1=1 y
ZiT
i

exp�JT��−1�KT and
∏d
i=1�YiT�Ni can be obtained as in Proposition 1. The hy-

pothesis of the integrability lemma analogous to Lemma 3 are expressed using
the following functions of x ∈ �d:

Ãij�x� = ∑
α�=ei+ej


aijα 
xα−�ei+ej�� B̃i�x� = ∑
α �=ei


biα
xα−ei �

Lemma 4. For i� j = 1� � � � � d, if γ ∈ �d� αij ∈ �� satisfy B̃i�eγ1� � � � � eγd� <
∞�

αii + Ãii�eγ1� � � � � eγd� < νii
and

αij + Ãij�eγ1� � � � � eγd� ≤ νij for i �= j
then

E

(
sup
0≤t≤T

exp

(∫ t
0

{
d∑
i=1
βiZ

i
s + ∑

j≤i
αij
Z
j
s �Zis − δij�
1+ δij

}
ds+

d∑
k=1
γkZ

k
t

))
<∞�

for all βi ∈ �� i = 1� � � � � d�

Proof. Set

Nt = exp

(∫ t
0

(
d∑
i=1
βiZ

i
s + ∑

j≤i
αij
Z
j
s �Zis − δij�
1+ δij

)
ds+

d∑
k=1
γkZ

k
t

)
�
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As in Lemma 3, using Itô’s formula we find that

dNt = Nt

[
d∑
i=1

�βi + B̃i�eγ1� � � � � eγd� − µi�Zit

+
d∑
i=1

∑
j≤i

�αij + Ãij�eγ1� � � � � eγd� − νij�
Z
j
t �Zit − δij�
1+ δij

]
dt+ dMt�

where Mt is a local martingale. If the hypothesis of the lemma are satisfied
then the coefficients of �Zi�2 are strictly negative and the coefficients of ZiZj

are less than or equal to zero. So there exists a θ > 1 and A < ∞ so that
dNθ

t ≤ ANθ
tdt+ dMt� Now consider exp �−At�Nt and we can conclude that

d exp�−At�Nθ
t ≤ exp�−At�dMt�

Now proceed as in Lemma 3 to complete the proof. ✷

Using the above lemma the proof of the theorem stated below follows anal-
ogously. For x�y ∈ �d we write x < y if xi < yi for all i = 1� � � � � d and corre-
spondingly for x ≤ y� We also denote the vector �1� � � � �1� by the
symbol ��

Theorem 2. Suppose that the solution Y to (3.27) satisfies −R0 ≤ Yt ≤ R0
for all t. Suppose the power series for Aij and Bi are convergent in the set

�y ∈ �d � −R1 ≤ y ≤ R1� for some R1 > R0�

Suppose for all i� j that:

�H1�′ R1 > ��
d

da
Ãij�a��

∣∣∣∣
a=1

≤ 0 and
d

da
B̃i�a��

∣∣∣∣
a=1

≤ 0�

�H2�′ For some R > R0 that âii < −Ãii�R� and âij ≤ −Ãij�R� for i �= j�
Then the following duality relation holds between Y and Z for any T ≥ 0:

E
d∏
i=1

�YiT�Ni = E
d∏
i=1
y
ZiT
i exp�JT��−1�KT�

�H2�′ alone implies uniqueness in law for solutions to (3.27).

We conclude the paper with a two-dimensional example. To the best of
our knowledge uniqueness for this example is not covered in the literature.
Consider b�x�y� = �b1�x�y�� b2�x�y��T and

σ�x�y� =
(√�1+ εh1�x�y��x�1− x� 0

0
√�1+ εh2�x�y��y�1− y�

)
�

where h1� h2� b1� b2 have power series expansions convergent on ��x�y� � 
x
 <
1 + 2δ� 
y
 < 1 + 2δ� for some δ > 0. Suppose that the drift vector b�x�y�
points into the unit square 
0�1�2 at each point �x�y� in the boundary of the
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unit square. Then one may construct solutions �Xt�Yt� that lie inside the
unit square for all time. One such drift is found by considering the linear case
b�x�y� = �Ay −Bx�Cx −Dy�T where B > A > 0 and D > C > 0. This drift
occurs when considering the superprocess constructed over a motion process
that is a Markov chain on two states, when the coefficients A�B�C�D arise
from the Q matrix of the underlying Markov chain.

For sufficiently small ε > 0, the hypothesis �H2�′ is satisfied and unique-
ness in law holds.
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