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We consider a model of diffusion in random media with a two-way cou-
pling (i.e., a model in which the randomness of the medium influences the
diffusing particles and where the diffusing particles change the medium).
In this particular model, particles are injected at the origin with a time-
dependent rate and diffuse among random traps. Each trap has a finite
(random) depth, so that when it has absorbed a finite (random) number
of particles it is “saturated,” and it no longer acts as a trap. This model
comes from a problem of nuclear waste management. However, a very simi-
lar model has been studied recently by Gravner and Quastel with different
tools (hydrodynamic limits). We compute the asymptotic behavior of the
probability of survival of a particle born at some given time, both in the
annealed and quenched cases, and show that three different situations
occur depending on the injection rate. For weak injection, the typical sur-
vival strategy of the particle is as in Sznitman and the asymptotic behavior
of this survival probability behaves as if there was no saturation effect. For
medium injection rate, the picture is closer to that of internal DLA, as given
by Lawler, Bramson and Griffeath. For large injection rates, the picture is
less understood except in dimension one.

1. Introduction. We present a model of growth, diffusion and trapping
in a random environment. This model has three main features: a random
environment, an injection pattern and a two-way coupling between random
walks and the random environment (i.e., the random environment acts on the
particles by trapping, and the particles act on the environment by saturation
of the traps).

We describe rapidly the three ingredients of the model.

1. First, the random environment is given by a collection of i.i.d. integer val-
ued random variables η�x� at each site x of the lattice �d. Here η�x� is the
initial depth (or capacity) of the trap at site x, with the convention that the
site x is not a trap if the depth η�x� is zero.

2. Second, the injection pattern: at the origin of the lattice �d particles are
injected (or born) at a time-dependent rate. We will mainly study deter-
ministic injection patterns but most of the results are true with Poissonian
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injections. We will indicate later where random injection does make a
difference.

3. Finally, the interaction between the medium and the random walks: when
born, the particles perform continuous time simple random walks on the
cubic lattice, until they find a nonsaturated trap (i.e., visited by less par-
ticles than its initial depth). When meeting such a trap the particle stops
and stays forever in this trap. The depth of the trap is then decreased
by 1. When a trap is full or saturated, that is, when it has been visited by
as many particles as its initial depth, or equivalently when its depth has
reached zero, it no longer acts as a trap and particles can walk on it.

Our initial motivation came from a simplified version of a problem of con-
finement of heavy nucleotides in nuclear waste management by high-
performance clay barriers. This context suggested the random injection at one
point and the trapping and saturation mechanism. A more complete study
would ask for a model with interaction between the particles, and the pos-
sibility for “desorption” (i.e., for the particles to leave the traps after a long
time). But other various motivations can be proposed. For instance Funaki [8]
studies a related model (with a deterministic environment and no injection
and with an interactive dynamics) in the context of “melting” (see also [9]).

The model we examine is flexible. For instance, it encompasses two mod-
els recently studied. Namely, the Poissonian traps model of A. S. Sznitman
(see [17] and references within) and the internal diffusion limited aggregation
(IDLA) model introduced by Diaconis and Fulton [5] in a discrete time setting
and studied in the continous time setting by Lawler, Bramson and Griffeath
(see [12, 13]). The analog of the Poissonian traps model in the discrete context
of the cubic lattice corresponds in our model to the situation where satura-
tion of the traps is omitted. For instance, this would be the case where the
injection is limited to the injection of only one particle. Or equivalently, the
case when the initial depth of the traps is infinite, whatever the injection rate
is. IDLA deals with the case in which all sites are initially traps of depth
1 (no randomness of the medium), and the injection has a specific rate (i.e.,
the total number of particles born at time t is a Poisson process of constant
intensity). The trapping and saturation mechanism is sometimes called “noise
reduction” in the literature about growth models (see paragraph 4.1 of [11] in
the context of the Eden where what corresponds to the depth of the traps is
deterministic).

We have chosen to deal with the simplest possible description of the initial
randomness of the medium (i.e., i.i.d. distribution of initial depths of traps)
in order to use the very powerful machinery developed by Sznitman (see [15,
16, 17]). We had to adapt to the discrete context his latest version of the
“enlargement of obstacles” method (see [16, 17]) and this is the subject of
an appendix, which might be of independent use. We have limited ourself
to the case of bounded depths. In fact what we really had in mind was the
situation where η�x� could take only the values 0 (the site i is then not a trap)
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and m ∈ �. Situations where very deep traps would be present could produce
very different behaviors.

After this description of the model we now state some of the natural ques-
tions about this model. There are at least four types of such questions (ordered
from the simplest to the most difficult one). The first one is about the shape
of the saturated set.

1. What is the shape of the set of saturated traps?

The second question is about survival probabilities.

2. What is the proportion of live particles at time t? What is their age
distribution?

More precisely, what is the probability of survival of the kth born particle
until time t? This question can be asked first when k is fixed and then when
both k and t go to infinity.

The third question is about the location of live particles.

3. What is the typical path of the kth born particle if it is conditioned to live
until time t?

And finally the last question is about the collective behavior of the live
particles.

4. What is the profile of the cloud of live particles at time t?

Gravner and Quastel [9] deal with the fourth question. In the context of IDLA
(with zero-range dynamics), they prove among other things that when d = 2,
under an hydrodynamic scaling limit, the profile of the cloud of live parti-
cles converges weakly in probability to the solution of the one-phase Stefan
problem with a source at the origin.

The results of this paper concern the first two questions. The third one will
be treated elsewhere. Before describing our results, we recall that two main
lines of statements are possible: annealed and quenched. The first corresponds
to a statement in average and the second to an almost sure statement with
respect to the randomness of the medium. We will give results in both situa-
tions, though we believe that the most important are the quenched ones. The
main result of this paper is the existence of three very different situations
depending on the strength of the injection. We naturally call these the low,
medium and high injection regimes. Let us call N�t� the number of particles
that have been born at time t. The high injection regime is reached when
N�t� � td/2, both in the annealed and quenched situations. It differs from the
other two injection regimes by the fact that most particles will survive (will
not be trapped). In this high injection regime, we do not know too much about
the answer to question 1 (the shape of the saturated region), except when the
lattice has dimension 1 (this is reported elsewhere [3]).

Here we will concentrate on the two other regimes. We will see that in both
of them, there is a growing saturated zone, spherical with a radius growing as(�1/awd�N�t�)1/d, where a is the average depth of each obstacle and wd the
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volume of a sphere of unit radius. We will also see that in both these regimes,
the survival probability tends to zero, but at very different rates. The reason
for this difference can be roughly explained as follows. When the injection
rate is too low [N�t� � ln t in the quenched case and N�t� � td/�d+2� in the
annealed case], the saturated zone is too small to really matter for survival and
the saturation effect is irrelevant, so that the result is essentially given by the
survival probability in the Poissonian traps model without saturation. When
the injection rate is in the medium range [ln t � N�t� � td/2 in the quenched
case and td/�d+2� � N�t� � td/2 in the annealed case], the saturated zone is
large enough to modify the survival probability, which can now heuristically
be computed as the probability that a Brownian motion does not cross some
spherical moving boundary.

The main difficulty in the proof of the large deviation estimates of
Theorems 2 and 3, providing the quenched and annealed logarithmic asymp-
totics of the survival probability of a single particle, corresponds to the proof
of the upper bounds. For the quenched and annealed medium regimes, we
do not have a good enough control of the probability that the saturated set
of obstacles is not a ball. This means that the shape Theorem 1, answering
question 1 and stating that with “high” probability the set of saturated traps
corresponds to erasing obstacles within a ball of a certain radius, cannot be
used for the upper bounds, and therefore all possible shapes for the saturated
set at some given time have to be considered. With the exception of part (ii) of
the annealed Theorem 3, an understanding about the asymptotic behavior of
the principal Dirichlet eigenvalue of the discrete Laplacian on large sets with
random absorbing obstacles is needed. It is the case that the smallest possible
value that one can obtain for this principal Dirichlet eigenvalue, after erasing
a high enough predetermined amount of obstacles, corresponds to erasing a
ball. This is the content of part (ii) of Theorem 6, which is proved by means of
an adaptation of the latest version of the enlargement of obstacles technique
of Sznitman [16, 17]. An analogous analysis is required for the proof of the
upper bound of Theorem 2 in the low regime. We would like to remark that the
use of an adaptation of the latest version of the enlargement of obstacle, where
different scales are introduced for the so-called bad and density sets, has been
crucial to obtain the upper bounds for injection rates close to the critical ones
[N�t� ∼ ln t in the quenched case and N�t� ∼ td/�d+2� in the annealed situa-
tion]. As part of the proof of Theorem 6 mentioned above, a discrete version
of the Faber–Krahn inequality was needed (given in Lemma 13). It might be
the case that this precise estimate is known and has already been proved, but
we were unable to find the proper references.

The detailed answers to question 1 are given in Theorem 1. Theorems 2
and 3 deal with question 2, in the quenched and annealed situation, respec-
tively. The organization of the paper is as follows. In Section 2 we introduce
the model together with the notation that will subsequently be used, and
state the results. In the third section the shape Theorem 1 is proved. We first
prove a shape theorem for the discrete time version of our model, where a
particle is born only after the previous one has been trapped. This is then
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used to prove Theorem 1. The whole approach is an adaptation of the proof
of the shape theorem for IDLA in [13] to a context where the obstacles have
a random distribution and the injection pattern is variable. The only part
of the proof of the discrete time version model which presents an additional
difficulty with respect to [13] is the lower bound in the quenched case (see
Section 3.3). In Section 4, some key asymptotic estimates of principal Dirichlet
eigenvalues are obtained. Here the main tool is Sznitman’s enlargement of
obstacles adapted to the discrete context. A secondary ingredient proved here
is a version of Faber–Krahn inequality in the cubic lattice. In the last sec-
tion Theorems 2 and 3, describing the decay of the survival probability, are
proved. Both the asymptotic estimates of Section 4 and the shape Theorem 1
form the basis of this proof. In Appendix A, the cubic lattice version for ran-
dom walk of the enlargement of obstacle method of Sznitman is constructed.
Finally, in Appendix B some lemmas used in the proof of Theorems 2 and 3
of Section 5 are proved. This includes Lemma 20 concerning a decay estimate
for the survival time of a random walk in a ball with a time-dependent radius.

2. Notation and results. In what follows we will define a stochastic pro-
cess corresponding to the dynamics described in the introduction of random
walks in a lattice with some absorbing sites or obstacles. Let m be some nat-
ural number and define � 	= 
0� 
 
 
 � ā�. The state space representing the
obstacle configuration endowed with the natural topology will be denoted by
� 	= ��d . Let� be the corresponding Borel σ-algebra. Given an element η ∈ �
we denote its xth coordinate by η�x�. A site x such that η�x� ≥ 1 represents
a site with an obstacle present, while η�x� = 0 means that there is no obsta-
cle. Furthermore, let P be the probability measure on � 	= D��0�∞���d��
endowed with its Borel σ-algebra � , under which the coordinate process

Zn	 n ∈ �� represents independent simple random walks on �d each of
jump rate 1, and such that Zn�0� = 0. Let 
Tn ∈ �0�∞�	 n ∈ �� be a
sequence of strictly increasing times and define random walks 
Yn	 n ∈ ��
by Yn�t� 	= 0 if 0 ≤ t ≤ Tn and Yn�t� 	= Zn�t − Tn� if t > Tn. Let us
define N�t� 	= ∑∞

n=1 1�0� t��Tn�, where 1B is the indicator function of B ⊂ �,
representing the total number of random walks that have been born at time t.

We now proceed to define a collection of probability measures QN�η on
the space ���� �, indexed by the set of right continuous increasing functions
N from �0�∞� taking values on � and by the set of configurations η ∈ �,
and which we will call the random saturation process. Under each measure
QN�η, the coordinate process 
Zn	 n ∈ �� on � will represent the dynamics
of interacting random walks. In the sequel it is understood that any infimum
over an empty subset of � or � is infinity.

For a given n ∈ �, we define the stopping time

s1n 	= inf
t ≥ 0	 η�Yn�t�� > 0��
which is the first time that the random walk Yn visits an obstacle. Now let

t1 	= inf
s1n	 n ∈ ��
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This is the first time some obstacle has been visited. We now define

Y1
n�t� 	=

{
Yn�t�� if s1n > t1,
Yn�t ∧ s1n�� if s1n = t1.

(1)

Here we have stopped those random walks which hit a trap for the first time.
Let �1 	= 
n ∈ �	 s1n = t1� be the set of indices where the infimum in the
definition of T1 is attained. Similarly define �1 	= 
x ∈ �d	 x = Yn�s1n� for
some n ∈ �1�. It is easy to see that P-a.s. the set �1 has a unique element,
which we will denote by n1, and this is the index of the unique random walk
which is stopped in (1). Therefore P-a.s. the set �1 has a unique element x1
such that x1 	= Yn1

�s1n1�. We now update the obstacle configuration by defining

η1�x� 	=
{
η�x1� − 1� if x = x1,
η�x�� if x �= x1.

In other words, we decrease by 1 the site which has the trap which has been
visited first. Note again, that P-a.s. this site is unique. Now define recursively
for k ≥ 2, n ∈ � and x ∈ �d the stopping times skn and tk, and the processes
ηkt �x� and Yk

m�t�, as follows:
skn 	= inf
t ≥ 0	 ηk−1�Yk−1

n �t�� > 0��
tk 	= inf
skn	 n ∈ �\��1 ∪ · · · ∪ �k−1���

�k 	= 
n ∈ �	 skn = tk��
�k 	= 
x ∈ �d	 x = Yk

n�skn� for some n ∈ �k��

Yk
n�t� 	=

{
Yk
n�t�� if skn > tk,

Yk
n�t ∧ skn�� if skn = tk,

ηk�x� 	=
{
ηk−1�x� − 1� if x ∈ �k,
ηk−1�x�� otherwise.

Note that P-a.s. the sets �k and �k, for k ≥ 1, each have a unique ele-
ment. From the fact that the total number of random walks 
Ym	 m ∈ ��
in movement at a given time t is finite, it is not difficult to check that for
each n ∈ �, as k → ∞ the sequence of processes Yk

n converges P-a.s. on
the Skorokhod topology of �. Let us call such a limit XN�η

n . We then define
XN�η 	= 
XN�η

n 	 n ∈ ��. Note that under the probability measure P, this pro-
cess represents random walks which move freely until they visit the first site
x which has received less than η�x� visits, at which time they are frozen. To
this process there corresponds a probability measure QN�η under which the
coordinate process Z 	= 
Zn	 n ∈ �� on � is distributed as XN�η under P. It
is defined by QN�η�A� 	= P�Xη ∈ A� for every set A ⊂ � . In the sequel, we
will say that Z under the probability measure QN�η is a random saturation
process on an obstacle configuration η and driven by an injection N. We will
denote by τn 	= inf
t ≥ 0	 Zn�s� = Zn�t� for s ≥ t�, the time at which the
random walk Zn is frozen.
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We will now endow the obstacle state space ����� with a product probabil-
ity measure µ defined by

µ�η�x� = α� = pα�

where
∑
α∈� pα = 1. Note that a random saturation process with injection

N�t� = �t� (where for x ∈ �, �x� represents the closest integer greater than
or equal to x) and an obstacle configuration with law µ such that � = 
0�1�
and p0 = 0, p1 = 1, corresponds closely to the continuous time version of
internal diffusion limited aggregation (IDLA) introduced in [13]. In fact, the
only difference is that in the continuous time version of IDLA, the birth times

Tn	 n ∈ �� are sums of exponentially distributed random variables. In con-
trast, a random saturation process with injection N�t� = 1 and obstacle con-
figuration with a law given by µ is a random walk on a lattice where sites
are absorbing independently of each other with some positive probability. This
model was studied in [1, 2] using an adaptation to the lattice of the first ver-
sion of the enlargement of obstacle method developed by Sznitman [15].

Now let

ζ�x� t� 	= ∑
n∈�

1Zn�t��x��(2)

where for A ⊂ �d, we define 1A	 �d → 
0�1� as the indicator function of the
set A. Here ζ�x� t� represents the number of random walks at time t in site
x. Then define

St 	= 
x ∈ �d	 ζ�x� t� ≥ η�x� > 0�
(3)

This set corresponds to the sites x of the cubic lattice �d which have an obsta-
cle, and which have been visited at least η�x� times. We will call it the set of
saturated obstacles at time t. In the sequel, for x ∈ �d, we define the norm

�x� 	=
√
x21 + · · · + x2d, where for 1 ≤ i ≤ d�xi is the ith coordinate of x. Also,

given two real valued functions f1�t� and f2�t�, the notation f1�t� � f2�t�
will mean that limt→∞�f1�t�/f2�t�� = 0. The main result of the third section
of these notes is the following shape theorem.

Theorem 1. Consider a random saturation process on an obstacle config-
uration η and driven by an injection N. Let η be distributed according to
some product measure µ and call a 	= µ�η�x�� the average depth of obsta-
cles at time 0. Define Br 	= 
x ∈ �d	 η�x� > 0 and �x� < r�. Assume that
1 � N�t� � td/2/ ln t and that a > 0. Then:

(i) For every ε > 0� QN�µ-a.s. there exists a t0 ≥ 0 such that

B
�1−ε�

(
�1/awd�N�t�

)1/d ⊂ St ⊂ B
�1+ε�

(
�1/awd�N�t�

)1/d �
whenever t ≥ t0.
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(ii) µ-a.s. the following is true: for every ε > 0� QN�η-a.s. there exists a t0 ≥ 0
such that

B
�1−ε�

(
�1/awd�N�t�

)1/d ⊂ St ⊂ B
�1+ε�

(
�1/awd�N�t�

)1/d �
whenever t ≥ t0.

Remark 1. It is not difficult to see that if N is distributed according to
some Poisson process R of time-dependent rate λ�t�, a.s. with respect to the
distribution of R the annealed and quenched versions of parts (i) and (ii) of
Theorem 1, with N replaced by

∫ t
0 λ�s�ds in the statement, are true.

Note that in the above shape theorem, at time t, the volume of the limit-
ing sphere times the average depth of obstacles, equals the total number of
particles N�t� that have been born. This means that the proportion of frozen
random walks converges to 1.

Let k�t�	 �0�∞� −→ � be an increasing function of time and let g�t� 	= Tk�t�
be the birth time of the random walk Zk�t�. In the third section of these notes,
we will be interested in understanding the asymptotic behavior of the survival
probability of the random walkZk�t� with law given byQN�η, both when k�t� is
fixed as time goes to infinity and when k�t� goes to infinity together with time.
To state the results of this section let us introduce some notation. Let λd be
the principal Dirichlet eigenvalue of the Laplacian operator divided by 2d on
the ball of unit radius and wd the volume of the ball. Define p 	= µ�η�x� > 0�,
a 	= µ�η�x�� and denote by pc�d� the critical probability of site percolation
on �d. In the sequel we assume that p > 0. The first theorem is a quenched
version of the asymptotics of the survival probability.

Theorem 2. Consider a random saturation process on an obstacle config-
uration η and driven by an injection N. Assume that 0 < N�t� � td/2−ε for
some ε ∈ �0�1�, that lim supt→∞ k�t� > ā and that t− g�t� � 1. Then:

(i) Assume that 1 � N�t� � �t − g�t��d/2. If ln�t − g�t�� � N�t� or p >
1 − pc�d� then

lim
t→∞

1
hM�k� t� ln QN�η�τk�t� > t� = −1� µ-a.s.�(4)

where hM�k� t� 	= λd�awd�2/d ∫ tg�t��ds/N�s�2/d�.
(ii) If N�t� � ln�t− g�t�� and p < 1 − pc�d� then

lim
t→∞

1
hL�k� t� lnQN�η�τk�t� > t� = −1� µ-a.s.�

where hL�k� t� = λd�wd� ln�1 − p���2/d�t− g�t�/ ln�t− g�t��2/d�.

Remark 2. The condition N�t� � t−ε+d/2 for some ε > 0, is necessary
to ensure the validity of the shape Theorem 1. On the other hand, the less
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important condition lim inf t→∞ k�t� ≥ ā is included to rule out the possibility
that the random walk born at time g�t� = Tk�t� dies at the origin as soon as
it is born. This might be the case when k�t� is some constant smaller than ā,
which is the maximum value of the obstacle capacity η at each site.

Let us briefly discuss the meaning of the above result. For the sake of
clarity, let us consider the case in which k�t� is some constant greater than
ā. When p < 1 −pc, we know that with µ-a.s. there exists a unique trap free
cluster on the lattice �d. The above theorem shows that for N�t� � t−ε+d/2,
for some ε > 0, there appear to be two different injection regimes when p <
1 − pc. There is the regime which we will denote by quenched low regime,
when N�t� � ln t, given by part (ii). Here subscript L in hL stands for low.
The survival strategy for random walks in this regime consists essentially
of traveling fast to a distance of order t to some region of the lattice free of
obstacles and of radius of the order of �ln t�1/d. This is exactly the survival
strategy of a Brownian motion on �d with Poissonian obstacles (see [17]) or of
a simple random walk on the lattice with site obstacles distributed according
to some product measure (see [2]). There is a second injection regime for ln t �
N�t� � t−ε+d/2, which we call quenched medium regime, given by part (i) of
Theorem 2. The subscript M in hM stands for medium. Here random walks
are provided with a better survival strategy than going far to find natural
clearings, as in the low regime. Namely, by the shape Theorem 1, the high
enough injection produces a central clearing larger than those that can be
found far away. Thus, the typical survival strategy of a particle is to stay in
this central region. When p > 1−pc, so that µ-a.s. there is no infinite trap free
cluster, Theorem 2 states that fort any injection rate satisfying the condition
N�t� � t−ε+d/2, the decay of the survival probability is as in the medium
regime. For the purpose of illustrating the above description, let us consider
the special situation in which the injection rate is of the form

N�t� = �ln t�α

for α ≥ 0. In this case, the logarithm of the probability that a randomwalk born
at some fixed time survives up to time t is going to decay like some function
h�t� = t/�ln t�β, where β is a function of α. Figure 1 shows the dependence
of β with respect to α. Note that when α > 1, we are in the medium regime
and h = hM. On the other hand, for 0 < α < 1 we are in the low regime, and,
depending on the value of the percolation parameter p, the decay function h
takes the values hM (for p > 1−pc) or hL (for p < 1−pc). The second result
of Section 4 is an annealed version of Theorem 2. As before, we are assuming
that p > 0.

Theorem 3. Consider a random saturation process in an obstacle con-
figuration η and driven by an injection N. Assume that g�t� < t. Assume
that N�t� � td/2−ε for some ε ∈ �0�1�, that lim supt→∞ k�t� > ā and that
t− g�t� � 1. Then:
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Fig. 1. Dependence of β with respect to α.

(i) Assume that 1 � N�t� � �t − g�t��d/2. If �t − g�t��d/�d+2� � N�t� or
p = 1, then

lim
t→∞

1
hM�k� t� lnQN�µ�τk�t� > t� = −1�

where hM�k� t� 	= λd�awd�2/d ∫ tg�t��ds/N�s�2/d�.
(ii) If N�t� � �t− g�t��d/�d+2� and p < 1, then

lim
t→∞

1

h̃L�k� t�
lnQN�µ�τk�t� > t� = −1�

where h̃L�k� t� = �wd� ln�1−p���2/�d+2�(�d+2�/2)(2λd/d)d/�d+2��t−g�t��d/�d+2�.

The main feature of the quenched Theorem 2 is still in this annealed
theorem, namely the presence of two injection regimes for N�t� satisfying
N�t� � t−ε+d/2 for some ε > 0. The role of pc is here played by p = 1. Further-
more, this time the transition between the two regimes occurs at the injection
rate N�t� ∼ td/�d+2�. What we call here low regime, when N�t� � td/�d+2�,
corresponds to the studying the decay properties of the annealed survival
probability of a Brownian motion in �d with Poissonian obstacles [6] or a sim-
ple random walk on the lattice with each site absorbing independently of the
others [6, 1]. This means that the survival strategy of a practice in the low
regime is to stay in a natural clearing of radius t1/�d+2� produced at the ori-
gin. What we call annealed medium regime, when td/�d+2� � N�t� � t−ε+d/2,
gives the same decay as the quenched medium regime with particles taking
advantage of the central clearing produced by saturation.

3. Shape theorems. The object of this section is to prove the shape
Theorem 1. We will follow [13] closely. As there, we will first consider a dis-
crete time version of the random saturation process. This will be a process on
the set of obstacles, representing the saturated ones. We will prove a quenched
and annealed shape theorem for this process which will subsequently be used
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to prove Theorem 1. Except for the lower bound of the quenched theorem, the
whole proof follows the arguments given in [13].

3.1. Definition of discrete time version of random saturation. As in the
previous section, we define a probability measure µ on � = ��d as the product
measure µ such that

µ�η�x� = α� = pα�

where
∑
α∈� pα = 1 and η ∈ �. For every η ∈ � we can define the random

subset of �d,

O�η� = 
x ∈ �d	 η�x� > 0��

which represents the sites with “active” obstacles. Now consider a discrete time
random walk on the lattice �d starting at the origin and which is killed upon
touching an obstacle in O�η�. Furthermore, assume that when the random
walk is killed at the site x, the state η ∈ � suffers a transition to a state ηx

where

ηx�y� =
{
η�y�� if y �= x,
η�x� − 1� if y = x.

Call η1 = ηx and adopt the convention that η1 = η whenever the random walk
is never killed. Similarly define η2 = ηx1. Continuing in this way we can define
a discrete time Markov chain ηn with state space � and with initial condition
η0 ∈ �. Call Pη0 the corresponding probability measure on the path space ��

with the product topology. Note that this Markov process has δ0 as unique
invariant measure, where 0 ∈ � is such that 0�x� = 0 ∀ x ∈ �d. Also note that
this Markov process has transition probabilities p�n� ζ�� η� ζ ∈ � given by

p�n� ζ� =

0� if ζ �= η and ζ �= ηx,
h0�O�η��∞�� if ζ = η,
h0�O�η�� x�� if ζ = ηx.

Here hy�A�∞� is the probability that a random walk starting at y ∈ �d never
hitsO�η� and hy�A�B� represents the probability that the same random walk
hits A at B ⊂ A.

In the next subsections we want to prove the following theorems.

Theorem 4. Let a = µ�η�x�� be the average depth of obstacles. For each
η ∈ �, let Br = 
x ∈ O�η�0��	 �x� ≤ r�. Then for every ε > 0 there exists an
n0 ∈ � such that

Pµ�Bn�1−ε� ⊂ Dawdn
d ⊂ Bn�1+ε� for n ≥ n0� ≥ 1 − ε�

where wd is the volume of the unit ball and Dk 	= O�η0� −O�ηk�.
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Theorem 5. Let a = µ�η�x�� be the average depth of obstacles. For each
η ∈ �, let Br = 
x ∈ O�η�0��	 �x� ≤ r�. Then µ-a.s. the following statement is
true: for every ε > 0 there exists an n0 ∈ � such that

Pη�Bn�1−ε� ⊂ Dawdn
d ⊂ Bn�1+ε� for n ≥ n0� ≥ 1 − ε�

where wd is the volume of the unit ball and Dk 	= O�η0� −O�ηk�.

Remark 3. From the above theorem we can conclude that

Pη

(
lim
n→∞ηn = 0

)
= 1� µ-a.s.

In what follows we prove Theorems 4 and 5, separating each proof in to an
upper and a lower bound part. Since the upper bound part of Theorem 4 is very
similar to that of Theorem 5, we omit it. The lower bound part of the annealed
Theorem 4 is a straightforward adaptation of the method of [13]. This is the
content of the next subsection. On the other hand, the lower bound part of
the proof of Theorem 5 requires more careful estimates. This is presented in
Section 3.3.

3.2. Proof of the discrete time annealed lower bound. Using [13] here we
will show the following.

Lemma 1. Let a and Br be defined as in Theorem 1. Then for every ε > 0
there is an n0 ∈ � such that

Pµ�Bn�1−ε� ⊂ Dawdn
d�1+ε� for n ≥ n0� ≥ 1 − ε


Proof. We adopt the same notation as in [13]. Let us callXi�t� the random
walk which produces the transition ηi−1 → ηi and let us remove the killing.
Now, for z ∈ O�η0�, define the following stopping times:

σi = inf
t≥0


t	 Xi�t� ∈ O�ηi−1���

τi� z = inf
t≥0


t	 Xi�t� = z��

τn = inf
t≥0


t	 Xi�t� �∈ Bn�


First, note that 
Bn�1−ε� �⊆ Dawdn
d�1+ε��. On the other hand the event that site

z does not belong to Dk can be written as

Fz�k� =
k⋂
i=1


σi < τi� z�


Furthermore, the event that at time awdnd�1 + ε� a set A is not a subset of
Dawdn

d�1+ε� is contained in ⋃
z∈A

Fz(5)



1482 G. BEN AROUS AND A. RAMÍREZ

Therefore, to prove the lemma it is enough to show that

∞∑
n=1

Pµ

( ⋃
z∈Bn�1−ε��η0�

Fz�awdnd�1 + ε��
)
< ∞


At this point let us define the following random variables:

Nz�w� =
awdn

d�1+ε�∑
i=1

θτi� z≤σi�w��

Lz�w� =
awdn

d�1+ε�∑
i=1

θσi≤τi� z<τn�w��

Mz�w� =
awdn

d�1+ε�∑
i=1

θτi� z<τn�w�


Here w ∈ ��d , θA�w� equals 1 if w ∈ A and 0 otherwise and z ∈ Bn�1−ε�.
Then, to estimate the probability of the event (5) it is enough to estimate
Pµ�Nz ≤ ā�. But Nz ≥ Mz −Lz, and

Pµ�Nz ≤ a� ≤ Pµ�Mz ≤ α+ ā� +Pµ�Lz ≥ α�

for any α ≥ 0. Now clearly,

Eµ�Mz� = awdn
d�1 + ε�p0�τz < τn��

where px is the probability distribution associated to a random walk starting
from x, τz is the hitting time of this random walk to site z and τn = min
t	Xt �∈
�Bn� is the exit time of the ball �Bn = 
x	 �X� ≤ n�. On the other hand we can
bound Lz by L̃z, where

L̃z = ∑
y∈ �Bn

η�y�θyτz<τn

and θyA is the indicator function of event A for a random walk starting from
point y. Note that

Eµ�L̃z� = a
∑
y∈ �Bn

py�τz < τn�


Now define Gn�y� z�, the Green’s function of a random walk stopped upon
leaving �Bn, by

Gn�y� z� = Ey

[
τn−1∑
t=0

θ
Xt=z�

]
� z ∈ �Bn
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Now since p0�τz < τn� = Gn�0� z�/Gn�z� z� and py�τz < τn� = Gn�y� z�/
Gn�y�y�, we have

Eµ�Mz� = awdn
d�1 + ε�Gn�0� z�

Gn�z� z� �

Eµ�L̃z� = a
∑
y∈ �Bn

Gn�y� z�
Gn�z� z� 


At this point we invoke the following lemmas proved in [13] and [12].

Lemma 2. Fix ε > 0. For n sufficiently large and z ∈ �Bn�1−ε�,∑
y∈ �Bn

Gn�y� z� ≤ wdn
dGn�0� z�


Lemma 3. Let z ∈ �Bn and 
z� = max
�z��1�. Then

Gn�0� z� = 2
π
ln

n


z� + o

(
1


z�
)

+O

(
1
n

)
� d = 2

= 2
d− 2

1
wd

�
z�2−d − n2−d� +O�
z�1−d�� d ≥ 3

(6)

Moreover, if z ∈ �Bn�1−ε�, where ε > 0, we have

Gεn�0�0� ≤ Gn�z� z� ≤ G2n�0�0�
(7)

Lemma 4. If z ∈ �Bn, then
n2 − �z�2 ≤ Ez�τn� ≤ �n+ 1�2 − �z�2


Lemma 5. Let S be a finite sum of independent indicator random variables
with mean µ. For any 0 < γ < 1/2, and for all sufficiently large µ,

P��S− µ� ≥ µ1/2+γ� ≤ 2e−�1/4�µ2γ 


Now, from Lemma 2 it follows that Eµ�Mz� ≥ �1 + ε
2�Eµ�L̃z�. But note from

inequalities (6) and (7) of Lemma 3 and from Lemma 4 that

Eµ�L̃z� =a Ez�τn�
Gn�y�y� ≥ aEz�τn�

G2n�0�0�
≥ a

G2n�0�0��n2 − �z�2�

(8)

Therefore,

Eµ�L̃z� ≥
awd�d− 2�εn2� if d ≥ 3,

aπε
n2

lnn
� if d = 2.

(9)
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Next, from Lemma 5 we have

Pµ�Mz −Eµ�Mz� ≤ −E�Mz�5/6� ≤ 2e−�1/4�Eµ�Mz�2/3

≤ 2e−�1/4�Cdn �

where Cd = �awd�d−2�ε�2/3 if d ≥ 3 and Cd = �aπε�2/3 if d = 2. But for n big
enough it is true that Eµ�Mz� −Eµ�Mz�5/6 ≥ �1 + ε

4�Eµ�L̃z� + ā. Therefore,

Pµ�Mz ≤
(
1 + ε

4

)
Eµ�L̃z� + ā� ≤ 2e−Cdn/4
(10)

Similarly we have Pµ�L̃z ≥ Eµ�L̃z� +Eµ�L̃z�5/6� ≤ 2e−�1/4�Eµ�L̃z�2/3 ≤ 2e−Cdn/4.
From which we conclude that

Pµ�L̃z ≥
(
1 + ε

4

)
Eµ�L̃z�� ≤ 2e−Cdn/4
(11)

As in [13], the lower bound of Lemma 1 now follows easily from inequalities
(10) and (11). ✷

3.3. Proof of the discrete time quenched lower bound. Here we will prove
the following lemma.

Lemma 6. Let a and Br be defined as in the theorem. Then µ-a.s. the fol-
lowing statement is true: for every ε > 0 there is an n0 ∈ � such that

Pη�Bn�1−ε� ⊂ Dawdn
d�1+ε� for n ≥ n0� ≥ 1 − ε


In the sequel we will follow the notation of the previous section. First, note
that it is enough to prove that for every ε > 0,

∞∑
n=1

Pη

( ⋃
z∈Bn�1−ε��η0�

Fz�awdnd�1 + ε��
)
< ∞� µ-a.s.(12)

Now, the left-hand side is bounded by
∑
z∈ �Bn�1−ε� Pη�Nz = 0�. Therefore, it is

enough to prove that there is an α ≥ 0 such that for every ε > 0,∑
z∈ �Bn�1−ε�

�Pη�Mz ≤ α+ ā� +Pη�Lz ≥ α�� < ∞� µ-a.s.

Now, since Mz does not depend on the obstacle configuration, we conclude in
analogy with (10) that for every ε > 0,

Pη

(
Mz ≤

(
1 + ε

4

)
Eµ�L̃z� + ā

)
≤ 2e−Cdn �

where Cd is a positive constant depending on the dimension and ε. Thus, the
proof of the convergence of the series in (12) will be completed once we show
the following.
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Lemma 7.

sup
z∈ �Bn�1−ε�

Pη�L̃z ≥ �1 + ε�Eµ�L̃z�� ≤ f�n�η�e−�ε2wd�d−2�/4Kεva�n2� µ-a.s.�(13)

where a 	= µ�η�y��, v 	= µ�η2�y��, Kε 	= supz	�z�≤1−ε
∫
y	�y�≤1�dy/�y − z�d−2�,

and

lim
n→∞

log f�n�η�
n2

= 0


Proof. Define the random variable

Yn�z = L̃z −Eµ

(
L̃z

)



Now let zn be a sequence such that zn ∈ �Bn�1−δ�, where δ > 0. Then, by
Chebyshev’s inequality, we have

lim sup
n→∞

1
n2

log Pη
(
Yn�zn

≥ εn2
) ≤ lim sup

n→∞
1
n2

log Eη

(
eλYn�zn

) − ελ�(14)

where λ > 0. To complete the proof of Lemma 7 we will need the following
two auxiliary lemmas.

Lemma 8. Let zn ∈ �Bn�1−δ�, where δ > 0. Then

lim sup
n→∞

1
n2

log Eη�eλYn�zn �

= �Mλ − 1 − aλ� lim sup
n→∞

1
n2

∑
y∈ �Bn

py�τzn < τn�� µ-a.s.�

where a = µ�η�y�� andMλ = Eµ�eλYn�z�.

Lemma 9. Let zn ∈ �Bn�1−δ�, where δ > 0. Then

lim sup
n→∞

1
n2

∑
y∈ �Bn

py�τzn < τn� ≤ Kδ�

where Kδ 	= supz	�z�≤1−δ
∫
y	�y�≤1�dy/�y− z�d−2�.

Before proving these lemmas we show how Lemma 7 is implied by them
and inequality (14). First, note that we can conclude that for zn ∈ �Bn�1−δ� and
λ > 0 (the case in which Mλ − 1 − aλ ≥ 0),

lim sup
n→∞

1
n2

log Pη�Yn�zn
≥ εn2� ≤ �Mλ − 1 − aλ�Kδ − ελ


However, for λ small enough we have �Mλ − 1 − aλ� ≤ λ2v. Thus,

lim sup
n→∞

1
n2

log Pη�Yn�zn
≥ εn2� ≤ λ2vKδ − ελ
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Choosing λ = ε/2Kδv, we conclude that whenever zn ∈ �Bn�1−δ� and ε > 0, one
has that

lim sup
n→∞

1
n2

logPη�Yn�zn
≥ εn2� ≤ − ε2

4Kδv
� µ-a.s.

Now, from the inequality (8) we conclude that

lim sup
n→∞

1
n2

logPη

(
L̃z ≥

(
1 + ε

wd�d− 2�
a

)
Eµ�L̃z�

)
≤ − ε2

4Kδv
� µ-a.s.

Clearly this implies Lemma 7. ✷

It remains to prove the auxiliary Lemmas 8 and 9.

Proof of Lemma 8. First note that

logEη�eλYn�zn � = ∑
y∈ �Bn

(
log�1 + py�τzn < τn��eλη�y� − 1��

− aλpy�τzn < τn�)

But since �x− log�1 + x�� ≤ x2, we have∣∣∣∣∣ ∑

y∈ �Bn

(
log�1 + py�τzn < τn��eλη�y� − 1�� − py�τzn < τn��eλη�y� − 1�)∣∣∣∣∣

≤ C
∑
y∈ �Bn

p2
y�τzn < τn��

where C = supy�eλη�y� − 1�2. Our first step will be to show that∑
y∈ �Bn

p2
y�τzn < τn� ≤ Kdfd�n�(15)

for some constant Kd and some function fd�n� depending only on the dimen-
sion and such that fd�n� 	= n if d �= 2 and f2�n� 	= n2/ lnn. The case d = 1
is trivial. In fact it is enough to bound the probabilities in the sum of the
right-hand side of inequality (15) by 1. In the sequel Kd will denote different
constants depending only on the dimension. For the case d = 2 we employ the
following inequality:∑

y∈ �Bn
p2
y�τzn < τn� ≤ ∑

y∈ �B2n

p2
0�τy < τ2n�
(16)

Now, it can be proved that for every β < 2 one has that p0�τy < τ2n� =
�ln�2n��−1�ln�2n�−ln �y�+o��x�−α�+O��lnn�−1�� (see [12]). This together with
the estimate of inequality (16) implies that there is a constant K2 such that
when d = 2, one has ∑

y∈ �Bn
p2
y�τzn < τn� ≤ K2

n2

lnn
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In particular this proves inequality (15) in the case d = 2. Finally, we consider
the case d ≥ 3. Note that py�τzn < τn� ≤ py�τzn < ∞� = G�y� z�/G�0�0�,
whereG�y� z� is the Green function of the symmetric simple random walk. But
G�x� = ad�x�2−d +O��x�−d� for some constant ad depending on the dimension
(see [12]). We can then conclude that∑

y∈ �Bn
p2
y�τzn < τn� ≤ Kd

∫
y	 �y�≤n

1
�y− zn�2d−4 ∧ 1 dy

for some constant Kd. We have∑
y∈ �Bn

p2
y�τzn < τn� = Kd

1
nd−4

∫
y	 �y�≤1 �y−zn�≥1/n

1
�y− zn/n�2d−4dy+Kdwd

≤ Kd

1
nd−4

∫
y	 1/n≤�y�≤2

1
�y�2d−4dy+Kdwd

≤ Kdn�

which proves (15) in the case d ≥ 3.
At this point note that inequality (15) implies that

lim sup
n→∞

1
n2

logEη�eλYn�zn �

= lim sup
n→∞

1
n2

∑
y∈ �Bn

py�τzn < τn��eλη�y� − 1 − aλ�


Therefore it is now enough to prove that

lim
n→∞

1
n2

∑
y∈ �Bn

py�τzn < τn��eλη�y� −Mλ� = 0� µ-a.s.(17)

Now if Sn = �1/n2�∑y∈ �Bn py�τzn < τn��eλη�y� −Mλ�, we have

pµ��Sn� ≥ α� ≤ 1
α2n4

Nλ

∑
y∈ �Bn

p2
y�τzn < τn��

where Nλ = µ�eλη�y� −Mλ�2 and α > 0. However, since
∑
y∈ �Bn p

2
y�τzn < τn� ≤

Kdn, it follows that

∞∑
n=1

pµ�Sn ≥ α� < ∞


By Borel–Cantelli, since α is arbitrarily small, (17) follows. ✷

Proof of Lemma 9. For dimensions d = 1�2 it is trivial that �1/n2�∑y∈ �Bn
py�τzn < τn� is bounded by a constant independent of n. For dimensions d ≥ 3
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note that
1
n2

∑
y∈ �Bn

py�τzn < τn� ≤ Kd

1
n2

∫
y	 �y�≤n

dy

�y− zn�d−2

= Kd

∫
y	 �y�≤1

dy

�y− zn/n�d−2

which is bounded. The lemma now follows. ✷

3.4. Proof of the discrete time quenched upper bound. Here we will prove
the following lemma.

Lemma 10. Let a and Br�η� be defined as in Theorem 4. Then, µ-a.s. the
following statement is true: for every ε > 0 there is an n0 ∈ � such that

Pη�D�ηawdnd� ⊂ Bn�1+Kε� for n ≥ n0� ≥ 1 − ε�

where K is a constant.

Proof.
Step 1
 Here we will prove that for every ε > 0 there is a n0 such that

Pη

( ∑
x∈ �Bcn

(
η0�x� − ηawdnd�x�) ≤ εK0n

d for n ≥ n0

)
≥ 1 − ε�(18)

where K0 = awd2d+1. First, note that the lower bound of Lemma 6 implies
that µ-a.s. the following statement is true: for every ε > 0 there is an n0 ∈ �
such that

Pη

( ∑
x∈ �Bn�1−ε�

η0�x� ≤ ∑
x∈ �Bn�1−ε�

�η0�x� − ηawdnd�x�� for n ≥ n0

)
≥ 1 − ε


Now, ∑
x∈�d

�η0�x� − ηawdnd�x�� = awdn
d


Therefore µ-a.s. the following statement is true: for every ε > 0 there is an
n0 ∈ � such that

Pη

( ∑
x∈ �Bcn

�η0�x� − ηawdnd�x��

≤ awdn
d − ∑

x∈ �Bn�1−ε�

η0�x� for n ≥ n0

)
≥ 1 − ε


(19)

However, by the strong law of large numbers we know that

lim
n→∞

1
nd�1 − ε�d

∑
x∈ �Bn�1−ε�

η0�x� = awd
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Therefore, the following statement is µ-a.s. true: for every ε > 0 there is an
integer n2 such that ∑

x∈ �Bn�1−ε�

η0�x� ≥ awdn
d�1 − ε�d − ε�(20)

when n ≥ n2. Therefore, combining (19) with (20) we conclude that µ-a.s. the
following statement is true: for every ε > 0 is an n0 such that

Pη

( ∑
x∈ �Bcn

�η0�x� − ηawdnd�x�� ≤ awdn
d − awdn

d�1 − ε�d + ε for n ≥ n0

)
≥ 1 − ε


The claim (18) follows now from the inequality awdnd − awdn
d�1 − ε�d + ε ≤

awdn
dε2d+1.

Step 2
 Let us relabel the particlesXij that exit Bn during the time interval
from 0 towdnd asYj and consider the embedded growth processD�ij�. Choose
k0 = �n�1 + ε1/d�� + 1 and introduce the quantity

Zk�j� = ∑
x∈D�ij�∩Jk0+k

η0�x� = ∑
x∈Oc�ηij �∩Jk0+k−1

η0�x��

where Jk 	= O�η0� ∩ 
x	 k ≤ �x� < k + 1�. This quantity represents the
number of dead levels up to the rescaled time j for the obstacles contained in
the shell Jk0+k. Now, define the average of Zk�j� as νk�j� = Eη�Zk�j��, k ≥ 1.
Clearly ν1�j� ≤ j and νk�0� = 0 for k ≥ 1. We shall now prove the following
inequality for each j and k:

νk�j� ≤ nd−1
[
J

a

j

k
ε�1−d�/dn1−d

]k
�(21)

where J < ∞.
First, condition on the time τ at which Yl+1 exits �Bn. This gives

νk�l+ 1� − νk�l� = Eη�hYl+1�τ��O�ηil��Jk0+k��

Now, any walk stopping in Jk0+k must remain within the subset of sites not
containing obstacles while it hits the immediately preceding shell Jk0+k−1.
Therefore, this is at most

Eη

(
hYl+1�τ��Jk0+k−1�O

c�ηil��
) ≤ max

y∈Jn
Eη

(
hy�Jk0+k−1�O

c�ηil��
)

(22)

At this point we make use of the following lemma, proved in [13].

Lemma 11. Let Tk = min
t ≥ 1	 X�t� ∈ Jk� be the hitting time of Jk.
There exists a constant J < ∞ such that

hy�Jk�B� ≤ J�B�C1−d�

where j < k and C = k− j.
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Applying the uniform upper bound of the above lemma to inequality (22)
we obtain

νk�l+ 1� − νk�l� ≤ J
1

�nε1/d�d−1Eη��Jk0+k−1 ∩Oc�ηil���

= J

�nε1/d�d−1
νk−1�l�
a




Summing this inequality over l = 0� 
 
 
 � j− 1 we get

νk�l� ≤ J

a

( 1
nε1/d

)d−1 j−1∑
l=1
νk−1�l�


Iteration in k with j fixed yields

νk�l� ≤
(
J

a

(
1

nε1/d

)d−1)k−1
jk

k!



Step 3
 We shall now establish the upper bound from inequality (21) of
Step 2 and inequality (18) of Step 1. By the last inequality we know that µ-
a.s. the following it true: for every ε > 0 there is an event F and an integer
n0 such that Pη�F� ≥ 1− ε, where F is the event that for n ≥ n0 the number
of dead levels outside the ball �Bn in the set of obstacles O�η0� is smaller than
or equal to εK0n

d, where K0 = awd2d+1. Therefore, for K ≥ K0 we have that
the following statement is µ-a.s. true: for every ε > 0 there exists an n0 ∈ �
and an event F such that

Pη
(
D�awdnd� �⊆ B�n�1 +Kε1/d��F) ≤ Pη

(
Zη′ ��k0εnd�� ≥ 1

)
�

Pη�F� ≥ 1 − ε�
(23)

whenever n ≥ n0, where K0 = 2d+1awd and n′ = �n�K− 1�ε1/d� − 1. Now, by
the Chebychev inequality, the right-hand side of the inequality (23) is bounded
by

νn′
(�K0εn

d�) ≤ nd−1
[
J1

�k0εnd�
n�K− 1�ε1/d − 1

ε�1−d�/dn1−d

]n′

≤ nd−1
(
J2

K

)n′

for a suitable constant J2. Therefore, we have that the following statement is
µ-a.s. true: for every ε > 0 there exists an n0 ∈ � and an event F such that if
K > J2, ∑

n≥n0
Pη

(
D
(
wdn

d
) �⊆ B�n�1 +Kε1/d��F) ≤ ∑

n≥n0
e−αn < ∞�

Pη�F� ≥ 1 − ε
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So by Borel–Cantelli we conclude that µ-a.s. the following statement is true:
there exists an event F such that,

Pη

(
lim sup
n→∞


D�wdnd� �⊆ B�n�1 +Kε1/d�� ∩F
)

= 0�

Pη�F� ≥ 1 − ε
 ✷

3.5. Proof of the shape theorem. In this section we will prove Theorem 1
of Section 1. We will follow the notation there introduced. In the sequel, ν will
denote an arbitrary probability measure on the space of obstacle configurations
� = ��d .

Proof. Consider the coordinate process Z = 
Zn	 n ∈ �� on � with a law
given by QN�ν. Note that for each n ∈ �, the process Zn represents a particle
born at time Tn. Following [13], to analyze the set of saturated obstacles St
[see definition (3)] at time t, it will be more convenient to consider a slightly
different particle system but which generates the same probability measure
QN�ν on the space of trajectories on the obstacle configurations. First, recall
that ζ�x� t� represents the total number of particles at site x at time t [see
definition (2) of Section 2]. In this modified model the dynamics of particles is
governed by the following rule:

Consider the depth η�x� of an obstacle at site x and the number of particles
ζ�x� t� at the same site and at time t. Let i1 < i2 < · · · < iζ�x� t� be the indices
of the particles present at site x at time t. Then the first η�x� particles (i.e.,
those with indices i1� 
 
 
 � iη�x�) remain at x, while the rest (i.e., those with
indices iη�x�+1� 
 
 
 � iζ�x� t�) move like free random walks.

Let ηn�t� 	= 
ηn�x� t�	 x ∈ �d� �η∞�t� 	= 
η∞�x� t�	 x ∈ �d�� be the obstacle
configuration filled by the first n particles (all the particles) at time t,

ηn�x� t� 	= �η�x� −
n∑
k=0

δx�Zk�t���+�

η∞�x� t� 	= �η�x� −
∞∑
k=0

δx�Zk�t���+


Note that

ηn�x� t� ≤ η∞�x� t� for each t ≥ 0� n ≥ 1�

where we have defined on � the following partial order: if η� ζ ∈ � then η ≤ ζ
if and only if η�x� ≤ ζ�x� for every x ∈ �d. On the other hand note that

lim
t→∞

ηn�t� = ηn�(24)

where the convergence is in distribution and ηn is the discrete time stochas-
tic process at time n defined in Section 1 with initial condition η0 = η. In
particular if we define

En� t 	= O�η0� −O�ηn�t���
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the limit of equation (24) implies that

lim
t→∞

En� t = Dn�(25)

where the convergence is in distribution and Dn is a set which coincides with
the set of saturated obstacles for the discrete time model defined in Theorem 4.
Note also that for every t > 0 and n ∈ �,

En� t ⊂ St
(26)

We are now ready to prove the upper and lower bounds of Theorem 1. Since
the proofs of parts (i) and (ii) of Theorem 1 are very similar, we omit the proof
of part (ii).

Proof of the upper bound of part (i). Let t0 > 0. Note that by the limit
of equation (25), we have

QN�µ

(
St �⊆ B�1+ε��N�t�/awd�1/d for t ≥ t0

)
= QN�µ

(
EN�t�� t �⊆ B�1+ε��N�t�/awd�1/d for t ≥ t0

)
≤ Pµ

(
DN�t� �⊆ B�1+ε��N�t�/awd�1/d for t ≥ t0

)



Now, the upper bound of Theorem 4 implies that this last expression can be
made arbitrarily small by choosing t0 big enough.

Proof of the Lower Bound of Part (i). By the inclusion (26), we have{
B�1−ε��N�t�/awd�1/d �⊆ St

}
⊂
{
B�1−ε��N�t�/awd�1/d �⊆ E�1−ε/2�N�t��t

}
Now, comparingE�1−ε/2�N�t��u withD�1−ε/2�N�t� we see that the right-hand mem-
ber of the above inclusion is dominated by{

B�1−ε��N�t�/awd�1/d �⊆ D�1−ε/2�N�t�
}

∪
{
E�1−ε/2�N�t��t �= D�1−ε/2�N�t�

}

(27)

By the lower bound for the discrete time stochastic process proved in
Theorem 4, the first term of the above expression fails eventually in t with
QN�µ probability 1. For the second term, we define as S the event that one of
the �1 − ε/2�N�t� particles takes at least a time �ε/2d�t to exit from the set
B

�1+ε�
(
N�t�/awd

)1/d . Then one can dominate the second term of (27) by


S� ∪
{
St �⊆ B�1+ε��N�t�/awd�1/d

}

(28)

In fact, if St ⊂ B�1+ε��N�t�/awd�1/d and E�1−ε/2�N�t��t �= D�1−ε/2�N�t�, then there
must be at least one particle which was born before a time t′, defined by the
equation N�t′� = �1 − ε/2�N�t�, which is active at time t, and which has
not exited the ball Bt�1+ε� at time t. But since N�t� � td/2, it follows that
t′ ≤ �ε/2d�t. Now, the second term of expression (28) fails eventually in t with
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Q
N�µ
O probability 1 on account of the previously proved upper bound. Finally,

note that the probability of occurrence of the first term is bounded by

N�t�P0

(
TB�1+ε��N�t�/awd�1/d

≥ ε

2d
t

)
≤ N�t�e−C

(
t/N�t�2/d

)
�

where P0 is the probability measure corresponding to a simple random walk
starting from the origin, TD is the exit time of this random walk from a set D
andC is a constant depending only on ε. By the assumptionN�t� � �td/2/ ln t�,
the proof is now completed via an application of Borel–Cantelli. ✷

4. Asymptotic behavior of principal eigenvalues. This section is
devoted to the proof of a Faber–Krahn-type theorem using a version of the
enlargement of obstacle method of Sznitman [17]. More precisely, consider the
principal Dirichlet eigenvalue of the discrete Laplacian operator on a subset of
a box �−�t�� �t��d∩�d consisting of sites x ∈ �−�t�� �t��d∩�d such that η�x� = 0,
where 
η�x�	 x ∈ �d� are i.i.d. random variables with a common law µ such
that µ�η�x� = 0� = 1−p�0 < p < 1. In essence, we will show that the optimal
way (in the sense of minimizing the principal Dirichlet eigenvalue) of deleting
more than �ln t�1/d absorbing sites is asymptotically as t diverges, a sphere.
In contrast, the deletion of less than �ln t�1/d absorbing site gives the same
asymptotics as no deletion at all. This result will be subsequently applied
in the derivation of Theorems 2 and 3 of this paper about the logarithmic
asymptotic behavior for large times of the survival probability of particles on
the random saturation process.

4.1. Notation and results. Let h be a positive real number and consider
some subset U of the rescaled lattice h�d. Let V�x�	 U → �0�∞� be some
positive potential. Define the operator LU�V corresponding to a simple random
walk of total jump rate 1 on U with Dirichlet boundary conditions and killed
at rate V, by its action on the space C0�U� of continuous functions from h�d

to � with support on U,

LU�Vf�x� 	= 1
h2

1
2d

∑
e∈��e�=1

�f�x+ he� − f�x�� + 1
h2
V�x�f�x�
(29)

Here f ∈ C0�U�� x ∈ U∩h�d and � is the set of canonical basis elements on �d.
Note that LU�V is a bounded operator on C0�U�. Let RU�V

h� t 	= exp�−tLU�V� be
the corresponding contraction semigroup. Call λhV�U� the principal Dirichlet
eigenvalue of the operator (29) properly extended to the corresponding Hilbert
space. Now if the potential V�x� does not vanish identically for d = 1�2, we
can define an equilibrium measure, Green function and capacity as follows.
Given a finite set K ⊂ U and a potential V�x�, we will denote by ehK�U�V
the unique equilibrium measure on K with respect to the operator LU�V. We
will denote by ghU�V the corresponding Green function and by capV�U�h�K� the
capacity of K given by ehK�U�V�K�.
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For a given configuration of obstacle depth η ∈ ��d , we will denote by
	n�η� the set of configurations obtained from η after deleting n obstacles.
Thus, for every ς ∈ 	n�η� we have

∑
x∈�d�η�x� − ς�x�� = n. Now consider

the space ϒ 	= 
0�1��d . This represents a space of site configurations on the
lattice: sites in state 1 have an obstacle and are absorbing and those in state 0
are empty and nonabsorbing. Next, given ξ ∈ ϒ, call the subset of ε�d without
obstacles 
 ε�ξ� 	= 
x ∈ ε�d	 ξε�x� = 0�. Also, for a given subset A ⊂ �d and
scale ε > 0 we define Aε 	= A ∩ εZd. We can now, given an open subset U
of �d, define the principal Dirichlet eigenvalue on the corresponding random
perforated domain as λεξ�Uε� 	= λεV�Uε∩
 ε�ξ��, whereV = 0. We also define a

mapping σ 	 ��d → ϒ by σ�η��x� = 1 if η�x� ≥ 1 and σ�η��x� = 0 if η�x� = 0.
Finally, for given η ∈ ��d , and open set U ⊂ �d we adopt the convention
λη�U� 	= λ1σ�η��U1�.

Theorem 6. On ��d consider a product measure µ such that µ�η�x� ≥
1� = p, where η ∈ ��d and 0 < p < 1. Let f�t�	 �0 → ∞� → �0�∞� be an
increasing function such that f�t� � t�wd be the volume of a ball on �d of unit
radius and λd the principal Dirichlet eigenvalue of the Laplacian operator on
this ball times 1/2d. Then if a 	= µ�η�, the following statements are true:

(i) Suppose that f�t� � �ln t�1/d. Then
lim
t→∞

�ln t�2/d inf
ς∈	awdf

d�t��η�
λς��−t� t�d� = c�d�p�� µ-a.s.�

where c�d�p� 	= λd�wd� ln�1 − p���2/d.
(ii) Suppose that f�t� � �ln t�1/d. Then

lim
t→∞

f�t�2 inf
ς∈	awdf

d�t��η�
λς��−t� t�d� = λd� µ-a.s.

(iii) Suppose that f�t� � �ln t�1/d. Then for every function g�t�	 �0�∞� →
�0�∞�, such that �ln t�1/d � g�t� � f�t� and ε > 0, there are constants C1 and
C2 such that

µ

(
f�t�2 inf

ς∈	awdf
d�t��η�

λς��−t� t�d� ≤ λd�1 − ε�
)

≤ C1e
2d ln�t/g�t��∨1−C2g�t�dε2�

whenever t ≥ t0�ε�g/f� where t0�ε�g/f� depends only on ε and the quo-
tient g/f.

4.2. Enlargement of obstacles on the lattice. The object of this subsection is
to define a version of the enlargement of obstacles technique which will be the
main tool in the proof of Theorem 6 for the asymptotic behavior of the principal
Dirichlet eigenvalue of the discrete Laplacian on �d. Our construction is a
translation to the simple random walk of Sznitman’s second enlargement of
obstacle technique (see [16], [17]) for Brownian motion. The two main results
of this construction are two eigenvalue shift estimates (Theorems 7 and 8) and
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a volume estimate (Theorem 9). Their proof are a straightforward adaptation
of Sznitman’s version for Brownian motion and are presented in Appendix A.

Let us first introduce some notation and define some concepts that will be
needed for the construction of the so-called density set, which is the main
object of the enlargement of obstacle method. Given ε > 0, define ϒε 	=

0�1�ε�d . We will call the obstacle configuration attached to ξ ∈ ϒ and ε > 0
the state ξε ∈ ϒε given by ξε�x� 	= ξ�x/ε� for x ∈ ε�d.

The density set �ε�ξ� will be defined in terms of a scale ε > 0 and the
obstacle configuration attached to ξ. Furthermore, its definition will depend
on two parameters L ≥ 2 (related to an L-adic decomposition of �d) and
δ ≥ 0 (related to a Wiener-type test defining the density set), and three scales
defined through the functions rβ� rγ� rα	 �0�∞� → �0�∞� such that as ε → 0,
ε � rβ�ε� � rγ�ε� � rα�ε� � 1.

To this end we define a succession of scales by the cubic lattices �dk 	=
�1/Lk��d, for k ≥ 0. They generate a partition of �d into boxes C�k�

z 	=
z + �1/Lk��0�1�d, indexed by z ∈ �dk . Note that each z ∈ �dk has an L-adic
expansion as z = i0 + i1/L+ · · · + ik/Lk where i0� 
 
 
 � ik ∈ 
0� 
 
 
 �L−1�d. We
define the truncation of z ∈ �dk to scale k

′ < k as �z�k′ 	= i0+i1/L+· · ·+ik′/Lk
′
.

Given j ∈ 
0� 
 
 
 �L − 1�d, we define an extension of z ∈ �dk to �dk+1 by
z · j 	= i0 + i1/L + · · · + ik/L

k + j/Lk+1. Furthermore, we say that z $ z′

whenever z = i0 + i1/L + · · · + ik/L
k and z′ = i′0 + i′1/L + · · · + i′k′/Lk

′
with

k ≥ k′ and ij = i′j for 1 ≤ j ≤ k′.
Next, let us introduce the notation nβ�ε� 	= �ln�1/rβ�ε��/ ln�L��, nγ�ε� 	=

�ln�1/rγ�ε��/ ln�L�� and nα�ε� 	= �ln�1/rα�ε��/ ln�L��. Note that rβ�ε� ≈
L−nβ�ε�, rγ�ε� ≈ L−nγ�ε� and rα�ε� ≈ L−nα�ε�. Now fix L ≥ 2 and k ≥ 0. We then

define for z ∈ �dk the subset of sites of �C�k�
z �ε having obstacles and rescaled

by Lk as

K
�k�
z 	= Lk ·

{
x ∈ �C�k�

z �ε	 ξε�x� = 1
}



Note that K�k�
z is a subset of the rescaled cubic lattice εLk�d.

We are now in a position to define the quantitative Wiener criterion. For a
given obstacle configuration ξ ∈ ϒ, scale ε > 0, functions rγ and rα (defining nγ
and nα, respectively) and parameters L ≥ 2, δ > 0 we will say that z ∈ �dnγ�ε�
is a density index if ∑

nα�ε�≤k≤nγ�ε�
capε� �z�k ≥ δ�nγ�ε� − nα�ε��
(30)

Here capε� �z�k 	= capV�εLk�d� εLk�K�k�
�z�k� and V�x� = 0 for d ≥ 3, V�x� = 1 for

d = 1�2. If the criterion (30) does not hold, but the box K�k�
z is not empty, we

will say that z ∈ �dnγ�ε� is a rarefaction index. At the smaller scale defined by

nβ�ε�, we say that z ∈ �dnβ�ε� is a bad index if the box C
�nβ�
z contains at least

one obstacle, and if z $ z′, where z′ is a rarefaction index. Furthermore, we
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define the density set �ε�ξ� and the bad set �ε�ξ�, subsets of the rescaled
lattice ε�d, as

�ε�ξ� 	= ⋃
z∈�d

nγ �ε�
z density index

(
C

�nγ�
z

)ε
�

�ε�ξ� 	= ⋃
z∈�d

nβ�ε�
z bad index

(
C

�nβ�
z

)ε



We proceed now to state the three theorems that will be proved in this
section. They are the cubic lattice translation of corresponding results by
Sznitman on �d. For a given subset U of ε�d we denote by �U�ε 	= ∑

x∈U
the number of sites within U. The first one says that for small ε > 0 the
eigenvalue λεξ�Uε� does not change too much if the density set �ε�ξ� is erased
from Uε.

Theorem 7. There exists a constant c�d� > 0 such that for every function
hρ�ε�	 �0�∞� → �0�∞� that satisfies hρ�ε� � ��d+2�/�c�d�δ lnL���rγ�ε�/rα�ε��
and everyM> 0 one has,

lim
ε→0

1
hρ�ε� supξ�U

(
λεξ�Uε� ∧M− λεξ�Uε\�ε�ξ�� ∧M) = 0�

where the supremum is taken over ξ ∈ ϒ and open subsets U of �d.

The next theorem also provides an eigenvalue control but at a larger scale.
To state it we need to introduce the concepts of clearing and forest boxes. For
ε ∈ �0�1�, ξ ∈ ϒ and r ∈ �0�1/4� we define the clearing boxes as the boxes
C

�0�
z , z ∈ �d such that

εd
∣∣∣(C�0�

z

)ε
\�ε�ξ�

∣∣∣
ε

≥ rd


Otherwise C�0�
z will be called a forest box. Now define the clearing set as

�ε�ξ� 	= ⋃
z	 C�0�

z
clearing box

(
C

�0�
z

)ε

and for a given function R�ε�	 �0�1� → �d, its neighborhood,

�R�r�ξ� 	= 
z ∈ ε�d	 dist�z��ε�ξ�� ≤ R�ε���

where for x ∈ ε�d andA ⊂ ε�d we have defined dist�x�� � 	= infy∈A
sup1≤i≤d
�xi − yi��.
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Theorem 8. There exist constants c3 ∈ �0�∞�, c4 ∈ �1�∞�, r0 ∈ �0�1/4�
such that whenever R/4r > c4, L−nα�ε� < r < r0 andM> 0, one has

lim
ε→0

1
h2�ε�

sup
ξ�U

(
λεξ�Uε� ∧M− λεξ�Uε ∩ �R�r� ∧M) ≤ 1�

where h2�ε� 	= e−c3�R/4r� and the supremum is taken over ξ ∈ ϒ and open
subsets U ⊂ �d.

The last theorem gives a control on the volume of the bad set �ε�ξ�. We
first need to define the following constants:

c8�d�L� =


L2

3d + 1
� when d ≥ 3,

L2

10c lnL
� when d = 2,

δ0 =


3

8LdG�1/2L� � when d ≥ 2,

1
2
Cap
0�� when d = 1,

where c is some constant, G��x− y�� 	= g�x�y�� g�x�y� is the Green function
of the continuous Laplacian divided by 2d on �d and with potential V = 1 for
d = 2 and V = 0 for d ≥ 3 and Cap
0� is the capacity with respect to one-half
the continuous Laplacian on � of the point 0.

Theorem 9. Assume that L is large enough so that c8�d�L� > 1 and δ <
δ0�d�L�. Then the following statements are true:

(i) If d = 1, then for any ξ ∈ ϒ, the set �ε�ξ� is empty.
(ii) If d ≥ 2, then

lim sup
ε→0

1
hκ�ε� sup

z∈�d� ξ∈ϒ
εd
∣∣∣(C�0�

z

)ε
∩ �ε�ξ�

∣∣∣
ε
< ∞�

where

hκ�ε� 	=
(
rγ

rα

)�2−ln�3d+1�/ lnL��1−δ/δ0�1/ lnL(rβ
ε

)d−2



For the applications that will follow, we introduce the term an admissi-
ble collection of parameters to denote a collection of functions rα� rβ� rγ�R� r,
hρ	 �0�∞� → �0�∞� and parameters L�δ such that

ε � rβ � rγ � rα � 1�

L ≥ 2 with L such that c8�d�L� > 1� when d ≥ 2�

δ > 0� with δ < δ0�d�L��

hρ�ε� � d+ 2
c�d�δ lnL

rγ�ε�
rα�ε� �
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rγ

rα

)�2−ln�3d+1�/ lnL��1−δ/δ0��1/ lnL�(rβ
ε

)d−2
� 1�

rα < r < r0 and r � R


Finally we would like to point out that the fact that the scale of the bad set,
given by rβ, can be chosen much smaller than the scale of the density set, given
by rγ, will turn out to be essential to state Theorem 6 with sharp hypothesis
�f�t� � ln t or ln t � f�t��. This is a particular feature of Sznitman’s second
construction of the enlargement of obstacle technique, in contrast to the first
one [15].

4.3. Proof of asymptotic estimates. We now proceed to prove Theorem 6.
First, we need to introduce some more notation. For ε > 0 and η ∈ � (recall
that � 	= ��d ), we define ηε ∈ � ε�d by ηε�x� 	= η�x/ε�, where x ∈ ε�d. For η1
we drop the subscript and write η and with a slight abuse of notation we will
write �ε�η� 	= �ε�σ�η�� and �ε�η� 	= �ε�σ�η��. Also, if U ∈ ε�d we define
�U�η, the total obstacle depth in U of the configuration ηε, by

�U�η = ∑
x∈U

ηε�x�


Now, for a given subset K ⊂ ε�d we define its boundary δK 	= 
z ∈ Kc	
�z − y� = 1 for some y ∈ K� and its closure �K 	= K ∪ δK. Finally, we define
for r > 0, the ball Br 	= 
x ∈ �d	 �x� < r�. Now, for the proof of Theorem 6 the
following three lemmas will be needed. The first one is an a adaptation to the
cubic lattice of Lemma 4.4.4 of Sznitman [17] (see also Lemma 2.1 of [18]).

Lemma 12. Let ε 	= �ln t�−1/d and η ∈ �. Consider an admissible collection
of parameters rγ� rα� rβ�R� r� hρ� δ�L, defining the density set �ε�η�, the bad
set �ε�η� and clearing set �R�r�η� of Uε, where U 	= �−tε� tε�d. Assume that
1 � R�ε� � rβ�ε��ln t�1/d, and that η ∈ � is distributed according to some
probability measure µ such that µ�η�x� ≥ 1� = p, with p ∈ �0�1�. Let 
t be
the collection of blocks z+ �0� �R�ε���d, z ∈ �d, which intersect the set Uε. Let

G 	= 
supB∈
t ε
d�B\��ε�η�∪�ε�η���ε ≤ d

� ln�1−p�� + εd

g�ε�d �where ε � g�ε� � rβ�ε�
R�ε� .

Then for ε small enough,

µ�Gc� ≤ e−�� ln�1−p��/2��1/g�ε�d�

The next lemma is along the lines of Lemma 2.6 of [1] and is a Faber–Krahn-
type inequality for the discrete Laplacian on the cubic lattice.

Lemma 13. Let K ⊂ ε�d. Then

λε�K� ≥ λd

(
wd

εd� �K�ε

)2/d
1

1 +Cdε
2λε�K� �(31)

where Cd 	= 3d22d−1.



ASYMPTOTIC SURVIVAL PROBABILITIES 1499

The final lemma, which will be applied only for parts (ii) and (iii) of
Theorem 6, gives an estimate of the obstacle density in the cubic lattice at
scales larger than ln t and distributed according to some product measure.

Lemma 14. On � consider a product measure µ such that µ�η�x�� = a,
with 0 < a < ∞. Let g�t�	 �0�∞� → �0�∞� be an increasing function such
that g�t� � �ln t�1/d. Let 
Dz 	= z + �0� g�t��d, z ∈ ��−1�1�d��g/t�� denote the
partition of disjoint semiopen boxes of the interval �−t� t�d. Then there are
constants C1 and C2 such that for every ε > 0 one has

µ

( ⋃
z∈��−1�1�d��g/t�

{
�Dz ∩ �d�η
g�t�d ≤ a�1 − ε�

})
≤ C1e

2d ln�t/g�t��∨1−C2g�t�dε2

Proof of Theorem 6 (i). The upper bound,

lim sup
t→∞

�ln t�2/d inf
ς∈	awdf

d�t��η�
λς��−t� t�d� ≥ c�d�p�� µ-a.s.

follows from the inequality inf ς∈	awdf
d�t��η� λς��−t� t�d� ≤ λη��−t� t�d� and [2].

We next prove the lower bound,

lim inf
t→∞

�ln t�2/d inf
ς∈	awdf

d�t��η�
λς��−t� t�d� ≥ c�d�p�� µ-a.s.

For this, we set ε 	= �ln t�−1/d and consider an admissible collection of param-
eters rγ� rα� rβ�R� r� hρ� δ�L, defining the density set �ε, the bad set �ε and
clearing set �R�r of Uε, where U 	= �−tε� tε�d. We choose rγ in such a way
that

rγ�ε� � 1
f�t�(32)

and R�ε� so that

1 � R�ε� � min

{
1

h
1/d
κ �ε�

� rβ�ε��ln t�1/d
}

(33)

We also let r constant. Now let ε > 0 and consider the event,

�t� ε 	=
{
η ∈ ϒ	 �ln t�2/d inf

ς∈	awdf
d�t��η�

λς��−t� t�d� ≤ c�d�p�
�1 + ε�2/d

}



By the eigenvalue estimates of Theorems 7 and 8 of the enlargement of obsta-
cle subsection, for t big enough, Vt�ε is contained in

� 1
t� ε 	=

{
η ∈ ϒ	 inf

ς∈	awdf
d�t��η�

λε��R�ε�� r\�ε�ς��

≤ c�d�p�
�1 + ε�2/d + hρ�ε� + h2�ε�

}
�
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where h2�ε� 	= e−c3�R/r�. At this point let �t�ς� be the collection of connected
components of the set �R�ε�� r\�ε�ς�. Note that

� 1
t� ε =

{
η ∈ ϒ 	 inf

ς∈	awdf
d�t��η�

inf
B∈�t�ς�

λε�B� ≤ c�d�p�
�1 + ε�2/d + hρ�ε� + h2�ε�

}



Therefore, by Lemma 13 we can conclude that for t big enough, the set � 1
t� ε is

contained in

� 2
t� ε 	=

{
η ∈ ϒ 	 sup

ς∈	awdf
d�t��η�

sup
B∈�t�ς�

εd� �B�ε ≥ d

� ln�1 − p��
1 + ε

�1 + o�ε��

}



Now, each set B ∈ �t�ς� is the union of boxes of side rγ�ε� and hence �δB�ε ≤
d!�ε/rγ�ε���B�ε. Therefore the set � 2

t� ε is contained in

� 3
t� ε 	=

{
η ∈ ϒ 	 sup

ς∈	awdf
d�t��η�

sup
B∈�t�ς�

εd�B�ε ≥ d

� ln�1 − p��
1 + ε

�1 + o�ε��

}



Consider now the collection 
c� t of blocks z + ��0� cR�ε��d�ε, z ∈ �d, which
intersect ��−t/�ln t�1/d� t/�ln t�1/d�d�ε. Note that for c ≥ a/rd it is true that the
set � 3

t� ε is contained in

� 4
t� ε 	=

{
η ∈ ϒ 	 sup

ς∈	awdf
d�t��η�

sup
B∈
c� t

εd�C\�ε�ς��ε ≥ d

� ln�1 − p��
1 + ε

�1 + o�ε��

}



However, by the volume estimate, Theorem 9 of the previous section, it is true
that

�C\�ε�ε ≤ �C\��ε ∪ �ε��ε +R�ε�dε−dhκ�ε��
whenever t is big enough. Now, by our choice (33) of R�ε� we have limt→∞
R�ε�dhκ�ε� = 0. Therefore, the set � 4

t� ε is contained in

� 5
t� ε 	=

{
η ∈ ϒ 	 sup

ς∈	awdf
d�t��η�

sup
B∈
c� t

εd�C\��ε ∪ �ε��ς��ε

≥ d

� ln�1 − p��
1 + ε

�1 + o�ε��

}



We can now conclude that for t big enough one has that � 5
t� ε is contained in

� 6
t� ε 	=

{
η ∈ ϒ 	 sup

ς∈	awdf
d�t��η�

sup
B∈
c� t

εd�C\��ε ∪ �ε��ς��ε

≥ d

� ln�1 − p�� �1 + ε/2�
}
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Each density and bad box has at least one obstacle. Therefore for every ς ∈
	awdf

d�t��η� and C ∈ 
c� t one has

εd��C\��ε ∪ �ε��ς��ε − �C\��ε ∪ �ε��η��ε�
1

rβ�ε�d ā ≤ awdf
d�t�

Now, by the choice (32), we have limt→∞ f�t�rβ�ε� = 0. We can finally conclude
that for t big enough the event �t� ε is contained in

� 7
t� ε 	=

{
η ∈ ϒ 	 sup

B∈
c� t
εd�C\��ε ∪ �ε��η��ε ≥ d

� ln�1 − p�� �1 + ε/4�
}



By Lemma 12 this implies that there is a function g�ε�	 �0�∞� → �0�∞� such
that R�ε��1/rβ�ε�� � 1

g�ε� � �ln t�1/d and such that for t big enough,

µ��t� ε� ≤ e−�� ln�1−p��/2��1/g�ε�d�


Choosing g�ε� close enough to �ln t�−1/d, setting t = 2n, n ≥ 1, in the above
inequality, using Borel–Cantelli and using the fact that inf ς∈	awdf

d�t��η� λς
��−t� t�d� is decreasing in t, the proof is complete. ✷

Proof of Theorem 6 (ii). In the sequel of this proof we set ε 	= 1/f�t�.
We begin by showing the following upper bound:

lim sup
t→∞

f�t�2 inf
ς∈	awdf

d�t��η�
λς��−t� t�d� ≤ λd� µ-a.s.(34)

Note that for this it is enough to prove that for every ε > 0, µ-a.s. there is a
sequence of configurations 
ςt ∈ 	awdf

d�t��η��t≥0 such that

lim sup
t→∞

f�t�2λςt��−t� t�d� ≤ λd
�1 − ε�2 
(35)

Now, to find such a sequence, since f�t� � �ln t�1/d, note that for every ε > 0
there exist constants C1 and C2 such that

µ

( ∥∥�Bf�t��1−ε��1
∥∥
η

wdf�t�d�1 − ε�d ≥ a

�1 − ε�d
)

≤ C1e
−C2f�t�dε2 


It follows that for every ε > 0, µ-a.s. there is a t0 > 0 such that∥∥�Bf�t��1−ε��1
∥∥
η

≤ awdf�t�d for t ≥ t0


This implies that for every ε > 0, µ-a.s. there is a t0 > 0 and a sequence of
configurations 
ςt ∈ 	awdf�t�d�t≥0 such that when t > t0 there are no obstacles
inside a ball of radius f�t��1 − ε� for the configuration ςt. Hence,

lim sup
t→∞

f�t�2λςt��−t� t�d� ≤ lim sup
ε→0

λε��B�1−ε��ε�


By Lemma 2.4 of [1], inequality (35) is proved.
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We now proceed to prove the following lower bound:

lim inf
t→∞

f�t�2 inf
ς∈	awdf

d�t��η�
λς��−t� t�d� ≥ λd� µ-a.s.(36)

Call � the set of configurations where inequality (36) is not satisfied: if η ∈
� then lim inf t→∞ f�t�2 inf ς∈	awdf�t�d �η� λς��−t� t�d� < λd. We will show that
µ�� � = 0.

Note that if η ∈ � there are sequences 
tn > 0�n≥1 and 
ςtn ∈ 	awdf�tn�d
�η��n≥1 such that

lim sup
n→∞

f�tn�2λςtn
(�−tn� tn�d) < λd
(37)

At this point we consider an admissible collection of parameters rα� rγ� rβ�
R� r� δ�L and hρ� hκ defining the density set �ε, bad set �ε and clearing set
�R�r ofUε, whereU 	= �−tε� tε�d. Since we are assuming that f�t� � �ln t�1/d,
note that we can always choose the scale of the density set in such a way
that f�t�rγ�ε� � �ln t�1/d. We choose R�ε�� r and hκ�ε� so that R�ε� � 1,
Rd�ε�hκ�ε� � 1 and r is constant. We also define εn 	= 1/f�tn�. Now, by
the eigenvalue estimates (Theorems 7 and 8) of the enlargement of obstacle
method of Section 4.2, it follows that

lim sup
n→∞

λεn��R�εn�� r\�εn
�ςtn�� < λd
(38)

Now note that the set ��R�εn�� r\�εn�ςtn�� is a union of boxes of side rγ�ε�.
Each one of them has d!rγ�ε�d−1ε−�d−1� boundary points. Thus, �δ��R�εn�� r\�εn
�ςtn���ε ≤ d!�ε/rγ�ε�����R�εn�� r\�εn

�ςtn��ε. Then, an application of Lemma 13
and of inequality (38) implies that if η ∈ � there are sequences 
tn > 0�n≥1
and 
ςtn ∈ 	awdf�tn�d�η��n≥1 such that

lim inf
n→∞ εdn��R�r\Dεn

�ςtn��εn > wd
(39)

Now, since we have made a choice of rγ such that f�t�rγ�ε� � �ln t�1/d, there
exists a function g�t�	 �0�∞� → �0�∞� such that �ln t�1/d � g�t� � f�t�rγ�ε�.
By Lemma 14, the condition g�t� � �ln t�1/d implies that for every ε > 0 one
has that

lim inf
t→∞

inf
z∈��−1�1���g/t�

�Dz ∩ �d�η
g�t�d ≥ �1 − ε�� µ-a.s.�(40)

where Dz 	= z+ �0� g�t��d. Now, the condition g�t� � f�t�rγ�ε�, ensures that
each density box of the set �R�r, having a size of order rγ�ε�, is equal to the
union of boxes of size g/f [scale at which we measure the obstacle density
of ε�d in (40)]. Therefore, for each obstacle depth configuration η, the set
��R�r\�ε� has �f/g�d�1/fd���R�r\�ε�ε boxes of side g/f. Thus, for every ε > 0
we get that

lim inf
t→∞

inf
ς∈	awdf�t�d �η�

��R�r\�ε�ς��n
��R�r\�ε�ς��ε

≥ a�1 − ε�� µ-a.s.(41)
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Call �ε the set where the above inequality is satisfied. Since µ�� ∩� c
ε � = 0, it

is enough to show that for some ε > 0 one has µ�� ∩�ε� = 0. So let η ∈ � ∩�ε,
where ε will be chosen later. Then,

lim sup
t→∞

sup
ς∈	awdf�t�d �η�

��R�r\Dε�ς��ς
��R�r\�ε�ς��ε

= lim
t→∞

sup
ς∈	awdf�t�d �η�

∑
z∈�d	 �C�0�

z �ε⊂�R�r
��C�0�

z �ε\�ε�ς��ς
��R�r\�ε�ς��ε

≤ lim
t→∞

sup
ς∈	awdf�t�d �η�

εd��R�r�εwdR�ε�d supz∈�d ��C�0�
z �ε\�ε�ς��ς

��R�r\�ε�ς��ε
(42)

≤ lim
t→∞

sup
ς∈	awdf�t�d �η�

εd
wd
rd

��R�r\�ε�ς��εR�ε�d supz∈�d ��C�0�
z �ε\�ε�ς��ς

��R�r\�ε�ς��ε

≤ lim
t→∞

wd
rd
εdR�ε�d sup

η∈��dz∈�d

∥∥∥�C�0�
z �ε\�ε�ς�

∥∥∥
ς

= 0�

where in the last inequality we have made use of Theorem 9 which enables us
to control the number of obstacles in the rarefaction set. Combining inequality
(41) with the limit in (42) it follows that whenever η ∈ � ∩ �ε, one has

lim inf
t→∞

inf
ς∈	awdf�t�d �η�

��R�r\�ε�ς��η − ��r� r\�ε�ς��ς
��R�r\�ε�ς��ε

≥ a�1 − ε�


By the volume estimate (39), it now follows that for each η ∈ � ∩�ε there are
sequences 
tn > 0�n≥1 and 
ςtn ∈ 	awdf�tn�d�η��n≥1 such that

lim inf
n→∞ εdn

(��R�εn�� r\�εn
�ςtn��η − ��R�εn�� r\�εn

�ςtn��ςtn
) ≥ av�1 − ε��(43)

where v 	= lim supn→∞ εdn��R�εn�� r\�εn
�ςtn��εn > wd. But by definition it is true

that

lim sup
n→∞

εdn
(��R�εn�� r\�εn

�ςtn��η − ��R�εn�� r\�εn
�ςtn��ςtn

) ≤ awd
(44)

Inequalities (43) and (44) are incompatible whenever ε is chosen in such a
way that v�1 − ε� > wd. Hence, whenever 0 < ε < �v−wd�/v, the set � ∩ �ε
is empty. This concludes the proof of the lower bound (36) and of part (ii) of
Theorem 6. ✷

Proof of Theorem 6 (iii). Let ε 	= 1/f�t�. We choose an admissible col-
lection of parameters rγ� rα� rβ� r�R� δ�L and hp�hk defining the density set
�ε, the bad set Bε and clearing set �R�r of Uε, where U 	= �−tε� tε�d. Note
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that we can always choose rγ in such a way that rγ�ε� � g�t�/f�t�. Let ε > 0
and t > 0 and call �ε the event that

f�t�2 inf
ς∈	awdf�t�d �η�

λς��−t� t�d� ≤ λd�1 − ε�


We will show that under our assumption on f, there is a t0 > 0 such that
�ε ⊂ 
ε whenever t ≥ t0, where 
ε is the event that⋃

z∈��−1�1�d��g�t�/t�

{
�Dz ∩ �d�η

g�t� < a�1 − ε/3�
}



Lemma 14 enables us to estimate the probability of 
ε, so that we can conclude
that there are constants C1 and C2 such that

µ�
ε� ≤ C1e
2d�t/g�t��∨1−C2g�t�dε2

whenever t ≥ t0. This proves part (iii) of Theorem 6.
We proceed to prove our claim that there is a t0 > 0 such that �ε ⊂ 
ε

for t ≥ t0. So fix ε > 0, and let η ∈ �ε. First, note that by the eigenvalue
estimates, Theorems 7 and 8 Section 4.2, there is a t1 > 0 such that

inf
ς∈	awdf

d�t��η�
λε��R�r\�ε�ς�� ≤ λd�1 − ε� + hp�ε��

whenever t ≥ t1. Therefore, by the volume estimate of Lemma 13, there is a
t2 ≥ t1 such that

sup
ς∈	awdf�t�d �η�

εd��R�r\�ε�ς��ε ≥ wd�1 −Cε2�
��1 − ε� + hp�ε��d/2 �

whenever t ≥ t2, where C = 2Cdλd. However, �δ��R�r\�ε�ς��ε ≤ d!�ε/rγ�ε��
��R�r\�ε�ς��ε. It follows that there is a t3 ≥ t2 such that

sup
ς∈	awdf�t�d �η�

εd��R�r\�ε�ς��ε ≥ wd
�1 − ε/2� �(45)

whenever t ≥ t3.
Now assume that η �∈ 
ε. Then, using the fact that boxes of side g�t�/f�t�

are much smaller than density boxes [having side of length rγ�ε�], we see that
for every ς ∈ Nawdf�t�d�η�,

��R�r\�ε�ς��η ≥
(
f�t�
g�t�

)d( 1
f�t�

)d
��R�r\�ε�ς��g�t�da�1 − ε/3�


This together with the obstacle density estimate of Theorem 9 of Section 4.2
implies that there is a ς ∈ 	awdf�t�d�η�, and a t4 ≥ t3 such that

��R�r\�ε�ς��η − ��R�r\�ε�ς��ς
≥ ��R�r\�ε�ς��εa�1 − ε/3� − hk�ε�f�t�d

(46)
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whenever t ≥ t4. Therefore, from inequalities (45) and (46) we conclude that
if η ∈ �ε and η �∈ 
ε, there is a t0 > 0 and a ς ∈ 	awdf�t�d�η� such that

��R�r\�ε�ς��η − ��R�r\�ε�ς��ς > f�t�dawd�
whenever t ≥ t0. This contradicts the fact that ��R�r\�ε�ς��η − ��R�r\�ε�ς��ς
≤ f�t�dawd. ✷

Proof of Lemma 12. First note that for every B ∈ 
t,

µ

(
εd�B\��ε ∪ �ε��ε ≥ d

� ln�1 − p�� + εd�1−β�
)

≤ 22R�ε�drγ�ε�−d
e−dε−d−g�ε�−d� ln�1−p��

Therefore,

µ�Gc� ≤ �2tε�dµ
(
εd�B\��ε ∪ �ε��ε ≥ d

� ln�1 − p�� + εd�1−β�
)

≤ 2dεd22R�ε�drγ�ε�−d
e−g�ε�−d� ln�1−p��

≤ e
− � ln�1−p��

2
1

g�ε�d �

where the last inequality is true for t big enough. ✷

Proof of Lemma 13. Consider the space L2�ε�d� εd� · �ε�. Given two func-
tions f1� f2 ∈ L2�ε�d� εd� · �ε�, we will denote by �f1� f2�ε 	= εd

∑
x∈ε�d f1�x�

f2�x� their inner product. Note that �f1�LKf2�ε = εd−2 1
2

∑
x∈ε�d

∑
e∈�:�e�=1

�f�x+ εe� − f�x��2, whenever f1� f2 ∈ C0�K�. First note that there is a func-
tion f ∈ C0�K� such that λε�K� = �f�LKf�ε/�f�f�ε. To prove inequality (31)
we will show that there exists a function g ∈ H1

0��d� such that:

1. �f�LKf�ε = ∫
�d �∇g�2 dx.

2. ��f�f�ε − ∫
�d g

2 dx� ≤ ε2C�f�LKf�ε.
3. m�
x	 g�x� > 0�� ≤ εd� �K�ε, where m is Lebesgue measure.

This will be enough. In fact,

�f�LKf�ε
�f�f�ε

≥
∫ �∇g�2 dx∫

g2 dx+ ε2C�f�LKf�ε

≥
∫ �∇g�2 dx∫
g2 dx

1
1 + ε2Cλε�K�

≥ λd

(
wd

εd� �K�ε

)2/d 1
1 + ε2Cλε�K� �

where in the last inequality we have used Faber–Krahn for the continuous
Laplacian and property (3) of g.



1506 G. BEN AROUS AND A. RAMÍREZ

We now proceed to construct the function g. We will denote by xi� 1 ≤ i ≤ d,
the canonical coordinates of a point x ∈ �d. Consider the following hyperplanes
in �d:

xi = εn�(47)

xi = xj + εm�(48)

where n and m integers and 1 ≤ i �= j ≤ d. We will denote by �i the
hyperplane defined by (47) and by �i� j the one defined by (48). They define
a partition of the space �d. Also, note that the points of intersection of the
hyperplanes defined by (47) are the cubic lattice ε�d. The fundamental region
of this lattice (which is bounded by the hyperplanes xi = 0 and xi = ε, for
1 ≤ i ≤ d), is partitioned in d! close subregions having an intersection of zero
Lebesgue measure by the hyperplanes xi = xj� i �= j. The boundary of each
one of them is formed by two hyperplanes Hi and Hj of type (47), with i �= j,
and d − 1 hyperplanes Hi� i1

�Hi1� i2
� 
 
 
 �Hid−2� id−1 of type (48), with ik �= ik′

and ik� ik′ �= i� j. We will call Rk� 1 ≤ k ≤ d!, the subregions thereby formed.
Also, denote by vk1� 
 
 
 � v

k
d+1 the d+1 points of the cubic lattice ε�d contained

in the boundary of Rk. We now define g on the fundamental region as the
unique continuous function which is linear on each subregion Rk, and such
that g�vki � = f�vki �� 1 ≤ k ≤ d! and 1 ≤ i ≤ d+1. Similarly we define g on �d.

Henceforth, we proceed to check the three properties of g stated above.
Properties 1 and 3, stating that �f�LKf�ε = ∫ �∇g�2 dx and that the Lebesgue
measure of the support of g is smaller than or equal to εd� �K�ε, respectively,
follow directly from the definition. To verify property 2 note that∫

Rk

g2 dx = εd
2

�d+ 2�!

(
d+1∑
i=1

f2
(
vki
) + ∑

i�=j
f
(
vki
)
f
(
vkj
))



Now fix i′ ∈ �1�2� 
 
 
 � d+ 1�. A straightforward calculation shows that∣∣∣∣∣ 2
�d+ 2�!

(
d+1∑
i=1

f2�vki � + ∑
i�=j
f�vki �f�vkj�

)
− 1

�d+ 1�!
d+1∑
i=1

f2�vki �
∣∣∣∣∣

=
∣∣∣∣∣ 1
�d+ 1�!

(∑
j �=i′

∑
l�=i′� j

�f�vki′ � − f�vkj���f�vki′ � − f�vkl ��

− d
∑
j �=i′

�f�vki′ � − f�vkj��2
)∣∣∣∣∣

≤ 1
�d+ 1�!�2d− 1� ∑

j �=i′
�f�vki′ � − f�vkj��2

≤ 3d2

�d+ 1�!
∑

e∈εƐ0	 e=�x�y�
�f�x� − f�y��2�

where εƐ0 is the set of edges of the fundamental region. But since there are d!
subregions for each integer translate of the fundamental cube and each edge
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is contained in 2d−1 cubes, it is not difficult to deduce that∣∣∣∣ ∫ g2 dx− �f�f�ε
∣∣∣∣ ≤ εd

3d22d−1

d+ 1

∑
e∈εƐ	 e=�x�y�

�f�x� − f�y��2�

where εƐ is the set of edges of the cubic lattice ε�d. This completes the proof
of the lemma. ✷

Proof of Lemma 14. It is elementary to check that there are constants B1

and B2 such that µ��Dz ∩ �d�η/g�t�d ≤ a�1 − ε�� ≤ B1e
−B2ε

2gd�t�. Therefore,

µ

( ⋃
z∈��−1�1�d�g/t

{�Dz ∩ �d�η
g�t�d > a�1 − ε�

})
≥
(
1 −B1e

−B2g�t�dε2
)��t/g�t���d

≥ 1 −
�1/2���t/g�t���d+1∑

k=1

([
t

g�t�
])�2k−1�d(

B1e
−B2g�t�dε2

)�2k−1�

≥ 1 −
([

t

g�t�
])2d

B1e
−B2g�t�dε2 


The lemma now follows easily. ✷

5. Asymptotic behavior of the survival probability in the random
saturation process. In this section we will prove Theorems 2 and 3 describ-
ing the asymptotic behavior of the survival probability of the k�t�th born parti-
cle, where k�t�	 �0�∞� → � is an increasing function, in the random saturation
process.

First, we introduce some notation that will be used. Let us recall that,
according to the notation defined in Section 2, given a random saturation
process on an obstacle configuration η and driven by an injectionN, we denote
by τk, the time at which the random walk Zk is frozen. Also, recall that Tk
denotes the birth time ofZk� g�t� 	= Tk�t�� ζ�x� t� the total number of random
walks at site x and time t [see definition (2) of Section 2] and St the set of
saturated obstacles at time t [definition (3)]. We now define by Skt the set
of sites having “saturated obstacles” produced by the set of random walks

Zj	 j �= k� at time t,

Skt 	=
{
x ∈ �d 	 ∑

n∈� h �=k
1Zn�t��x� ≥ η�x� > 0

}



Next, given ε > 0 and u > 0, we define,

Fu 	= {
Z ∈ �	 B�1−ε�f�t� ⊂ St for t ≥ u

}
�

Fk
u 	= {

Z ∈ �	 B�1−ε�f�t� ⊂ Skt for t ≥ u
}



Now define

N′�t� =
{
N�t�� if t < Tk�t�,
N�t� − 1� if t ≥ Tk�t�.
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This represents an injection obtained fromN after “erasing” the random walk
Zk�t�. The corresponding probability measure will be denoted QN′� ν.

Also, denote by Px� t the probability distribution on of a simple random walk
X, of total jump rate 1, born at site x at time t. Now, the killing time τk�t� of
the k�t�th tagged particle has a distribution under QN�ν which is equal to the
distribution of the first exit time, of a random walk distributed according to
P0� g�t�, from the set 
x ∈ �d	 ζ�x� t� > 0� distributed according to QN′� ν. We
will call this exit time τζ .

5.1. Proof of Theorem 2
 We will prove (i) and (ii) separately.

Proof of Part (i). In the sequel we assume that 1 � N�t� � min
�t −
g�t��d/2� t�d/2�−ε� for some ε > 0.

Part 1
 Here we will prove the lower bound of the limit (4) under the addi-
tional assumption that either ln�t−g�t�� � N�t� or p > 1−pc�d�. Let u > 0.
For the lower bound, first note that

QN�η�τk�t� > t� ≥ EQN�η
�Iτζ>tFk

u�
= EQN′ � η�P0� g�t��τζ > t�Fu�
= EQN′ � η�P0� g�t��τζ > t��Fu�QN′� n�Fu�


Now, by part (ii) of Theorem 1, we can conclude that µ-a.s. there is a u0
such that

QN�η�τk�t� > t� ≥ 1
2
EQN′ � n�P0� g�t��τζ > t��Fu0

��(49)

where for A ⊂ �� IA is defined as the indicator function of A. Now let σ be
the first time that the random walk leaves the origin. Then, by the strong
Markov property,

EQN′ � n�P0� g�t��τζ > t��Fu0
�

≥ E0� g�t�

(
σ ≥ u0�P0� σ

(
sup

σ≤s≤t−g�t�

�Xs�
�1 − ε�f�s� ≤ 1

))

≥ P0�0�σ ≥ �u0 − g�t��+�P0� u0

(
sup

u0≤s≤t−g�t�

�Xs�
�1 − ε�f�s� ≤ 1

)
�

(50)

whenever t ≥ u0. Clearly, the first term of the right-hand side of the last
inequality in (50) can be bounded from below by some strictly positive con-
stant. The second one represents the probability that the exit time from a
time-dependent ball of radius �1−ε�f�s�, of a random walk born at time u0, is
smaller than or equal to t− g�t�. An application of Lemma 20 of Appendix B
together with inequality (49) enables us to conclude that

lim inf
t→∞

1

λd
∫ t
g�t��awd/N�s��2/d ds

lnQN�η�τk�t� > t� ≥ −1� µ-a.s.
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Part 2
 Here we prove the upper bound of the limit in (4) under the assump-
tion that ln�t−g�t�� � N�t�. First we define the following auxiliary function:

h�t� 	= t− g�t�
ln ln�t− g�t�/N�t�2/d� 


Now, let T 	= inf
s ≥ 0	 �Xs� ≥ h�t�� be the first exit time of a random walk
Xs from the interval �−h�t�� h�t��d. Then,

EQN′ � η�P0� g�t��τζ > t�� = EQN′ � η�P0� g�t��Tζ > t�� + �P0� g�t��T ≤ t���(51)

where Tζ 	= T ∧ τζ . Note that the second term of equality (51) satisfies
lim supt→∞�t − g�t�/h�t�2� lnP0� g�t��T ≤ t� < 0 (see, e.g., Theorem 3.7.1 in
[4], describing the moderate deviations of sums of i.i.d. random variables).
Now, the assumptionN�t� � ln�t−g�t�� implies that

∫ t
g�t��ds/N�s�2/d� � �t−

g�t�/ ln�t−g�t��2/d�. Therefore, since �h�t�2/t−g�t�� � �t−g�t�/ ln�t−g�t��2/d�
it is enough to prove that

lim sup
t→∞

1

λd
∫ t
g�t��awd/N�s��2/d ds

lnEQN′ � η

(
P0� g�t��Tζ > t�

) ≤ −1
(52)

Let n 	= ��t − g�t� ∨ h�t��/h�t��. Also define Ex�s, for x ∈ �d, s ≥ 0, as the
expectation with respect to the random walk probability measure Px� s, Tζs 	=
inf
u ≥ 0	 Xu ≥ h�t� or η�Xu� > ζs�Xu�� the exit time from the set 
x ∈
�d ∩ �−h�t�� h�t��d	 η�x� ≤ ζs�x�� representing sites without active obstacles
at time s inside the interval �−h�t�� h�t��d, and Yk 	= Xkh�t�. Then by the
Markov property we have

P0� g�t��Tζ > t� ≤ P0� g�t�∨h�t��Tζ > t�
≤ E0�0�Tζg∨h+h > h�EY1�0�Tζt > h��
≤ E�Tζg∨h+h > h�E�Tζg∨h+2h > h� 
 
 
 �

E�Tζg∨h+nh > h�E�Tζt > h� · · ·��

(53)

where in the last inequality we have used induction and have dropped the
subindices of the expectations. Then, adopting the notation of Section 4 and
using Lemma 15 of Appendix A, we see that the expectations inside the right-
hand side of inequality (53) can be bounded as follows:

EYk−1�0�Tζg∨h+kh > h�

≤ c�d���λςg∨h+kh��−h�h�d�h�d/2 + 1�e−hλςg∨h+kh ��−h�h�d�



Now, define Ik 	= �−kh�t�� kh�t��d. Note that for k ≥ 1, λςg∨h+kh��−h�t��
h�t��d� ≥ λςg∨h+kh�Ik� ≥ inf ς∈	awdf�g∨h+kh�d �η� λς�Ik�. On the other hand, since

we are assuming that N�t� � �ln�t − g�t��d+1 and that g�t� is increasing, it
follows that f�g∨h+kh� � �ln�kh+g−g�kh+g����d+1�/d ≥ �ln�kh���d+1�/d.
We can now apply part (ii) of Theorem 6 (Section 4), describing the almost



1510 G. BEN AROUS AND A. RAMÍREZ

sure asymptotics of the principal Dirichlet eigenvalue after a large number of
obstacles is deleted, to conclude that µ-a.s. for every ε > 0 there is a t0 > 0
such that

sup
1≤k≤n−1

∣∣∣∣λd − f�g�t� ∨ h�t� + kh�t��2 inf
ς∈	

awdf�g∨h+kh�d�η�
λς�Ik�

∣∣∣∣
≤ ε for t ≥ t0


(54)

It follows that µ-a.s. for every ε ∈ �0�1� and 1 ≤ k ≤ n, there is a t0 > 0
such that

λςg∨h+kh��−h�t�� h�t��d� ≥ λd − ε

f�tk�2 for t ≥ t0�(55)

where we have defined tk 	= g ∨ h + kh for 1 ≤ k ≤ n − 1 and fn 	= f�t�.
But the assumption N�t� � �t− g�t��d/2, ensures that h�t� � f�t�2 ≥ f�tk�2.
This, inequality (55) and the fact that the function �xd/2 + 1�e−x is decreasing
for x ≥ d/2 now implies that µ-a.s., for every ε > 0 and 1 ≤ k ≤ n there is a
t0 ≥ 0 such that

EYk−1�0�Tζg+kh > h� ≤ c�d�λd
h�t�
f�tk�2 e

−�h/f�tk�2��λd−ε��(56)

whenever t ≥ t0. Thus, a recursive substitution of this estimate on inequality
(53) enables us to conclude that µ-a.s. for every ε > 0 there is a t0 > 0 such that

EQN′ � η�P0� g�t��Tζ > t�� ≤ c2�d�n
n∏
k=1

h�t�
f�tk�2 e

−�h/f�tk�2��λd−ε��(57)

whenever t ≥ t0, where c2�d� 	= c�d�λd. Therefore, µ-a.s. for every ε > 0 there
is a t0 > 0 such that

1∫ t
g�ds/f�s�2�

lnEQN′ � η�P0� g�t��Tζ > t��

≤ 1∫ t
g�ds/f�s�2�

( �t− g�t� ∨ h�t��
h�t� ln�c2�d��

+
n∑
k=1

(
ln

(
h�t�
f�tk�2

)
− h�t�
f�tk�2 �λd − ε�

))

≤ 1∫ t
g�ds/f�s�2�

ln ln
(
t− g�t�
N�t�2/d

)
ln�c2�d��

+ 1∫ t
g�ds/f�s�2�

n∑
k=1

(
ln

(
h�t�
f�tk�2

)
− h

f�tk�2 �λd − ε�
)
�

(58)

whenever t ≥ t0. Now, since
∫ t
g�ds/N�s�2/d� ≥ ��t − g�t��/N�t�2/d� and

N�t�2/d � t − g�t� the first term of the left-hand side of the last inequality
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vanishes as t → ∞. Thus,

lim sup
t→∞

1

λd
∫ t
g�t��ds/f�s�2�

lnEQN′ � η

(
P0� g�t��Tζ > t�

)
≤ lim sup

t→∞
1

λd
∫ t
g�t��ds/f�s�2�

n∑
k=1

(
ln

(
h�t�
f�tk�2

)
− h

f�tk�2 �λd − ε�
)



(59)

However, because h�t�/f�tk�2 � 1, the first term inside the summand of the
left-hand side of inequality (59) is negligible with respect to the second one,
so that we can drop it to conclude that

lim sup
t→∞

1

λd
∫ t
g�t��ds/f�s�2�

lnEQN′ � η

(
P0� g�t��Tζ > t�

)
≤ −λd − ε

λd
lim sup
t→∞

1∫ t
g�t��ds/f�s�2�

n∑
k=1

h

f�tk�2 

(60)

By Lemma 22 of Appendix B the lim sup of the right-hand side is 1. Letting
epsilon to 0 gives (52).

Part 3
 Here we will prove the upper bound of the limit of (4) under the
assumption that p > 1 − pc�d�. By Part 2, without loss of generality we can
also suppose that N�t� � �ln�t− g�t���2.

First, let

h�t� 	= t− g�t�
ln ln�t− g�t�� 


Then defineT 	= inf
s ≥ h�t�	 �Xs� > exp�√N�s��� as the first exit time bigger
than h�t� of the random walk Xs from the time-dependent set �exp�√N�s��,
exp�√N�s���d. We now claim that by Lemma 23 of Appendix B, and the
assumption p > 1 − pc�d� we know that µ-a.s. there is a t0 such that

E
Q
N′ � η
O

(
P0� g�t��τζ > t�

) = E
Q
N′ � η
O

(
P0� g�t��Tζ > t�

)
�

whenever t ≥ t0, where Tζ 	= T ∧ τζ . In fact, by Lemma 23, µ-a.s. there is an
n0 such that whenever n ≥ n0, the largest connected component of the set free
of obstacles within a box �−n�n�d, has lnn sites. Since 1 � N�t�, this means
that µ-a.s. there is a t0 such that whenever t ≥ t0, every connected component
of the set free of obstacles within the box

[− exp
(√
N�t�)� exp(√N�t�)]d has a

diameter smaller than
√
N�t�. Thus, if the random walk Xs exits such a box

at time t, at least exp
(√
N�t�)/√N�t� random walks must be absorbed. Since

the number of particles born at time t is N�t�, this is a contradiction when t
is large enough.

We can now, by analogy to the steps of Part 2 leading to inequality (57),
conclude that µ-a.s. for every ε > 0 there is a t0 > 0 such that

EQN′ � η�P0� g�t��Tζ > t�� ≤ c2�d�n
n∏
k=1

h�t�
f�tk�2 e

−�h/f�tk�2��λd−ε�
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whenever t ≥ t0, where c2�d� 	= c�d�λd. Since the rest of the reasoning is the
same as the one leading to the conclusion of Part 2 beginning from inequal-
ity (57), we omit it.

Proof of Part (ii). First note that without loss of generality we can
assume that the origin belongs to the unique infinite trap free cluster which
occurs with probability 1 because p < 1 − pc�d�. In fact, by part (i) of
Theorem 1, µ-a.s. with QN�η

O probability greater than 1/2 there is a time t0
such that for t ≥ t0 the origin is contained in the infinite trap free cluster.
Define M�t� 	= 1. Now consider the probability measure QM�η. This repre-
sents the law of a single random walk on a time-independent random environ-
ment of obstacles given by η. Note thatQN�η�τk�t� > t� ≥ QM�η�τ0 > t−g�t��.
For p < 1 − pc call 
∞ the µ-a.s. a unique infinite trap free cluster. At
this point we can apply a result of [2] to obtain the following lower bound:
if d ≥ 2� p < 1 − pc and ε > 0 we have µ-a.s. on the set 
0 ∈ 
∞� that

lim inf
t→∞

ln�t− g�t��2/d
cq�p�d��t− g�t�� lnQM�η�τ0 > t− g�t�� ≥ −1�

where cq�p�d� = λd
(�wd� ln�1 − p���/�2/d��d. This proves the lower bound of

part (ii).
For the upper bound, by analogy to the proof of part (i), we obtain the

following inequality:

QN�η

(
τk�t� > t

) ≤ EQN′ � η

(
P0� g�t��Tζ > t�

) +P0�g�t��T ≤ t��

where this time T 	= inf
s ≥ 0 	 �Xs� ≥ t − g�t�� and Tζ 	= T ∧ τζ . Now, the
second term of the right-hand side of the above inequality satisfies

lim sup
t→∞

1
t− g�t� lnP0� g�t��T ≤ t� < 0


Therefore it is enough to show that µ-a.s.,

lim sup
t→∞

ln�t− g�t��2/d
cq�p�d��t− g�t�� lnEQN′ � η

(
P0� g�t��Tζ > t�

) ≤ −1
(61)

Now,

P0� g�t��Tζ > t� ≤ P0� g�t��Tζt > t�
≤ c�d���λςt�It��t− g��d/2 + 1�e−�t−g�λςt �It��

(62)

where It 	= �−�t− g�t��� t− g�t��d and where in the last inequality we have
made use of Lemma 15 of Appendix A. An application of part (i) of Theorem 6,
describing the almost sure asymptotics of the principal Dirichlet eigenvalue for
a small number of obstacles deleted, to inequality (62) enables us to conclude
our claim (61).
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5.2. Proof of Theorem 3
 We will prove (i) and (ii) separately.

Proof of Part (i). Note that the case p = 1 is included in the statement
of part (i) of the quenched Theorem 2. Therefore, in the sequel, we consider
the case �t− g�t��d/�d+2� � N�t� � �t− g�t��d/2


By analogy to the argument used to prove the lower bound of part (i) of
Theorem 2, using part (i) of the annealed shape Theorem 1 we know that
there is a u0 > 0 such that

EQN′ � u

(
P0� g�t��τζ > t��Fu0

)
≥ P0�0�σ ≥ �u0 − g�t��+�P0� u0

(
sup

u0≤s≤t−g�t�

�Xs�
�1 − ε�f�s� ≤ 1

)
�

whenever t ≥ u0. Here σ is the first time that the random walk leaves the
origin. An application of Lemma 20 of Appendix B then shows that

lim inf
t→∞

1

λd
∫ t
g�t��awd/N�s��2/d ds

lnQN�µ�τk�t� > t� ≥ −1


We now proceed to prove the upper bound. Let T 	= inf
s ≥ 0	 �Xs� ≥
t− g�t�� and Tζ 	= T ∧ τζ . Note that

QN�µ

(
τk�t� > t

) ≤
∫
��d

EQN′ �η

(
P0� g�t��Tζ > t�

)
dµ+P0� g�t��T ≤ t�
(63)

Now, the second term of the right-hand side of inequality (63) decreases like
e−C�t−g�t��+o��t−g�t��� for some constant C. On the other hand, the condition
N�t� � �t − g�t��d/�d+2� implies that

∫ t
g�t��ds/N�s�2/d� � �t − g�t��d/�d+2�


Thus, it is enough to show that

lim sup
t→∞

1

λd
∫ t
g�t��awd/N�s��2/d ds

ln
∫
��d

EQN′ � η

(
P0� g�t��Tζ > t�

)
dµ ≤ −1(64)

The first step in order to prove this inequality is the control of the probability
that the principal Dirichlet eigenvalue of the Lapalacian on a subset �−t� t�d∩
�d, chosen by first deleting each site independently with a positive probability
and then replacing f�t�d deleted sites, deviates from the value λd/f�t�2. So
for ε > 0 and u ≥ 0 define

Gu 	=
{
η ∈ ��d 	 f�u�2 inf

ς∈	
awdf

d�u��η�
λς
(�−�t− g�t��� t− g�t��d) ≥ λd�1 − ε�

}
�

where we have adopted the notation of Section 4. Let I�t� 	= ∫ t
g�t��ds/N�s�2/d�

and let h�t� 	= t−g�t�
ln ln�t−g�t�/�N�t�2/d∨I�t��d+2�/d�� and n 	= �t − g�t� ∨ h�t��/h�t�. We

next define the event that Gu occurs at times tk 	= g ∨ h + �t − g ∨ h��k/n�,
for 0 ≤ k ≤ n by �t 	= ∩nk=0Gtk

. Then,∫
��d

EQN′ �η

(
P0� g�t��Tζ > t�

)
dµ ≤

∫
�t
EQN′ �η

(
P0� g�t��Tζ > t�

)
dµ+ µ�� c

t �
(65)
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Now, there is a t0 > 0 such that

µ�� c
t � ≤

n∑
k=0

µ�Gtk
�

≤
n∑
k=0

C1 exp
(

−C2

(
f�tk�

ln ln
(�tk − g�tk��/I�tk��d+2�/2)

)d
ε2
)

≤ C1�t− g�t�� exp
(

− C2

awd

Nh�t�
ln ln

(�tk − g�tk��/I�tk��d+2�/2)
)

≤ C1�t− g�t�� exp
(

− C2

awd

�t− g�t��d/�d+2�

ln ln
(�t− g�t��/I�t��d+2�/2)

)
�

(66)

whenever t ≥ t0. The second inequality is a consequence of part (iii) of
Theorem 6 describing the eigenvalue asymptotics deviation and the assump-
tion N�t� � �t− g�t��d/�d+2�. This last assumption also implies that I�t� = ∫ t

g

�ds/N�s�2/d� � �t− g�t��d/�d+2�, so it follows that

lim sup
t→∞

1∫ t
g�t� ds/f�s�2

lnµ�� c
t � = −∞


Thus, we only have to examine the first term of the estimate (65). Now, using
the strong Markov property, Lemma 15 and the fact that the function xd/2e−x

is increasing for x ≥ d/2, as in the proof of part (i) of Theorem 2, we obtain
that for every ε > 0,∫

�t
EQN′ �η

(
P0� g�t��Tζ > t�

)
dµ ≤ c2�d�n

n∏
k=1

h�t�
f�tk�2 e

�−h�t�/f�tk�2��1−ε�λd(67)

The passage from inequality (67) to

lim sup
t→∞

1

λd
∫ t
g�t��ds/f�s�2�

ln
∫
�t
EQN′ � η

(
P0� g�t��Tζ > t�

)
dµ ≤ −1 + ε(68)

follows an analogous reasoning to the passage from estimate (57) and (52) of
the proof of part (i) of Theorem 2. Therefore we omit the details. We end the
proof by taking the limit ε → 0 in inequality (68).

Proof of Part (ii). Let M�t� 	= 1. By analogy to the proof of the lower
bound of part (ii) of Theorem 2, consider the probability measure QM�µ rep-
resenting the law of a single random walk on an obstacle environment dis-
tributed according to µ. Note that QN�µ�τk�t� > t� > QM�µ�τ0 > t−g�t��. Now,
by a result of [7] (see also [1,2]) we know that, lim inf t→∞�1/�ca�p�d��t −
g�t��d/�d+2��� lnQM�µ�τ0 > t− g�t�� ≥ −1. Hence,

lim inf
t→∞

1
ca�p�d��t− g�t��d/�d+2� lnQN�µ�τk�t� > t� ≥ −1




ASYMPTOTIC SURVIVAL PROBABILITIES 1515

So let ξt be the number of different sites visited at time t by the canonical
process Xt representing a simple random walk. Then we have the estimate

QN�µ

(
τk�t� > t

) ≤ E0� g�t�
(
qξt−Nt/a

) = q−Nt/aE0�0
(
qξt−g�t�)


Here q 	= 1−p is the probability that a given site of the lattice has no obstacles
and ā is the maximum number of particles that an obstacle can absorb. Now,
using the above relation and the fact that N�t� � �t− g�t��d/�d+2�, it is clear
that

lim
t→∞

1
�t− g�t��d/�d+2� lnQN�µ�τk�t� > t�

≤ lim
t→∞

1
�t− g�t��d/�d+2� lnE0�0�qξt−g�t� �


Now the left-hand side expression can be bounded above by ca�p�d� using, for
example, the large deviation techniques of [7] (see also [1]).

APPENDIX A

This Appendix contains the proofs of Theorems 7, 8 and 9 of the version
of the enlargement of obstacle method used in the proof of Theorem 6. All of
the results that will be stated have their counterpart in [16, 17]. Most of
the notation is the same as that of Section 4. Also, for ε > 0, consider the
Skorokhod space �ε 	= D��0�∞�� ε�d� endowed with its Borel σ-field � and let
Pεz be the probability measure on ��ε�� � under which the canonical coordinate
process �Zε

t �t≥0 is a simple random walk starting at z ∈ ε�d and having jump
intensity 1/ε2. Furthermore, for a given subset U of ε�d, we denote by

TU 	= inf
{
t ≥ 0:Zε

t �∈ U}
the first exit time from U and

HU 	= inf
{
s ≥ 0:Zε

s ∈ U}
the first hitting time to U. On the other hand, given x�y ∈ ε�d, we define the
distance d�x�y� 	= supi=1�


�d �xi − yi�.

A.1. Preliminary lemmas. The first two lemmas are a straightforward
adaptation of proposition A.1 of [16] to the random walk situation.

Lemma 15. Let ε ∈ �0�1��V a potential on the cubic lattice and U ⊂ ε�d.
Then for every bounded function f: ε�d → � we have

sup
x∈ε�d

Eε
x

(
f�Xt�1TU>t� ≤ c�d�(λεV�U�t)d/2 + 1

)
e−λεV�U�t sup

x∈ε�d
f�x�


Here Eε
x is the expectation corresponding to the probability measure Pεx�1A

is the indicator function of A ∈ � and c�d� is a constant depending on the
dimension.
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Lemma 16. There exists a constant K�d� ∈ �1�∞� such that for ρ ∈ �0�1�,
U ⊂ ε�d and V a potential on the cubic lattice,

sup
ε∈�0�1�

sup
z∈�d

(
1 +

∫ ∞

0
�1 − ρ�λεV�U�e�1−ρ�λεV�U�sRU�V

ε� s 1�x�ds
)

≤ K�d�
ρd/2+1 


Now consider a stopping time S1 and introduce the sequence of iterates
of S1,

Sk+1 	= S1 ◦ θSk +Sk ≤ ∞�(69)

where S0 	= 0. Then we have the following proposition.

Proposition 1. Let ε > 0�U be a bounded subset of ε�d and consider a
potential V on �d. Let λ > 0 and S1 be a stopping time. Assume that:

(i) For all x ∈ �d, limk→∞Sk ≥ TU, P
ε
x-a.s.

(ii) α 	= supx E
ε
x

(
S1 < TU� e

λS1−∫ S1
0 ε−2V�Zε

s�ds
)
< 1.

(iii) β 	= supx
∫∞
0 λeλuEε

x

(
S1 ∧TU > u� e− ∫ u

0 ε
−2V�Zε

s�ds
)
du < ∞.

Then λ ≤ λεV�U� and

sup
x

∫ ∞

0
λeλuRU�V

ε�u 1�x�du ≤ β

1 − α



As in [17], the following proposition is an application of the previous one
which enables a comparison between λεV�O1� and λεV�O2� for suitable subsets
O1 and O2 of ε�d. For a given stopping time τ we will pick up S1 in (69) as

S1 = τ ◦ θTO1 +TO1

(70)

Proposition 2. Let ε > 0, O1 and O2 be bounded subsets of ε�d, and
consider a potential V on �d. Let λ > 0 and define S1 as in (70) for some
stopping time τ. Assume that:

(i) For all x ∈ �d, limk→∞Sk ≥ TO2
, Pεx-a.s.

(ii) A 	= supx∈�d
(
1 + ∫∞

0 λeλuR
O1�V
ε�u 1�x�du

)
< ∞.

(iii) B 	= supx/∈O1

∫∞
0 λeλuEε

x

(
τ ∧TO2

> u� e− ∫ u
0 ε

−2V�Zε
s�ds

)
du < ∞.

(iv) C 	= supx/∈O1
Eε
x

(
τ < TO2

� eλτ−∫ τ
0 ε

−2V�Zε
s�ds

)
.

Then λ ≤ λεV�O2�.

A.2. Proof of Theorem 7. For L ≥ 2 and k ≥ 0 we define the stopping time
Hk by

Hk 	= inf
s ≥ 0� d�Zε
s�Z

ε
0� ≥ L−k�


The main step leading to the proof of Theorem 7 is the following lemma.
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Lemma 17. There exists a constant c1�d� > 0 such that for each ξ ∈ ϒ,

z ∈ �dnγ�ε� and x ∈ C�nγ�ε��
z one has

Pεx�Hnα�ε� < T� ≤ e
−c1�d�∑nα�ε�<k≤nγ �ε� capε� �z�k �(71)

where T is the entrance time in the obstacle set 
x ∈ ε�d: ξε�x� = 1�.

Proof. Let x ∈ ε�d� k ≥ 0 and define Dk 	= �x−L−k+1� x+L−k+1�. Also,
let Ek 	= L−kK�k�

�m�k. Then, by the strong Markov property,

Pεx�Hnα�ε� < T� = Pεx�Hnα�ε�+1 < T��PZε
Hnα�ε�+1

�TDε
nα�ε�+1

< T��(72)

where TU denotes the first exit time from the set U. We will show that there
is a constant c1�d� such that for each nα�ε� < k ≤ nγ�ε� one has

inf
y∈Ek

Pεy�TDε
k
< T� ≤ 1 − c1�d�capε� �z�k 
(73)

Combining the capacity estimate (73) with equation (72), we obtain that

Pεx�Hnα�ε� < T� ≤ Onα�ε�<k≤nγ�ε� �1 − c1�d�capε� �z�k�

This together with the fact that 1 − x ≤ e−x for 0 ≤ x ≤ 1 implies our claim
(71). So it remains to prove the capacity estimate (73). Then

Pεy

(
TDε

k
< T

)
≤ P

(
TDε

k≤HEk

)

(74)

However, Pεy�TDε
k
> HEk

� = PLky−Lkx�H
K

�k�
�z�k−Lkx < T

FLkε �, where FLkε =
��−L�L�d�Lkε . It follows that

Pεy�TDε
k
> HEk

� ≥
∫
K

�k�
�z�k−Lkx

gL
kε

FLkε �V
�Lky−Lkx�y′�eLkε

K
�k�
�z�k �F

Lkε �V
�dy′��

where V = 1 for d = 1�2 and V = 0 otherwise. Now, clearly, we have∫
eL

kε

K
�k�
�z�k �F

Lkε �V
�dy′� ≥ capε� �z�k . Thus

Pεy�HEk
< TDε

k
� ≥ capε� �z�k

(
inf

�−1�1�εLk×�−1
25�1
25�εLk
gεL

k

FεLk �V
�·� ·�

)



Standard estimates on the Green function of a simple random walk on the
cubic lattice (see, e.g., [12]) enable us to conclude that there is a constant
c1�d� independent of ε such that,

inf
�−1�1�εLk×�−1
25�1
25�εLk

gεL
k

FεLk �V
�·� ·� ≥ c1�d�


Substituting this back in inequality (74) we obtain the capacity inequality
(73). This completes the proof of the lemma. ✷
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We are now ready to prove Theorem 7. Let g�ε�	 �0�∞� → �0�∞� be a
function such that g�ε� ≥ 0 and �rγ�ε�/rα�ε���d+2�/c1δ lnL � g�ε�. Pick M > 0,
ξ ∈ ϒ and U an open subset of �d and define

λ 	= �λεξ�Uε
1� ∧M− g�ε��+�

where Uε
1 = Uε\�ε�ξ�. Without loss of generality we can assume that λ > 0,

and then M> g�ε�, so that

λ ≤ λεξ�Uε
1�
(
1 − g�ε�

M

)
�(75)

Now let τ 	= Hnα
�ε� and S1 	= τ ◦ θTUε1 + TUε

1
. We recall [see definition (69)]

that we define the iterates of S1 by Sk 	= S1 ◦ θSk−1 + Sk−1. We will apply
Proposition 2, choosing O1 = Uε

1 as above and O2 	= Uε. It is enough to show
that the constants A�B and C satisfy A < ∞, B < ∞ and AC < 1.

Then A < ∞ follows from inequality (75) and Lemma 16 of Appendix A.
In fact,

A ≤ K�d�
(
M

g�ε�
)d/2+1

�

where K�d� is a constant depending only on the dimension. Next, choose ε
small enough so that Eε

0�e2Mτ� ≤ K′�d� < ∞, for some dimension dependent
constant K′�d�. Since λ ≤ M we get

B ≤ K′�d� < ∞


Finally, note that

C2 ≤ sup
x∈�d

Eε
x�e2Mτ� sup

c �∈Uε
1

Eε
x�τ < TUε� τ < T�


From the capacity estimate of Lemma 71 and our estimate on A we get that

AC ≤ K�d�M�e�d/2+1� ln�1/g�ε��−�c1/2�δ�nγ�ε�−nα�ε��


Our hypothesis on g�ε� ensures that AC < 1, which proves Theorem 7. ✷

A.3. Proof of Theorem 8. The main ingredient of the proof is the following
analog of Proposition 2.4 of [17].

Lemma 18. There exists a constant c2�d� ∈ �0�∞� such that when ε ∈ �0�1�
and r ∈ �0�1/4� satisfy

L−nγ�ε� < L−nα�ε� < r�

δc1�d��nγ�ε� − nα�ε�� > ln 2

(76)

Then for any ξ ∈ ϒ and open set U ∈ �d such that supz∈�d εd��Uε\��ε∩Cz��ε <
rd, one has

λεξ�Uε� > c2�d�
r2
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Proof. Let S1 	= inf
s ≥ 0� d�Zε
s�Z

ε
0� ≥ 4r� and for z ∈ ε�d and a ∈

�0�∞� let Bd�z� a� 	= 
x ∈ ε�d 	 d�x� z� ≤ a�. First note that
Pεz�S1 < TUε ∧T� ≤ Pεz

(
TBεd�z�3r� ≤ H�ε∪�Uε�c�

+Pεz
(
H�ε∪�Uε�c < TBεd�z�3r� < S1 < TUε ∧T)

≤ 1 −Pεz
(
H�ε∪�Uε�c < TBεd�z�3r��

+Pεz�H�ε∪�Uε�c < TBεd�z�3r� ∧TUε�PεZε
H�ε∪�Uε�c

�Hnγ�ε� < T�)
≤ 1 −Pεz�H�ε∪�Uε�c < TBεd�z�3r��

+ e−c1�d�δ�nγ�ε�−nα�ε��Pεz�H�ε∪�Uε�c < TBεd�z�3r��
≤ 1 − 1

2P
ε
z�H�ε∪�Uε�c < TBεd�z�3r���

where in the second to last inequality we have used Lemma 17 and in the last
one assumption (76). Now note that

�Bεd�x�2r� ∩ ��ε�Uε�c� ∩C�0�
z �ε ≥ �Bεd�x�2r� ∩C�0�

z �ε − ��Uε\�ε� ∩C�0�
z �ε

≥ ε−drd


An application of the Dirichlet principle implies that

Pεz�H�ε∪�Uε�c < TBεd�z�3r��

≥ r2d

ε2d
∑
x�y∈Bεd�0�2r� g

ε
Bεd�0�3r��V�x�y�

inf
y∈Bεd�0�2r�gε

Bε
d

�0�3r��V�0� y�
�

where V 	= 1 for d = 1�2 and V 	= 0 for d ≥ 3. As in Lemma 15, it is possible
to find a constant c1�d� which bounds the left-hand side of the above equation
from below. Therefore,

sup
z∈ε�d

Pεz�S1 < TUε ∧T� ≤ γ�d� < 1


We can now choose c2�d� small enough so that Eε
0�e2c2TB

ε
d

�0�4� � < 1/γ�d�. Choos-
ing λ = c2/r

2 it is now easy to see that the conditions α < 1 and β < ∞ of
Proposition 1 of Appendix A are satisfied. This proves the lemma. ✷

As in [7, 16], the proof of Theorem 8 is now a straightforward application
of the above lemma and of Proposition 1 of Appendix A. We therefore omit it.

A.4. Proof of Theorem 9. Theorem 9 is elementary in dimension d = 1.
In fact, if we denote by Cap
0� the capacity with respect to one-half of the
continuous Laplacian on � of the point 0, it is easy to verify that by definition
the bad set �ε is empty whenever δ ≤ 1

2Cap
0�. The following theorem is the
key step to prove the volume estimate of part (ii) of Theorem 9 in dimensions
d ≥ 2.
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Theorem 10. Assume that d ≥ 2 and that L is large enough so that
c8�d�L� > 1, where c8�d�L� 	= L2/�3d+1� if d ≥ 3 and c8�2�L� 	= L2/�c lnL�
for some numerical constant c. Let δ0 	= 3/�8LdG�1/2L��. Then there exist
constants c4�d�L� and c5�d�L� such that for any z0 ∈ �dnα�ε� we have

1

Ld�nγ−nα�
∑
z$z0

z∈�dnγ �C
�nγ �
z rarefaction box

capz ≤ c4e
−c5�1−δ/δ0��nγ−nα�


Proof. In the sequel we will denote by V the potential on the lattice h�d,
for h > 0, which equals 0 for d ≥ 3 and 1 otherwise. With no loss of generality
we assume that nα = 0� z0 = 0 and let l 	= nγ. Also the following relations
will be used in the sequel:

K
�k�
z ⊂ Lk�C�k�

z �ε�(77)

K
�k�
z = ∪

y∈�dk+1∩C�k�
z

1
L
K

�k+1�
y 
(78)

Step 1
 Here we will prove three inequalities involving the capacities capz.
First note that there is a constant c6�d� such that

capz ≤ c6�d��(79)

Whenever z ∈ �dk for k ≥ 1. In fact this is a consequence of inequality (77), the
monotonicity of capacity and the fact that the capacity of the set ��0�1�d�Lkε
converges to the capacity with respect to the continuous Laplacian on �d of
the square �0�1�d.

Now note that for d ≥ 3 and h ∈ �0�∞�, the following scaling relation is
satisfied by the discrete Laplacian Green function:

g
h/L

�h/L�Zd�0

(
x

L
�
y

L

)
= L�d−2�gh

hZd�0�x�y�(80)

for x�y ∈ h�d. Now for d = 2 it is true that

g
h/L

�h/L�Z2�1

(
x

L
�
y

L

)
≤ c�lnL�ghhZ2�1(81)

for some constant c. This is an elementary computation (it is also a corollary of
Lemma 1.9 of [14]). Now, from the fact that L−1K�k+1�

z·j ⊂ K
�k�
z , from Dirichlet

principle and inequalities (80) and (81), we obtain our second relation,

capε� z·j ≤ c7capV�εLk� εLkZd

(
1
L
K

�k�
z·j

)
≤ c7capε� z(82)

for z ∈ �dk , 0 < k ≤ l, where c7�d�L� 	= Ld−2 when d ≥ 3 and c7�d�L� 	= c lnL
for d = 2.
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Now we define the constants δ1�d�L�� δ̄1�d�L� and c8�d�L� via the
equations

4
3
δ̄1L

dG

(
1
2L

)
= 1�

δ1 = c7δ̄1�

c8 = Ld

�3d + 1�c7
�

where G��x − y�� 	= g�x�y� and g is the Green function of the continuous
Laplacian divided by 2d on �d and with potential V.

Our third relation is the content of the following lemma.

Lemma 19. For z ∈ �dk�0 < k < l,

capz ≥ c8
1
Ld

∑
j∈
0�


�L−1�d

capz·j ∧ δ1
(83)

Proof. With no loss of generality we can assume that capz·j = 0 for
at least one j ∈ 
0� 
 
 
 �L − 1�d. Now choose subsets �Kj of �1/L�Kz·j and
constants γj for j ∈ 
0� 
 
 
 �L− 1�d such that

�Kj = 1
L
Kz·j if capV�εLkZd� εLk

(
1
L
Kz·j

)
≤ γj�

capV�εLkZd� εLk� �Kj� if capV�εLkZd� εLk

(
1
L
Kz·j

)
> γj�

�γj − δ̄1� ≤ capV�εLkZd� εLk�
0��


(84)

That this is possible follows from the subadditivity of capacity, which implies
that when one site is deleted from a finite set its capacity decreases at most
by capV�εLkZd� εLk�
0��.

So denote by νj the equilibrium measure of �Kj for j ∈ 
0� 
 
 
 �L − 1�d so
that

νj� �Kj� = capV�εLkZd� εLk

(
1
L
Kz·j

)
∧ γj


Consider now the probability measure ν 	= 1/�∑j capV�εLkZd� εLk� �Kj��∑j νj
on Kz. Defining the inner product )µ� ν*h 	= ∫

gh
εLkZd�V

�x�y�µ�dx�ν�dx�
between two measures µ and ν in h�d, by the Dirichlet principle we have
that

1
capz

≤ )ν� ν*εLk = 1(∑
j capV�εLkZd� εLk� �Kj�)2

×
(
1 + ∑

j

∑
j′ 	j′ �=j

〈
νj∑

j′′ capV�εLkZd� εLk�Kj′′ � � νj′

〉)



(85)
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However,

∑
j′ �=j

∫
gεL

k

εLkZd�V�x�y�νj′ �dy� ≤ 3d − 1 +
′∑
j′

∫
gεL

k

εLkZd�V�x�y�νj′ �dy��

where the term 3d − 1 is obtained from those indices j′ such that C�k+1�
z·j′ is

a nearest or diagonal neighbor of C�k�
z·j, and the sum

∑′
j′ goes over the other

indices j′. Now, from the fact that Kz ⊂ LkC
�k�
z we see that �x − y� ≥ 1/�2L�

whenever x ∈ supp�νj� and y ∈ supp�νj′ �, with the corresponding boxes not
nearest nor diagonal neighbors. This, the fact that G�r� is decreasing for r
large enough, and a standard approximation of the Green function of the dis-
crete Laplacian to the Green function of the continuous Laplacian permits us
to conclude that gεL

k

εLkZd�V
�x�y� ≤ �4/3�G�1/2L�, whenever ε is small enough,

x ∈ supp�νj� and y ∈ supp�νj′ �. We can now conclude that for x ∈ supp�νj�,

∑
j′ �=j

∫
gεL

k

εLkZd�V�x�y�νj′ �dy� ≤ 3d − 1 +Ld
4
3
G

(
1
2L

)
δ̄1 = 3d


Thus, for ε small enough,

capz ≥ c8
Ld

∑
j
capz·j ∧ �c7γj�

≥ c8
Ld

∑
j
capz·j ∧ �δj��

where we have used inequality (84) and the fact that in dimensions d ≥ 2,
limε→0 capV�εLkZd�εLk�
0�� = 0. ✷

Now we will use the three basic relations (79), (82) and (83) that have been
proved. Introduce the probability space P 	= �
0� 
 
 
 �L− 1�d�l endowed with
the uniform probability Q. Denote by X1� 
 
 
 �Xl the canonical 
0� 
 
 
 �L −
1�d��d valued coordinates on this space and by �k� k ≥ 0, the filtration on P
generated by X1� 
 
 
 �Xk∧l. Viewing �0�X1� 
 
 
 �Xk��1 ≤ k ≤ l as a random
index, we can now define the stochastic process

Yk 	= cap1+X1/L+···Xk/L
k� 1 ≤ k ≤ l


We can now reexpress our relations (79), (82) and (83) as

0 ≤ Yk ≤ c6�

Yk+1 ≤ c7Yk�

Yk ≥ c8E�Yk+1 ∧ δ1��k�
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for 1 ≤ k ≤ l. Now let δ0 	= 1
2δ1c

−1
7 and define the stopping times,

τ1 	= inf
k ≥ 1�Yk ≤ δ0� ∧ l�
σ1 	= inf
k ≥ τ1�Yk ≥ 2δ0� ∧ l�
τi 	= inf
k ≥ σi−1�Yk ≤ δ0� ∧ l� i ≥ 2�

σi 	= inf
k ≥ τi�Yk ≥ 2δ0� ∧ l� i ≥ 2


Now, as in [17], by a standard supermartingale argument it is possible to
prove that

Ui
n 	= c

n∧�σi−τi�
8 Y�τi+n�∧σi� n ≥ 0

is a �τi+n� n ≥ 0 supermartingale. Using this fact and relation (79), we con-
clude as in Sznitman that

E
(
c
Pi�σi−τi�
8 Yl

)
≤ 1
c9
E�Yτ1

� ≤ c6
c9
�(86)

where c9 	= �δ1/c7c6� ∧ 1. However, on rarefaction boxes, when δ < δ0, the
following lower bound is satisfied:

1 + ∑
i≥1

�σi − τi� ≥
(
1 − δ

δ0

)
l
(87)

Combining (86) with (87) finishes the proof of the lemma. ✷

The next theorem is the final step before the proof of the volume esti-
mate Theorem 9. It is the discrete Laplacian version on the cubic lattice of
Theorem 4.3.5 of [17]. Since the reasoning is the same, we omit the proof.

Theorem 11. Assume that d ≥ 2. Then,

lim sup
ε→0

(
ε

rβ�ε�
)d−2

sup
ξ∈ϒ� z∈Zd

nγ �ε�

capV�εLnγZd� εLnγ �Lnγ�ε�ξ� ∩C�nγ�
z �

capε� z
< ∞


We are now ready to prove the volume estimate of Theorem 9. First note
that by Dirichlet principle, for any subset K of a box �C�0�

z �εLk , for z ∈ �d and
k ≥ 0, we have

capV�∈LkZd� εLk�K� ≥ �εLk�d�K�εLk
�εLk�d∑x∈��−1�1��εLk g

εLk

V� εLkZd�0� x�



Now since for any compact set C one has that

lim
h→0

hd
∑
x∈Ch

gh
V�hZd�0� x� =

∫
C
gV��d�0�x�dx�



1524 G. BEN AROUS AND A. RAMÍREZ

where gV��d is the Green function of 1/�2d� times the Laplacian operator on
�d plus a potential V. It follows that for ε small enough one has

capV�εLkZd� εLk�K� ≥ �εLk�d�K�εLk
c10�d� �(88)

where c10�d� 	= ∫
�−1�1�d gV��d�0� x�dx. Now, for z ∈ �d,

εd
∣∣∣∣�ε�ξ� ∩C�0�

z

∣∣∣∣
ε

= 1

Ldnγ�ε�
∑

z′$z� z′∈Zdnγ
z′a rarefaction index

�εLnγ�d∣∣Lnγ��ε�ξ� ∩C�nγ�
z′

∣∣
ε

≤ c10�d�
(

sup
ξ∈ϒ� z′∈Zd

nγ

capV�εLnγZd
nγ
� εLnγ �Lnγ��ε�ξ� ∩C�nγ�

z′ ��
capε� z′

)

× 1

Ldnγ

∑
z′$z� z′∈Zdnγ

z′a rarefaction index

capε� z′

≤ C

(
rβ�ε�
ε

)d−2
e−c5�1−δ/δ0��nγ−nα�


where the first inequality is a consequence of the estimate (88), the second of
Lemma 10 and C is a constant. This proves Theorem 9. ✷

APPENDIX B

In this Appendix we prove several results that are needed for the proofs of
Theorems 3 and 2 concerning the asymptotic behavior in time of the survival
probability of particles in the random saturation process. In what follows we
let Zt be a symmetric nearest neighbor random walk on �d with total jump
rate equal to 1 and when Z0 = x ∈ �d we denote by Px the corresponding
probability measure defined on D��0�∞� �d�.

Lemma 20. Let f�t�: �0�∞� → �0�∞� be an increasing function such that
1 � f�t� � t1/2−ε for some ε > 0. Then

lim
t→∞

1

λd
∫ t
0�ds/f�s�2�

lnP0

(
sup
0≤s≤t

�Zs�
f�s� ≤ 1

)
≥ −1�

where λd is principal Dirichlet eigenvalue of the continuous Laplacian divided
by 2d on a ball of unit radius in �d.

Proof. Let h�t� be an increasing function such that

f�t�2 � h�t� � t


Such a choice is possible because of the hypothesis f�t� � t1/2−ε for some
ε > 0. let n 	= �t/h�t��. Now we denote by Ak the event that between time
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kh�t� and �k+1�h�t�, the random walk does not exit a ball of radius f�kh�t��
with center at the origin,

Ak 	=
{

sup
kh�t�≤s≤�k+1�h�t�

�Zs� ≤ f�kh�t��
}

and we denote by Bk the event that at time �k+ 1�f�h�t�� it is inside the ball
of unit radius centered at the origin

Bk 	= 
�Z�k+1�h�t�� ≤ 1�

Then if we define Ck 	= Ak ∩ Bk for 0 ≤ k ≤ n − 1, we have by the Markov
property that

P0

(
sup
0≤s≤t

�Zs�
f�s� ≤ 1

)
≥ Onk=0P0�Ck�
(89)

However, note that for x ∈ �d such that �x� ≤ f�kh�t�� one has that

Px�Ck� =
∞∑
n=1

e−h�t�λn�f�kh�t����φn�f�kh�t���x��2

≥ e−h�t�λ1�f�kh��φ2
1� f�kh��x��

(90)

where λn�r�� n ∈ �, are the set of eigenvalues in increasing order of the dis-
crete Laplacian operator on the set 
y ∈ �d: �y� ≤ r� with Dirichlet boundary
conditions, and φn�r are the corresponding eigenfunctions. It now follows from
inequalities (89) and (90) that

P0

(
sup
0≤s≤t

�Zs�
f�s� ≤ 1

)
≥

n∏
k=0

e−h�t�λ1�f�kh��φ2
1� f�kh��0�


Now, it is a standard fact that limr→0 r
dφ1� r�0� = φ1�0�, where φ1�x� is the

principal Dirichlet eigenfunction of the Laplacian operator on the unit ball of
�d divide by 2d. Thus,

P0

(
sup
0≤s≤t

�Zs�
f�s� ≤ 1

)
≥

n∏
k=0

1
f�kh�d e

−h�t�λ1�f�kh��
(91)

Now the following lemma proved by [2] will be used. Here keep track of the
rate of convergence.

Lemma 21. There is a constant C such that,

λ1�t� ≤ 1
t2
λ�t� + C

t3
�

where λ�t� is the principal Dirichlet eigenvalue of the continuous Laplacian on
a ball of radius t�Bt.
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Combining this lemma with our previous estimate (91), we now obtain that

P0

(
sup
0≤s≤t

�Zs�
f�s� ≤ 1

)
≥

n∏
i=0
e−λd�h�t�/f�kh�2�−C�h�t�/f�kh�3�−d lnf�kh�


Our assumption on h�t� and the hypothesis that 1 � f�t� � t1/2−ε for some
ε > 0 now proves the lemma. ✷

Lemma 22. Let f�t�� u�t�: �0�∞� → �0�∞� be functions such that f�t� � tβ

for some β ∈ �0�∞�, and u�t� � t. Assume that f�t�/tβ ≥ sups≥t�f�s�/sβ�.
Then,

u�t�
f�u�t��1/β �

∫ t
u�t�

ds

f�s�1/β 


Proof. Note that
∫ t
u�t��ds/f�s�1/β� ≥ �inf s≥u�t�

sβ

f�s� �1/α ln t
u�t� . Therefore,

u�t�/f�u�t��1/β∫ t
u�t��ds/f�s�1/β�

≤ 1
ln�t/u�t��

(sups≥u�t��f�s�/sβ�
f�u�t��/u�t�β

)1/β

But the left-hand side of this last inequality converges to 0 as t → ∞. ✷

The last lemma is a well-known fact for specialists. It is a direct conse-
quence of the exponential tail of the vacant cluster distribution for supercrit-
ical Bernoulli percolation on �d (see, e.g., Grimmett [10]).

Lemma 23. Consider the cubic lattice �d where all sites are independently
occupied with probability p and denote by µ the corresponding probability
measure. Let pc�d� be the critical probability. Then if p > 1 − pc�d�� µ-a.s.
there is an n0 such that whenever n ≥ n0, the largest vacant cluster within a
box �−n�n�d has lnn sites.
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