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MARKOV ADDITIVE PROCESSES AND
PERRON-FROBENIUS EIGENVALUE INEQUALITIES!

By CoLM O’CINNEIDE

Purdue University

We present a method for proving Perron—Frobenius eigenvalue inequa-
lities. The method is to apply Jensen’s inequality to the change in a “ran-
dom evolution” over a regenerative cycle of the underlying finite-state
Markov chain. One of the primary benefits of the method is that it readily
gives necessary and sufficient conditions for strict inequality. It also gives
insights into some of the conjectures of J. E. Cohen. Ney and Nummelin’s
“Hypothesis 2” arises here as a condition for strict inequality, and we
explore its ramifications in detail for a special family of Markov additive
processes which we call “fluid models.” This leads to a connection between
Hypothesis 2 and the condition “PT P irreducible” which arose in the work
of Cohen, Friedland, Kato and Kelly.

1. Introduction. This paper concerns a family of inequalities for Perron—
Frobenius eigenvalues, going back to Kingman’s 1961 log-convexity result [11],
and including some of the inequalities of Friedland and Karlin [8], Cohen [5],
Cohen, Friedland, Kato and Kelly [7] and Asmussen and O’Cinneide [1]. One
contribution of the present paper is a new method of proof of these inequal-
ities which gives a detailed understanding of conditions for strict inequality.
Cohen [6] gives several conjectures related to these inequalities. See [12] for a
counterexample to one of these. We resolve three others below. This work was
motivated by questions related to the tail of the waiting time distribution in
queues [1].

The general approach of this paper was anticipated in the final section of
[7], in which the authors suggest that the CFKK inequality (Theorem 1 below)
might be amenable to proof by applying a majorization argument [9, 14, 18]
to a suitable “random evolution.” We use the term “random evolution” infor-
mally here to mean the exponential of a Markov additive process; see Section 2
for preliminaries on Markov additive processes. In this paper, we see that by
considering the change in a random evolution over a suitable regenerative
cycle of the underlying Markov chain, one can readily derive many of the
Perron—Frobenius eigenvalue inequalities of the literature cited above, and,
more importantly, the conditions for strict inequality also become clear. Prov-
ing conditions for strict inequality has always been a troublesome point in
earlier work, because the techniques needed have been fundamentally differ-
ent from those invoked to prove the inequalities themselves. Here are some
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instances of this. In [7], the CFKK inequality is proved, with the condition
for strict inequality, but the proof is quite long and is based on Kato’s pertur-
bation theory for linear operators [10]. Of two short alternative proofs of the
inequality, one by Varadhan (described on page 68 of [7]) and another by C.
M. Newman (page 45 of [6]), neither appears to present an easy path to the
strict inequality. The situation is similar for the inequality of Proposition 1
below. It is given without the condition for strict inequality as Lemma 6 of
[7]. In [1], the condition for strict inequality is proved using methods that are
of limited scope. The inequality itself is easier to prove. Kingman [7] does not
give a condition for strict log-convexity. We provide a natural one here.

A more detailed description of the new method is as follows. We begin with
a finite-state Markov chain X, in discrete or continuous time. We devise two
Markov additive processes (X, A) and (X, B), X being the Markov compo-
nent and A and B being the additive components, for which we can prove
E(eA®) < E(eB®), t > 0, under a suitable initial condition, typically using
Jensen’s inequality. In some cases, the needed Markov additive processes may
be found in the literature. For example, Cohen gives these for the inequality of
Proposition 1 below and for the CFKK inequality. By construction, the long-run
growth rates of these expectations will be the logs « and B of the eigenval-
ues to be compared, and so this inequality immediately gives the Perron—
Frobenius eigenvalue inequality e® < ef. The drawback of this argument is
that it requires taking a limit as ¢ — oo, and this makes deducing a strict
inequality awkward. To get the condition for strict inequality, we call on an
idea from Ney and Nummelin [15]: that, under an integrability condition,
with T' denoting the first positive time at which X visits a state i, we have
E,(exp{A(T) — aT}) = E;(exp{B(T) — BT}) = 1. This often give us detailed
eigenvalue information without the need for taking limits.

The idea of looking at random evolutions over regenerative cycles leads to
the second theme of this paper. The necessary and sufficient conditions for
strict inequality derived in various contexts below always include a condition
of [15] known as “Hypothesis 2.” See Definitions 1 and 2 of Section 4, where
the term “nondegenerate” is used to mean “satisfies Hypothesis 2.” For a given
discrete-time, finite-state Markov chain X with irreducible transition matrix
P, we consider the space V(P) of all vectors v such that the Markov additive
process (X, S) defined by

(1.1) S(t) = i v(X(n))

n=1

is degenerate. We call a Markov additive process of the form (1.1) a “fluid
model” here. We give a detailed description of V(P) in terms of the com-
munication relation of the nonnegative matrix PT P. As an example of what
is proved, we show that the dimension of V(P) is the number of communi-
cating classes of the matrix PT P. This brings out a connection between the
Ney—Nummelin hypothesis and a condition—that PT P be irreducible—that
arises from Kato’s perturbation theory in Lemma 5 of [7].
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The remainder of the paper is organized as follows. In Section 2, we give
some elementary background on Markov additive processes and fluid models
associated with finite-state chains. In Section 3 we illustrate the basic appro-
ach by proving several known results related to continuous-time fluid models,
including the CFKK inequality. Getting strict inequality for continuous-time
fluid models is simplified because Ney and Nummelin’s Hypothesis 2 can fail
only in a trivial way for these processes. In Section 4, we discuss Hypothesis
2 and relate it to the condition for strict inequality in some basic inequalities.
In Section 5 we completely characterize the vector space V(P) of degenerate
fluid models associated with a given irreducible stochastic matrix P. Section 6
relates this to various results from the literature cited above, giving conditions
for strict inequality in Kingman’s result [11] and giving a complete picture of
the (strict-) convexity properties of the function ¢(A) = log p(Pe™), of a real
diagonal matrix A, where p is the spectral radius; see Theorems 5 and 6 below.
This leads to a resolution of Cohen’s conjecture #2, presented as Theorem 7.
In Section 7 we prove Cohen’s conjecture #8, under an additional condition,
using methods unrelated to the main theme of the paper, and also indicate
how to prove his conjecture #9.

Some notes on matrix terminology: a scalar matrix is a matrix that is a mul-
tiple of the identity. An essentially positive matrix is a matrix with nonnegative
off-diagonal entries. A generator is an essentially positive matrix with zero row
sums. An essentially positive matrix A is said to be irreducible if A+ Al is an
irreducible nonnegative matrix for A sufficiently large. Perron—Frobenius the-
ory extends naturally to such matrices, and the Perron—Frobenius eigenvalue
of an essentially positive matrix A is denoted by dev(A), “dev” abbreviating
“dominant eigenvalue.” For A nonnegative, of course p(A) = dev(A). For more
on nonnegative matrices, see [2] or [17].

Several of the results of this paper for stochastic matrices and genera-
tors may be extended to general nonnegative matrices and essentially pos-
itive matrices, as follows. If A is an irreducible nonnegative matrix with
Perron—Frobenius eigenvector v and Perron—Frobenius eigenvalue A, then,
with V = diag(v), P = A"'V~1AV is an irreducible stochastic matrix. Simi-
larly, if A is an irreducible essentially positive matrix with Perron—Frobenius
eigenvector v and Perron—Frobenius eigenvalue A, then @ = V-1AV — I is an
irreducible generator, where again V = diag(v). The assumption of irreducibil-
ity generally plays a role below only in getting conditions for strict inequality.
If the inequality alone is to be proved, the assumption of irreducibility may
often be relaxed using simple arguments based on continuity of eigenvalues
and the fact that any nonnegative matrix (respectively, essentially positive
matrix) is the limit of a sequence of irreducible nonnegative matrices (respec-
tively, irreducible essentially positive matrices).

2. Preliminaries. Here we give some notation and basic results for
Markov additive processes [4, 15, 16]. The Markov additive processes we con-
sider in this paper almost all have the special feature that their additive
components are completely determined by the path of the chain. There is only
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one exception to this, in the proof of Theorem 1 in the next section. Consider-
ing more general Markov additive processes does not lead to generalizations
of the other inequalities. For this reason, in the present section we focus on
Markov additive processes with this special feature.

2.1. Discrete case. Let X be an irreducible, discrete-time Markov chain
with a finite number m of states. The state space is taken to be {1.2, ..., m},
and we refer to indices in this range as “states” throughout the paper even
when no stochastic process has been invoked. Let P = (p ) be the transition
matrix of X. Let F = (f(i, j)) be an m x m matrix, where f(i, j) € [—o00, 00)
is thought of as a “reward” received when a transition from i to j is made.
Define

t
2.1) St)=Y f(X, 1. X,), t=01,2 ..,

n=1

which is the total “reward” received by time ¢. Then the pair (X, S) is here
called the discrete-time Markov additive process with data (P, F'). Note that
if p;; = 0 the value of (i, j) has no impact on the law of the process (X, S).
Note also that if S ever reaches the value —oo, it remains there from that
time on. The mean drift in S is

(2.2) p = lim m = mp(i, Hf(i, j)=m(P O F)e,
i, j=1

where e is a column vector of 1’s and © denotes the “entrywise” matrix product,
defined by (a;;) © (b;;) = (a;;b;;). The limit here is independent of the initial
distribution assumed in taking the expectation. It is elementary that
(E:[e50; x(8) = j]) - H,

i, je{l,2, ... m}
t=0,1,2,..., with H =P ® F&P,

(2.3)

where F®*® = (exp(f(i, j))). We term the matrix H here the fundamental
matrix of the Markov additive process.

In the special case where F has constant columns, we write A(j) = (i, j) €
[0, 00), and (2.1) simplifies to

(2.4) S(t) = i A(X,).

n=1

In this case, the process (X, S) is here called the discrete-time fluid model
with data (P, A), where A = diag(A(1), A(2), ..., A(m)). For the discrete-time
fluid model, we have

(2.5) H = PeM.

If F is finite, which is to say, if all the f(i, j)’s are > —oo, then the funda-
mental matrix H, like P, is irreducible. Suppose that H is irreducible with
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right Perron—Frobenius eigenvector denoted by A (which is positive and unique
up to scaling) and with Perron—Frobenius eigenvalue denoted by A = e, so
that Hh = Ah. We term the quantity a the exponential growth parameter of
the Markov additive process. Then it is elementary that the process

R(X(t))exp{S(t) —at}, t=0,1,2,...

is a martingale, which we refer to informally as an “exponential martingale.”
With this notation we have the following basic lemma.

LEMMA 1. Let i denote a fixed state and let T denote the kth positive time
that X enters state i, for k=1,2,3,.... Then «a is the unique solution in v of

Ei(exp{S(T}) = 9T;}) =1

The proof follows easily from Lemma 4.1 and equation (4.1) of [15], and the
discussion of the discrete-state case in Example 6.2 of that paper.

Here is a quick sketch of a direct proof of Lemma 1, for the sake of clarity
of exposition. Using X(7',) = i in the first equality to follow and the optional
sampling theorem in the second, we have

E;(Rh(i)exp {S(T}) — aT}}) = E;(R(X(T})) exp {S(T}) — aT,})

= E,(A(X(0)) exp {S(0)}) = A(i).

(Uniform integrability may be verified by a matrix calculation.) As A(i) > O,
this proves that « satisfies the given equation. Uniqueness follows from the
observation that, as T, > 0, the quantity E;(exp{S(T}) — 9T}}) is strictly
decreasing in J whenever it is finite.

For future reference, we note an elementary formula for E(S(7';)) in the
context of this lemma,

(2.6) E(S(T})) = pE(T}).

This is a consequence of the laws of large numbers for S(¢), ¢ — oo, and T,
k — oo, for example.

2.2. Continuous case. Let X be an irreducible, continuous-time Markov
chain, again with a finite number m of states. Let @ = (g ;) be its genera-
tor and let A be a real-valued function on the state space, which we identify
with the real vector A = (A(1), A(2), ..., A(m)). We think of A(7) as the rate of
arrival of a fluid “reward” while X is in state i. Let F = (f(i, j)) beam x m
matrix having zero diagonal entries (f(i, i) = 0), the other entries being in
[—o0, 00). We think of f(i, j) as a fixed “reward” acquired whenever a tran-
sition from 7 to j occurs. The total amount of reward that arrives in [0, ¢] is
given by

S(t) = /O "A(X(s)ds
+ 2 f(X(s7), X(9), t=o0.

O<s<t
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(X, S) is referred to here as the continuous-time Markov additive process with
data (@, A, F'), where A = diag(A(1), A(2), ..., A(m)). If q;; = 0 for some i # j,
then the value of (i, j) does not affect the law of the process. The mean drift
in S is

w=tim,_ 5O _ 56

i=1

mq(i, j)f (i, j) = 7(A+ Q © F)e.
1

2.7
+

i

7

It may be shown that

(E:[e50; x(1) = j])

=exp{(A+ QoFexp)t}, t>0.

i, je{l,2,...,m}

(2.8)

In (2.7) and (2.8) we have used the notation appearing in (2.3). If F = 0, then
S does not jump at transitions of X, and the process is called the continuous-
time fluid model with data (@, A). In this case @ © F*? = @ and so by (2.8)
we have

(2.9) ([Ei [eS“); X(t) = J]) — M 4>,

To construct the appropriate exponential martingale, define the fundamental
matrix of the present Markov additive process to be H = A+ Q © F**P. Suppose
that H is irreducible (which it is as long as F is finite), and let 4 denote its
right Perron—Frobenius eigenvector and « its Perron—Frobenius eigenvalue.
Again, we call o the exponential growth parameter of the Markov additive
process. Then, as before, the process

h(X(t)) exp {S(¢) — at}, t>0

is a martingale, and we have the following analog of Lemma 1, which may be
proved in the same way.

LEMMA 2. Let i denote a fixed state and let T denote the kth positive time
at which X enters state i. Then «a is the unique solution in ¥ to the equation

E;,(exp{S(T,)—9T;})=1

We close by noting the continuous-time analog of (2.6),

(2.10) E(S(T})) = pE(T}).
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3. Illustrations of technique in continuous time. In this section, we
prove three simple results for continuous-time fluid models. Each has
appeared in the literature before, but in each case the method of proof is new.
Proposition 1 says in essence that the long-run growth rate of the expected
exponential of a continuous-time fluid model is at least as large as its mean
drift. This result is a variant of Lemma 6 of [7] but adds the condition for
strict inequality. The proof of the inequality here is a relative of that outlined
in [6]—see the first paragraph on page 42. A more general result, in fact, the
discrete-time analog, was given as part of Theorem 3.1 in [8]. We treat this
in Corollary 1 in the next section, where again we contribute the condition
for strict inequality. The second result of this section, Proposition 2, is from
[1], where a somewhat more complex proof was given and where the strict
inequality was not treated. The last result addressed is the CFKK inequality,
of which the condition for strict inequality is given a rather complex proof in
[7]. The proof given here is much shorter. Using the methods described in the
remark at the end of the introduction, it is easily shown that the inequalities
of Propositions 2 and 3 hold assuming only that @ is an essentially positive
matrix.

3.1. Two inequalities for the continuous-time fluid model.

PROPOSITION 1. For an irreducible generator @ with steady-state distribu-
tion m and a real diagonal matrix A, we have

dev(Q + A) > p = mAe.

Moreover, there is equality here if and only if A is a scalar matrix.

Proor. Let (X, S) be the continuous-time fluid model with data (@, A).
Then w is the average drift of S by (2.7). Letting T' denote the first positive
time at which X enters an arbitrary fixed state i, and letting o = dev(Q@ + A),
Lemma 2 gives the first step of the following:

1 =E;(exp{S(T) — aT}) = exp{E;(S(T) — T)}

= exp{(n — )E;(T)}-
The inequality here is Jensen’s and the last equality is by (2.10) and the fact
that E;(T") < oo by irreducibility. Since E;(T") > 0 we can conclude that a > pu,
as was to be proved.

By comparing the first and last expressions in the inequality above, we
see that there is equality there if and only if « = u. But there is equality in
Jensen’s inequality if and only if S(T") — aT is a.s. constant when X (0) = i,
but by irreducibility this happens only if A = «l. This is because the joint
distribution of the occupation times of the m states over the cycle [0, T'] has
an absolutely continuous component on R™. This completes the proof. O

The example of Section 6 of [1] may be adapted to show that the next
inequality does not necessarily hold for % nonintegral.
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PROPOSITION 2. For an irreducible generator @ and a real diagonal matrix
A, we have

dev(@ + A) > dev(kQ +A) for k=2,3,....

Moreover, there is equality here if and only if A is a scalar matrix.

ProOOF. Let (X, S)be as in the proof of Proposition 1. Let 7'y, Ty, . . . denote
the successive positive return times to some particular state i, and set 7', = 0.
Setr,=T,-T, and A, =S(T,)—S(T,_1),n=1,2,.... Let a denote the
eigenvalue on the left of the inequality to be proved. Then Lemma 2 gives the
first step here.

1 =F,(exp (S(T}) — aT})
=E(exp(Ar + A+ + A, —a(ry + 7o+ + 7))

(3.1) 1k
< [EL-<E > exp(kA, — ka'rn)>

n=1
=[E;(exp(kA; — kary)) = E;(exp(kS(T,) — kaT,))

The inequality again is Jensen’s, and the next-to-last equality is because the
cycles delimited by the successive return times to state i are i.i.d. It is easy to
verify that (X, S"), where S'(¢) = £S(¢), is a fluid model with data (@, £A). Let
B = dev(Q+EA). Then, again by Lemma 2, we have E; exp {S'(T;)— BT, } = 1.
By comparing this with the right side of (3.1), using the fact that 0 < T'; < 00
a.s., we conclude that

(3.2) B =dev(Q + kA) > ka = kdev(Q + A).
Equality here is equivalent to equality in (3.1) by Lemma 2. But we have
equality in Jensen’s inequality if and only if kA, — kat,, n = 1,2,..., k, are

all equal a.s. This in turn is equivalent to the statement that these random
variables are constant, being independent, and this, finally, is equivalent to
the condition that A = al, as in the proof of Proposition 1. A simple scaling
(replacing @ by k@) shows that (3.2) is equivalent to the inequality to be
proved. O

3.2. The CFKK inequality. Consider again the continuous-time fluid model
(X, S) with parameters (@, A), where @ is irreducible. The process X°=(X(¢):
t=0,1,2,...) is a discrete-time Markov chain with transition matrix e®. We
associate with this a natural discrete-time approximation to S, defined as

SO(¢) = i AMX(n)) = i MX°(n)), t=0,1,2,....

n=1 n=1

This is again a Markov additive process: it is the discrete-time fluid model
with parameters (e€, A). In [6], Cohen considers the two processes

exp(S(t)) and exp(S8°(¢)), t=0,1,2,....
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The first may be viewed as the size of a population at integer time ¢ whose
growth rate at any time s > 0is A(X(s)). The second is what you would believe
the population size to be at time ¢ if you observe the rate of growth at integer
times and assumed that this rate remained constant between observations.
Cohen [6] points out that the CFKK inequality may be interpreted as stating
that the long-run growth rate of the expectation of the discrete-time process
is at least as large as that of the continuous-time version, in the sense that

(3.3) lim 208 E(EXR(S(®) _ 1. log E(exp(5°(1)))

t—00 t T t>o00 t

>

with equality if and only if the A(i)’s are all equal. [Note added in proof:
This interpretation was first given in Cohen, J. E. (1979) Random evolutions
in discrete and continuous time. Stochastic Process. Appl. 9 245-251.] Using
(2.3) and (2.8), (3.3) becomes the eigenvalue inequality of the following.

THEOREM 1 (The CFKK inequality [7]). For @ an irreducible generator and
A a real diagonal matrix, we have p(e?") < p(e®e"), with equality if and
only if A is a scalar matrix.

PrOOF. For each o € [0, 1), define the process
S’(t)y= Y AMX(n-0)), t=0,1,2,...,

O<n—o<t

which, like the special case S° above, is a discretization of the process S. The
pair (X9, S7) is a (discrete-time) Markov additive process. S is related to the
processes S” at integer times ¢ by

1
(3.4) S(t):/o S’ (tydo, t=1,2,....

Now let T' denote the first positive (integer) time that X° enters state i. Let
a = p(eQ“) and 8 = p(e9e"). Using Lemma 1 twice (more precisely, an
elementary extensions of Lemma 1: see the remark following the proof), we
have

(3.5) 1=E,(exp(S(T) — aT)) = E;(exp(S’(T) — BT))  for all o < [0, 1).

It is intuitive that the exponential growth parameter B8 of the S”’s does not
depend on o, since these are all similar discretizations of the same continuous-
time process, and it is a simple calculation to verify this. Using (3.4) in the
first step to follow and Jensen’s inequality in the second, we have

exp (S(T) — BT) =exp{/1 (S°(T) - ,BT)da'}
(3.6) ) 0

5/0 exp{S“(T) — BT}de
and so

@D E(es(S(T) - BT) = [ 'E,(exp{S7(T) - BT))do = 1,
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using (3.5) at the last step. For a given point w in our heretofore anonymous
probability space (), there is equality in Jensen’s inequality (3.6) if and only
if S7(T) = S(T) for almost all o € [0, 1). Thus there is equality in (3.7) if
and only if S7(T) = S(T') for almost all (o, w) in the product space [0, 1) x Q.
This is clearly true if A is scalar, but otherwise it cannot be true because, for
each o € [0, 1), the distribution of S?(T) is concentrated on the countable set
of finite sums of integer multiples of the A(i)’s, whereas that of S(7") has an
absolutely continuous component on R. O

We remark that the discrete-time Markov additive processes (X°, S) (obser-
ved at integer times) and (X°, S7), which appeared in (3.5), are exceptional in
this paper in one respect: the additive components are not completely deter-
mined by the path of the Markov component X°, as they depend on the evo-
lution of X between the integer times. However, Lemma 1 extends readily to
this situation [15].

4. Ney and Nummelin’s Hypothesis 2. Ney and Nummelin’s Hypothe-
sis 2, given on page 570 of [15], is needed in that paper to get a certain strict
convexity property (see their Corollary 3.3). This condition, which is called
“nondegeneracy” here, has apparently not previously been connected with the
inequalities of [5-8]. Proposition 3 and Corollary 1 below are the most basic
examples of the role of nondegeneracy in proving strict inequalities. Corollary
1 is in essence Theorem 3.1 of [8] but adds the necessary and sufficient condi-
tion for strict inequality. Lemmas 3 and 4 are graph-theoretical preliminaries
needed in the next section.

Let A be a nonnegative m x m matrix and let i, j € {1,2,...,m} be a
pair of states. A path of A from i to j, is a sequence of states Il = (i = i(0),
i(1),...,i(k) = j), where £ > 0, such that a;;_4) ;;) > 0 for [ =1,2,..., k.
The length of the path is k. A path from i to i is called an i-cycle. We allow paths
and cycles to revisit the same state. Given an m x m matrix F = (f(i, j)),
(i, j) € [—o0, 00), the (F-) reward accumulated on the path Il is defined as

Reward(IT) = f £ - 1), i(1)).

=1

DEFINITION 1 (Degeneracy). Let A be a nonnegative m x m matrix. A real
m x m matrix F = (f(i, j)) is said to be degenerate with respect to A if there

exists a real 6 such that, for every cycle (iy,i1,...,i;, = iy) of A of length
k > 0, we have
(4.1) Reward(Il) = %6.

Similarly, we say that the discrete-time Markov additive process with data
(P, F) is degenerate if F is degenerate with respect to P. If (4.1) holds with
6 = 0, then we say that (A, F) is null.

The simplest example of degeneracy is to take f(i, j) = ¢ for all i and j,
in which case (4.1) holds with 6 = c. The property of degeneracy depends on
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the matrix A only through its graph, that is, through the set of pairs (i, j) for
which a;; is positive; the actual values of the positive a,;’s are immaterial.

Note that if A is irreducible, then it is enough to suppose that (4.1) holds
for all iy-cycles, for some fixed i,. This is because, by irreducibility, for any
given state i there is an iy-cycle which visits i exactly once. Such an i,-cycle
may be extended by inserting an arbitrary i-cycle in place of i. The result is
a new ij-cycle. Let k&, denote the length of the original i,-cycle and % that of
the inserted i-cycle. Then, by (4.1), the reward accumulated over the original
ig-cycle is k6, while the reward accumulated over the elongated i,-cycle is
(ko + k)6. Now their difference, which is the reward accumulated over the
inserted i-cycle, is k6, as required.

To relate this concept to Markov additive processes, let P be an irreducible
stochastic matrix and F a real matrix. Consider the discrete-time Markov
additive process (X, S) with data (P, F'). Let i be an arbitrary fixed state
and let T' > 0 denote the time of first entry of X into i. Then it is immediate
from the definition and the discussion of the previous paragraph that F' is
degenerate with respect to P if and only if, for some constant 6, we have

(4.2) S(T) = 6T a.s. under the initial condition X(0) =1i.

If this holds, then it is clear from Lemma 1 and (2.6) that 6 is both the expo-
nential growth parameter and the drift of the Markov additive process (X, S):

(4.3) a=pu=2~0

The next result strengthens the connection between degeneracy and Perron—
Frobenius eigenvalues by giving a “converse” to (4.3).

PROPOSITION 3. Consider the discrete-time Markov additive process (X, S)
with data (P, F), where P is irreducible and F is real, and let u denote its drift
and « its exponential growth parameter. Then we have o > u, with equality if
and only if F is degenerate with respect to P.

PROOF. Letting T denote the first positive time at which the chain enters
a state i, Lemma 2 gives the first step of the following:

1=F;(exp{S(T) = aT}) = exp{E;(S(T) — aT)} = exp{(n — 0)E;(T)}.

The inequality here is Jensen’s, and the last equality is because of (2.6) and
the fact that E;(7") is finite by irreducibility of P. Since E;(7T") > 0, it follows
that o > u, as was to be proved. We have o = u if and only if there is equality
in Jensen’s inequality here, which in turn holds if and only if S(7T") = aT a.s.
when X(0) = i. Note now that this condition, that “S(T) = aT a.s. under
X (0) =1i,” is equivalent to the condition that “S(7T") = 6T a.s. under X(0) =i
for some constant 0,” because the latter implies that 6 = « as explained at
(4.3). But the second condition is precisely the condition (4.2) for (P, F') to be
degenerate. This completes the proof. O
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The next result is a direct corollary, stated for the special case of discrete
fluid models. It follows at once from Proposition 3 and (2.5). As we mentioned
earlier, it is Theorem 3.1 of [8] plus a necessary and sufficient condition for
strict inequality. A slightly weaker assumption than irreducibility was adopted
in [8], but the extension to the more general case is straightforward. Theorem
2.1 of [8] gives the condition for strict inequality only in the case of strictly
positive, doubly-stochastic matrices P.

COROLLARY 1. For an irreducible stochastic matrix P with steady-state dis-
tribution m, and any real diagonal matrix A, we have

p(Pe") > e*  where u = 7Ae.

Moreover, the inequality here is strict if and only if (P, A) is nondegenerate.

In the remainder of this section we develop various basic facts and ideas
related to degeneracy. We begin with a sample characterization of degeneracy
with respect to an irreducible matrix.

LEMMA 3. Let A be an irreducible nonnegative matrix and F a real matrix.

(a) F is null with respect to A if and only if F-reward is path-independent
with respect to A: for every pair of states i and Jj, the F-reward accumulated
on any A-path from i to j is the same.

(b) F is degenerate with respect to A if and only if there exists a real vector
g and a scalar 0 such that f(i, j) = g(j) — g(i) + 0 for all i, j with a;; > 0.

PRrROOF. (a) Suppose (A, F) is null. Let i and j be arbitrary states. By irre-
ducibility, there is a path II from j to i. By concatenating Il with an arbitrary
path IT from i to j, we form an i-cycle, on which the accumulated reward is 0.
Thus Reward (II') = —Reward(Il), a quantity which does not depend on the
choice of the path IT'.

Conversely, if the reward is path-independent, then the reward accumulated
on an i-cycle is the same as the reward on the zero-length i-cycle (i), which
is zero.

(b) If £ is of this form, then (4.1) is seen to hold as the series on the left
“telescopes.” Conversely, suppose that (4.1) holds. Consider the matrix F’' =
(f(i, j)—0) of modified reward rates. Then (4.1) holds for F’ and A with 6 = 0,
so that (A, F’) is null. This implies that the F’-reward is path-independent, by
part (a) of this lemma. Since by irreducibility of A there is a path leading from
any state to any other, this allows us to uniquely define the F'-reward r(i, j)
accumulated over a path from i to j for all i, j. As the reward accumulated
on a cycle is zero, it follows by concatenating paths in a natural way that
r(i, j)+r(j,i) = 0 and r(i, j) + r(j, k) + r(k,i) = 0 for all i, j, k. These
imply that r(i, j) = g(j) — g(i) where g is defined by g(i) = r(iy, 1), iy
being any fixed state. Now, if a;; > 0, then (i, j) is a path, and the F’'-reward
accumulated on this path is (i, j) = f(i, j) — 0 by definition, but it is also
2g(j) — g(i) by what we have just shown. This completes the proof. O
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The next concept, which we call “fluid-degeneracy” of a pair (A, A) with A
diagonal, could in fact be expressed directly in terms of Definition 1. However,
the special parametrization of fluid models warrants a new statement. More-
over, this leads naturally to the idea of degeneracy of a matrix A, which is the
central concept of the next two sections.

DEFINITION 2 (Fluid-degeneracy). For a nonnegative m x m matrix A, a
real m x m diagonal matrix A = diag(A(1), A(2), ..., A(m)) is said to be (fluid-)
degenerate with respect to A if there exists a real 6 such that, for every cycle
M= (iy,21,...,1p = ig) of A, we have

k
(4.4) Reward(Il) = ) A(i;) = 6k.
I=1

We also express this condition by saying that “the pair (A,A) is
(fluid-)degenerate.” If (A, A) is (fluid-)degenerate for some nonscalar A, then
A is itself said to be (fluid-)degenerate. If (4.4) holds with 6 = 0, we say that
(A, A) is (fluid-)null.

The scalar matrix A = c¢I is fluid-degenerate with respect to any non-
negative A, and in this case (4.4) holds with 6 = c¢. To relate Definition 2
to Definition 1, note that (A, A) is fluid-degenerate if and only if (A, F) is
degenerate with F' = (f(i, j)) where f(i, j) = A(j). Naturally, we say that A
is fluid-nondegenerate if, for all nonscalar real diagonal matrices A, (A, A) is
fluid-nondegenerate.

If F is a diagonal matrix, there is a possibility of ambiguity in the state-
ment “(A, F) is degenerate,” because the parameters could be interpreted as
defining a general Markov additive process or a fluid model. We use the prefix
“fluid-” if it is unclear from the context whether Definition 1 or Definition 2
applies.

ExXAMPLE 1. This example is similar to the one on page 67 of [7]. Consider
the fluid model with parameters (P, A) given by

0 1 0 1 0 0

P=105 0 05], A=|0 -1 0

0.5 0 05 0O 0 O
Every cycle beginning and ending in any particular state ; makes the same
number of visits to state 1 as it does to 2, and so, because the rewards in these
states are 1 and —1, respectively, we see that the sum of the rewards over any
cycle is zero. Thus A is degenerate with respect to P [in fact, null, as # = 0 in

(4.4)]. As A is nonscalar, this implies that P is degenerate by Definition 2.

LEMMA 4. Let A be an irreducible nonnegative matrix and F a real matrix.

(a) If for two distinct states j and k both p(j, j) and p(k, k) are positive
and f(j, j) # f(k, k), then F is nondegenerate with respect to A.
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(b) If the diagonal entries of A are all positive, then A is nondegenerate.
(¢c) A is degenerate if and only if (A, A) is fluid-null for some nonscalar
diagonal matrix A.

PROOF. (a) Consider a cycle of A that visits each of j and % exactly,
once; we represent it as Il = (ig,i1,...5,J,--.,k,...,0; = ip). Such a cycle
exists as A is irreducible. Since p(j, j) and p(k, k) are both positive, a new
cycle of A may be constructed which is identical to the original except that
n, additional visits to j are inserted after the original visit to j and n, addi-
tional visits to %k are inserted after the original visit to &, giving a cycle which
may be represented asIl' = (i, i1, ... J, Joeves Js--es By By Ry iy =1g).
Suppose now that F is degenerate with respect to A, and consider (4.1) for
the two paths II and II'. If we subtract these two cases of (4.1), we get

Reward(IT') — Reward(TT) = ny£(J, /) + nof (k, &)
=0(n1+n2) for all nl,n2=1,2,... .

This implies that f(j, j) = f(k, k) = 6. It follows that if f(j, j) # f(k, k)
then F cannot be degenerate with respect to A.

(b) Suppose A satisfies the given condition. Then by part (a) of this lemma,
if for any j # k we have A(j) # A(k), then A is not degenerate with respect to
A. Thus A is not degenerate with respect to A unless its diagonal entries are
all equal, which is to say, unless it is scalar matrix. So A itselfis nondegenerate
by Definition 2.

(¢) If A is degenerate, then for some nonscalar A’, (A, A’) is degenerate.
Define A = A’ — 01, where 0 is the value for which (4.4) holds for this model.
Then the fluid model (A, A) is null, as it satisfies (4.4) with 6 = 0. The converse
is obvious. O

5. Fluid-degeneracy and the graph of ATA. In this section we com-
pletely describe the space of diagonal matrices A which are degenerate with
respect to a given irreducible nonnegative matrix A. In particular, we give a
formula for its dimension. These results explain and further develop an idea
appearing in Lemma 5 of [7], in which the condition that AT A be irreducible
arises as a sufficient condition for a certain strict inequality. Here the full
significance of this condition becomes clear, and in the next section it is seen
to be necessary and sufficient for strict inequality or strict convexity in some
standard results.

We remark that the condition that A7 A be irreducible is equivalent to the
condition that AAT be irreducible. This is explained just after the proof of
Lemma 7. We now introduce some simple and descriptive terminology. A state
i is said to be a parent of a state j (with respect to A) if a;; > 0; in this
case we also say that j is the daughter of i. States i and j are said to be
sisters, written i ~ j, if, for some state [, a;a;; > 0 (they have the same
parent [). It is easy to verify that i ~ j if and only if the (i, j)-entry of AT A
is positive. States i and j are said to be cousins if they are “related through
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sisterhood,” in the sense that there exists a sequence of states iy, iy,...,1,
such that i ~ i; ® iy~ --- ~ i, & j. The next lemma is immediate from these
observations.

LEMMA 5. Let A be a nonnegative matrix. Then the cousin relation deter-
mined by A is the communication relation determined by AT A. In particular,
every state is a cousin of every other state with respect to A if and only if ATA
is irreducible.

The following specializes Lemma 3(b) to the case of fluid models, in which
case the function g of that lemma may be identified explicitly up to an additive
constant.

LEMMA 6. Let A be irreducible and suppose that (A, A) is null. Then, for
any path 11 from a state i to one of its cousins j, we have

Reward (I1) = A(j) — A(D).

PrOOF. Consider first two sister states i ~ j and an arbitrary A-path Il =
(i =ig,81,09,-..,1; = J) from i to j. Such a path exists as A is irreducible.
As i and j are sisters, there is a state [ such that a;a;; > 0. Irreducibility
of A implies that there is a path (j, ji, j3,..., J, = [) from j to [, and so
= (i =1ig,11,09,---51 = J, J1> J2s---»> Jp = [, 1) is an i-cycle. The fact that
a;; > 0 is used here in “closing the loop” with the last visit to i. The fact that
a;; > 0 implies that I1” = (j, j1, jg,---, Jp =L, J) is also a cycle. The reward
accumulated around each of these cycles is zero by assumption, and so the
difference between these two rewards must also be zero. This gives

Reward(IT') — Reward (I1") = ki:l A(iy)=0or Xk: A(ig) = A(J) — A3),
q=0 q=1

since iy =7 and i, = j. The second sum here is precisely the reward accumu-
lated on the original path II from i to j. We have established this for every
path from a state i to one of its sisters j. But if i and j are merely cousins,
they are connected by a series of sisters i = 0 ~ 1; = --- & 1, = j, and,
by concatenating paths from one sister to the next, we can construct a path
connecting these cousins i and j on which the reward accumulated is again

(A(e1) = Ae0)) + (A(e2) = Aer)) + -+ + (A(tn) = Atn-1))

= A(t) = Awg) = A(J) — A(D).
This completes the proof. O

LEMMA 7. (i) Let A be an irreducible nonnegative matrix and let D,
Dy, ..., D, be the equivalence classes of the states {1,2,...,m} under the
cousin relation. Let C;, denote the set of all states that are parents of some
state in Dy, for k =1,2,...,r. Then the C}’s, like the D}’s, form a partition of
{1,2,...,m}
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(ii) Suppose now that r > 1. Define D = D, NC, and D$"*" = D5NC,, for
k=1,2,...,r. These sets are nonempty. Define a diagonal matrix A, whose
ith diagonal entry is

1, if € DY,
M) =1 -1, if e DS,
0, otherwise.

Then A, is nonscalar and null with respect to A for k=1,2,...,r.
(ii1) For each state i € {1,2, ..., m}, either:

(@) Ag(i)=0for k=1,2,...,r, or
(b) there is a unique pair of indices h # k such that A;,(i) = +1, A,(1) =
—1, and A;(i) =0 for all j # h, k.

Finally, we have

k=1

It is a consequence of (i) here that D¢ is the set of states in D, all of
whose daughters are outside of D;, and D™ is the set of states outside of
D,, all of whose daughters are in D,

PROOF. (i) That the cousin relation is an equivalence relation follows from
Lemma 5. Thus the D;’s form a partition of the state space. To deal with the
C,’s, first note that every state is in some C, because every state is a parent of
some other state, by irreducibility. Now if a state were in C}, and C; for & # J,
then this state would be a parent of at least one state in each of D, and D,
implying that these states were sisters, and contradicting the fact that they
are in different equivalence classes with respect to the cousin relation. Thus
the C,’s also form a partition.

(ii) Suppose now that r > 1. The set D = D, N C4 is nonempty for
each k. =1,2,...,r, for otherwise no state of D, would be a parent of a state
outside D, contradicting irreducibility of A. Similarly, D™ = DS N C, is
nonempty, for otherwise no state of Dj would be a parent of a state outside
of Dj, (i.e., in D), again contradicting irreducibility of A. These facts imply
that each A, is nonscalar, having at least one +1 and at least one —1 on its
diagonal.

To show that (A, A;) is null, we argue as follows. Example 1 of the previous
section illustrates the idea underlying the proof. Without loss of generality, and
to simplify indices, take k& = 1. Consider a cycle starting in a state i, € D™,
Thus i, is not in D, but the second state of the cycle is in D;. This is the
first of possibly several successive visits to states in D;, among which there is
exactly one visit to a state in D ¢ C¢, after which the next state is in DS,
in which set the cycle remains until it makes precisely one visit to D", At
that point, when the path first returns to the set D‘imer, in which it started, we
have accumulated a reward of +1 for the single visit to D" and —1 for the
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single visit to D$"*" [not counting the initial visit to iy; see (4.4)], giving a total
of +1 —1 = 0. However, the chain is not necessarily back in the original state
iy, and, even if it is, the cycle may not yet be complete. We repeat such “tours,”
paths beginning and ending in D™, each time collecting a total reward of 0,
until we eventually visit to i, and complete the cycle. The reward accumulated
upon completing the cycle is 0. Thus (A, A;) is null.

(iii) Since the D;, h = 1,2,...,r, and the C;, £ = 1,2, ..., r, form parti-
tions of the state space, the r? sets D, N Cy, h,k = 1,2,...,r, also form a
partition. Consider a fixed state i. Then i € D;, N C,, for a unique pair A, k. It
turns out that cases (a) and (b) correspond to the conditions 2 = & and h # k,
respectively.

First, suppose that A = k. Then i € D;, N C;, and so i is not in any of the
sets D‘;-Xit =D;NnCS or D‘}nter =D5nCjy, j=1,2,...,r. Thus A;(i) = 0 for
k=1,2,...,r. This is condition (a) above.

Otherwise, we must have h # k. Then

(5.2) Dexit  penter (Dh N cg) N (D;e N Ck) =D,NC,,

and so, as i € D, N C,, it follows that i € D N D™, Now (b) is seen to
hold by definition of Aj; j =1,2,...,r. In particular, A;(i) = 0 for i # h, &,
because i cannot be in any DEX“, Jj#h,or D?“ter, J# k.

Finally, we now know that for a given state i either (a) all the A,(i)’s are
zero or (b) there is exactly one +1 and exactly —1 among them. In either case,
the sum of the A,(7), £ =1,2,...,r, is zero. This implies (5.1). O

We remarked earlier that, for A irreducible, irreducibility of AT A is equiv-
alent to irreducibility of AAT. A fuller picture of this fact may now be given.
The classes C;,, k = 1,2, ..., r, defined in Lemma 7 are the communicating
classes of the nonnegative matrix AAT. We do not use this fact later and so
do not present the simple proof.

ExaMPLE 2. Consider the irreducible nonnegative matrix

for which ATA =

o oo
coor
cor o
orROoOR
coor
R OoR O
orR oo
DO RO

AT A has three classes:
D, ={1}; Dy ={2,4}; D3 = {3}.
The C}’s of Lemma 7 are

C,={4}Cy={1,3}C5 = {2}.
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The states in D, can be reached in one transition from states in C;. The A}’s
of Lemma 7 are

1 00 O -1 0 0 O 0 0 0O
00 0 0], {0 1 0 0], {0 -1 0 0
A= 000 0’ Az = 0 0 -1 0}’ As = 0 0 10
0 0 0 -1 0 0 0 1 0 0 0O
A special feature of this example is that DZXit =D, forallk=1,2,...,r.

THEOREM 2. Let A be an irreducible nonnegative matrix. Then A is non-
degenerate if and only if AT A is irreducible.

PROOF. Suppose first that A7 A is reducible. In Lemma 7 we constructed a
nonscalar diagonal matrix A; such that (A, A;) is degenerate. Therefore, A is
degenerate, as required.

Conversely, suppose that AT A is irreducible and that (A, A) is null, so that
(4.4) holds with 6 = 0. We next deduce from this that A = 0. Once this is done,
Lemma 4(c) will imply that A is nondegenerate, and this will complete the
proof of the theorem.

By Lemma 5 and the assumption that AT A is irreducible, all pairs of states
are cousins. Now choose two state i and j for which a;; > 0. Then (i, j) itself
is a path from i to j, on which the accumulated reward is A(j) — A(i) by
Lemma 6, but is also A(j) by definition of the accumulated reward; see the
first equality of (4.4). Thus A(j) — A(i) = A(j) and so A(i) = 0. As this holds
for all i for which there is a j with a;; > 0, we conclude by irreducibility of A
that A=0. O

LEMMA 8. With the same hypotheses and notation as Lemma 7, the vector
space

V =span{A, Ay, ..., A}

has dimension r — 1.

PrROOF. Consider the directed graph
G={(h k)|l <h,k<rand D,NC, #D)

onnodes 1,2, ..., r. Irreducibility of A implies that this graph is “diconnected”
[3]: there is a (directed) path from any node to any other. Therefore there exists
a (directed) spanning tree (or “spanning arborescence” [13]) G, of G with r—1
arcs,

Go = {(hrs k1), (Bas ko) (s v ).

We order these so that (a) A, is the root of the directed tree; (b) each 4, p > 1,
appears at least once among Ay, kg, ..., h, 1, k1, kg, ..., k, 1 and (c) no k,
appears among Ay, hg, ..., h, or ky, ky, ..., k, ;. That this can be done may
be seen by thinking about the obvious algorithm for constructing the tree, in
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which, beginning with an arbitrary node A, at the pth step we connect one
new node, k,, to the current tree. By relabeling states, we can suppose, as we
do a little later, that .y =1 and k, = p+1for p=1,2,...,r — 1, in which
case h, <k,=p+1.

For each p = 1,2,...,r — 1, choose a single state i, from th N Ckp. The

latter set is DZ’;” N D';;’;ter by (5.2). Part (iii)(b) of Lemma 7 then implies that
for p=1,2,...,r — 1 we have

)\h (lp) = +1, /\k (Lp) =—-1 and
(5.3) ? b
Aj(i,) =0 forall j#h, k,1<j<r.

Define an (r — 1) x r matrix Z as follows: the entry z,, of Z is A;(i,), which
is the i ,th entry on the diagonal of A,. In other words, the kth column of Z
consists of the r — 1 diagonal entries of A;, with indicesi,, p=1,2,...,7r—1.
Now invoking (5.3) and the labeling described in the preceding paragraph, in
which 2, < k, = p+1, we see that the pth row of Z contains a 1 in the A ,th
column and a —1 in the p + 1st column:

1 -1 O 0
Z _ 221 222 —1 O
231 23 233 —1

(Each z,,, here is either 0 or 1, and each row has precisely one +1 and precisely
one —1.) Therefore, Z is of full rank, that is, rank r — 1. Since the columns
of Z are subarrays of the A,’s, the span of the A}’s, which is V, must have
dimension at least as large as the rank of Z, namely r — 1. But the dimension
of V cannot exceed r — 1 because of the linear constraint (5.1) satisfied by the
Ap’s. These two facts imply that the dimension of V is r — 1, as required. O

THEOREM 3. Let A be an irreducible nonnegative matrix and let r denote
the number of classes of ATA. Let Vy(A) = {A|A = diag(v) for some v € R
and (A, A) is null }. Then dim(Vy(A)) = r — 1. Moreover

Vo(A) = Span{Al, Az, ey Ar}’
where the A;’s are as defined in Lemma 7.
PrOOF. Part 2 of Lemma 7 tells us that each Ay, 2 = 1,2,...,r, is null
with respect to A, and so
(5.4) Vo(A) Dspan{A;, Ay, ..., A}

The dimension of the space on the right is » — 1, by Lemma 8. We prove that
the dimension of V,(A) is no greater than r — 1. This forces equality in (5.4)
and proves the theorem.

Let IT be a cycle of A, and define the occupation time of 11 in state i, denoted
by Occ;(I1), to be the number of visits the cycle makes to state i (not counting
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the first visit to the initial state):
fOI‘ H = <i0, il’ i2, ey I’k = i0>, OCC(H) = #{l|ll = i, 1 S l S k}

Let Occ(Il) denote the vector (Occ, (IT), Occy(I1), .. ., Occ,, (I1)), which we refer
to as the occupation time vector of 11. Let #(A) denote the set of occupation
time vectors of all A-cycles:

@ (A) = {Occ(I)|IT a cycle of A}.

Then by definition V(A) is the set of diagonal matrices that “annihilate”
O(A):

Vo(A) = {diag (v)jv € R” and v-w = 0 for all w € £#(A)}.
This implies that
(5.5) dim(V(A)) + dim(span(£(A))) = m.

We now modify A in a simple way to produce a matrix A’ which is nondegen-
erate and whose space #(A’) of occupation vectors is simply related to #(A).
This will give us the information we need on the dimension of V(A).

Consider again the directed graph G constructed in the proof of Lemma 8,
its directed spanning tree G, and the states i, chosen from th N Ckp, for
p=1,2...,r—1. Now we define A’ as follows. Set

5.6) a(i,i,)=1, p=12,...,r —1butset a'(i, j) = a(i, j)
. for all other pairs of indices.

Note that a'(i,,1,) = 0, because i, € th but all of its daughters are in ka.
Thus A’ differs from A only in having r — 1 more positive diagonal entries,
in positions i,,, p = 1,2,...,r — 1. We now prove that A’ is nondegenerate.
First, any states that are cousins with respect to A are also cousins with
respect to A’, as A’ > A. But under A’ we have some new cousin relations:
for p=1,2,...,r — 1, the states in th are cousins of the states in ka with
respect to A’, because i, is an A’-parent of a state in the former, namely
i, itself, by (5.6), and also in the latter as i, € C k- However, since G is a
directed spanning tree it follows from this that, for all A, 2 = 1,2, ..., r, the
states in D;, are A’-cousins of those in D,. Thus all pairs of states are cousins
with respect to A’, and so, by Lemma 5 and Theorem 2, A’ is nondegenerate,
as required.

By (5.6), the only transitions allowed by A’ but not A are transitions from
a state i, to itself, for p = 1,2,...,r — 1. Therefore, each trajectory II' in
O(A) is got from some Il in Z(A) by a process of inserting visits to the states
i1,19,...,1,_1 at certain points. Thus the occupation time vector of an A’-
path differs from that of some A-path only in the time spent in the states
i1,19,...,1,_1, and so

span(#(A’)) C span(#(A)) & span{eil, €iyreens eiH},
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where e; is the ith unit vector for i = 1,2,..., m and @& denotes the direct
sum of vector spaces. It follows that
(5.7 dim(span(#(A"))) < dim(span(#(A))) +r — 1.

Since A’ is nondegenerate, dim(VO(A’)) = 0 by Theorems 2 and 3. Applying
(5.5) in the case of A’, it follows that dim(span(#(A’))) = m. Thus, upon
rearranging (5.7), we get dim(span(#(A))) > m — r + 1. This implies that
dim(Vy(A)) < r —1 by (5.5) and brings us to the point described at the start
of the proof: Lemma 8 now forces equality in (5.4), and we are done. O

Theorem 2 may be viewed as the r = 1 case of Theorem 3. But of course
it is not a corollary as it played a key role in the proof of Theorem 3. For the
next result we introduce the space

V(A) = {A|A = diag(v) for some v € R™ and (A, A) is degenerate}.

COROLLARY 2. Let A and r be as in Theorem 3. Then V(A) = span{l, A,
Ay, ..., A}, and the dimension of this space is r.

PrOOF. This is a consequence of the following two observations: (a) I is
degenerate but not null, because (4.4) holds for A = I with 6 = 1. Thus
IeV(A)butI ¢ Vy(A). (b) For A € (A), (4.4) holds for some value 6, and it
follows that A — 61 € V,(A). O

6. Inequalities in discrete time. Here we address various discrete-time
inequalities from the work cited in the Introduction. In particular, we give a
condition for strict inequality in Kingman’s log-convexity result and we resolve
Cohen’s conjecture #2.

6.1. Kingman’s log-convexity result. The formulation of Kingman’s result
below is slightly different from the original. The hypothesis (6.1) here corre-
sponds to Kingman’s log-convexity condition.

THEOREM 4 (Kingman [11]). Let A = (a;;), B = (b;;) and C = (c;;) be
nonnegative m x m matrices, with Perron—Frobenius eigenvalues a, b and c,
respectively. Let p and q satisfy 0 < p =1— q < 1 and suppose that

P q . .
(6.1) b;; < a;iCii, 1, J= 1,2,...,m.
Then

(6.2) b <aPcl.

Suppose further that A and C are irreducible. Then there is equality in (6.2)
if and only if:

(a) A, B, and C all have the same graph;
(b) There is equality in (6.1) for all 7, j; and
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(¢) the matrix F with entries

_ Jlog(a;;) —log(c;;), if b;; >0,
fii =1, if b, =0

is degenerate with respect to B.

PrROOF. We suppose first that B itself is irreducible. By (6.1), this implies
that A and C are also irreducible, so that a, b, and ¢ are all positive. Let
P = (p;;) be a stochastic matrix satisfying p;; = 0 if and only if a;; + ¢;; = 0.
Then P is irreducible by (6.1) and irreducibility of B. Let X be the Markov
chain on {1, 2, ..., m} with transition matrix P. Associate with the matrix A
a Markov additive process (X, S ) with parameters (P, A), where

A = (a,), in which a, = { o 8e) ~logpy). 1 i iy
Note that some entries here may be —oo. Analogously, define matrices B and
C and corresponding Markov additive processes (X, Sp) and (X, S¢). By cal-
culation, the fundamental matrices H of (2.3) associated with these three
Markov additive processes are precisely the matrices A, B, and C. Condition
(6.1) is equivalent to

(6.3) b;j < pa;; + q¢;;.
Let T denote the first positive time at which X enters a specified state i.

Define a = log a, B = log b, and y = log ¢, which are finite as the correspond-
ing matrices are irreducible. We have

E; exp{Sp(T) - (pa+qy)T}
<[E; exp{p(Sa(T) —aT)+ q(Sc(T) - yT)}
(6.5) <[E, (exp{Sa(T) — aT}HE; (exp{Sc(T) - yT}) =1,

using (6.3) in the first inequality, then Holder’s inequality, and Lemma 1 at
the end. Since, again by Lemma 1, E; (exp{Sg(T) — BT}) = 1, we conclude
that B < pa + qv, proving the inequality (6.2) when B is irreducible. The
general case of (6.2) follows from this by the limit argument explained in the
remark in the last paragraph of the Introduction.

Now consider the case in which both A and C are irreducible. We suppose
that we have equality in (6.2), and from this we deduce the conditions (a)—(c)
of the theorem.

To prove (a), suppose, seeking a contradiction, that a;; > 0 and b;; = 0 for
some pair of states i, j. Let A’ denote the matrix formed by replacing the
(i, j)-entry of A by 0, and let o’ = p(A’). Then, by Corollary 2.1.5(b) of [2] and
irreducibility of A, we have a’ < a. Now (6.1) still holds when A is replaced
by A’, and so b < a’Pc? by the first part of the theorem. Irreducibility of C
implies that ¢ > 0, and so we have a”c? > a’Pc? > b, implying strict inequality
in (6.2), a contradiction of the assumption of equality. This proves that if we
have equality in (6.2) then a;; = 0 whenever b;; = 0. The same argument

(6.4)
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shows that, under the same condition, ¢;; = 0 whenever b,; = 0. This and (6.1)
establish (a).

We continue to assume that there is equality in (6.2). Since we now know
that A, B and C have the same graph, the assumption of irreducibility of A
implies irreducibility of B, and the argument leading to (6.4) and (6.5) is valid.
For the same reason, the matrices A, B and C are all finite. To have equality
at (6.2), we must have equality at (6.4) and (6.5) by Lemma 1. Equality at (6.4)
implies equality at (6.1) for all i and j by irreducibility of X. This establishes
condition (b) above. Equality in Hélder’s inequality at (6.5) implies, for some
constant «, that

SA(T)—aT=k+ Sc(T)—~T

(6.6)
a.s. under the initial condition X(0) = i.

We can use Lemma 1 twice again to argue from (6.6) that 1 = E;(exp{SA(T)—
aT}) = E;(exp{k + Sc(T) — yT'}) = e*, showing that k = 0. Using (4.2) and
(4.3), (6.6) with k = 0 implies that the finite matrix ¥ = A — C is degenerate
with respect to P, or, equivalently, with respect to B [as B and P have the
same graph by part (a)l. This establishes condition (c). We have shown that
(a)—(c) are necessary conditions for equality when A and C are irreducible.
By retracing steps it is easy to verify that, if A and C are irreducible, then
(a)—(c) imply equality in (6.4) and (6.5), which implies equality in (6.2). O

Condition (c) of this theorem may be replaced by the following: (¢’) There
exists a positive vector h and a positive constant v such that h;a;; = ve;ih;, i, j
=1,2,...,m. This is a consequence of Lemma 3(b).

6.2. Cohen’s conjecture #2 and some related results. This subsection con-
cerns convexity properties of the function ¢(A) = log p(De") of a diagonal
matrix A, for D nonnegative and irreducible. These convexity properties are
related to the inequalities of Lemmas 5 and 7C of [7]. Theorem 5 below
explains the convexity and strict-convexity properties of ¢ in terms of degen-
eracy. This is a direct consequence of our version of Kingman’s result. It is a
simple confirmation of the importance of the concept of degeneracy. Theorem 6
gives a little more information, expressing ¢ as a “direct sum” of a linear func-
tion on V(D) and a strictly convex function on a subspace W complementary
to V(D). In Theorem 7 we resolve Cohen’s conjecture #2 by giving necessary
and sufficient conditions for the strict convexity property in question. Cohen’s
conjecture is false as it stands, as it fails to mention the degeneracy condition.

THEOREM 5. For an irreducible nonnegative matrix D, consider the function
$(A) = log(p(De")),

of a real diagonal matrix argument A. Let 0 < p =1—q < 1 and let Ay and
Ay denote two diagonal matrices. Then

d(PAL + qAg) = pd(Ar) + qd(Ay),
with equality if and only if A; — Ay is degenarate with respect to D.
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Proor. Let A; and A, be given real diagonal matrices, and set A to be
their average pA; 4+ gA,. Define A = De™, B = De® and C = De’2, and let
a, b and c denote their Perron—Frobenius eigenvalues. Then (6.1) holds. and
(6.2) immediately gives

b<aPcl,

from which the inequality of the theorem follows.

Clearly A and C are irreducible. Thus, we have strict inequality if and
only if one of the conditions (a), (b) or (c) of Theorem 4 fails to hold. In the
present setting, A, B and C have the same graph, and so (a) holds. It is easily
verified also that we have equality in (6.1), and so (b) holds also. In the present
situation, condition (c) of Theorem 4 is equivalent to the statement that A;—A,
is degenerate with respect to D. This is because the entries f;; of the matrix
F of (c) are A;(j) — Ag(Jj) (except those for which d;; = 0, but these values are
irrelevant to the condition for degeneracy). This completes the proof. O

THEOREM 6. In the setting of Theorem 5, ¢ is linear on V(D). Let W denote
a vector space complementary to V(D) in {diag(v) | v € R™}. Then ¢ is strictly
convex on W. Let m denote the projection onto W parallel to V(D) and for
A € {diag(v) | v € R™} write A = N + A" where A' = w(A). Then ¢(A) =
S(N') + B(A").

PrOOF. To avoid some routine extensions of material in Section 4 to gen-
eral nonnegative matrices, we now restrict ourselves to the case D stochastic.
The general case follows as described in the last paragraph of the Introduction.

That ¢ is strictly convex on W is direct consequence of Theorem 5. Consider
a fluid model (X, S) with data (D, A). Parallel to the decomposition of A given
in the statement, S may be decomposed as S = S’ + S”, where (X, S’) is the
fluid model with data (D, A’) and (X, S”) is the fluid model with data (D, A”).
The exponential growth parameters of these fluid models are given by a =
¢(A), o = P(A), and o’ = $(A”), by (2.5). Now (D, A") is degenerate as A" €
V(D). Corollary 2 gives a natural basis for V(D), namely, {I, A;, Ag, ..., A},
where r = dim(V(D)). Noting that each A, is null, the exponential growth
parameter @’ = ¢(A”) may be evaluated with respect to this basis through
(4.4) and (4.3) as

a"'=dp(N")y=x, where A" =xyIl +x1A; + -+ x,A, € V(D).

Thus ¢ is linear on V(D).

Let i be an arbitrary state and let 7' denote the first positive time at which
X enters state i. Using (4.2) and (4.3) (specialized to the case of a fluid model)
for the second equality to follow and Lemma 1 for the third, we have

E; (exp{S(T) — (/ + a")T}) = E,; (exp{(S'(T) — «'T) + (S"(T) — ' T)})
=, (exp{(S'(T) — «'T)}) = 1.

Bringing Lemma 1 to bear on the first expression here, we conclude that
a=da +a". That is, $(A) = ¢(A’) + ¢(A”) as required. O
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COROLLARY 3. For an irreducible nonnegative matrix D, the function ¢(A)
= log(p(De")) is strictly convex on the subspace W = {A | A diagonal and
Trace(A) = 0} if and only if D is nondegenerate.

ProOF. If D is nondegenerate then V(D) is the space of scalar matrices
by Corollary 2, and so in this case W is complementary to V(D). Theorem 6
gives the required strict convexity. Conversely, if D is degenerate then V(D) is
of dimension greater than 1, and so must have a nontrivial intersection with
the m — 1-dimensional space W. As ¢ is linear on V(D) by Theorem 6, this
implies that it is not strictly convex on W. O

EXAMPLE 3. This is a continuation of Example 2 in Section 5. For the non-
negative matrix A described there, the Perron—Frobenius eigenvalue of Ae®,
for A = diag(Aq, Ay, A3, Ay), is, by direct calculation,

p(Aed) = \/eXp(/\l + Ay) + Vexp(2(A; + Ay)) +4exp(A; + Ay + Az + Ay)
= 5 ,

so that

2 2

1 1 1+4 —A A Ag — A
¢(A)E].ng(AeA)=§10g( +\/ + eXp( 1+ 2"!‘ 3 4))+/\1+/\4

This exhibits the decomposition of ¢ into the sum of a strictly convex function
on a subspace of dimension m — r = 1 and a linear function, as described in
Theorem 6.

THEOREM 7 (Cohen’s conjecture #2 [6]). Suppose that A, As, ..., Ag are

nonnegative matrices, and suppose also that the cyclic products A;A,--- Ag,
AgAs-- Ay, ..., A A - Ag_, areirreducible. Then the function

d(diag(Aq, Ag, ..., Ag)) = log(p(AeM Age™ ... Agelr)),
of a real diagonal Km x Km matrix, is strictly convex on the domain
9 = {diag(A, Ag, ..., A) | A, diagonal and Trace(A,) =0
foreach k=1,2,..., K}
if and only if each AfAk, k=1,2,..., K, is irreducible.

PrROOF. Set
0 A, O 0
A= 0 0 A 0
Ay 0 0 --- 0

Then ¢(A) = log(p(Aet)), where A = diag(Aq, Ay, ..., Ag), and the irre-
ducibility assumptions of the theorem are equivalent to irreducibility of A. We
write the indices of the matrix A as (%k,j), # = 1,2,...,K and
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J=12,...,m. The set of indices L, ={(%, j) | j =1,2,...,m} is referred
to as level k.

By Theorem 6, ¢ is strictly convex on the domain & if and only if the inter-
section of that domain with the space V(A) is {0}. We compute the dimension
of V(A) using Theorem 3. We have

(6.7) ATA = diag(ALAg, ATA, ATA,, ... AL Ak ).

The block-diagonal form here implies that the classes of AT A are subsets
of the levels Ly, Lg,...,Lg. Let r = dim(V(A)) and r, = dim(V(4,)) for
k=1,2,..., K. Then (6.7) and Corollary 2 imply that

K
(6.8) r=>Yr,>K.

k=1
The inequality here is because the number of classes under the cousin relation
is at least one for any nonnegative matrix. We have

(69) V(A) D) {dlag(xll, .')CQI, ey XKI) | X1,%X9,...,Xg € R},

as each element of the space on the right is easily seen to be degenerate
with respect to A. Now if each A,{Ak, k=1,2,..., K, is irreducible, then
each r; is 1 and we have equality in (6.8), but this forces equality in (6.9), as
then the dimensions of the two spaces are equal. In this case the space Z is
complementary to V(A), and so it follows from Theorem 6 that ¢ is strictly
convex on 9, as required.

Conversely, if the A,{A » 8 were not all irreducible, then the dimension r of
V(A) would exceed K by (6.8), and so it would have a nontrivial intersection
with the K(m — 1)-dimensional space . Theorem 6 would then imply that ¢
is not strictly convex on 2. O

7. Cohen’s conjectures #8 and #9. Cohen’s eighth and ninth conjectures
are addressed in the two propositions below. In the first of these, we break
our habit of considering only the irreducible case. For the proofs we need
the following properties of collections of commuting essentially positive & x &
matrices. (For general results on commuting matrices, see [19].) Here, I is
the order-% identity matrix.

LEMMA 9. Let F(i), i = 1,2,...,m, be commuting essentially positive
matrices. Let & = F(1) + F(2)+ ---+ F(m) and let C;, | = 1,2,...,L,
denote the classes of 7. Denote by 7 [respectively, F;(i)] the square submatrix
of F [respectively, F(i)] corresponding to class C;. Let m; denote the Perron—
Frobenius eigenvector of the (irreducible essentially positive) matrix ;, scaled
so that the entries sum to 1. Then:

(a) The classes of F(i) are subsets of the classes of F for i =1,2,...,m.

(b) The vector m; is an eigenvector of each Fy(i)i =1,2,..., m.

(¢c) The eigenvalue p;; of F;(i) corresponding to the eigenvector m; is the
Perron—-Frobenius eigenvalue of F(i).
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PRrROOF. (a) This is because if two states communicate in F(7) for any i,
then they also communicate in 7.

(b) If F;(i) = 0 the statement is obvious. Suppose F;(i) # 0. Commutativity
of F(i) and . implies that each F;(i) commutes with .. Thus

(mF (1) = (mF)Fi(i) = p(m F (7)),

where p; is the Perron—Frobenius eigenvalue of 7. Therefore m;F;(i) is a
nonnegative eigenvector of .%;, and is nonzero as F;(i) # 0 and m; > 0. But,
since 7 is irreducible, 7; F;(i) must then be a multiple of 7; and we get

mFi(1) = pym

for a scalar p;;.

(¢) The fact that p,; is the Perron—Frobenius eigenvalue of F;(i) is because
all the components of 7; are positive, being the Perron—Frobenius eigenvector
of the irreducible matrix ;. O

PROPOSITION 4 (Cohen’s conjecture #8). With the notation and hypotheses
of Lemma 9, let A; = diag(pq;, pags ---»Pmy) for L = 1,2,..., L. Let @ be an
irreducible m x m generator. Then

p(exp(Q ® I, + A)) < p(exp(Q ® I;)e")
where A = diag(F (1), F(2),..., F(m)),

with equality if and only if, for at least one class I for which p(eQeM) attains
its maximum over 1 =1,2,..., k, A; is scalar.

PROOF. We calculate the Perron—Frobenius eigenvalues in question.
Throughout, we use the notation of Lemma 9. Let 7; denote the row k-vector
which has zeros everywhere except for indices ¢ € C;, where it has the appro-
priate entries of ;. Let e] be the column k-vector which has zeros everywhere
except for indices i € C;, where it has 1’s. The following may be proved by
straightforward manipulations:

7D (I, @) exp((Q ® I}, + A))(I,, ® €}) = exp(H(Q + A))),
(7.2) (I, ® 7 )(exp(Q ® I})e") (I, ® ef) = (e%e™)".

From (7.1) it follows upon letting ¢ — oo that the spectral radius of exp(Q®1,+
A) is the maximum over [ of p(exp(@+A;)). This is because the components of
the vectors Y ; m; and yE e; are all positive. Similarly, from (7.2) it follows
that the spectral radius of exp(Q ® I;)e" is the maximum over [ of p(e®e™).
Relating these using Theorem 1 for inequality we have

plexp(Q ® I+ A)) = max p(exp(Q + Ay)) < max p(ee™)

= p(exp(Q ® I})e").

The condition for strict inequality also follows directly from Theorem 1. O
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Cohen conjectured strict inequality under the sole condition of irreducibility
of the F(i)’s, but this is not enough; even when irreducibility holds, we must
further insist that the Perron—Frobenius eigenvalues of the F(i)’s not be all
equal. An entirely parallel argument leads to the following version of Cohen’s
conjecture #9. We do not give the proof. We also assume irreducibility as Cohen
does, avoiding the somewhat cumbersome generality of Proposition 4.

PROPOSITION 5 (Cohen’s conjecture #9). Let A(i),i =1,2,...,m, be k x k
commuting irreducible nonnegative matrices. Let P be an irreducible stochastic
matrix. Then

p(P®I,)A) < p(P®I,)2A?) where A = diag(A(1), A(2), ..., A(m)),

with equality ifand only if (P, A,)is degenerate, where A, = diag(ay, ag, ..., a,,)
and a; =log p(A(i)),i=1,2,...,m.

Irreducibility of a nonnegative matrix implies that its Perron—Frobenius
eigenvalue is positive, and so A, is a finite matrix here.

8. Concluding remarks. In this paper, we have limited our scope in
several ways for brevity. We have not tried to treat the reducible case sys-
tematically, and in results involving diagonal matrices we have considered
only invertibles ones (of the form e* with A finite). There are many results
in the literature cited, beyond those treated above, which can be more fully
understood in the light of the present work.

Much of the paper concerns fluid models, reflecting the emphasis in the
existing literature, but there are other inequalities associated with fundamen-
tal matrices of more general Markov additive processes that may be interest.
An example is Proposition 3, which places a simple lower bound on the Perron—
Frobenius eigenvalue of a matrix of the form P ® A for P irreducible and A
nonnegative. The key technical fact contained in Lemmas 1 and 2 extends
readily to more general Markov additive processes having a suitable regener-
ative structure [15], and the techniques of this paper give a natural approach
to inequalities in this larger context.
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